JP2004269414A - Organic ionic liquid having amino acid as constituting ion - Google Patents

Organic ionic liquid having amino acid as constituting ion Download PDF

Info

Publication number
JP2004269414A
JP2004269414A JP2003061534A JP2003061534A JP2004269414A JP 2004269414 A JP2004269414 A JP 2004269414A JP 2003061534 A JP2003061534 A JP 2003061534A JP 2003061534 A JP2003061534 A JP 2003061534A JP 2004269414 A JP2004269414 A JP 2004269414A
Authority
JP
Japan
Prior art keywords
added
ethyl
amino acid
water
methylimidazolium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003061534A
Other languages
Japanese (ja)
Other versions
JP4261223B2 (en
Inventor
Hiroyuki Ono
弘幸 大野
Masahiro Yoshizawa
正博 吉沢
Kenta Fukumoto
健太 福元
Takashi Inagaki
隆司 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KATAYAMA SEIYAKUSHIYO KK
Original Assignee
KATAYAMA SEIYAKUSHIYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KATAYAMA SEIYAKUSHIYO KK filed Critical KATAYAMA SEIYAKUSHIYO KK
Priority to JP2003061534A priority Critical patent/JP4261223B2/en
Publication of JP2004269414A publication Critical patent/JP2004269414A/en
Application granted granted Critical
Publication of JP4261223B2 publication Critical patent/JP4261223B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chiral derivative of a low environmental load type which can be simply obtained at a low cost, and an ionic liquid as a new solvent. <P>SOLUTION: The organic ionic liquid is a quaternary nitrogen compound represented by formula I [wherein the cation part AN<SP>+</SP>is (R)<SB>4</SB>N<SP>+</SP>(wherein R is a nonsubstituted or substituted lower alkyl group), a cation in which one proton or one alkyl group is bonded to the nitrogen atom of a nonsubstituted or substituted heterocycle having at least one nitrogen atom as the ring member or another cation and the anion part is an amino acid anion of H<SB>2</SB>N-Y-C(=O)-O<SP>-</SP>(wherein Y is a constituting part of an amino acid whose amino group and carboxylic group are eliminated)]. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は一般式Iで示される第4級窒素化合物である有機イオン性液体に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
イオン性液体とは融点が100℃程度以下の塩の総称であり、最近、水、有機溶媒に次ぐ第三の溶媒として注目を集めている(例えば、非特許文献1)。イオン性液体はイオン性液体形成に有利なカチオンとアニオンを組合せて合成される。これまで用いられてきたカチオンにはイミダゾリウムカチオン、ピリジニウムカチオン、アルキルアンモニウムカチオンなどがあり、アニオンとしては、BF 、PF 、トリフレートアニオン(CFSO )、イミドアニオン(TFSI)、CHCOO、CFHCOO、NO 、(CN)などがある。
【0003】
それらイオン性液体の特徴として、液体状態を保つ温度範囲が極めて広いこと、液体でありながら蒸気圧がほぼゼロであるため不揮発性・不燃性であること、イオンのみからなる液体であるため極めて高いイオン伝導度を有すること、種々の無機・有機化合物に対して高い溶解性を有すること、イオンの組み合わせに依存するが水や汎用の有機溶媒と混ざらない液相を提供できることなどが挙げられる。これらの特徴に基づき、イオン性液体は各種合成溶媒、分離・抽出溶媒としての応用はもちろんのこと、バッテリーなどの電解質材料(例えば、特許文献1)としても精力的に研究されている。
【0004】
これらの応用の中でも、各種合成溶媒としての報告は群を抜く。イオン性液体の特徴は、生活環境への拡散を最小限にとどめる上で有用であり、繰り返し利用する上でも優れているため、地球環境に優しい溶媒として、また従来の溶媒の代替材料として適切と考えられてきている。これまでに、Friedel−Crafts反応、Diels−Alder反応、Heck反応、Biginelli反応、Beckmann転移反応などに関して報告がなされている(例えば、特許文献2)。これらはほんの一例に過ぎず、極めて多くの反応に検討が及んでいる。いずれもイオン性液体が反応用の溶媒として繰り返し利用できること、反応によっては従来の溶媒よりも優れた収率や選択性が得られることが明らかとなっている。
【0005】
これら有機合成の中で最も重要な反応の一つは不斉合成である。不斉合成は有機化学分野にとどまらず、生化学、薬理学の分野においても極めて重要な位置を占める。これまで、不斉誘導体としては、光学活性な試薬やキラル触媒が用いられてきたが、キラルイオン性液体の合成もすでに検討されている。Diels−Alder反応にキラルイオン性液体を用いた場合、反応時間の短縮、収率の向上、反応位置の選択性向上など顕著な結果が得られている。しかし、現在までに報告されているキラルイオン性液体にも改善すべき点は多い。
【0006】
従来のイオン性液体の欠点としては、(1)イミダゾリウムカチオンやアンモニウムカチオンのようなカチオン構造にキラル部位を有する系は、合成手順が煩雑で高純度物を得るのは容易ではない;(2)キラルな塩を用いたイオン性液体の合成は従来の系と同様にアニオン交換反応により合成するため出発物質が高価である;(3)キラル部位が2カ所あるため、不斉触媒反応の妨げになる;(4)光学純度が100%でない;融点が室温よりも高い系が多い(熱処理を必要とするためラセミ化や熱変性するなどの欠点がある)などが挙げられる。
【0007】
これまでに天然アミノ酸を出発物質とするキラルイオン性液体の合成を試みた報告はある(例えば、非特許文献2)が、目的物質の合成に多段階の操作を経る必要があること、前駆体の合成時に官能基がカルボキシル基からアルコールに置換されること、イミダゾリウムカチオンの側鎖に嵩高いアミノ酸誘導体が導入されるため、得られた塩の融点が比較的高くなり、イオン性液体とはいえなかった。
【0008】
【特許文献1】特開2000−110472号公報
【特許文献2】特開2002−275118号公報
【非特許文献1】大野弘幸、「有機イオン性液体−蒸発しない極性液体−」、未来材料、2002年、第2巻第9号6〜11頁
【非特許文献2】Weliang Bao, Zhimiang Wang and Yuxia Li, Journal of Organic Chemistry, 2003, 68(2), 591−593
【0009】
【課題を解決するための手段】
本発明は、一般式I:
【化2】

Figure 2004269414
[式中、カチオン部ANは、(R)(ここで、Rは、非置換もしくは置換された低級アルキル基)であるか、または1もしくはそれ以上の窒素原子を環員とする非置換もしくは置換されたヘテロ環の窒素原子にプロトンが1個付加したカチオンであり、アニオン部HN−Y−C(=O)−O(ここで、Yは、アミノ酸のアミノ基およびカルボキシ基を除いた構成部分)のアニオンは、D−またはL−アミノ酸アニオンである]で示される第4級窒素化合物である有機イオン性液体を提供する。
【0010】
低級アルキル基のカチオン(R)の例としては、低級アルキルアンモニウムが挙げられ、ヘテロ環のカチオンの例としては、ピロリウム、イミダゾリウム、2H−ピロリウム、ピラゾリウム、ピリジニウム、ピラジニウム、ピリミジウム、ピリダジニウム、インドリジニウム、インドリウム、3H−インドリウム、1H−インダゾリウム、イソインドリウム、プリニウム、4H−キノリジニウム、イソキノリニウム、キノリニウム、フタラジニウム、ナフチリジニウム、キノキサリニウム、キナゾリニウム、シノリニウム、プテリジニウム、4aH−カルバゾリウム、カルバゾリウム、β−カルボリニウム、フェナンスリジニウム、アクリジニウム、ペリミジニウム、フェナンスロリニウム、フェナジニウムを挙げることができるが、好ましくは、イミダゾリウム、ピリジニウム、ピロリジニウムであり、より好ましくは、イミダゾリウムである。
【0011】
アニオンは、D−またはL−のアミノ酸のアニオンであり、好ましくは天然のα−アミノ酸であり、より好ましくは、L−ロイシン、L−フェニルアラニン、L−イソロイシン、グリシン、L−グルタミン酸、L−バリン、L−アスパラギン酸、L−トリプトファン、L−アラニン、L−アルギニン、L−アスパラギン、L−システイン、L−グルタミン、L−ヒスチジン、L−リジン、L−メチオニン、L−プロリン、L−セリン、L−トレオニンまたはL−チロシンから選ばれるアミノ酸のアニオンである。
【0012】
【発明の実施の形態】
この明細書で用いられる低級アルキル基としては、飽和の直鎖または分枝状の、炭素原子1〜12個、好ましくは2〜6個、より好ましくは2〜4個を含む炭化水素残基をいう。例えばメチル、エチル、プロピル、イソプロピル、ブチル、s−ブチル、t−ブチル、ペンチル、ヘキシルなどを挙げることができ、好ましくは、エチル、プロピル、イソプロピル、ブチル、ペンチル、ヘキシルであり、より好ましくは、エチルおよびブチルである。
【0013】
式IのRおよびヘテロ環の置換基としては、炭素原子1〜12、好ましくは、炭素原子1〜6、より好ましくは、炭素原子1〜4の低級アルキル基であり、好ましくは、メチルおよびエチルを挙げることができる。
【0014】
本発明の第4級窒素化合物の一般的製造方法
カチオン部のANのハライド、好ましくはブロミド、1重量部を水性溶媒に溶解させ、適当な処理、例えば、陰イオン交換樹脂を通し、ヒドロキシ化合物に変換し、これに、アニオン部HN−Y−C(=O)−Oとなるアミノ酸約1〜1.1重量部、好ましくは、約1.0重量部を添加し、得られた混合溶液を氷冷下攪拌し、溶媒を減圧留去し、残渣から適当な方法によって未反応のアミノ酸を除去し、所望のイオン性液体としての第4級窒素化合物を得る。
【0015】
【実施例】
以下、実施例によってこの発明を具体的に説明するが本発明はこれに限定されるものではない。なお、これらの実施例における1,3−ジアルキルイミダゾリウム水酸化物とアミノ酸の中和反応の進行は、H−NMR測定および元素分析によって行い確認された。
【0016】
実施例1
1−エチル−3−メチルイミダゾリウムブロミド1.0gに水5mlを加え、均一溶解させたのちこれを陰イオン交換樹脂に通し、1−エチル−3−メチルイミダゾリウムヒドロキシド水溶液(以下、EMImOH水溶液と記す)を得た。L−ロイシン0.8gを水100mlに加え、均一溶液にしたものに、EMImOH水溶液をゆっくり滴下して、氷冷し、温度を0℃に維持しながら12時間攪拌したのち、減圧乾燥して余分な水を除去した。これにアセトニトリル40mlとメチルアルコール10mlを加え、温度を0℃に維持しながら30分攪拌した。その後、濾過により析出した結晶(過剰に加えた未反応のロイシン)を除去した。濾液を減圧加熱乾燥してアセトニトリルとメチルアルコールを除去し、1−エチル−3−メチルイミダゾリウムロイシン塩1.0g(収率80%)を得た。本品のH−NMR測定を行った結果は図1に示したとおりであり、プロトンの化学シフトと積分強度から反応の進行が確認された。元素分析の結果は理論値に一致した。
元素分析(%) C1223О・4HО
C 44.66%,H 9.61%,N 12.81%
【0017】
実施例2
1−エチル−3−メチルイミダゾリウムブロミド1.0gに水5mlを加え、均一溶解させたのちこれを陰イオン交換樹脂に通し、1−エチル−3−メチルイミダゾリウムヒドロキシド水溶液(以下、EMImOH水溶液と記す)を得た。L−フェニルアラニン1.0gを水100mlに加え、均一溶液にしたものにEMImOH水溶液をゆっくり滴下して、氷冷し、温度を0℃に維持しながら12時間攪拌したのち、減圧乾燥して余分な水を除去した。これにアセトニトリル40mlとメチルアルコール10mlを加え、温度を0℃に維持しながら30分攪拌した。その後、濾過により析出した結晶(過剰に加えた未反応のフェニルアラニン)を除去した。濾液を減圧加熱乾燥してアセトニトリルとメチルアルコールを除去し、1−エチル−3−メチルイミダゾリウムフェニルアラニン塩1.2g(収率83%)を得た。本品のH−NMR測定を行った結果は図2に示したとおりであり、プロトンの化学シフトと積分強度から反応の進行が確認された。
【0018】
実施例3
1−エチル−3−メチルイミダゾリウムブロミド1.0gに水5mlを加え、均一溶解させたのちこれを陰イオン交換樹脂に通し、1−エチル−3−メチルイミダゾリウムヒドロキシド水溶液(以下、EMImOH水溶液と記す)を得た。L−イソロイシン1.0gを水100mlに加え、均一溶液にしたものにEMImOH水溶液をゆっくり滴下して、氷冷し、温度を0℃に維持しながら12時間攪拌したのち、減圧乾燥して余分な水を除去した。これにアセトニトリル40mlとメチルアルコール10mlを加え、温度を0℃に維持しながら30分攪拌した。その後、濾過により析出した結晶(過剰に加えた未反応のイソロイシン)を除去した。濾液を減圧加熱乾燥してアセトニトリルとメチルアルコールを除去し、1−エチル−3−メチルイミダゾリウムイソロイシン塩1.0g(収率82%)を得た。本品のH−NMR測定を行った結果は図3に示したとおりであり、プロトンの化学シフトと積分強度から反応の進行が確認された。
【0019】
実施例4
1−エチル−3−メチルイミダゾリウムブロミド1.0gに水5mlを加え、均一溶解させたのちこれを陰イオン交換樹脂に通し、1−エチル−3−メチルイミダゾリウムヒドロキシド水溶液(以下、EMImOH水溶液と記す)を得た。グリシン0.5gを水100mlに加え、均一溶液にしたものにEMImOH水溶液をゆっくり滴下して、氷冷し、温度を0℃に維持しながら12時間攪拌したのち、減圧乾燥して余分な水を除去した。これにアセトニトリル40mlとメチルアルコール10mlを加え、温度を0℃に維持しながら30分攪拌した。その後、濾過により析出した結晶(過剰に加えた未反応のグリシン)を除去した。濾液を減圧加熱乾燥してアセトニトリルとメチルアルコールを除去し、1−エチル−3−メチルイミダゾリウムグリシン塩0.8g(収率82%)を得た。本品のH−NMR測定を行った結果は図4に示したとおりであり、プロトンの化学シフトと積分強度から反応の進行が確認された。元素分析の結果は理論値通りであった。
元素分析 C15О・0.5HО
C 49.18%,H 8.25%,N 21.17%
【0020】
実施例5
1−エチル−3−メチルイミダゾリウムブロミド1.0gに水5mlを加え、均一溶解させたのちこれを陰イオン交換樹脂に通し、1−エチル−3−メチルイミダゾリウムヒドロキシド水溶液(以下、EMImOH水溶液と記す)を得た。L−グルタミン酸0.9gを水100mlに加えたものにEMImOH水溶液をゆっくり滴下して、氷冷し、温度を0℃に維持しながら12時間攪拌したのち、減圧乾燥して余分な水を除去した。これにアセトニトリル40mlとメチルアルコール10mlを加え、温度を0℃に維持しながら30分攪拌した。その後、濾過により析出した結晶(過剰に加えた未反応のグルタミン酸)を除去した。濾液を減圧加熱乾燥してアセトニトリルとメチルアルコールを除去し、1−エチル−3−メチルイミダゾリウムグルタミン酸塩1.1g(収率80%)を得た。本品のH−NMR測定を行った結果は図5に示したとおりであり、プロトンの化学シフトと積分強度から反応の進行が確認された。
【0021】
実施例6
1−エチル−3−メチルイミダゾリウムブロミド1.0gに水5mlを加え、均一溶解させたのちこれを陰イオン交換樹脂に通し、1−エチル−3−メチルイミダゾリウムヒドロキシド水溶液(以下、EMImOH水溶液と記す)を得た。L−バリン0.7gを水100mlに加え、均一溶液にしたものにEMImOH水溶液をゆっくり滴下して、氷冷し、温度を0℃に維持しながら12時間攪拌したのち、減圧乾燥して余分な水を除去した。これにアセトニトリル40mlとメチルアルコール10mlを加え、温度を0℃に維持しながら30分攪拌した。その後、濾過により析出した結晶(過剰に加えた未反応のバリン)を除去した。濾液を減圧加熱乾燥してアセトニトリルとメチルアルコールを除去し、1−エチル−3−メチルイミダゾリウムバリン塩0.9g(収率79%)を得た。本品のH−NMR測定を行った結果は図6に示したとおりであり、プロトンの化学シフトと積分強度から反応の進行が確認された。
【0022】
実施例7
1−エチル−3−メチルイミダゾリウムブロミド1.0gに水5mlを加え、均一溶解させたのちこれを陰イオン交換樹脂に通し、1−エチル−3−メチルイミダゾリウムヒドロキシド水溶液(以下、EMImOH水溶液と記す)を得た。L−アスパラギン酸0.9gを水100mlに加えたものにEMImOH水溶液をゆっくり滴下して、氷冷し、温度を0℃に維持しながら12時間攪拌したのち、減圧乾燥して余分な水を除去した。これにアセトニトリル40mlとメチルアルコール10mlを加え、温度を0℃に維持しながら30分攪拌した。その後、濾過により析出した結晶(過剰に加えた未反応のアスパラギン酸)を除去した。濾液を減圧加熱乾燥してアセトニトリルとメチルアルコールを除去し、1−エチル−3−メチルイミダゾリウムアスパラギン酸塩1.1g(収率89%)を得た。本品のH−NMR測定を行った結果は図7に示したとおりであり、プロトンの化学シフトと積分強度から反応の進行が確認された。
【0023】
実施例8
1−エチル−3−メチルイミダゾリウムブロミド1.5gに水10mlを加え、均一溶解させたのちこれを陰イオン交換樹脂に通し、1−エチル−3−メチルイミダゾリウムヒドロキシド水溶液(以下、EMImOH水溶液と記す)を得た。L−トリプトファン1.8gを水100mlに加えたものにEMImOH水溶液をゆっくり滴下して、氷冷し、温度を0℃に維持しながら12時間攪拌したのち、減圧乾燥して余分な水を除去した。これにアセトニトリル40mlとメチルアルコール10mlを加え、温度を0℃に維持しながら30分攪拌した。その後、濾過により析出した結晶(過剰に加えた未反応のトリプトファン)を除去した。濾液を減圧加熱乾燥してアセトニトリルとメチルアルコールを除去し、1−エチル−3−メチルイミダゾリウムトリプトファン塩1.0g(収率82%)を得た。本品のH−NMR測定を行った結果は図8に示したとおりであり、プロトンの化学シフトと積分強度から反応の進行が確認された。
【0024】
実施例9
1−エチル−3−メチルイミダゾリウムブロミド1.0gに水5mlを加え、均一溶解させたのちこれを陰イオン交換樹脂に通し、1−エチル−3−メチルイミダゾリウムヒドロキシド水溶液(以下、EMImOH水溶液と記す)を得た。L−アラニン0.7gを水100mlに加え、均一溶液にしたものにEMImOH水溶液をゆっくり滴下して、氷冷し、温度を0℃に維持しながら12時間攪拌したのち、減圧乾燥して余分な水を除去した。これにアセトニトリル40mlとメチルアルコール10mlを加え、温度を0℃に維持しながら30分攪拌した。その後、濾過により析出した結晶(過剰に加えた未反応のアラニン)を除去した。濾液を減圧加熱乾燥してアセトニトリルとメチルアルコールを除去し、1−エチル−3−メチルイミダゾリウムアラニン塩0.9g(収率86%)を得た。本品のH−NMR測定を行った結果は以下に示したとおりであり、プロトンの化学シフトと積分強度から反応の進行が確認された。元素分析の結果は理論値通りであった。
【化3】
Figure 2004269414
H−NMR(DMSO, δ/ppm TMS基準): 0.96(d,3H,J=3.5Hz,(h)), 1.35(t,3H,J=7Hz), 2.80(q,1H,10.3), 3.83(s,3H), 4.17(q,2H,J=11.3Hz), 7.72(s,1H), 7.81(s,1H), 9.83(s, 1H)
元素分析 C17О・2HО
C 45.92%,H 8.74%,N 17.40%
【0025】
実施例10
1−エチル−3−メチルイミダゾリウムブロミド1.5gに水10mlを加え、均一溶解させたのちこれを陰イオン交換樹脂に通し、1−エチル−3−メチルイミダゾリウムヒドロキシド水溶液(以下、EMImOH水溶液と記す)を得た。L−アルギニン1.6gを水100mlに加え、均一溶液にしたものにEMImOH水溶液をゆっくり滴下して、氷冷し、温度を0℃に維持しながら12時間攪拌したのち、減圧乾燥して余分な水を除去した。これを温度を0℃に維持しながら24時間冷却し、その後、濾過により析出した結晶(過剰に加えた未反応のアルギニン)を除去することで1−エチル−3−メチルイミダゾリウムアルギニン塩1.6g(収率74%)を得た。本品のH−NMR測定を行った結果は以下に示したとおりであり、プロトンの化学シフトと積分強度から反応の進行が確認された。
【化4】
Figure 2004269414
H−NMR(DMSO, δ/ppm TMS基準): 1.23(m,2H,J=15Hz,(i)), 1.35(t,3H,J=7Hz), 1.44(m,2H,(h)), 2.79(t,1H,J=6.5.(g)), 2.85(t,2H,J=9Hz,(j)), 3.81(s,3H), 4.16(q,2H,J=11Hz), 7.68(d,1H,J=1Hz), 7.77(d,1H,J=0.75Hz)
【0026】
実施例11
1−エチル−3−メチルイミダゾリウムブロミド1.0gに水5mlを加え、均一溶解させたのちこれを陰イオン交換樹脂に通し、1−エチル−3−メチルイミダゾリウムヒドロキシド水溶液(以下、EMImOH水溶液と記す)を得た。L−アスパラギン0.8gを水100mlに加え、均一溶液にしたものにEMImOH水溶液をゆっくり滴下して、氷冷し、温度を0℃に維持しながら12時間攪拌したのち、減圧乾燥して余分な水を除去した。これにアセトニトリル40mlとメチルアルコール10mlを加え、温度を0℃に維持しながら30分攪拌した。その後、濾過により析出した結晶(過剰に加えた未反応のアスパラギン)を除去した。濾液を減圧加熱乾燥してアセトニトリルとメチルアルコールを除去し、1−エチル−3−メチルイミダゾリウムアスパラギン塩1.1g(収率83%)を得た。本品のH−NMR測定を行った結果は以下に示したとおりであり、プロトンの化学シフトと積分強度から反応の進行が確認された。
【化5】
Figure 2004269414
H−NMR(DMSO, δ/ppm TMS基準): 1.36(t,3H,J=7.5Hz), 1.93(q,1H,J=11.8Hz,(h)), 2.35(q,1H,J=9.5Hz,(h)), 3.06(q,1H,J=6.3Hz), 3.82(s,3H), 4.16(q,2H,J=10.8), 6.58(s,1H,(i)), 7.70(t,1H,J=2Hz), 7.78(t,1H,J=1.5Hz), 7.99(s,1H,(i)), 9.59(s,1H)
【0027】
実施例12
1−エチル−3−メチルイミダゾリウムブロミド1.0gに水5mlを加え、均一溶解させたのちこれを陰イオン交換樹脂に通し、1−エチル−3−メチルイミダゾリウムヒドロキシド水溶液(以下、EMImOH水溶液と記す)を得た。窒素雰囲気下でL−システイン0.8gを脱気した水100mlに加えたものに脱気したEMImOH水溶液をゆっくり滴下して、氷冷し、温度を0℃に維持しながら12時間攪拌したのち、減圧乾燥して余分な水を除去した。これにアセトニトリル40mlとメチルアルコール10mlを加え、温度を0℃に維持しながら30分攪拌した。その後、濾過により析出した結晶(過剰に加えた未反応のシステイン)を除去した。濾液を減圧加熱乾燥してアセトニトリルとメチルアルコールを除去し、1−エチル−3−メチルイミダゾリウムシステイン塩0.9g(収率77%)を得た。本品のH−NMR測定を行った結果は以下に示したとおりであり、プロトンの化学シフトと積分強度から反応の進行が確認された。
【化6】
Figure 2004269414
H−NMR(DMSO, δ/ppm TMS基準): 1.36(t,3H,J=7.5Hz), 2.45(d,1H,J=10.3Hz,(h)), 2.67(d,1H,J=8.5Hz,(h)), 2.93(t,1H,J=5.5Hz), 3.82(s,3H), 4.17(q,2H,J=10.8Hz), 7.70(s,1H), 7.78(s,1H), 9.51(s,1H)
【0028】
実施例13
1−エチル−3−メチルイミダゾリウムブロミド1.0gに水5mlを加え、均一溶解させたのちこれを陰イオン交換樹脂に通し、1−エチル−3−メチルイミダゾリウムヒドロキシド水溶液(以下、EMImOH水溶液と記す)を得た。L−グルタミン0.8gを水100mlに加え、均一溶液にしたものにEMImOH水溶液をゆっくり滴下して、氷冷し、温度を0℃に維持しながら12時間攪拌したのち、減圧乾燥して余分な水を除去した。これにアセトニトリル40mlとメチルアルコール10mlを加え、温度を0℃に維持しながら30分攪拌した。その後、濾過により析出した結晶(過剰に加えた未反応のグルタミン)を除去した。濾液を減圧加熱乾燥してアセトニトリルとメチルアルコールを除去し、1−エチル−3−メチルイミダゾリウムグルタミン塩0.9g(収率66%)を得た。本品のH−NMR測定を行った結果は以下に示したとおりであり、プロトンの化学シフトと積分強度から反応の進行が確認された。
【化7】
Figure 2004269414
H−NMR(DMSO, δ/ppm TMS基準): 1.35(t,3H,J=7Hz), 1.43(m,1H,J=18Hz(h)), 1.66(m,1H,J=13Hz,(h)), 2.01(m,2H,J=23.8Hz,(i)), 2.77(t,1H,J=6.3Hz), 3.82(s,3H), 4.17(q,2H,J=10.8Hz), 6.55(s,1H,(j)), 7.61(s,1H,(j)), 7.71(s,1H), 7.79(s,1H), 9.67(s,1H)
【0029】
実施例14
1−エチル−3−メチルイミダゾリウムブロミド1.0gに水5mlを加え、均一溶解させたのちこれを陰イオン交換樹脂に通し、1−エチル−3−メチルイミダゾリウムヒドロキシド水溶液(以下、EMImOH水溶液と記す)を得た。L−ヒスチジン1.0gを水100mlに加え、均一溶液にしたものにEMImOH水溶液をゆっくり滴下して、氷冷し、温度を0℃に維持しながら12時間攪拌したのち、減圧乾燥して余分な水を除去した。これにアセトニトリル40mlとメチルアルコール10mlを加え、温度を0℃に維持しながら30分攪拌した。その後、濾過により析出した結晶(過剰に加えた未反応のヒスチジン)を除去した。濾液を減圧加熱乾燥してアセトニトリルとメチルアルコールを除去し、1−エチル−3−メチルイミダゾリウムヒスチジン塩1.1g(収率78%)を得た。本品のH−NMR測定を行った結果は以下に示したとおりであり、プロトンの化学シフトと積分強度から反応の進行が確認された。
【化8】
Figure 2004269414
H−NMR(DMSO, δ/ppm TMS基準): 1.34(t,3H,J=7Hz), 2.36(q,1H,J=11Hz,(h)), 2.82(q,1H,J=9.3Hz,(h)), 2.99(t,1H,J=6Hz), 3.80(s,3H), 4.14(q,2H,J=10.8Hz), 6.58(s,1H,(i)), 7.35(s,1H,(j)), 7.68(s,1H), 7.76(s,1H), 9.53(s,1H)
【0030】
実施例15
1−エチル−3−メチルイミダゾリウムブロミド1.0gに水5mlを加え、均一溶解させたのちこれを陰イオン交換樹脂に通し、1−エチル−3−メチルイミダゾリウムヒドロキシド水溶液(以下、EMImOH水溶液と記す)を得た。L−リジン0.9gを水100mlに加え、均一溶液にしたものにEMImOH水溶液をゆっくり滴下して、氷冷し、温度を0℃に維持しながら12時間攪拌したのち、減圧乾燥して余分な水を除去した。これにアセトニトリル40mlとメチルアルコール10mlを加え、温度を0℃に維持しながら30分攪拌した。その後、濾過により析出した結晶(過剰に加えた未反応のリジン)を除去した。濾液を減圧加熱乾燥してアセトニトリルとメチルアルコールを除去し、1−エチル−3−メチルイミダゾリウムリジン塩1.0g(収率78%)を得た。本品のH−NMR測定を行った結果は以下に示したとおりであり、プロトンの化学シフトと積分強度から反応の進行が確認された。元素分析の結果は理論値通りであった。
【化9】
Figure 2004269414
H−NMR(DMSO, δ/ppm TMS基準): 1.22(m,5H,J=13.5Hz,(i)(j)(h)), 1.36(t,3H,J=7.5), 1.48(m,1H,J=13Hz,(h)), 2.42(d,2H,J=6.5Hz,(k)), 2.73(t,1H,J=7.0Hz), 3.82(s,3H), 4.17(q,2H,J=11.3Hz), 7.70(t,1H,J=1.5Hz), 7.79(t,1H,J=1.5Hz), 9.67(s,1H)
元素分析 C1224О・HО
C 58.36%,H 8.01%,N 13.58%
【0031】
実施例16
1−エチル−3−メチルイミダゾリウムブロミド1.0gに水5mlを加え、均一溶解させたのちこれを陰イオン交換樹脂に通し、1−エチル−3−メチルイミダゾリウムヒドロキシド水溶液(以下、EMImOH水溶液と記す)を得た。L−メチオニン0.9gを水100mlに加え、均一溶液にしたものにEMImOH水溶液をゆっくり滴下して、氷冷し、温度を0℃に維持しながら12時間攪拌したのち、減圧乾燥して余分な水を除去した。これにアセトニトリル40mlとメチルアルコール10mlを加え、温度を0℃に維持しながら30分攪拌した。その後、濾過により析出した結晶(過剰に加えた未反応のメチオニン)を除去した。濾液を減圧加熱乾燥してアセトニトリルとメチルアルコールを除去し、1−エチル−3−メチルイミダゾリウムメチオニン塩1.1g(収率78%)を得た。本品のH−NMR測定を行った結果は以下に示したとおりであり、プロトンの化学シフトと積分強度から反応の進行が確認された。元素分析の結果は理論値通りであった。
【化10】
Figure 2004269414
H−NMR(DMSO, δ/ppm TMS基準): 1.36(t,3H,J=7.5Hz), 1.42(m,1H,J=24.5Hz,(h)), 1.74(m,1H,J=16.5Hz,(h)), 1.94(s,1H), 2.42(t,2H,J=8.5Hz,(i)), 2.82(q,1H,J=5.75Hz), 3.82(s,3H), 4.17(q,2H,J=11.3Hz), 7.71(s,1H), 7.80(s,1H), 9.69(s,1H)
元素分析 C1121ОS・2.2HО
C 43.87%,H 8.51%,N 13.86%
【0032】
実施例17
1−エチル−3−メチルイミダゾリウムブロミド1.0gに水5mlを加え、均一溶解させたのちこれを陰イオン交換樹脂に通し、1−エチル−3−メチルイミダゾリウムヒドロキシド水溶液(以下、EMImOH水溶液と記す)を得た。L−プロリン1.0gを水100mlに加え、均一溶液にしたものにEMImOH水溶液をゆっくり滴下して、氷冷し、温度を0℃に維持しながら12時間攪拌したのち、減圧乾燥して余分な水を除去した。これにアセトニトリル40mlとメチルアルコール10mlを加え、温度を0℃に維持しながら30分攪拌した。その後、濾過により析出した結晶(過剰に加えた未反応のプロリン)を除去した。濾液を減圧加熱乾燥してアセトニトリルとメチルアルコールを除去し、1−エチル−3−メチルイミダゾリウムプロリン塩1.1g(収率83%)を得た。本品のH−NMR測定を行った結果は以下に示したとおりであり、プロトンの化学シフトと積分強度から反応の進行が確認された。元素分析の結果は理論値通りであった。
【化11】
Figure 2004269414
H−NMR(DMSO, δ/ppm TMS基準): 1.36(t,3H,J=7.5Hz), 1.42(m,1H,J=17Hz), 1.51(m,1H,J=19Hz), 1.62(broad, 1H), 1.77(m,1H,J=17.8Hz), 2.60(broad,1H), 2,92(m,1H,J=11.3Hz), 3.18(broad,1H), 3.82(s,3H), 4.16(q,2H,J=11.3Hz), 7.70(s,1H), 7.79(s,1H), 9.53(s,1H)
元素分析 C1119О・2HО
C 50.16%,H 8.85%,N 15.32%
【0033】
実施例18
1−エチル−3−メチルイミダゾリウムブロミド1.0gに水5mlを加え、均一溶解させたのちこれを陰イオン交換樹脂に通し、1−エチル−3−メチルイミダゾリウムヒドロキシド水溶液(以下、EMImOH水溶液と記す)を得た。L−セリン0.7gを水100mlに加え、均一溶液にしたものにEMImOH水溶液をゆっくり滴下して、氷冷し、温度を0℃に維持しながら12時間攪拌したのち、減圧乾燥して余分な水を除去した。これにアセトニトリル40mlとメチルアルコール10mlを加え、温度を0℃に維持しながら30分攪拌した。その後、濾過により析出した結晶(過剰に加えた未反応のセリン)を除去した。濾液を減圧加熱乾燥してアセトニトリルとメチルアルコールを除去し、1−エチル−3−メチルイミダゾリウムセリン塩0.9g(収率79%)を得た。本品のH−NMR測定を行った結果は以下に示したとおりであり、プロトンの化学シフトと積分強度から反応の進行が確認された。元素分析の結果は理論値通りであった。
【化12】
Figure 2004269414
H−NMR(DMSO, δ/ppm TMS基準): 1.36(t,3H,J=7Hz), 2.83(t,1H,J=7Hz), 3.23(m,2H,J=15.5Hz,(h)), 3.81(s,3H), 4.16(q,2H,J=11Hz), 7.69(s,1H), 7.78(s,1H), 9.47(s,1H)
元素分析 C17О・HО
C 46.37%,H 8.22%,N 17.71%
【0034】
実施例19
1−エチル−3−メチルイミダゾリウムブロミド1.0gに水5mlを加え、均一溶解させたのちこれを陰イオン交換樹脂に通し、1−エチル−3−メチルイミダゾリウムヒドロキシド水溶液(以下、EMImOH水溶液と記す)を得た。L−トレオニン0.7gを水100mlに加え、均一溶液にしたものにEMImOH水溶液をゆっくり滴下して、氷冷し、温度を0℃に維持しながら12時間攪拌したのち、減圧乾燥して余分な水を除去した。これにアセトニトリル40mlとメチルアルコール10mlを加え、温度を0℃に維持しながら30分攪拌した。その後、濾過により析出した結晶(過剰に加えた未反応のトレオニン)を除去した。濾液を減圧加熱乾燥してアセトニトリルとメチルアルコールを除去し、1−エチル−3−メチルイミダゾリウムトレオニン塩1.0g(収率84%)を得た。本品のH−NMR測定を行った結果は以下に示したとおりであり、プロトンの化学シフトと積分強度から反応の進行が確認された。
【化13】
Figure 2004269414
H−NMR(DMSO, δ/ppm TMS基準): 0.86(d,3H,J=3Hz,(i)), 1.36(t,3H,J=7Hz), 2.82(d,1H,J=2.5Hz), 3.44(m,1H,J=12Hz,(h)), 3.82(s,3H), 4.17(q,2H,J=10.8Hz), 7.70(s,1H), 7.79(s,1H), 9.52(s,1H)
【0035】
実施例20
1−エチル−3−メチルイミダゾリウムブロミド2.0gに水10mlを加え、均一溶解させたのちこれを陰イオン交換樹脂に通し、1−エチル−3−メチルイミダゾリウムヒドロキシド水溶液(以下、EMImOH水溶液と記す)を得た。L−チロシン2.2gを水100mlに加えたものにEMImOH水溶液をゆっくり滴下して、氷冷し、温度を0℃に維持しながら12時間攪拌したのち、減圧乾燥して余分な水を除去した。これにアセトニトリル40mlとメチルアルコール10mlを加え、温度を0℃に維持しながら30分攪拌した。その後、濾過により析出した結晶(過剰に加えた未反応のチロシン)を除去した。濾液を減圧加熱乾燥してアセトニトリルとメチルアルコールを除去し、1−エチル−3−メチルイミダゾリウムチロシン塩2.1g(収率70%)を得た。本品のH−NMR測定を行った結果は以下に示したとおりであり、プロトンの化学シフトと積分強度から反応の進行が確認された。
【化14】
Figure 2004269414
H−NMR(DMSO, δ/ppm TMS基準):1.34(t,3H,J=7Hz), 2.11(t,1H,J=11.5Hz), 2.80(m,2H,J=25.7Hz,(h)), 3.78(s,3H), 4.13(q,2H,J=10.8Hz), 6.38(d,2H,J=4.3Hz,(i)), 6.70(d,2H,J=4.3H,(j)), 7.65(s,1H), 7.74(s,1H), 9.48(s,1H)
【0036】
【発明の効果】
本発明は安価で容易に入手できる天然アミノ酸を構成イオンとする第4級窒素化合物である有機イオン性液体を提供するものである。本発明によって、従来は合成が困難であった光学活性な環境を安価かつ容易に入手できる。すなわち、本発明によって、天然アミノ酸などを用いて適切なカチオンと共に塩とすることで、光学純度が100%で、氷点下から200℃を超す広い温度範囲において液体状態を保ち、アミノ酸反応前駆体としての可能性をもつキラルなイオン性液体を提供するものである。このイオン性液体は、通常のイオン性液体と同等の特性をより安価に得ることができ、通常のイオン性液体の応用分野全てに用いることができ、しかもアミノ酸の反応前駆体として各種機能分子の創製に利用できる可能性も併せ持つ。
【図面の簡単な説明】
【図1】1−エチル−3−メチルイミダゾリウムロイシン塩(実施例1)のH−NMRチャートである。
【図2】1−エチル−3−メチルイミダゾリウムフェニルアラニン塩(実施例2)のH−NMRチャートである。
【図3】1−エチル−3−メチルイミダゾリウムイソロイシン塩(実施例3)のH−NMRチャートである。
【図4】1−エチル−3−メチルイミダゾリウムグリシン塩(実施例4)のH−NMRチャートである。
【図5】1−エチル−3−メチルイミダゾリウムグルタミン酸塩(実施例5)のH−NMRチャートである。
【図6】1−エチル−3−メチルイミダゾリウムバリン塩(実施例6)のH−NMRチャートである。
【図7】1−エチル−3−メチルイミダゾリウムアスパラギン酸塩(実施例7)のH−NMRチャートである。
【図8】1−エチル−3−メチルイミダゾリウムトリプトファン塩(実施例8)のH−NMRチャートである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to organic ionic liquids which are quaternary nitrogen compounds of the general formula I.
[0002]
2. Description of the Related Art
An ionic liquid is a general term for salts having a melting point of about 100 ° C. or less, and has recently been receiving attention as a third solvent next to water and organic solvents (for example, Non-Patent Document 1). Ionic liquids are synthesized by combining cations and anions that favor ionic liquid formation. The cations used so far include imidazolium cation, pyridinium cation, alkylammonium cation and the like.4 , PF6 , Triflate anion (CFSO3 ), Imide anion (TFSI), CHCOO, CF3HCOO, NO3 , (CN)2Nand so on.
[0003]
The characteristics of these ionic liquids are that the temperature range in which the liquid state is maintained is extremely wide, that the liquid is non-volatile and non-flammable because its vapor pressure is almost zero, and that it is extremely high because it is a liquid containing only ions It has ionic conductivity, has high solubility in various inorganic and organic compounds, and can provide a liquid phase which depends on the combination of ions but is not mixed with water or a general-purpose organic solvent. Based on these features, ionic liquids have been energetically studied as electrolyte materials for batteries and the like (for example, Patent Document 1) as well as applications as various synthesis solvents and separation / extraction solvents.
[0004]
Among these applications, reports as various synthetic solvents are outstanding. The characteristics of ionic liquids are useful for minimizing diffusion into the living environment and are also excellent for repeated use, making them suitable as environmentally friendly solvents and alternatives to conventional solvents. It has been considered. There have been reports on the Friedel-Crafts reaction, the Diels-Alder reaction, the Heck reaction, the Biginelli reaction, the Beckmann rearrangement reaction, and the like (for example, Patent Document 2). These are just a few examples, and numerous reactions have been studied. In any case, it is clear that the ionic liquid can be repeatedly used as a solvent for the reaction, and that depending on the reaction, a higher yield and selectivity than conventional solvents can be obtained.
[0005]
One of the most important reactions in these organic syntheses is asymmetric synthesis. Asymmetric synthesis occupies a very important position not only in the field of organic chemistry but also in the fields of biochemistry and pharmacology. Until now, optically active reagents and chiral catalysts have been used as asymmetric derivatives, but synthesis of chiral ionic liquids has already been studied. When a chiral ionic liquid is used in the Diels-Alder reaction, remarkable results such as a reduction in reaction time, an improvement in yield, and an improvement in selectivity of a reaction position have been obtained. However, there are many points to be improved in the chiral ionic liquids reported to date.
[0006]
Disadvantages of conventional ionic liquids include (1) systems having chiral sites in the cation structure, such as imidazolium cations and ammonium cations, are complicated in the synthesis procedure and it is not easy to obtain high-purity products; (2) ) The synthesis of an ionic liquid using a chiral salt is expensive as starting materials because it is synthesized by an anion exchange reaction as in the conventional system; (3) Since there are two chiral sites, the asymmetric catalytic reaction is hindered. (4) The optical purity is not 100%; there are many systems having a melting point higher than room temperature (there are drawbacks such as racemization and thermal denaturation due to the need for heat treatment).
[0007]
There have been reports of attempts to synthesize chiral ionic liquids using natural amino acids as starting materials (for example, Non-Patent Document 2), but it is necessary to go through multi-step operations to synthesize target substances, Since the functional group is substituted with an alcohol from a carboxyl group during the synthesis of the compound, and a bulky amino acid derivative is introduced into the side chain of the imidazolium cation, the melting point of the obtained salt becomes relatively high, and the ionic liquid I couldn't say it.
[0008]
[Patent Document 1] JP-A-2000-110472
[Patent Document 2] JP-A-2002-275118
[Non-Patent Document 1] Hiroyuki Ohno, "Organic Ionic Liquid-Polar Liquid That Does Not Evaporate-", Future Materials, 2002, Vol. 2, No. 9, pp. 6-11.
[Non-Patent Document 2] Weliang Bao, Zhimiang Wang and Yuxia Li, Journal of Organic Chemistry, 2003, 68 (2), 591-593.
[0009]
[Means for Solving the Problems]
The present invention provides compounds of the general formula I:
Embedded image
Figure 2004269414
[Wherein the cation moiety AN+Is (R)4N+(Where R is an unsubstituted or substituted lower alkyl group) or one proton is added to a nitrogen atom of an unsubstituted or substituted heterocyclic ring having one or more nitrogen atoms as ring members. An anion moiety H2NYC (= O) -O(Where Y is a constituent part excluding the amino group and the carboxy group of the amino acid), wherein the anion is a D- or L-amino acid anion]. I do.
[0010]
Cation (R) of lower alkyl group4N+Examples of lower alkyl ammonium include; examples of heterocyclic cations include pyrrolium, imidazolium, 2H-pyrrolium, pyrazolium, pyridinium, pyrazinium, pyrimidium, pyridazinium, indolizinium, indolium, and 3H-india. Lium, 1H-indazolium, isoindolinium, prinium, 4H-quinolidinium, isoquinolinium, quinolinium, phthalazinium, naphthyridinium, quinoxalinium, quinazolinium, sinolinium, pteridinium, 4aH-carbazolium, carbazolium, β-carbolinium, phenanthridinium, diclinium , Phenanthrolinium, phenazinium, but preferably imidazolium, pyridini Arm, a pyrrolidinium, more preferably imidazolium.
[0011]
The anion is an anion of a D- or L-amino acid, preferably a natural α-amino acid, and more preferably L-leucine, L-phenylalanine, L-isoleucine, glycine, L-glutamic acid, L-valine. , L-aspartic acid, L-tryptophan, L-alanine, L-arginine, L-asparagine, L-cysteine, L-glutamine, L-histidine, L-lysine, L-methionine, L-proline, L-serine, An anion of an amino acid selected from L-threonine and L-tyrosine.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
As the lower alkyl group used in this specification, a saturated linear or branched hydrocarbon residue containing 1 to 12, preferably 2 to 6, more preferably 2 to 4 carbon atoms is used. Say. For example, methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, pentyl, hexyl and the like, preferably, ethyl, propyl, isopropyl, butyl, pentyl, hexyl, more preferably, Ethyl and butyl.
[0013]
Substituents for R and the heterocycle in Formula I are lower alkyl groups of 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, preferably methyl and ethyl. Can be mentioned.
[0014]
General method for producing a quaternary nitrogen compound of the present invention
AN of cation part+Of a halide, preferably bromide, is dissolved in an aqueous solvent and converted into a hydroxy compound by a suitable treatment, for example, by passing through an anion exchange resin.2NYC (= O) -OAbout 1 to 1.1 parts by weight of an amino acid, preferably about 1.0 part by weight, is added, and the resulting mixed solution is stirred under ice-cooling, the solvent is distilled off under reduced pressure, and the residue is subjected to an appropriate method Unreacted amino acids are removed to obtain a quaternary nitrogen compound as a desired ionic liquid.
[0015]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. In these examples, the progress of the neutralization reaction between the 1,3-dialkylimidazolium hydroxide and the amino acid was as follows:1Confirmed by H-NMR measurement and elemental analysis.
[0016]
Example 1
5 ml of water was added to 1.0 g of 1-ethyl-3-methylimidazolium bromide, and the mixture was uniformly dissolved. The solution was passed through an anion exchange resin, and then passed through an aqueous solution of 1-ethyl-3-methylimidazolium hydroxide (hereinafter referred to as EMImOH aqueous solution). To write). 0.8 g of L-leucine was added to 100 ml of water, and a homogeneous solution was slowly added dropwise with an aqueous solution of EMImOH. The mixture was cooled on ice, stirred for 12 hours while maintaining the temperature at 0 ° C., and dried under reduced pressure to remove excess. Water was removed. 40 ml of acetonitrile and 10 ml of methyl alcohol were added thereto, and the mixture was stirred for 30 minutes while maintaining the temperature at 0 ° C. Thereafter, the precipitated crystals (excess unreacted leucine) were removed by filtration. The filtrate was dried by heating under reduced pressure to remove acetonitrile and methyl alcohol to obtain 1.0 g (80% yield) of 1-ethyl-3-methylimidazolium leucine salt. This product1The result of the H-NMR measurement was as shown in FIG. 1, and the progress of the reaction was confirmed from the chemical shift of proton and the integrated intensity. The results of elemental analysis were consistent with the theoretical values.
Elemental analysis (%) C12H23N3О2・ 4H2О
C 44.66%, H 9.61%, N 12.81%
[0017]
Example 2
5 ml of water was added to 1.0 g of 1-ethyl-3-methylimidazolium bromide, and the mixture was uniformly dissolved. The solution was passed through an anion exchange resin, and then passed through an aqueous solution of 1-ethyl-3-methylimidazolium hydroxide (hereinafter referred to as EMImOH aqueous solution). To write). L-Phenylalanine (1.0 g) was added to water (100 ml), and a uniform solution was slowly added with an aqueous solution of EMImOH. The mixture was cooled on ice, stirred at 0 ° C. for 12 hours, dried under reduced pressure, and dried under reduced pressure. The water was removed. 40 ml of acetonitrile and 10 ml of methyl alcohol were added thereto, and the mixture was stirred for 30 minutes while maintaining the temperature at 0 ° C. Thereafter, the precipitated crystals (unreacted phenylalanine added in excess) were removed by filtration. The filtrate was dried by heating under reduced pressure to remove acetonitrile and methyl alcohol, to obtain 1.2 g of 1-ethyl-3-methylimidazolium phenylalanine salt (83% yield). This product1The result of the H-NMR measurement was as shown in FIG. 2, and the progress of the reaction was confirmed from the chemical shift of the proton and the integrated intensity.
[0018]
Example 3
5 ml of water was added to 1.0 g of 1-ethyl-3-methylimidazolium bromide, and the mixture was uniformly dissolved. The solution was passed through an anion exchange resin, and then passed through an aqueous solution of 1-ethyl-3-methylimidazolium hydroxide (hereinafter referred to as EMImOH aqueous solution). To write). 1.0 g of L-isoleucine was added to 100 ml of water, and a homogeneous solution was slowly added dropwise with an aqueous solution of EMImOH. The mixture was cooled on ice, stirred for 12 hours while maintaining the temperature at 0 ° C., and dried under reduced pressure to remove excess. The water was removed. 40 ml of acetonitrile and 10 ml of methyl alcohol were added thereto, and the mixture was stirred for 30 minutes while maintaining the temperature at 0 ° C. Then, the precipitated crystals (excess unreacted isoleucine) were removed by filtration. The filtrate was dried by heating under reduced pressure to remove acetonitrile and methyl alcohol, to obtain 1.0 g of 1-ethyl-3-methylimidazolium isoleucine salt (82% yield). This product1The result of the H-NMR measurement was as shown in FIG. 3, and the progress of the reaction was confirmed from the chemical shift of proton and the integrated intensity.
[0019]
Example 4
5 ml of water was added to 1.0 g of 1-ethyl-3-methylimidazolium bromide, and the mixture was uniformly dissolved. The solution was passed through an anion exchange resin, and then passed through an aqueous solution of 1-ethyl-3-methylimidazolium hydroxide (hereinafter referred to as EMImOH aqueous solution). To write). 0.5 g of glycine was added to 100 ml of water, and an EMImOH aqueous solution was slowly added dropwise to a homogeneous solution. The mixture was cooled on ice, stirred for 12 hours while maintaining the temperature at 0 ° C., and dried under reduced pressure to remove excess water. Removed. 40 ml of acetonitrile and 10 ml of methyl alcohol were added thereto, and the mixture was stirred for 30 minutes while maintaining the temperature at 0 ° C. Thereafter, the precipitated crystals (unreacted glycine added in excess) were removed by filtration. The filtrate was dried by heating under reduced pressure to remove acetonitrile and methyl alcohol, to obtain 0.8 g (82% yield) of 1-ethyl-3-methylimidazolium glycine salt. This product1The result of the H-NMR measurement is as shown in FIG. 4, and the progress of the reaction was confirmed from the chemical shift of proton and the integrated intensity. The results of elemental analysis were as expected.
Elemental analysis C8HFifteenN3О2・ 0.5H2О
C 49.18%, H 8.25%, N 21.17%
[0020]
Example 5
5 ml of water was added to 1.0 g of 1-ethyl-3-methylimidazolium bromide, and the mixture was uniformly dissolved. The solution was passed through an anion exchange resin, and then passed through an anion exchange resin. To write). An aqueous solution of EMImOH was slowly dropped into 0.9 g of L-glutamic acid added to 100 ml of water, cooled with ice, stirred for 12 hours while maintaining the temperature at 0 ° C., and dried under reduced pressure to remove excess water. . 40 ml of acetonitrile and 10 ml of methyl alcohol were added thereto, and the mixture was stirred for 30 minutes while maintaining the temperature at 0 ° C. Thereafter, the precipitated crystals (unreacted glutamic acid added in excess) were removed by filtration. The filtrate was dried by heating under reduced pressure to remove acetonitrile and methyl alcohol, to obtain 1.1 g of 1-ethyl-3-methylimidazolium glutamate (80% yield). This product1The result of the H-NMR measurement was as shown in FIG. 5, and the progress of the reaction was confirmed from the chemical shift of the proton and the integrated intensity.
[0021]
Example 6
5 ml of water was added to 1.0 g of 1-ethyl-3-methylimidazolium bromide, and the mixture was uniformly dissolved. The solution was passed through an anion exchange resin, and then passed through an anion exchange resin. To write). 0.7 g of L-valine was added to 100 ml of water, and an aqueous solution of EMImOH was slowly added dropwise to a homogeneous solution. The mixture was cooled on ice, stirred for 12 hours while maintaining the temperature at 0 ° C., and dried under reduced pressure to remove excess. The water was removed. 40 ml of acetonitrile and 10 ml of methyl alcohol were added thereto, and the mixture was stirred for 30 minutes while maintaining the temperature at 0 ° C. Thereafter, the precipitated crystals (unreacted valine added in excess) were removed by filtration. The filtrate was dried by heating under reduced pressure to remove acetonitrile and methyl alcohol, to obtain 0.9 g of 1-ethyl-3-methylimidazolium valine salt (yield 79%). This product1The result of the H-NMR measurement was as shown in FIG. 6, and the progress of the reaction was confirmed from the chemical shift of proton and the integrated intensity.
[0022]
Example 7
5 ml of water was added to 1.0 g of 1-ethyl-3-methylimidazolium bromide, and the mixture was uniformly dissolved. The solution was passed through an anion exchange resin, and then passed through an aqueous solution of 1-ethyl-3-methylimidazolium hydroxide (hereinafter referred to as EMImOH aqueous solution). To write). An aqueous solution of EMImOH was slowly added dropwise to a mixture of 0.9 g of L-aspartic acid in 100 ml of water, cooled with ice, stirred for 12 hours while maintaining the temperature at 0 ° C., and dried under reduced pressure to remove excess water. did. 40 ml of acetonitrile and 10 ml of methyl alcohol were added thereto, and the mixture was stirred for 30 minutes while maintaining the temperature at 0 ° C. Thereafter, the precipitated crystals (excess unreacted aspartic acid added) were removed by filtration. The filtrate was dried by heating under reduced pressure to remove acetonitrile and methyl alcohol to obtain 1.1 g of 1-ethyl-3-methylimidazolium aspartate (89% yield). This product1The result of the H-NMR measurement is as shown in FIG. 7, and the progress of the reaction was confirmed from the chemical shift of proton and the integrated intensity.
[0023]
Example 8
10 ml of water was added to 1.5 g of 1-ethyl-3-methylimidazolium bromide, and the mixture was uniformly dissolved. The solution was passed through an anion exchange resin, and then passed through an aqueous solution of 1-ethyl-3-methylimidazolium hydroxide (hereinafter referred to as EMImOH aqueous solution). To write). An EMImOH aqueous solution was slowly added dropwise to 1.8 ml of L-tryptophan added to 100 ml of water, cooled with ice, stirred for 12 hours while maintaining the temperature at 0 ° C., and dried under reduced pressure to remove excess water. . 40 ml of acetonitrile and 10 ml of methyl alcohol were added thereto, and the mixture was stirred for 30 minutes while maintaining the temperature at 0 ° C. Thereafter, the precipitated crystals (excessively added unreacted tryptophan) were removed by filtration. The filtrate was dried by heating under reduced pressure to remove acetonitrile and methyl alcohol to obtain 1.0 g of 1-ethyl-3-methylimidazolium tryptophan salt (yield: 82%). This product1The result of the H-NMR measurement was as shown in FIG. 8, and the progress of the reaction was confirmed from the chemical shift of proton and the integrated intensity.
[0024]
Example 9
5 ml of water was added to 1.0 g of 1-ethyl-3-methylimidazolium bromide, and the mixture was uniformly dissolved. The solution was passed through an anion exchange resin, and then passed through an aqueous solution of 1-ethyl-3-methylimidazolium hydroxide (hereinafter referred to as EMImOH aqueous solution). To write). 0.7 g of L-alanine was added to 100 ml of water, and a homogeneous solution was slowly added dropwise with an aqueous solution of EMImOH. The mixture was cooled on ice, stirred for 12 hours while maintaining the temperature at 0 ° C., and dried under reduced pressure to remove excess. The water was removed. 40 ml of acetonitrile and 10 ml of methyl alcohol were added thereto, and the mixture was stirred for 30 minutes while maintaining the temperature at 0 ° C. Thereafter, the precipitated crystals (unreacted alanine added in excess) were removed by filtration. The filtrate was dried by heating under reduced pressure to remove acetonitrile and methyl alcohol to obtain 0.9 g of 1-ethyl-3-methylimidazolium alanine salt (yield 86%). This product1The result of the H-NMR measurement was as shown below, and the progress of the reaction was confirmed from the chemical shift of the proton and the integrated intensity. The results of elemental analysis were as expected.
Embedded image
Figure 2004269414
1H-NMR (DMSO, δ / ppm TMS standard): 0.96 (d, 3H, J = 3.5 Hz, (h)), 1.35 (t, 3H, J = 7 Hz), 2.80 (q , 1H, 10.3), 3.83 (s, 3H), 4.17 (q, 2H, J = 11.3 Hz), 7.72 (s, 1H), 7.81 (s, 1H), 9.83 (s, 1H)
Elemental analysis C9H17N3О2・ 2H2О
C 45.92%, H 8.74%, N 17.40%
[0025]
Example 10
10 ml of water was added to 1.5 g of 1-ethyl-3-methylimidazolium bromide, and the mixture was uniformly dissolved. The solution was passed through an anion exchange resin, and then passed through an aqueous solution of 1-ethyl-3-methylimidazolium hydroxide (hereinafter referred to as EMImOH aqueous solution). To write). 1.6 g of L-arginine was added to 100 ml of water, and an aqueous solution of EMImOH was slowly added dropwise to a homogeneous solution. The mixture was cooled on ice, stirred for 12 hours while maintaining the temperature at 0 ° C., and dried under reduced pressure to remove excess. The water was removed. This was cooled for 24 hours while maintaining the temperature at 0 ° C., and then the precipitated crystals (excess unreacted arginine) were removed by filtration to remove 1-ethyl-3-methylimidazolium arginine salt. 6 g (yield 74%) was obtained. This product1The result of the H-NMR measurement was as shown below, and the progress of the reaction was confirmed from the chemical shift of the proton and the integrated intensity.
Embedded image
Figure 2004269414
1H-NMR (DMSO, δ / ppm TMS standard): 1.23 (m, 2H, J = 15 Hz, (i)), 1.35 (t, 3H, J = 7 Hz), 1.44 (m, 2H) , (H)), 2.79 (t, 1H, J = 6.5. (G)), 2.85 (t, 2H, J = 9 Hz, (j)), 3.81 (s, 3H) , 4.16 (q, 2H, J = 11 Hz), 7.68 (d, 1H, J = 1 Hz), 7.77 (d, 1H, J = 0.75 Hz)
[0026]
Example 11
5 ml of water was added to 1.0 g of 1-ethyl-3-methylimidazolium bromide, and the mixture was uniformly dissolved. The solution was passed through an anion exchange resin, and then passed through an aqueous solution of 1-ethyl-3-methylimidazolium hydroxide (hereinafter referred to as EMImOH aqueous solution). To write). 0.8 g of L-asparagine was added to 100 ml of water, and an aqueous solution of EMImOH was slowly added dropwise to a homogeneous solution. The water was removed. 40 ml of acetonitrile and 10 ml of methyl alcohol were added thereto, and the mixture was stirred for 30 minutes while maintaining the temperature at 0 ° C. Then, the precipitated crystals (excess unreacted asparagine added) were removed by filtration. The filtrate was dried by heating under reduced pressure to remove acetonitrile and methyl alcohol, to obtain 1.1 g of 1-ethyl-3-methylimidazolium asparagine salt (83% yield). This product1The result of the H-NMR measurement was as shown below, and the progress of the reaction was confirmed from the chemical shift of the proton and the integrated intensity.
Embedded image
Figure 2004269414
1H-NMR (DMSO, δ / ppm based on TMS): 1.36 (t, 3H, J = 7.5 Hz), 1.93 (q, 1H, J = 11.8 Hz, (h)), 2.35 (Q, 1H, J = 9.5 Hz, (h)), 3.06 (q, 1H, J = 6.3 Hz), 3.82 (s, 3H), 4.16 (q, 2H, J = 10.8), 6.58 (s, 1H, (i)), 7.70 (t, 1H, J = 2 Hz), 7.78 (t, 1H, J = 1.5 Hz), 7.99 ( s, 1H, (i)), 9.59 (s, 1H)
[0027]
Example 12
5 ml of water was added to 1.0 g of 1-ethyl-3-methylimidazolium bromide, and the mixture was uniformly dissolved. The solution was passed through an anion exchange resin, and then passed through an aqueous solution of 1-ethyl-3-methylimidazolium hydroxide (hereinafter referred to as EMImOH aqueous solution). To write). Under a nitrogen atmosphere, 0.8 g of L-cysteine was added to 100 ml of degassed water, a degassed EMImOH aqueous solution was slowly dropped, and the mixture was cooled on ice and stirred for 12 hours while maintaining the temperature at 0 ° C. Excess water was removed by drying under reduced pressure. 40 ml of acetonitrile and 10 ml of methyl alcohol were added thereto, and the mixture was stirred for 30 minutes while maintaining the temperature at 0 ° C. Thereafter, the precipitated crystals (excessly added unreacted cysteine) were removed by filtration. The filtrate was dried by heating under reduced pressure to remove acetonitrile and methyl alcohol, to obtain 0.9 g of 1-ethyl-3-methylimidazolium cysteine salt (77% yield). This product1The result of the H-NMR measurement was as shown below, and the progress of the reaction was confirmed from the chemical shift of the proton and the integrated intensity.
Embedded image
Figure 2004269414
1H-NMR (DMSO, δ / ppm based on TMS): 1.36 (t, 3H, J = 7.5 Hz), 2.45 (d, 1H, J = 10.3 Hz, (h)), 2.67 (D, 1H, J = 8.5 Hz, (h)), 2.93 (t, 1H, J = 5.5 Hz), 3.82 (s, 3H), 4.17 (q, 2H, J = 10.8 Hz), 7.70 (s, 1H), 7.78 (s, 1H), 9.51 (s, 1H)
[0028]
Example 13
5 ml of water was added to 1.0 g of 1-ethyl-3-methylimidazolium bromide, and the mixture was uniformly dissolved. The solution was passed through an anion exchange resin, and then passed through an aqueous solution of 1-ethyl-3-methylimidazolium hydroxide (hereinafter referred to as EMImOH aqueous solution). To write). 0.8 g of L-glutamine was added to 100 ml of water, and an aqueous solution of EMImOH was slowly dropped into a homogeneous solution. The mixture was cooled on ice, stirred for 12 hours while maintaining the temperature at 0 ° C., and dried under reduced pressure to remove excess The water was removed. 40 ml of acetonitrile and 10 ml of methyl alcohol were added thereto, and the mixture was stirred for 30 minutes while maintaining the temperature at 0 ° C. Thereafter, the precipitated crystals (unreacted glutamine added in excess) were removed by filtration. The filtrate was dried by heating under reduced pressure to remove acetonitrile and methyl alcohol to obtain 0.9 g of 1-ethyl-3-methylimidazolium glutamine salt (66% yield). This product1The result of the H-NMR measurement was as shown below, and the progress of the reaction was confirmed from the chemical shift of the proton and the integrated intensity.
Embedded image
Figure 2004269414
1H-NMR (DMSO, δ / ppm TMS standard): 1.35 (t, 3H, J = 7 Hz), 1.43 (m, 1H, J = 18 Hz (h)), 1.66 (m, 1H, J = 13 Hz, (h)), 2.01 (m, 2H, J = 23.8 Hz, (i)), 2.77 (t, 1H, J = 6.3 Hz), 3.82 (s, 3H) ), 4.17 (q, 2H, J = 10.8 Hz), 6.55 (s, 1H, (j)), 7.61 (s, 1H, (j)), 7.71 (s, 1H) ), 7.79 (s, 1H), 9.67 (s, 1H)
[0029]
Example 14
5 ml of water was added to 1.0 g of 1-ethyl-3-methylimidazolium bromide, and the mixture was uniformly dissolved. The solution was passed through an anion exchange resin, and then passed through an aqueous solution of 1-ethyl-3-methylimidazolium hydroxide (hereinafter referred to as EMImOH aqueous solution). To write). L-Histidine (1.0 g) was added to water (100 ml), and a uniform solution was slowly added with an EMImOH aqueous solution. The water was removed. 40 ml of acetonitrile and 10 ml of methyl alcohol were added thereto, and the mixture was stirred for 30 minutes while maintaining the temperature at 0 ° C. Thereafter, the precipitated crystals (unreacted histidine added in excess) were removed by filtration. The filtrate was dried by heating under reduced pressure to remove acetonitrile and methyl alcohol, thereby obtaining 1.1 g of 1-ethyl-3-methylimidazolium histidine salt (78% yield). This product1The result of the H-NMR measurement was as shown below, and the progress of the reaction was confirmed from the chemical shift of the proton and the integrated intensity.
Embedded image
Figure 2004269414
1H-NMR (DMSO, δ / ppm TMS standard): 1.34 (t, 3H, J = 7 Hz), 2.36 (q, 1H, J = 11 Hz, (h)), 2.82 (q, 1H) , J = 9.3 Hz, (h)), 2.99 (t, 1H, J = 6 Hz), 3.80 (s, 3H), 4.14 (q, 2H, J = 10.8 Hz), 6 .58 (s, 1H, (i)), 7.35 (s, 1H, (j)), 7.68 (s, 1H), 7.76 (s, 1H), 9.53 (s, 1H) )
[0030]
Example 15
5 ml of water was added to 1.0 g of 1-ethyl-3-methylimidazolium bromide, and the mixture was uniformly dissolved. The solution was passed through an anion exchange resin, and then passed through an aqueous solution of 1-ethyl-3-methylimidazolium hydroxide (hereinafter referred to as EMImOH aqueous solution). To write). 0.9 g of L-lysine was added to 100 ml of water, and an aqueous solution of EMImOH was slowly added dropwise to a homogeneous solution. The water was removed. 40 ml of acetonitrile and 10 ml of methyl alcohol were added thereto, and the mixture was stirred for 30 minutes while maintaining the temperature at 0 ° C. Thereafter, the precipitated crystals (unreacted lysine added in excess) were removed by filtration. The filtrate was dried by heating under reduced pressure to remove acetonitrile and methyl alcohol, to obtain 1.0 g of 1-ethyl-3-methylimidazolium lysine salt (yield 78%). This product1The result of the H-NMR measurement was as shown below, and the progress of the reaction was confirmed from the chemical shift of the proton and the integrated intensity. The results of elemental analysis were as expected.
Embedded image
Figure 2004269414
1H-NMR (DMSO, δ / ppm TMS standard): 1.22 (m, 5H, J = 13.5 Hz, (i) (j) (h)), 1.36 (t, 3H, J = 7. 5), 1.48 (m, 1H, J = 13 Hz, (h)), 2.42 (d, 2H, J = 6.5 Hz, (k)), 2.73 (t, 1H, J = 7) 2.0 Hz), 3.82 (s, 3H), 4.17 (q, 2H, J = 11.3 Hz), 7.70 (t, 1H, J = 1.5 Hz), 7.79 (t, 1H) , J = 1.5 Hz), 9.67 (s, 1H)
Elemental analysis C12H24N4О2・ H2О
C 58.36%, H 8.01%, N 13.58%
[0031]
Example 16
5 ml of water was added to 1.0 g of 1-ethyl-3-methylimidazolium bromide, and the mixture was uniformly dissolved. The solution was passed through an anion exchange resin, and then passed through an aqueous solution of 1-ethyl-3-methylimidazolium hydroxide (hereinafter referred to as EMImOH aqueous solution). To write). 0.9 g of L-methionine was added to 100 ml of water, and an aqueous solution of EMImOH was slowly dropped into a homogeneous solution. The mixture was cooled on ice, stirred for 12 hours while maintaining the temperature at 0 ° C., and dried under reduced pressure to remove excess The water was removed. 40 ml of acetonitrile and 10 ml of methyl alcohol were added thereto, and the mixture was stirred for 30 minutes while maintaining the temperature at 0 ° C. Thereafter, the precipitated crystals (unreacted methionine added in excess) were removed by filtration. The filtrate was dried by heating under reduced pressure to remove acetonitrile and methyl alcohol, to obtain 1.1 g of 1-ethyl-3-methylimidazolium methionine salt (yield 78%). This product1The result of the H-NMR measurement was as shown below, and the progress of the reaction was confirmed from the chemical shift of the proton and the integrated intensity. The results of elemental analysis were as expected.
Embedded image
Figure 2004269414
1H-NMR (DMSO, δ / ppm TMS standard): 1.36 (t, 3H, J = 7.5 Hz), 1.42 (m, 1H, J = 24.5 Hz, (h)), 1.74 (M, 1H, J = 16.5 Hz, (h)), 1.94 (s, 1H), 2.42 (t, 2H, J = 8.5 Hz, (i)), 2.82 (q, 1H, J = 5.75 Hz), 3.82 (s, 3H), 4.17 (q, 2H, J = 11.3 Hz), 7.71 (s, 1H), 7.80 (s, 1H) , 9.69 (s, 1H)
Elemental analysis C11H21N3О2S ・ 2.2H2О
C 43.87%, H 8.51%, N 13.86%
[0032]
Example 17
5 ml of water was added to 1.0 g of 1-ethyl-3-methylimidazolium bromide, and the mixture was uniformly dissolved. The solution was passed through an anion exchange resin, and then passed through an aqueous solution of 1-ethyl-3-methylimidazolium hydroxide (hereinafter referred to as EMImOH aqueous solution). To write). 1.0 g of L-proline was added to 100 ml of water, and an aqueous EMImOH solution was slowly added dropwise to a homogeneous solution. The mixture was cooled on ice, stirred for 12 hours while maintaining the temperature at 0 ° C., and dried under reduced pressure to remove excess The water was removed. 40 ml of acetonitrile and 10 ml of methyl alcohol were added thereto, and the mixture was stirred for 30 minutes while maintaining the temperature at 0 ° C. Thereafter, the precipitated crystals (unreacted proline added in excess) were removed by filtration. The filtrate was dried by heating under reduced pressure to remove acetonitrile and methyl alcohol, thereby obtaining 1.1 g (83% yield) of 1-ethyl-3-methylimidazolium proline salt. This product1The result of the H-NMR measurement was as shown below, and the progress of the reaction was confirmed from the chemical shift of the proton and the integrated intensity. The results of elemental analysis were as expected.
Embedded image
Figure 2004269414
1H-NMR (DMSO, δ / ppm TMS standard): 1.36 (t, 3H, J = 7.5 Hz), 1.42 (m, 1H, J = 17 Hz), 1.51 (m, 1H, J = 19 Hz), 1.62 (broad, 1H), 1.77 (m, 1H, J = 17.8 Hz), 2.60 (broad, 1H), 2,92 (m, 1H, J = 11.3 Hz) ), 3.18 (broad, 1H), 3.82 (s, 3H), 4.16 (q, 2H, J = 11.3 Hz), 7.70 (s, 1H), 7.79 (s, 1H), 9.53 (s, 1H)
Elemental analysis C11H19N3О2・ 2H2О
C 50.16%, H 8.85%, N 15.32%
[0033]
Example 18
5 ml of water was added to 1.0 g of 1-ethyl-3-methylimidazolium bromide, and the mixture was uniformly dissolved. The solution was passed through an anion exchange resin, and then passed through an aqueous solution of 1-ethyl-3-methylimidazolium hydroxide (hereinafter referred to as EMImOH aqueous solution). To write). 0.7 g of L-serine was added to 100 ml of water, and an aqueous solution of EMImOH was slowly added dropwise to a homogeneous solution. The water was removed. 40 ml of acetonitrile and 10 ml of methyl alcohol were added thereto, and the mixture was stirred for 30 minutes while maintaining the temperature at 0 ° C. Thereafter, the precipitated crystals (excessively added unreacted serine) were removed by filtration. The filtrate was dried by heating under reduced pressure to remove acetonitrile and methyl alcohol, to obtain 0.9 g of 1-ethyl-3-methylimidazolium serine salt (79% yield). This product1The result of the H-NMR measurement was as shown below, and the progress of the reaction was confirmed from the chemical shift of the proton and the integrated intensity. The results of elemental analysis were as expected.
Embedded image
Figure 2004269414
1H-NMR (DMSO, δ / ppm TMS standard): 1.36 (t, 3H, J = 7 Hz), 2.83 (t, 1H, J = 7 Hz), 3.23 (m, 2H, J = 15) 5.5 Hz, (h)), 3.81 (s, 3H), 4.16 (q, 2H, J = 11 Hz), 7.69 (s, 1H), 7.78 (s, 1H), 9. 47 (s, 1H)
Elemental analysis C8H17N3О3・ H2О
C 46.37%, H 8.22%, N 17.71%
[0034]
Example 19
5 ml of water was added to 1.0 g of 1-ethyl-3-methylimidazolium bromide, and the mixture was uniformly dissolved. The solution was passed through an anion exchange resin, and then passed through an aqueous solution of 1-ethyl-3-methylimidazolium hydroxide (hereinafter referred to as EMImOH aqueous solution). To write). 0.7 g of L-threonine was added to 100 ml of water, and an aqueous solution of EMImOH was slowly added dropwise to a homogeneous solution. The water was removed. 40 ml of acetonitrile and 10 ml of methyl alcohol were added thereto, and the mixture was stirred for 30 minutes while maintaining the temperature at 0 ° C. Thereafter, the precipitated crystals (excessively added unreacted threonine) were removed by filtration. The filtrate was dried by heating under reduced pressure to remove acetonitrile and methyl alcohol to obtain 1.0 g of 1-ethyl-3-methylimidazolium threonine salt (yield 84%). This product1The result of the H-NMR measurement was as shown below, and the progress of the reaction was confirmed from the chemical shift of the proton and the integrated intensity.
Embedded image
Figure 2004269414
1H-NMR (DMSO, δ / ppm TMS standard): 0.86 (d, 3H, J = 3 Hz, (i)), 1.36 (t, 3H, J = 7 Hz), 2.82 (d, 1H) , J = 2.5 Hz), 3.44 (m, 1H, J = 12 Hz, (h)), 3.82 (s, 3H), 4.17 (q, 2H, J = 10.8 Hz), 7 .70 (s, 1H), 7.79 (s, 1H), 9.52 (s, 1H)
[0035]
Example 20
10 ml of water was added to 2.0 g of 1-ethyl-3-methylimidazolium bromide, and the mixture was dissolved uniformly. To write). An aqueous solution of EMImOH was slowly added dropwise to a mixture of 2.2 g of L-tyrosine in 100 ml of water, cooled with ice, stirred for 12 hours while maintaining the temperature at 0 ° C., and dried under reduced pressure to remove excess water. . 40 ml of acetonitrile and 10 ml of methyl alcohol were added thereto, and the mixture was stirred for 30 minutes while maintaining the temperature at 0 ° C. Thereafter, the precipitated crystals (unreacted tyrosine added in excess) were removed by filtration. The filtrate was dried by heating under reduced pressure to remove acetonitrile and methyl alcohol to obtain 2.1 g of 1-ethyl-3-methylimidazolium tyrosine salt (yield 70%). This product1The result of the H-NMR measurement was as shown below, and the progress of the reaction was confirmed from the chemical shift of the proton and the integrated intensity.
Embedded image
Figure 2004269414
1H-NMR (DMSO, δ / ppm TMS standard): 1.34 (t, 3H, J = 7 Hz), 2.11 (t, 1H, J = 11.5 Hz), 2.80 (m, 2H, J) = 25.7 Hz, (h)), 3.78 (s, 3H), 4.13 (q, 2H, J = 10.8 Hz), 6.38 (d, 2H, J = 4.3 Hz, (i )), 6.70 (d, 2H, J = 4.3H, (j)), 7.65 (s, 1H), 7.74 (s, 1H), 9.48 (s, 1H)
[0036]
【The invention's effect】
The present invention provides an organic ionic liquid, which is a quaternary nitrogen compound having a natural amino acid as a constituent ion, which is easily available at low cost. According to the present invention, an optically active environment, which was conventionally difficult to synthesize, can be easily obtained at low cost. That is, according to the present invention, a salt is formed with a suitable cation using a natural amino acid or the like to maintain a liquid state in a wide temperature range from below freezing point to over 200 ° C. with an optical purity of 100%, It provides a potential chiral ionic liquid. This ionic liquid can obtain the same properties as ordinary ionic liquids at a lower cost, can be used in all application fields of ordinary ionic liquids, and furthermore, various functional molecules can be used as reaction precursors of amino acids. It also has the potential to be used for creation.
[Brief description of the drawings]
FIG. 1 shows the 1-ethyl-3-methylimidazolium leucine salt (Example 1).1It is an H-NMR chart.
FIG. 2 shows the 1-ethyl-3-methylimidazolium phenylalanine salt (Example 2).1It is an H-NMR chart.
FIG. 3 shows the 1-ethyl-3-methylimidazolium isoleucine salt (Example 3).1It is an H-NMR chart.
FIG. 4 shows the 1-ethyl-3-methylimidazolium glycine salt (Example 4).1It is an H-NMR chart.
FIG. 5: Comparison of 1-ethyl-3-methylimidazolium glutamate (Example 5)1It is an H-NMR chart.
FIG. 6: 1-Ethyl-3-methylimidazolium valine salt (Example 6)1It is an H-NMR chart.
FIG. 7: 1-Ethyl-3-methylimidazolium aspartate (Example 7)1It is an H-NMR chart.
FIG. 8: 1-Ethyl-3-methylimidazolium tryptophan salt (Example 8)1It is an H-NMR chart.

Claims (6)

一般式I:
Figure 2004269414
[式中、カチオン部 ANは、(R)(ここで、Rは、非置換もしくは置換された低級アルキル基)であるか、または1もしくはそれ以上の窒素原子を環員とする非置換もしくは置換されたヘテロ環の窒素原子にプロトンもしくはアルキル基が1つ結合したカチオンおよびその他のカチオンであり、アニオン部 HN−Y−C(=O)−O(ここで、Yは、アミノ酸のアミノ基およびカルボキシ基を除いた構成部分)のアミノ酸アニオンである]で示される第4級窒素化合物。
General formula I:
Figure 2004269414
[Wherein the cation moiety AN + is (R) 4 N + (where R is an unsubstituted or substituted lower alkyl group) or one or more nitrogen atoms are ring members. A cation in which one proton or an alkyl group is bonded to a nitrogen atom of an unsubstituted or substituted hetero ring and other cations, and an anion moiety of H 2 N—Y—C (= O) —O (where Y Is an amino acid anion of the amino acid except the amino group and the carboxy group of the amino acid).
上記アミノ酸が、α−アミノ酸に限定されないものである、請求項1記載の第4級窒素化合物。The quaternary nitrogen compound according to claim 1, wherein the amino acid is not limited to an α-amino acid. 上記カチオンが、イミダゾリウム、ピリジニウム、ピロリジニウムからなる群から選ばれる、請求項1または2記載の第4級窒素化合物。The quaternary nitrogen compound according to claim 1, wherein the cation is selected from the group consisting of imidazolium, pyridinium, and pyrrolidinium. 上記カチオンが、イミダゾリウムである、請求項3記載の第4級窒素化合物。The quaternary nitrogen compound according to claim 3, wherein the cation is imidazolium. 上記アニオンが、天然のα−アミノ酸アニオンである、請求項1〜4のいずれか1項記載の第4級窒素化合物。The quaternary nitrogen compound according to any one of claims 1 to 4, wherein the anion is a natural α-amino acid anion. 上記アニオンが、L−ロイシン、L−フェニルアラニン、L−イソロイシン、グリシン、L−グルタミン酸、L−バリン、L−アスパラギン酸、L−トリプトファン、L−アラニン、L−アルギニン、L−アスパラギン、L−システイン、L−グルタミン、L−ヒスチジン、L−リジン、L−メチオニン、L−プロリン、L−セリン、L−トレオニン、L−チロシンからなる群から選ばれるアミノ酸のアニオンである、請求項1〜5のいずれか1項記載の第4級窒素化合物。The above anion is L-leucine, L-phenylalanine, L-isoleucine, glycine, L-glutamic acid, L-valine, L-aspartic acid, L-tryptophan, L-alanine, L-arginine, L-asparagine, L-cysteine The anion of an amino acid selected from the group consisting of L-glutamine, L-histidine, L-lysine, L-methionine, L-proline, L-serine, L-threonine and L-tyrosine. The quaternary nitrogen compound according to any one of the preceding claims.
JP2003061534A 2003-03-07 2003-03-07 Organic ionic liquids containing amino acids as constituent ions Expired - Lifetime JP4261223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003061534A JP4261223B2 (en) 2003-03-07 2003-03-07 Organic ionic liquids containing amino acids as constituent ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003061534A JP4261223B2 (en) 2003-03-07 2003-03-07 Organic ionic liquids containing amino acids as constituent ions

Publications (2)

Publication Number Publication Date
JP2004269414A true JP2004269414A (en) 2004-09-30
JP4261223B2 JP4261223B2 (en) 2009-04-30

Family

ID=33123726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003061534A Expired - Lifetime JP4261223B2 (en) 2003-03-07 2003-03-07 Organic ionic liquids containing amino acids as constituent ions

Country Status (1)

Country Link
JP (1) JP4261223B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199646A (en) * 2005-01-21 2006-08-03 Nippon Shokubai Co Ltd Method for producing ionic compound
JP2006205465A (en) * 2005-01-26 2006-08-10 Fuji Xerox Co Ltd Treatment liquid, inkset, recording object, recording method, ink tank, and recording device
WO2007023814A1 (en) * 2005-08-23 2007-03-01 Katayama Seiyakusyo Co., Ltd. Phosphonium-type ionic compounds containing amino acids as constituent ion
JP2008184402A (en) * 2007-01-29 2008-08-14 Medorekkusu:Kk Low-irritation dissolution auxiliary for external preparation
WO2009014270A1 (en) * 2007-07-26 2009-01-29 Ajinomoto Co., Inc. Resin composition
CN100465155C (en) * 2004-10-11 2009-03-04 北京大学 Ion liquid of amino acid ester cation and its preparation method
WO2010023892A1 (en) 2008-08-29 2010-03-04 Jsr株式会社 N-carboxy amino acid anhydride and amino acid carbamate compound production method
US7776582B2 (en) 2004-07-09 2010-08-17 Sigma-Aldrich Co. Optically enhanced chiral ionic liquids
JP2010285508A (en) * 2009-06-10 2010-12-24 Jx Nippon Oil & Energy Corp Polymerizable ionic liquid and polymer using the same
JP2010285399A (en) * 2009-06-12 2010-12-24 Jx Nippon Oil & Energy Corp Halogen-free ionic liquid having amino acid as constituting ion
US8168830B2 (en) 2004-07-23 2012-05-01 Sigma-Aldrich Co. Llc High stability diionic liquid salts
US8182581B2 (en) 2004-07-23 2012-05-22 Sigma-Aldrich Co. Llc High stability diionic liquid salts
JP2012144441A (en) * 2011-01-06 2012-08-02 Idemitsu Kosan Co Ltd Ionic liquid, purification method of the ionic liquid, and treatment method of cellulose-based biomass
US8481722B2 (en) 2007-01-31 2013-07-09 Sigma-Aldrich Co. Llc High stability polyionic liquid salts
JP2014139150A (en) * 2013-01-21 2014-07-31 Ajinomoto Co Inc Method for producing n-acylamino acid or n-acylpeptide by using amino acid ionic liquid

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7776582B2 (en) 2004-07-09 2010-08-17 Sigma-Aldrich Co. Optically enhanced chiral ionic liquids
US8956445B2 (en) 2004-07-23 2015-02-17 Sigma-Aldrich Co. High stability diionic liquid salts
US8182581B2 (en) 2004-07-23 2012-05-22 Sigma-Aldrich Co. Llc High stability diionic liquid salts
US8168830B2 (en) 2004-07-23 2012-05-01 Sigma-Aldrich Co. Llc High stability diionic liquid salts
CN100465155C (en) * 2004-10-11 2009-03-04 北京大学 Ion liquid of amino acid ester cation and its preparation method
JP4732764B2 (en) * 2005-01-21 2011-07-27 株式会社日本触媒 Process for producing ionic compounds
JP2006199646A (en) * 2005-01-21 2006-08-03 Nippon Shokubai Co Ltd Method for producing ionic compound
JP4609084B2 (en) * 2005-01-26 2011-01-12 富士ゼロックス株式会社 Treatment liquid, ink set, recorded matter, and recording method
JP2006205465A (en) * 2005-01-26 2006-08-10 Fuji Xerox Co Ltd Treatment liquid, inkset, recording object, recording method, ink tank, and recording device
WO2007023814A1 (en) * 2005-08-23 2007-03-01 Katayama Seiyakusyo Co., Ltd. Phosphonium-type ionic compounds containing amino acids as constituent ion
JP2008184402A (en) * 2007-01-29 2008-08-14 Medorekkusu:Kk Low-irritation dissolution auxiliary for external preparation
US8481722B2 (en) 2007-01-31 2013-07-09 Sigma-Aldrich Co. Llc High stability polyionic liquid salts
WO2009014270A1 (en) * 2007-07-26 2009-01-29 Ajinomoto Co., Inc. Resin composition
US9018321B2 (en) 2007-07-26 2015-04-28 Ajinomoto Co., Inc. Resin composition
WO2010023892A1 (en) 2008-08-29 2010-03-04 Jsr株式会社 N-carboxy amino acid anhydride and amino acid carbamate compound production method
US8748650B2 (en) 2008-08-29 2014-06-10 Jsr Corporation Method for production of N-carboxy amino acid anhydride and amino acid carbamate compound
JP2010285508A (en) * 2009-06-10 2010-12-24 Jx Nippon Oil & Energy Corp Polymerizable ionic liquid and polymer using the same
JP2010285399A (en) * 2009-06-12 2010-12-24 Jx Nippon Oil & Energy Corp Halogen-free ionic liquid having amino acid as constituting ion
JP2012144441A (en) * 2011-01-06 2012-08-02 Idemitsu Kosan Co Ltd Ionic liquid, purification method of the ionic liquid, and treatment method of cellulose-based biomass
JP2014139150A (en) * 2013-01-21 2014-07-31 Ajinomoto Co Inc Method for producing n-acylamino acid or n-acylpeptide by using amino acid ionic liquid

Also Published As

Publication number Publication date
JP4261223B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP4261223B2 (en) Organic ionic liquids containing amino acids as constituent ions
JP2008285414A (en) Phosphonium-type ionic liquid containing amino acid as constituent ion
JP5813647B2 (en) Synthetic methods such as ergothioneine
US4519955A (en) Method for optical resolution of DL-α-amino acid or (±)-α-phenylethanesulfonic acid
IE65956B1 (en) New process for the synthesis of the levodopa
JP4769802B2 (en) Method of diastereoselective reductive amination
JP5623711B2 (en) Method for producing halogen-free ionic liquid containing amino acid as constituent ion
US9260380B2 (en) Preparation of organic compounds for enhanced reactivity
US6310242B1 (en) Process for preparing D-alloisoleucine and intermediates for preparation
KR102550557B1 (en) Method for producing orotic acid derivatives
CA2618659C (en) Method for producing amino acid phosphates
BR0008586B1 (en) process of preparing chiral amino acids and process of preparing the compounds of formula (a).
JPS6097052A (en) Cyanohydrine forming catalyst
JP4929938B2 (en) Process for producing optically active α-amino acid benzyl esters
JP2016117725A (en) Production method of dipeptide
CA2895334C (en) Axially chiral n-(2-acylaryl)-2-[5,7-dihydro-6h-dibenzo[c,e]azepin-6-yl]acetamide compound and chirality interconversion method of .alpha.-amino acid using the same
JP4001628B2 (en) Process for producing N-acetyl-D, L-α-aminocarboxylic acid
JPS59170057A (en) Sulfonic acid derivative, production thereof and method for optical resolution of amino acid
Szeleczky et al. The pH-dependency of diastereomeric salt resolutions with amphoteric resolving agents
WO1998029398A1 (en) Process for preparing optically active 2-piperazinecarboxylic acid derivatives
WO2016140189A1 (en) METHOD FOR PRODUCING OPTICALLY ACTIVE α-FLUORO AMINO ACID COMPOUND OR SALT THEREOF
JP4374978B2 (en) Method for producing Nt-butyloxycarbonylamino acid-containing solution
JPH0312051B2 (en)
JP2735778B2 (en) Method for producing N-alkoxycarbonyl amino acid
CA3119871A1 (en) Novel pathway for the synthesis of diazirines, that may or may not be enriched in nitrogen-15

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4261223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term