JP2008285414A - Phosphonium-type ionic liquid containing amino acid as constituent ion - Google Patents

Phosphonium-type ionic liquid containing amino acid as constituent ion Download PDF

Info

Publication number
JP2008285414A
JP2008285414A JP2005241471A JP2005241471A JP2008285414A JP 2008285414 A JP2008285414 A JP 2008285414A JP 2005241471 A JP2005241471 A JP 2005241471A JP 2005241471 A JP2005241471 A JP 2005241471A JP 2008285414 A JP2008285414 A JP 2008285414A
Authority
JP
Japan
Prior art keywords
amino acid
added
ionic liquid
phosphorus compound
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005241471A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ono
弘幸 大野
Kenta Fukumoto
健太 福元
Junko Kagimoto
純子 鍵本
Takashi Inagaki
隆司 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KATAYAMA SEIYAKUSHIYO KK
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Original Assignee
KATAYAMA SEIYAKUSHIYO KK
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KATAYAMA SEIYAKUSHIYO KK, Tokyo University of Agriculture and Technology NUC, Tokyo University of Agriculture filed Critical KATAYAMA SEIYAKUSHIYO KK
Priority to JP2005241471A priority Critical patent/JP2008285414A/en
Priority to PCT/JP2006/316418 priority patent/WO2007023814A1/en
Publication of JP2008285414A publication Critical patent/JP2008285414A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/64Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms, e.g. histidine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • C07F9/5407Acyclic saturated phosphonium compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-viscosity ionic liquid easily available at a low cost and useful as a chiral derivative being friendly to the environment and as a new solvent. <P>SOLUTION: The organic ionic liquid is a quaternary phosphorus compound expressed by general formula I: [wherein Ph<SP>+</SP>as the cation moiety is (R<SP>1</SP>R<SP>2</SP>R<SP>3</SP>R<SP>4</SP>)P<SP>+</SP>(wherein R<SP>1</SP>, R<SP>2</SP>, R<SP>3</SP>and R<SP>4</SP>are each independently a substituted or unsubstituted lower alkyl) or a cation derived from a substituted or unsubstituted heterocycle containing one or more phosphorus atoms as ring constituent(s) by bonding one proton or one alkyl group to the phosphorus atom; and the anion moiety is an amino acid anion (wherein Y is a residue derived from an amino acid by removing the amino and carboxy groups)]. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は一般式Iで示される第4級燐化合物である有機イオン液体に関する。   The present invention relates to an organic ionic liquid which is a quaternary phosphorus compound represented by the general formula I.

イオン液体とはイオン性液体とも呼ばれる融点が100℃程度以下の塩の総称であり、水、有機溶媒に次ぐ第三の溶媒として注目を集めている(例えば、非特許文献1)。イオン液体はイオン液体形成に有利なカチオンとアニオンを組み合わせて合成される。これまで用いられてきたカチオンにはイミダゾリウムカチオン、ピリジニウムカチオン、アルキルアンモニウムカチオンなどがあり、アニオンとしては、BF 、PF 、CFSO 、イミドアニオン((CFSO)、CHCOO、CFCOO、NO 、(CN)などがある。 The ionic liquid is a generic name for salts having a melting point of about 100 ° C. or less, which is also called an ionic liquid, and is attracting attention as a third solvent after water and organic solvents (for example, Non-Patent Document 1). The ionic liquid is synthesized by combining a cation and an anion which are advantageous for forming the ionic liquid. The cations that have been used so far include imidazolium cations, pyridinium cations, alkylammonium cations, etc., and the anions include BF 4 , PF 6 , CF 3 SO 3 , and imide anions ((CF 3 SO 3 ). 2 N ), CH 3 COO , CF 3 COO , NO 3 , (CN) 2 N and the like.

これらのイオン液体の特徴として、液体状態を保つ温度範囲が極めて広いこと、液体でありながら蒸気圧がほとんどないため、不揮発性・不燃性であること、イオンのみからなる液体であるため高いイオン伝導度を有すること、種々の有機化合物に対して高い溶解性を有すること、イオンの組み合わせに依存するが水や汎用の有機溶媒と混和しない液相を提供できることなどがあげられる。これらの特徴に基づき、イオン液体は各種合成溶媒や分離・抽出溶媒、酵素反応溶媒としての応用はもちろんのこと、バッテリーや燃料電池などの電解質材料(例えば、特許文献1)としても精力的に研究されている。   The characteristics of these ionic liquids are that they have a very wide temperature range for maintaining a liquid state, they are liquid and have almost no vapor pressure, are non-volatile and non-flammable, and are liquids that consist only of ions, so they have high ionic conductivity. A high degree of solubility in various organic compounds, and a liquid phase that depends on the combination of ions but is immiscible with water or a general-purpose organic solvent. Based on these characteristics, ionic liquids are not only applied as various synthetic solvents, separation / extraction solvents, and enzyme reaction solvents, but also energetically studied as electrolyte materials for batteries and fuel cells (for example, Patent Document 1). Has been.

これらの応用の中でも、各種合成溶媒としての報告は群を抜く。イオン液体の特徴は、生活環境への拡散を最小限にとどめるうえで有用であり、繰り返し利用する上でも優れているため、環境に優しい溶媒として、従来の溶媒の代替材料として適切と考えられている。これまでに、Friedel−Crafts反応、Diels−Alder反応、Heck反応、Suzukiカップリング反応、Beckmann転移反応などに関して報告がなされている(例えば、特許文献2)。これらはほんの一例に過ぎず、極めて多くの反応に検討が及んでいる。いずれもイオン液体が反応用の溶媒として繰り返し利用できること、反応によっては従来の溶媒よりも優れた収率や反応選択性が得られることが明らかとなっている。   Among these applications, reports as various synthetic solvents are outstanding. The characteristics of ionic liquids are useful for minimizing diffusion into the living environment and are excellent for repeated use. Therefore, they are considered to be suitable as environmentally friendly solvents and substitutes for conventional solvents. Yes. So far, reports have been made on Friedel-Crafts reaction, Diels-Alder reaction, Heck reaction, Suzuki coupling reaction, Beckmann transfer reaction and the like (for example, Patent Document 2). These are just a few examples, and a very large number of reactions are under consideration. In any case, it has been clarified that the ionic liquid can be repeatedly used as a reaction solvent, and that the yield and reaction selectivity superior to those of conventional solvents can be obtained depending on the reaction.

これら有機合成の中でも最も重要な反応の一つは不斉合成反応である。不斉合成は有機化学分野にとどまらず、生化学、薬理学の分野においても極めて重要な位置を占める。これまで、不斉誘導体としては、光学活性な試薬やキラル触媒が用いられてきたが、カチオンまたはアニオン部に不斉を有するキラルイオン液体の合成もすでに検討されている。Diels−Alder反応にキラルイオン液体を用いた場合、不斉誘導体を添加していないにも関わらず、反応時間の短縮、収率の向上、反応位置の選択性向上など顕著な結果が得られている。しかし、現在までに報告されているキラルイオン液体にも改善すべき点は多い。   One of the most important reactions among these organic syntheses is an asymmetric synthesis reaction. Asymmetric synthesis occupies an extremely important position not only in the field of organic chemistry but also in the fields of biochemistry and pharmacology. Until now, optically active reagents and chiral catalysts have been used as asymmetric derivatives, but the synthesis of chiral ionic liquids having asymmetry in the cation or anion moiety has already been studied. When a chiral ionic liquid is used in the Diels-Alder reaction, remarkable results such as shortening of the reaction time, improvement of yield, and improvement of selectivity of the reaction position can be obtained even though no asymmetric derivative is added. Yes. However, there are many points to be improved in the chiral ionic liquids reported so far.

従来のキラルイオン液体の欠点としては、(1)イミダゾリウムカチオンやアンモニウムカチオンのようなカチオン構造にキラル部位を有する系は、合成手順が煩雑で高純度物を得るのは容易ではない;(2)キラルな塩を用いたイオン液体の合成は従来の系と同様にアニオン交換反応により合成するため出発物質が高価である;(3)光学純度が100%でない;(5)融点が室温よりも高い系が多い;(6)粘度が高い(熱処理を必要とするためラセミ化や熱変性するなどの欠点がある)などが挙げられる。   Disadvantages of conventional chiral ionic liquids are as follows: (1) A system having a chiral site in a cation structure such as an imidazolium cation or an ammonium cation has a complicated synthesis procedure and it is not easy to obtain a high-purity product; ) Synthesis of ionic liquids using chiral salts is an anion exchange reaction as in the conventional system, so the starting material is expensive; (3) Optical purity is not 100%; (5) Melting point is higher than room temperature There are many high systems; (6) high viscosity (has drawbacks such as racemization and thermal denaturation because heat treatment is required).

これまでに天然アミノ酸を出発物質とするキラルイオン液体の合成を試みた報告はある(例えば、非特許文献2)が、目的物質の合成に多段階の操作を経つ必要があること、前駆体の合成時に官能基がカルボキシル基からアルコールに置換されること、イミダゾリウムカチオンの側鎖に嵩高いアミノ酸誘導体が導入されるため、得られた塩の融点が比較的高くなり、イオン液体とは言えなかった。また、天然アミノ酸をオニウムカチオンと組み合わせて合成したイオン液体(特許文献3)は、アミノ酸の側鎖構造によっては粘度が非常に高くなる場合があった。
特開2000−3620号公報 特開2002−275118号公報 特開2004−269414号公報 大野弘幸、「有機イオン性液体−蒸発しない極性液体−」、未来材料、2002年、第2巻第9号6〜11頁 Weiliang Bao, Zhimiang Wang and Yuxia Li, Journal of Organic Chemistry, 2003, 68(2), 591-593
There have been reports of attempts to synthesize chiral ionic liquids using natural amino acids as starting materials (for example, Non-Patent Document 2). Since the functional group is substituted from a carboxyl group to an alcohol during synthesis, and a bulky amino acid derivative is introduced into the side chain of the imidazolium cation, the melting point of the obtained salt is relatively high, and it cannot be said to be an ionic liquid. It was. Moreover, the ionic liquid (patent document 3) synthesized by combining a natural amino acid with an onium cation may have a very high viscosity depending on the side chain structure of the amino acid.
JP 2000-3620 A JP 2002-275118 A JP 2004-269414 A Hiroyuki Ohno, "Organic ionic liquids-polar liquids that do not evaporate", Future Materials, 2002, Vol. 2, No. 9, pp. 6-11 Weiliang Bao, Zhimiang Wang and Yuxia Li, Journal of Organic Chemistry, 2003, 68 (2), 591-593

新たなイオン液体を提供することが本発明の目的である。   It is an object of the present invention to provide a new ionic liquid.

本発明は、一般式I:

Figure 2008285414
[式中、カチオン部Phは、(R)P(ここで、R、R、R、およびRは、それぞれ独立して、非置換もしくは置換された低級アルキル基)であるか、または1もしくはそれ以上の燐原子を環員として含む、非置換もしくは置換されたヘテロ環の燐原子にプロトンもしくはアルキル基が1つ結合したカチオンであり、アニオン部は、アミノ酸アニオン(ここで、Yは、アミノ酸のアミノ基およびカルボキシル基を除いた構成部分)である]
で示される第4級燐化合物である有機イオン液体を提供する。 The present invention is directed to general formula I:
Figure 2008285414
[Wherein the cation moiety Ph + is (R 1 R 2 R 3 R 4 ) P + (wherein R 1 , R 2 , R 3 , and R 4 are each independently unsubstituted or substituted) A lower alkyl group), or a cation in which one proton or an alkyl group is bonded to the phosphorus atom of an unsubstituted or substituted heterocyclic ring containing one or more phosphorus atoms as ring members. Is an amino acid anion (where Y is a component excluding the amino group and carboxyl group of the amino acid)]
The organic ionic liquid which is the quaternary phosphorus compound shown by these is provided.

ここで低級アルキル基とは、飽和の直鎖または分岐上の炭素数1〜12の炭化水素残基をいい、好ましくは炭素数2〜6、より好ましくは炭素数2〜4の炭化水素残基をいう。例えばメチル、エチル、プロピル、イソプロピル、ブチル、s−ブチル、t−ブチル、ペンチル、ヘキシルなどが挙げることができ、好ましくは、エチル、プロピル、イソプロピル、ブチル、ペンチル、ヘキシルであり、より好ましくは、プロピルおよびブチルである。   Here, the lower alkyl group means a saturated linear or branched hydrocarbon residue having 1 to 12 carbon atoms, preferably a hydrocarbon residue having 2 to 6 carbon atoms, more preferably 2 to 4 carbon atoms. Say. For example, methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, pentyl, hexyl and the like can be mentioned, preferably ethyl, propyl, isopropyl, butyl, pentyl, hexyl, more preferably Propyl and butyl.

低級アルキル基の置換基としては、ヒドロキシ、炭素数1〜4の低級アルコキシ、同アルコキシ基が置換した炭素数1〜4の低級アルキル基、アミノ基等が例示される。
式Iのヘテロ環の置換基としては、炭素数1〜12、好ましくは、炭素数1〜6、より好ましくは、炭素数3〜6の低級アルキル基の他、ヒドロキシ、炭素数1〜4の低級アルコキシ、同アルコキシ基が置換した炭素数1〜4の低級アルキル基、アミノ基等が該当する。低級アルキル基の中では、プロピルおよびブチルが特に好ましい。
アニオン部のアミノ酸はα-アミ酸のみならず、光学活性なアミノカルボン酸であれば特に限定はされないが、α-アミノ酸が好ましく、特に天然のα-アミノ酸が好ましい。
Examples of the substituent for the lower alkyl group include hydroxy, lower alkoxy having 1 to 4 carbon atoms, a lower alkyl group having 1 to 4 carbon atoms substituted by the alkoxy group, an amino group, and the like.
As the substituent of the heterocyclic ring of the formula I, the lower alkyl group having 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms, more preferably 3 to 6 carbon atoms, hydroxy, 1 to 4 carbon atoms. A lower alkoxy, a C1-C4 lower alkyl group substituted by the alkoxy group, an amino group, and the like are applicable. Of the lower alkyl groups, propyl and butyl are particularly preferred.
The amino acid in the anion moiety is not particularly limited as long as it is an optically active aminocarboxylic acid as well as α-amino acid, but α-amino acid is preferable, and natural α-amino acid is particularly preferable.

本発明は、アミノ酸、特に安価で容易に入手できる天然アミノ酸を構成イオンとする第4級燐化合物である有機イオン液体を提供するものである。本発明によって、従来は合成が困難であった低粘度で光学活性な環境を安価かつ容易に入手できる。すなわち、本発明によって、天然アミノ酸などを用いて適切なホスホニウムカチオンと共に塩とすることで、光学純度が100%で、氷点下から300℃を越す広い温度範囲において液体状態を保ち、低粘度となるキラルなイオン液体を提供するものである。このイオン液体は通常のイオン液体の応用分野全てに用いることができ、しかもアミノ酸の反応前駆体として各種機能分子の創製に利用できる可能性も併せ持つ。   The present invention provides an organic ionic liquid which is a quaternary phosphorus compound having an amino acid, particularly a natural amino acid, which is inexpensive and easily available, as a constituent ion. According to the present invention, a low-viscosity and optically active environment that has heretofore been difficult to synthesize can be easily obtained at low cost. That is, according to the present invention, a salt with an appropriate phosphonium cation using a natural amino acid or the like is used so that the optical purity is 100%, the liquid state is maintained in a wide temperature range from below freezing to over 300 ° C., and the viscosity becomes low. An ionic liquid is provided. This ionic liquid can be used in all application fields of ordinary ionic liquids, and also has the possibility of being used for the creation of various functional molecules as amino acid reaction precursors.

低級アルキル基のカチオン(R)Pの例としては、低級アルキルホスホニウムが挙げられ、ヘテロ環のカチオンの例としては、ホスホラニウム、ホスホリウム、ジベンゾホスホリウム、ホスフィンドリウム、ホスホリナニウム、ジベンゾホスホニナニウム、ホスホリノインドリウム、ホスホニアビシクロオクタン、ホスホリノホスフィノリジニウム、ホスホリノピリミジニウム、ホスホリニウム、ホスフィノリニウム、ホスフィノドリジニウムを挙げることができるが、好ましくは、ホスホリウム、ホスホリナリウムである。 Examples of lower alkyl cation (R 1 R 2 R 3 R 4 ) P + include lower alkylphosphonium, and examples of heterocyclic cation include phosphorium, phospholium, dibenzophospholium, phosphine, Phosphorinanium, dibenzophosphonininanium, phosphorinoindolium, phosphoniabicyclooctane, phosphorinophosphinolidinium, phosphorinopyrimidinium, phosphorinium, phosphinolinium, phosphinodridinium Preferable are phospholium and phosphorinalium.

アニオンは、D−またはL−アミノ酸のアニオンが好ましく、より好ましくは天然のα−アミノ酸であり、さらに好ましくは、L−アスパラギン、L−アスパラギン酸、L−アラニン、L−アルギニン、L−イソロイシン、グリシン、L−グルタミン、L−グルタミン酸、L−システイン、L−セリン、L−チロシン、L−トリプトファン、L−トレオニン、L−バリン、L−ヒスチジン、L−フェニルアラニン、L−プロリン、L−メチオニン、L−リジンまたはL−ロイシンから選ばれるアミノ酸のアニオンである。   The anion is preferably an anion of D- or L-amino acid, more preferably a natural α-amino acid, still more preferably L-asparagine, L-aspartic acid, L-alanine, L-arginine, L-isoleucine, Glycine, L-glutamine, L-glutamic acid, L-cysteine, L-serine, L-tyrosine, L-tryptophan, L-threonine, L-valine, L-histidine, L-phenylalanine, L-proline, L-methionine, An anion of an amino acid selected from L-lysine or L-leucine.

本発明の第4級燐化合物の一般的な製造方法
カチオン部のPhのヒドロキシ化合物の水性溶媒に、アニオン部HN−Y−C(=O)−Oとなるアミノ酸約1〜1.4重量部、好ましくは、約1.0重量部を添加し、得られた混合溶液を氷冷下攪拌し、溶媒を減圧留去し、残渣から適切な方法によって未反応のアミノ酸を除去し、所望のイオン液体としての第4級燐化合物を得る。
General Method for Producing Quaternary Phosphorus Compounds of the Present Invention In an aqueous solvent of a Ph + hydroxy compound in the cation portion, about 1-1 amino acids that become the anion portion H 2 N—Y—C (═O) —O .4 parts by weight, preferably about 1.0 part by weight, is added, the resulting mixed solution is stirred under ice-cooling, the solvent is distilled off under reduced pressure, and unreacted amino acids are removed from the residue by an appropriate method. To obtain a quaternary phosphorus compound as a desired ionic liquid.

以下、実施例によってこの発明を具体的に説明する。いずれの実施例においても目的物が室温下液状物質として得られたが、本発明はこれらに限定されるものではない。なお、これらの実施例におけるテトラアルキルホスホニウム水酸化物とアミノ酸の中和反応の進行は、H−NMR測定によって行い確認された。 Hereinafter, the present invention will be described specifically by way of examples. In any of the Examples, the target product was obtained as a liquid material at room temperature, but the present invention is not limited to these. The progress of the neutralization reaction between the tetraalkylphosphonium hydroxide and the amino acid in these examples was confirmed by 1 H-NMR measurement.

実施例1
41.6wt%テトラブチルホスホニウムハイドロキサイド水溶液26.6gにL−アラニン5gを加え、撹拌しながら、減圧乾燥を行い余分な水を除去した。これにアセトニトリル60mlとメタノール40mlを加え、撹拌した。その後、濾過により析出した結晶(過剰に加えた未反応のアラニン)を除去し、濾液を減圧加熱乾燥してアセトニトリルとメタノールを除去し、テトラブチルホスホニウムアラニン11g(収率80%)を得た。本品のH−NMR測定を行った結果は図1に示されたとおりであり、プロトンの化学シフトと積分強度から反応の進行が確認された。
H−NMR(DMSO, δ/ppm TMS基準):0.917(t,12H,J=14.5Hz),0.982(t,3H,J=7Hz),1.369−1.503(m,16H),2.214(m,8H,J=30Hz),2.769(q,1H,J=20Hz)
Example 1
5 g of L-alanine was added to 26.6 g of 41.6 wt% tetrabutylphosphonium hydroxide aqueous solution, and the mixture was dried under reduced pressure while stirring to remove excess water. To this, 60 ml of acetonitrile and 40 ml of methanol were added and stirred. Thereafter, the crystals (unreacted alanine added in excess) were removed by filtration, and the filtrate was dried by heating under reduced pressure to remove acetonitrile and methanol to obtain 11 g of tetrabutylphosphonium alanine (yield 80%). The result of 1 H-NMR measurement of this product is as shown in FIG. 1, and the progress of the reaction was confirmed from the chemical shift of proton and the integrated intensity.
1 H-NMR (DMSO, δ / ppm TMS standard): 0.917 (t, 12H, J = 14.5 Hz), 0.982 (t, 3H, J = 7 Hz), 1.369-1.503 ( m, 16H), 2.214 (m, 8H, J = 30 Hz), 2.769 (q, 1H, J = 20 Hz)

実施例2
41.6wt%テトラブチルホスホニウムハイドロキサイド水溶液26.6gにL−グリシン4gを加え、撹拌しながら、減圧乾燥を行い余分な水を除去した。これにアセトニトリル60mlとメタノール40mlを加え、撹拌した。その後、濾過により析出した結晶(過剰に加えた未反応のグリシン)を除去し、濾液を減圧加熱乾燥してアセトニトリルとメタノールを除去し、テトラブチルホスホニウムグリシン11g(収率83%)を得た。本品のH−NMR測定を行った結果、プロトンの化学シフトと積分強度から反応の進行が確認された。
H−NMR(DMSO,δ/ppm TMS基準):0.918(t,12H,J=14 Hz),1.368−1.500(m,16H),2.200(m,8H,J=30 Hz),2.630(q,1H,J=6.5 Hz)
Example 2
4 g of L-glycine was added to 26.6 g of 41.6 wt% tetrabutylphosphonium hydroxide aqueous solution, and the mixture was stirred and dried under reduced pressure to remove excess water. To this, 60 ml of acetonitrile and 40 ml of methanol were added and stirred. Thereafter, crystals (unreacted glycine added in excess) were removed by filtration, and the filtrate was dried by heating under reduced pressure to remove acetonitrile and methanol to obtain 11 g of tetrabutylphosphonium glycine (yield 83%). As a result of 1 H-NMR measurement of this product, the progress of the reaction was confirmed from the chemical shift of proton and the integrated intensity.
1 H-NMR (DMSO, δ / ppm TMS standard): 0.918 (t, 12H, J = 14 Hz), 1.368-1.500 (m, 16H), 2.200 (m, 8H, J = 30 Hz), 2.630 (q, 1 H, J = 6.5 Hz)

実施例3
41.6wt%テトラブチルホスホニウムハイドロキサイド水溶液26.6gにL−アスパラギン酸7gを加え、撹拌しながら、減圧乾燥を行い余分な水を除去した。これにアセトニトリル60mlとメタノール40mlを加え、撹拌した。その後、濾過により析出した結晶(過剰に加えた未反応のアスパラギン酸)を除去し、濾液を減圧加熱乾燥してアセトニトリルとメタノールを除去し、テトラブチルホスホニウムアスパラギン酸10g(収率65%)を得た。本品のH−NMR測定を行った結果、プロトンの化学シフトと積分強度から反応の進行が確認された。
H−NMR(DMSO,δ/ppm TMS基準):0.917(t,12H,J=14.5 Hz),1.369−1.502(m,16H),2.191(m,8H,J=29.5 Hz),2.188(m,2H,J=139 Hz),3.170(t,1H,J=14 Hz)
Example 3
7 g of L-aspartic acid was added to 26.6 g of a 41.6 wt% tetrabutylphosphonium hydroxide aqueous solution, and the mixture was stirred and dried under reduced pressure to remove excess water. To this, 60 ml of acetonitrile and 40 ml of methanol were added and stirred. Thereafter, the crystals precipitated by filtration (unreacted aspartic acid added in excess) were removed, and the filtrate was heated and dried under reduced pressure to remove acetonitrile and methanol to obtain 10 g of tetrabutylphosphonium aspartic acid (yield 65%). It was. As a result of 1 H-NMR measurement of this product, the progress of the reaction was confirmed from the chemical shift of proton and the integrated intensity.
1 H-NMR (DMSO, δ / ppm TMS standard): 0.917 (t, 12H, J = 14.5 Hz), 1.369-1.502 (m, 16H), 2.191 (m, 8H) , J = 29.5 Hz), 2.188 (m, 2H, J = 139 Hz), 3.170 (t, 1H, J = 14 Hz)

実施例4
41.6wt%テトラブチルホスホニウムハイドロキサイド水溶液26.6gにL−グルタミン酸7.6gを加え、撹拌しながら、減圧乾燥を行い余分な水を除去した。これにアセトニトリル60mlとメタノール40mlを加え、撹拌した。その後、濾過により析出した結晶(過剰に加えた未反応のグルタミン酸)を除去し、濾液を減圧加熱乾燥してアセトニトリルとメタノールを除去し、テトラブチルホスホニウムグルタミン酸10g(収率65%)を得た。本品のH−NMR測定を行った結果、プロトンの化学シフトと積分強度から反応の進行が確認された。
H−NMR(DMSO,δ/ppm TMS基準):0.918(t,12H,J=14 Hz),1.368−1.498(m,16H),2.179(m,8H,J=30 Hz),1.620−2.131(m,4H)
Example 4
7.6 g of L-glutamic acid was added to 26.6 g of 41.6 wt% tetrabutylphosphonium hydroxide aqueous solution, and the mixture was dried under reduced pressure with stirring to remove excess water. To this, 60 ml of acetonitrile and 40 ml of methanol were added and stirred. Thereafter, the crystals precipitated by filtration (unreacted glutamic acid added in excess) were removed, and the filtrate was dried by heating under reduced pressure to remove acetonitrile and methanol to obtain 10 g (yield 65%) of tetrabutylphosphonium glutamic acid. As a result of 1 H-NMR measurement of this product, the progress of the reaction was confirmed from the chemical shift of proton and the integrated intensity.
1 H-NMR (DMSO, δ / ppm TMS standard): 0.918 (t, 12H, J = 14 Hz), 1.368-1.498 (m, 16H), 2.179 (m, 8H, J = 30 Hz), 1.620-2.131 (m, 4H)

実施例5
41.6wt%テトラブチルホスホニウムハイドロキサイド水溶液26.6gにL−リシン5gを加え、撹拌しながら、減圧乾燥を行い余分な水を除去した。これにアセトニトリル60mlとメタノール40mlを加え、撹拌した。その後、濾過により析出した結晶(過剰に加えた未反応のリシン)を除去し、濾液を減圧加熱乾燥してアセトニトリルとメタノールを除去し、テトラブチルホスホニウムリシン13g(収率78%)を得た。本品のH−NMR測定を行った結果、プロトンの化学シフトと積分強度から反応の進行が確認された。
H−NMR(DMSO,δ/ppm TMS基準):0.917(t,12H,J=14.5 Hz),1.245−1.878(m,22H),2.216(m,8H,J=30 Hz),2.679(q,1H,J=12 Hz)
Example 5
5 g of L-lysine was added to 26.6 g of 41.6 wt% tetrabutylphosphonium hydroxide aqueous solution, and the mixture was dried under reduced pressure while stirring to remove excess water. To this, 60 ml of acetonitrile and 40 ml of methanol were added and stirred. Thereafter, the crystals (unreacted lysine added in excess) were removed by filtration, and the filtrate was heated and dried under reduced pressure to remove acetonitrile and methanol to obtain 13 g of tetrabutylphosphonium lysine (yield 78%). As a result of 1 H-NMR measurement of this product, the progress of the reaction was confirmed from the chemical shift of proton and the integrated intensity.
1 H-NMR (DMSO, δ / ppm TMS standard): 0.917 (t, 12H, J = 14.5 Hz), 1.245-1.878 (m, 22H), 2.216 (m, 8H) , J = 30 Hz), 2.679 (q, 1H, J = 12 Hz)

実施例6
41.6wt%テトラブチルホスホニウムハイドロキサイド水溶液26.6gにL−アスパラギン7.6gを加え、撹拌しながら、減圧乾燥を行い余分な水を除去した。これにアセトニトリル60mlとメタノール40mlを加え、撹拌した。その後、濾過により析出した結晶(過剰に加えた未反応のアスパラギン)を除去し、濾液を減圧加熱乾燥してアセトニトリルとメタノールを除去し、テトラブチルホスホニウムアスパラギン10g(収率70%)を得た。本品のH−NMR測定を行った結果、プロトンの化学シフトと積分強度から反応の進行が確認された。
H−NMR(DMSO,δ/ppm TMS基準):0.917(t,12H,J=14.5 Hz),1.369−1.501(m,16H),2.198(m,8H,J=23 Hz),1.910−2.389(m,2H),3.037(s,1H),6.557(s,1H),8.213(s,1H)
Example 6
7.6 g of L-asparagine was added to 26.6 g of 41.6 wt% tetrabutylphosphonium hydroxide aqueous solution, and the mixture was stirred and dried under reduced pressure to remove excess water. To this, 60 ml of acetonitrile and 40 ml of methanol were added and stirred. Thereafter, the crystals (unreacted asparagine added in excess) were removed by filtration, and the filtrate was heated and dried under reduced pressure to remove acetonitrile and methanol to obtain 10 g of tetrabutylphosphonium asparagine (yield 70%). As a result of 1 H-NMR measurement of this product, the progress of the reaction was confirmed from the chemical shift of proton and the integrated intensity.
1 H-NMR (DMSO, δ / ppm TMS standard): 0.917 (t, 12H, J = 14.5 Hz), 1.369-1.501 (m, 16H), 2.198 (m, 8H) , J = 23 Hz), 1.910-2.389 (m, 2H), 3.037 (s, 1H), 6.557 (s, 1H), 8.213 (s, 1H)

実施例7
41.6wt%テトラブチルホスホニウムハイドロキサイド水溶液26.6gにL−グルタミン7.5gを加え、撹拌しながら、減圧乾燥を行い余分な水を除去した。これにアセトニトリル60mlとメタノール40mlを加え、撹拌した。その後、濾過により析出した結晶(過剰に加えた未反応のグルタミン)を除去し、濾液を減圧加熱乾燥してアセトニトリルとメタノールを除去し、テトラブチルホスホニウムグルタミン11g(収率72%)を得た。本品のH−NMR測定を行った結果、プロトンの化学シフトと積分強度から反応の進行が確認された。
H−NMR(DMSO,δ/ppm TMS基準):0.915(t,12H,J=20 Hz),1.369−1.685(m,18H),2.042(m,2H,J=80 Hz),2.236(m,8H,J=30 Hz),2.764(q,1H,J=12.5 Hz)
Example 7
7.5 g of L-glutamine was added to 26.6 g of a 41.6 wt% tetrabutylphosphonium hydroxide aqueous solution, and the mixture was stirred under reduced pressure to remove excess water. To this, 60 ml of acetonitrile and 40 ml of methanol were added and stirred. Thereafter, the crystals precipitated by filtration (unreacted glutamine added in excess) were removed, and the filtrate was heated and dried under reduced pressure to remove acetonitrile and methanol to obtain 11 g of tetrabutylphosphonium glutamine (yield 72%). As a result of 1 H-NMR measurement of this product, the progress of the reaction was confirmed from the chemical shift of proton and the integrated intensity.
1 H-NMR (DMSO, δ / ppm TMS standard): 0.915 (t, 12H, J = 20 Hz), 1.369-1.685 (m, 18H), 2.042 (m, 2H, J = 80 Hz), 2.236 (m, 8H, J = 30 Hz), 2.764 (q, 1H, J = 12.5 Hz)

実施例8
41.6wt%テトラブチルホスホニウムハイドロキサイド水溶液26.6gにL−ヒスチジン7gを加え、撹拌しながら、減圧乾燥を行い余分な水を除去した。これにアセトニトリル60mlとメタノール40mlを加え、撹拌した。その後、濾過により析出した結晶(過剰に加えた未反応のヒスチジン)を除去し、濾液を減圧加熱乾燥してアセトニトリルとメタノールを除去し、テトラブチルホスホニウムヒスチジン13g(収率80%)を得た。本品のH−NMR測定を行った結果、プロトンの化学シフトと積分強度から反応の進行が確認された。
H−NMR(CDCl,δ/ppm TMS基準):0.968(t,12H,J=14 Hz),1.500(m,16H,J=15 Hz),2.331(m,8H,J=29.5 Hz),2.958(m,2H,J=335 Hz),3.417(q,1H,J=17 Hz),6.754(s,1H),7.430(s,1H)
Example 8
7 g of L-histidine was added to 26.6 g of 41.6 wt% tetrabutylphosphonium hydroxide aqueous solution, and the mixture was stirred and dried under reduced pressure to remove excess water. To this, 60 ml of acetonitrile and 40 ml of methanol were added and stirred. Thereafter, the crystals precipitated by filtration (unreacted histidine added in excess) were removed, and the filtrate was heated and dried under reduced pressure to remove acetonitrile and methanol to obtain 13 g of tetrabutylphosphonium histidine (yield 80%). As a result of 1 H-NMR measurement of this product, the progress of the reaction was confirmed from the chemical shift of proton and the integrated intensity.
1 H-NMR (CDCl 3 , δ / ppm TMS standard): 0.968 (t, 12H, J = 14 Hz), 1.500 (m, 16H, J = 15 Hz), 2.331 (m, 8H) , J = 29.5 Hz), 2.958 (m, 2H, J = 335 Hz), 3.417 (q, 1H, J = 17 Hz), 6.754 (s, 1H), 7.430 ( s, 1H)

実施例9
41.6wt%テトラブチルホスホニウムハイドロキサイド水溶液26.6gにL−イソロイシン8gを加え、撹拌しながら、減圧乾燥を行い余分な水を除去した。これにアセトニトリル60mlとメタノール40mlを加え、撹拌した。その後、濾過により析出した結晶(過剰に加えた未反応のイソロイシン)を除去し、濾液を減圧加熱乾燥してアセトニトリルとメタノールを除去し、テトラブチルホスホニウムイソロイシン13g(収率83%)を得た。本品のH−NMR測定を行った結果、プロトンの化学シフトと積分強度から反応の進行が確認された。
H−NMR(DMSO,δ/ppm TMS基準):0.750−0.783(m,6H),0.917(t,12H,J=14 Hz),0.9845(m,1H,J=30.5 Hz),1.309−1.585(m,18H),2.228(m,8H,J=30 Hz),2.612(d,1H,J=4.5 Hz)
Example 9
8 g of L-isoleucine was added to 26.6 g of a 41.6 wt% tetrabutylphosphonium hydroxide aqueous solution, and the mixture was dried under reduced pressure while stirring to remove excess water. To this, 60 ml of acetonitrile and 40 ml of methanol were added and stirred. Thereafter, the crystals precipitated by filtration (unreacted isoleucine added in excess) were removed, and the filtrate was heated and dried under reduced pressure to remove acetonitrile and methanol to obtain 13 g of tetrabutylphosphonium isoleucine (yield 83%). As a result of 1 H-NMR measurement of this product, the progress of the reaction was confirmed from the chemical shift of proton and the integrated intensity.
1 H-NMR (DMSO, δ / ppm TMS standard): 0.750-0.783 (m, 6H), 0.917 (t, 12H, J = 14 Hz), 0.9845 (m, 1H, J = 30.5 Hz), 1.309-1.585 (m, 18H), 2.228 (m, 8H, J = 30 Hz), 2.612 (d, 1H, J = 4.5 Hz)

実施例10
41.6wt%テトラブチルホスホニウムハイドロキサイド水溶液26.6gにL−ロイシン6.8gを加え、撹拌しながら、減圧乾燥を行い余分な水を除去した。これにアセトニトリル60mlとメタノール40mlを加え、撹拌した。その後、濾過により析出した結晶(過剰に加えた未反応のアラニン)を除去し、濾液を減圧加熱乾燥してアセトニトリルとメタノールを除去し、テトラブチルホスホニウムロイシン11g(収率70%)を得た。本品のH−NMR測定を行った結果、プロトンの化学シフトと積分強度から反応の進行が確認された。
H−NMR(DMSO,δ/ppm TMS基準):0.819(q,6H,J=25 Hz),0.918(t,12H,J=14.5 Hz),1.006(m,1H,J=42.5 Hz),1.359−1.500(m,16H),1.680(m,1H,J=33.5 Hz),2.205(m,8H,J=29.5 Hz),2.699(s,1H)
Example 10
6.8 g of L-leucine was added to 26.6 g of a 41.6 wt% tetrabutylphosphonium hydroxide aqueous solution, and the mixture was stirred under reduced pressure to remove excess water. To this, 60 ml of acetonitrile and 40 ml of methanol were added and stirred. Thereafter, the crystals (unreacted alanine added in excess) were removed by filtration, and the filtrate was dried by heating under reduced pressure to remove acetonitrile and methanol to obtain 11 g of tetrabutylphosphonium leucine (yield 70%). As a result of 1 H-NMR measurement of this product, the progress of the reaction was confirmed from the chemical shift of proton and the integrated intensity.
1 H-NMR (DMSO, δ / ppm TMS standard): 0.819 (q, 6H, J = 25 Hz), 0.918 (t, 12H, J = 14.5 Hz), 1.006 (m, 1H, J = 42.5 Hz), 1.359-1.500 (m, 16H), 1.680 (m, 1H, J = 33.5 Hz), 2.205 (m, 8H, J = 29) .5 Hz), 2.699 (s, 1H)

実施例11
41.6wt%テトラブチルホスホニウムハイドロキサイド水溶液26.6gにL−フェニルアラニン8.5gを加え、撹拌しながら、減圧乾燥を行い余分な水を除去した。これにアセトニトリル60mlとメタノール40mlを加え、撹拌した。その後、濾過により析出した結晶(過剰に加えた未反応のフェニルアラニン)を除去し、濾液を減圧加熱乾燥してアセトニトリルとメタノールを除去し、テトラブチルホスホニウムフェニルアラニン13g(収率75%)を得た。本品のH−NMR測定を行った結果、プロトンの化学シフトと積分強度から反応の進行が確認された。
H−NMR(DMSO,δ/ppm TMS基準):0.916(t,12H,J=14.5 Hz),1.367−1.487(m,16H),2.208(m,8H,J=29.5 Hz),2.365(q,1H,J=22.5 Hz),2.983(m,2H,J=45.5 Hz),7.107−7.236(m,5H)
Example 11
8.5 g of L-phenylalanine was added to 26.6 g of 41.6 wt% tetrabutylphosphonium hydroxide aqueous solution, and the mixture was dried under reduced pressure with stirring to remove excess water. To this, 60 ml of acetonitrile and 40 ml of methanol were added and stirred. Thereafter, crystals (unreacted phenylalanine added excessively) precipitated by filtration were removed, and the filtrate was heated and dried under reduced pressure to remove acetonitrile and methanol to obtain 13 g of tetrabutylphosphonium phenylalanine (yield 75%). As a result of 1 H-NMR measurement of this product, the progress of the reaction was confirmed from the chemical shift of proton and the integrated intensity.
1 H-NMR (DMSO, δ / ppm TMS standard): 0.916 (t, 12H, J = 14.5 Hz), 1.367-1.487 (m, 16H), 2.208 (m, 8H) , J = 29.5 Hz), 2.365 (q, 1H, J = 22.5 Hz), 2.983 (m, 2H, J = 45.5 Hz), 7.107-7.236 (m , 5H)

実施例12
41.6wt%テトラブチルホスホニウムハイドロキサイド水溶液26.6gにL−セリン5.5gを加え、撹拌しながら、減圧乾燥を行い余分な水を除去した。これにアセトニトリル60mlとメタノール40mlを加え、撹拌した。その後、濾過により析出した結晶(過剰に加えた未反応のセリン)を除去し、濾液を減圧加熱乾燥してアセトニトリルとメタノールを除去し、テトラブチルホスホニウムセリン11g(収率73%)を得た。本品のH−NMR測定を行った結果、プロトンの化学シフトと積分強度から反応の進行が確認された。
H−NMR(DMSO,δ/ppm TMS基準):0.917(t,12H,J=14 Hz),1.369−1.500(m,16H),2.191(m,8H,J=29.5 Hz),2.775(q,1H, J=15.5 Hz),3.133(q,1H J=30.5 Hz),3.255(q,1H,J=15.5 Hz)
Example 12
5.5 g of L-serine was added to 26.6 g of a 41.6 wt% tetrabutylphosphonium hydroxide aqueous solution, and the mixture was stirred and dried under reduced pressure to remove excess water. To this, 60 ml of acetonitrile and 40 ml of methanol were added and stirred. Thereafter, the crystals (unreacted serine added in excess) were removed by filtration, and the filtrate was dried by heating under reduced pressure to remove acetonitrile and methanol to obtain 11 g of tetrabutylphosphonium serine (yield 73%). As a result of 1 H-NMR measurement of this product, the progress of the reaction was confirmed from the chemical shift of proton and the integrated intensity.
1 H-NMR (DMSO, δ / ppm TMS standard): 0.917 (t, 12H, J = 14 Hz), 1.369-1.500 (m, 16H), 2.191 (m, 8H, J = 29.5 Hz), 2.775 (q, 1H, J = 15.5 Hz), 3.133 (q, 1H J = 30.5 Hz), 3.255 (q, 1H, J = 15. 5 Hz)

実施例13
41.6wt%テトラブチルホスホニウムハイドロキサイド水溶液26.6gにL−トレオニン6.2gを加え、撹拌しながら、減圧乾燥を行い余分な水を除去した。これにアセトニトリル60mlとメタノール40mlを加え、撹拌した。その後、濾過により析出した結晶(過剰に加えた未反応のトレオニン)を除去し、濾液を減圧加熱乾燥してアセトニトリルとメタノールを除去し、テトラブチルホスホニウムトレオニン11g(収率70%)を得た。本品のH−NMR測定を行った結果、プロトンの化学シフトと積分強度から反応の進行が確認された。
H−NMR(DMSO,δ/ppm TMS基準):0.880(d,3H,J=6 Hz),0.918(t,12H,J=14 Hz),1.383−1.488(m,16H),2.193(m,8H,J=30.5 Hz),2.842(d,1H,J=4 Hz),3.443(m,1H,J=11 Hz)
Example 13
6.2 g of L-threonine was added to 26.6 g of a 41.6 wt% tetrabutylphosphonium hydroxide aqueous solution, and dried under reduced pressure while stirring to remove excess water. To this, 60 ml of acetonitrile and 40 ml of methanol were added and stirred. Thereafter, the crystals (unreacted threonine added in excess) were removed by filtration, and the filtrate was heated and dried under reduced pressure to remove acetonitrile and methanol to obtain 11 g of tetrabutylphosphonium threonine (yield 70%). As a result of 1 H-NMR measurement of this product, the progress of the reaction was confirmed from the chemical shift of proton and the integrated intensity.
1 H-NMR (DMSO, δ / ppm TMS standard): 0.880 (d, 3H, J = 6 Hz), 0.918 (t, 12H, J = 14 Hz), 1.383-1.488 ( m, 16H), 2.193 (m, 8H, J = 30.5 Hz), 2.842 (d, 1H, J = 4 Hz), 3.443 (m, 1H, J = 11 Hz)

実施例14
41.6wt%テトラブチルホスホニウムハイドロキサイド水溶液26.6gにL−メチオニン7.7gを加え、撹拌しながら、減圧乾燥を行い余分な水を除去した。これにアセトニトリル60mlとメタノール40mlを加え、撹拌した。その後、濾過により析出した結晶(過剰に加えた未反応のメチオニン)を除去し、濾液を減圧加熱乾燥してアセトニトリルとメタノールを除去し、テトラブチルホスホニウムメチオニン12.2g(収率75%)を得た。本品のH−NMR測定を行った結果、プロトンの化学シフトと積分強度から反応の進行が確認された。
H−NMR(CDCl,δ/ppm TMS基準):0.918(t,12H,J=14.5 Hz),1.511−1.549(m,16H),1.721−2.148(m,5H),2.413(m,8H,J=29.5 Hz),2.666(m,8H,J=29.5 Hz),3.218(q,1H,J=12.5 Hz)
Example 14
7.7 g of L-methionine was added to 26.6 g of 41.6 wt% tetrabutylphosphonium hydroxide aqueous solution, and the mixture was stirred and dried under reduced pressure to remove excess water. To this, 60 ml of acetonitrile and 40 ml of methanol were added and stirred. Then, the crystals precipitated by filtration (unreacted methionine added in excess) were removed, and the filtrate was heated and dried under reduced pressure to remove acetonitrile and methanol to obtain 12.2 g of tetrabutylphosphonium methionine (yield 75%). It was. As a result of 1 H-NMR measurement of this product, the progress of the reaction was confirmed from the chemical shift of proton and the integrated intensity.
1 H-NMR (CDCl 3 , δ / ppm TMS standard): 0.918 (t, 12H, J = 14.5 Hz), 1.511-1.549 (m, 16H), 1.71-2. 148 (m, 5H), 2.413 (m, 8H, J = 29.5 Hz), 2.666 (m, 8H, J = 29.5 Hz), 3.218 (q, 1H, J = 12) .5 Hz)

実施例15
41.6wt%テトラブチルホスホニウムハイドロキサイド水溶液26.6gにL−プロリン4.6gを加え、撹拌しながら、減圧乾燥を行い余分な水を除去した。これにアセトニトリル60mlとメタノール40mlを加え、撹拌した。その後、濾過により析出した結晶(過剰に加えた未反応のプロリン)を除去し、濾液を減圧加熱乾燥してアセトニトリルとメタノールを除去し、テトラブチルホスホニウムプロリン11g(収率77%)を得た。本品のH−NMR測定を行った結果、プロトンの化学シフトと積分強度から反応の進行が確認された。
H−NMR(CDCl,δ/ppm TMS基準):0.976(t,12H,J=14 Hz),1.527(m,16H,J=19 Hz),1.657(m,2H,J=51 Hz),1.870(m,1H,J=32.5 Hz),2.082(m,1H,J=36 Hz),2.395(m,8H,J=29 Hz),2.784(m,1H,J=17.5 Hz),3.097(m,1H,J=23 Hz),3.511(m,1H,J=14.5 Hz)
Example 15
4.6 g of L-proline was added to 26.6 g of a 41.6 wt% tetrabutylphosphonium hydroxide aqueous solution, and the mixture was stirred under reduced pressure to remove excess water. To this, 60 ml of acetonitrile and 40 ml of methanol were added and stirred. Thereafter, crystals (unreacted proline added in excess) were removed by filtration, and the filtrate was dried by heating under reduced pressure to remove acetonitrile and methanol to obtain 11 g of tetrabutylphosphonium proline (yield 77%). As a result of 1 H-NMR measurement of this product, the progress of the reaction was confirmed from the chemical shift of proton and the integrated intensity.
1 H-NMR (CDCl 3 , δ / ppm TMS standard): 0.976 (t, 12H, J = 14 Hz), 1.527 (m, 16H, J = 19 Hz), 1.657 (m, 2H) , J = 51 Hz), 1.870 (m, 1H, J = 32.5 Hz), 2.082 (m, 1H, J = 36 Hz), 2.395 (m, 8H, J = 29 Hz) , 2.784 (m, 1H, J = 17.5 Hz), 3.097 (m, 1H, J = 23 Hz), 3.511 (m, 1H, J = 14.5 Hz)

本発明により提供されるイオン液体は、各種合成反応の溶媒や分離・抽出溶媒、酵素反応溶媒としての応用はもちろんのこと、バッテリーや燃料電池などの電解質材料として利用することができる。   The ionic liquid provided by the present invention can be used as an electrolyte material for batteries, fuel cells and the like as well as solvents for various synthetic reactions, separation / extraction solvents, and enzyme reaction solvents.

n−テトラブチルホスホニウムアラニン塩(実施例1)のH−NMRチャートである。1 is a 1 H-NMR chart of n-tetrabutylphosphonium alanine salt (Example 1).

Claims (6)

一般式I:
Figure 2008285414
[式中、カチオン部Phは、(R)P(ここで、R、R、RおよびRは、それぞれ独立して、非置換もしくは置換された低級アルキル基)であるか、または1もしくはそれ以上の燐原子を環員として含む、非置換もしくは置換されたヘテロ環の燐原子にプロトンもしくはアルキル基が1つ結合したカチオンであり、アニオン部は、アミノ酸アニオン(ここで、Yは、アミノ酸のアミノ基およびカルボキシル基を除いた構成部分)である]
で示される第四級燐化合物。
Formula I:
Figure 2008285414
[Wherein the cation moiety Ph + is (R 1 R 2 R 3 R 4 ) P +, where R 1 , R 2 , R 3 and R 4 are each independently unsubstituted or substituted. A lower alkyl group), or a cation in which one proton or an alkyl group is bonded to the phosphorus atom of an unsubstituted or substituted heterocyclic ring containing one or more phosphorus atoms as ring members, , Amino acid anion (where Y is a component excluding the amino group and carboxyl group of the amino acid)]
A quaternary phosphorus compound represented by
Phが、(R(ここで、Rは、非置換もしくは置換された低級アルキル基)である請求項1の第四級燐化合物。 The quaternary phosphorus compound according to claim 1, wherein Ph + is (R 1 ) 4 P + (wherein R 1 is an unsubstituted or substituted lower alkyl group). がブチル基である、請求項2に記載の第四級燐化合物。 The quaternary phosphorus compound according to claim 2, wherein R 1 is a butyl group. 上記アミノ酸アニオンが、α−アミノ酸アニオンである、請求項1〜3のいずれか1項に記載の第4級燐化合物。   The quaternary phosphorus compound according to any one of claims 1 to 3, wherein the amino acid anion is an α-amino acid anion. 上記アミノ酸アニオンが、天然のα−アミノ酸アニオンである、請求項1〜4のいずれか1項に記載の第4級燐化合物。   The quaternary phosphorus compound according to any one of claims 1 to 4, wherein the amino acid anion is a natural α-amino acid anion. 上記アミノ酸アニオンが、L−ロイシン、L−フェニルアラニン、L−イソロイシン、グリシン、L−グルタミン酸、L−バリン、L−アスパラギン酸、L−トリプトファン、L−アラニン、L−アルギニン、L−アスパラギン、L−システイン、L−グルタミン、L−ヒスチジン、L−リジン、L−メチオニン、L−セリン、L−トレオニン、およびL−チロシンからなる群から選ばれるアミノ酸のアニオンである、請求項1〜5のいずれか1項に記載の第4級燐化合物。
The amino acid anion is L-leucine, L-phenylalanine, L-isoleucine, glycine, L-glutamic acid, L-valine, L-aspartic acid, L-tryptophan, L-alanine, L-arginine, L-asparagine, L- The amino acid anion selected from the group consisting of cysteine, L-glutamine, L-histidine, L-lysine, L-methionine, L-serine, L-threonine, and L-tyrosine. 4. A quaternary phosphorus compound according to item 1.
JP2005241471A 2005-08-23 2005-08-23 Phosphonium-type ionic liquid containing amino acid as constituent ion Pending JP2008285414A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005241471A JP2008285414A (en) 2005-08-23 2005-08-23 Phosphonium-type ionic liquid containing amino acid as constituent ion
PCT/JP2006/316418 WO2007023814A1 (en) 2005-08-23 2006-08-22 Phosphonium-type ionic compounds containing amino acids as constituent ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005241471A JP2008285414A (en) 2005-08-23 2005-08-23 Phosphonium-type ionic liquid containing amino acid as constituent ion

Publications (1)

Publication Number Publication Date
JP2008285414A true JP2008285414A (en) 2008-11-27

Family

ID=37771557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005241471A Pending JP2008285414A (en) 2005-08-23 2005-08-23 Phosphonium-type ionic liquid containing amino acid as constituent ion

Country Status (2)

Country Link
JP (1) JP2008285414A (en)
WO (1) WO2007023814A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139150A (en) * 2013-01-21 2014-07-31 Ajinomoto Co Inc Method for producing n-acylamino acid or n-acylpeptide by using amino acid ionic liquid
US9018321B2 (en) 2007-07-26 2015-04-28 Ajinomoto Co., Inc. Resin composition

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5525191B2 (en) * 2009-06-12 2014-06-18 Jx日鉱日石エネルギー株式会社 Super heat-resistant ionic liquid
CN103429594B (en) 2011-01-10 2016-08-10 瑞来斯实业有限公司 The preparation technology of acetal compound
SG191890A1 (en) 2011-01-10 2013-08-30 Reliance Ind Ltd Process for the preparation of alditol acetals
CN103402959B (en) 2011-01-10 2016-05-18 瑞来斯实业有限公司 In water-bearing media, make the method for two acetal compounds
CN110845417A (en) * 2019-11-27 2020-02-28 中国科学院兰州化学物理研究所 Amino acid ionic liquid water-based additive and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2295399A3 (en) * 2001-03-26 2018-04-04 Nisshinbo Industries, Inc. Liquid electrolytes for electrical storage devices
JP4261223B2 (en) * 2003-03-07 2009-04-30 弘幸 大野 Organic ionic liquids containing amino acids as constituent ions
US8014128B2 (en) * 2003-07-31 2011-09-06 Kaneka Corporation Method for forming oxide film on metal surface using ionic liquid, electrolytic capacitor and electrolyte thereof
JP2005200359A (en) * 2004-01-16 2005-07-28 Tosoh Corp Ionic compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9018321B2 (en) 2007-07-26 2015-04-28 Ajinomoto Co., Inc. Resin composition
JP2014139150A (en) * 2013-01-21 2014-07-31 Ajinomoto Co Inc Method for producing n-acylamino acid or n-acylpeptide by using amino acid ionic liquid

Also Published As

Publication number Publication date
WO2007023814A1 (en) 2007-03-01

Similar Documents

Publication Publication Date Title
JP2008285414A (en) Phosphonium-type ionic liquid containing amino acid as constituent ion
JP4261223B2 (en) Organic ionic liquids containing amino acids as constituent ions
Soloshonok et al. Biomimetic transamination of α-keto perfluorocarboxylic esters. An efficient preparative synthesis of β, β, β-trifluoroalanine
WO2005073196A1 (en) OPTICALLY ACTIVE QUATERNARY AMMONIUM SALT HAVING AXIAL ASYMMETRY AND PROCESS FOR PRODUCING α-AMINO ACID AND DERIVATIVE THEREOF WITH THE SAME
JP2021503306A (en) Method for preparing amine from carbonyl compound by transaminase reaction under salt precipitation
KR20100106221A (en) Method for obtaining optically pure amino acids
IE65956B1 (en) New process for the synthesis of the levodopa
EP0937705B1 (en) Process for preparing D-alloisoleucine and intermediates for preparation
Liang et al. Surface adsorption and aggregation properties of novel L-lysine-based gemini surfactants
JPH05262781A (en) Preparation of l-phosphinothricin and its derivative
JP5623711B2 (en) Method for producing halogen-free ionic liquid containing amino acid as constituent ion
JP5647790B2 (en) Process for producing N-carbamoyl-tert-leucine
JP7363805B2 (en) Method for producing orotic acid derivatives
García-Egido et al. Synthesis of cyanoformamides from primary amines and carbon dioxide under mild conditions. Synthesis of ceratinamine
CA2618659C (en) Method for producing amino acid phosphates
JP4929938B2 (en) Process for producing optically active α-amino acid benzyl esters
CN103702981B (en) The manufacture method of optical activity 2-methylproline derivative
JP3400105B2 (en) Optically active sulfonic acid derivative and production method thereof
BR0008586B1 (en) process of preparing chiral amino acids and process of preparing the compounds of formula (a).
WO2006054366A1 (en) Process for producing amino acid and derivative thereof with optically active quaternary ammonium salt having axial asymmetry
CA2895334C (en) Axially chiral n-(2-acylaryl)-2-[5,7-dihydro-6h-dibenzo[c,e]azepin-6-yl]acetamide compound and chirality interconversion method of .alpha.-amino acid using the same
US4965397A (en) Novel dibasic acid salts and their synthesis
CN115335362A (en) Chiral guanidine and its salt, method for producing chiral guanidine and its salt and use of chiral guanidine and its salt for producing enantiomerically pure amino acids
JP4374978B2 (en) Method for producing Nt-butyloxycarbonylamino acid-containing solution
JP5266485B2 (en) Optically active tetraaminophosphonium salt, catalyst for asymmetric synthesis reaction, asymmetric synthesis reaction, and method for asymmetric synthesis of tetrasubstituted α-amino acid-containing peptide