JP2004269329A - 単結晶の製造装置 - Google Patents
単結晶の製造装置 Download PDFInfo
- Publication number
- JP2004269329A JP2004269329A JP2003065010A JP2003065010A JP2004269329A JP 2004269329 A JP2004269329 A JP 2004269329A JP 2003065010 A JP2003065010 A JP 2003065010A JP 2003065010 A JP2003065010 A JP 2003065010A JP 2004269329 A JP2004269329 A JP 2004269329A
- Authority
- JP
- Japan
- Prior art keywords
- heater
- single crystal
- solid
- liquid interface
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
【課題】ヒータの破壊、劣化を起こさせることなく固液界面加熱用ヒータの熱量を増加させ、高い収率で単結晶を製造することができる単結晶の製造装置を提供することを目的とする。
【解決手段】原料融液314と単結晶316との固液界面がヒータの上端306uと下端306dの間にあるように配置されている固液界面加熱用ヒータ306の上下部および裏側部を被覆する熱反射板311を設けたことを特徴とする単結晶の製造装置。ここで、固液界面加熱用ヒータ306の材質がカーボンまたは鉄−クロム−アルミニウム合金であって、結晶成長方向に平行な方向の熱反射板の長さをD、結晶成長方向に平行な方向の該ヒータ306の長さをHとするとき、0.1D≦H≦Dの関係にあることを特徴とすることができる。
【選択図】 図3
【解決手段】原料融液314と単結晶316との固液界面がヒータの上端306uと下端306dの間にあるように配置されている固液界面加熱用ヒータ306の上下部および裏側部を被覆する熱反射板311を設けたことを特徴とする単結晶の製造装置。ここで、固液界面加熱用ヒータ306の材質がカーボンまたは鉄−クロム−アルミニウム合金であって、結晶成長方向に平行な方向の熱反射板の長さをD、結晶成長方向に平行な方向の該ヒータ306の長さをHとするとき、0.1D≦H≦Dの関係にあることを特徴とすることができる。
【選択図】 図3
Description
【0001】
【発明の属する技術分野】
本発明は、結晶成長炉内の温度分布を制御して単結晶を製造するための装置に関し、特に化合物半導体単結晶を製造するための装置である。
【0002】
【従来の技術】
従来の単結晶の製造方法、たとえば垂直ブリッジマン法(VB法)などにおいては、一度原料と種結晶の一部分を融解させた後、るつぼを下方に移動させることにより、上方へ単結晶成長を行なっている。
【0003】
現在、単結晶の収率を向上させるために、原料融液と結晶との固液界面を加熱するヒータ(以下、固液界面加熱用ヒータという)の熱量を増加させることが提案されている(たとえば、特許文献1参照。)。これは、固液界面加熱用ヒータの熱量を増加させることにより、固液界面の形状が結晶成長方向に凸型の状態で結晶成長をさせることができ、多結晶化を防止することができるからである。
【0004】
ここで、固液界面加熱用ヒータの熱量を増加させるためには該ヒータに流す電流を増加する方法をとるのが一般的であるが、過電流によるヒータの破壊、劣化等の問題があった。
【0005】
【特許文献1】
特開平11−157981号公報
【0006】
【発明が解決しようとする課題】
本発明は、ヒータの破壊、劣化を起こさせることなく固液界面加熱用ヒータの熱量を増加させ、高い収率で単結晶を製造することができる単結晶の製造装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明にかかる単結晶の製造装置は、原料融液と結晶との固液界面がヒータの上端と下端の間にあるように配置されている固液界面加熱用ヒータの上下部および裏側部を被覆する熱反射板を設けたことを特徴とする。
【0008】
本発明にかかる単結晶の製造装置においては、固液界面加熱用ヒータの材質がカーボンまたは鉄−クロム−アルミニウム合金であって、結晶成長方向に平行な方向の熱反射板の長さをD、結晶成長方向に平行な方向の該ヒータの長さをHとするとき、0.1D≦H≦Dの関係にあることを特徴とすることができる。
【0009】
また、本発明にかかる単結晶の製造装置においては、さらに、固液界面加熱用ヒータの形状がヒータ線により構成されるらせん形状であり、らせんのピッチをHp、ヒータ線の直径をL、結晶成長方向に平行な方向の該ヒータの長さをHとするとき、L≦Hp≦0.5Hの関係にあることを特徴とすることができる。
【0010】
さらに、本発明における単結晶の製造装置においては、熱反射板の材質がパイロリティックボロンナイトライド、ボロンナイトライド、パイロリティックボロンナイトライドコートカーボン、SiO2、Al2O3またはPtの少なくともいずれかで形成されること、単結晶がIII−V族化合物半導体単結晶またはII−VI族化合物半導体単結晶であること、単結晶が、チョクラルスキー(CZ)法、液体封止型チョクラルスキー(LEC)法、水平ブリッジマン(HB)法または垂直ブリッジマン(VB)法にしたがって製造されることとすることができる。
【0011】
【発明の実施の形態】
本発明にかかる単結晶の製造装置は、原料融液と結晶との固液界面がヒータの上端と下端の間にあるように配置されている固液界面加熱用ヒータの上下部および裏側部を被覆する熱反射板を設けられている。かかる熱反射板が設けられているため、従来は該ヒータの上下方向に放射されていた熱および該ヒータの裏側部に放射されていた熱が、該ヒータの結晶加熱側である表側に効率よく集中させることができ、該ヒータの表側(結晶加熱側)部への加熱を促進することができるため、該ヒータに流す電流を大きくすることなく、結晶との固液界面領域を他の領域より高温に加熱することができる。ここで、ヒータの裏側部とは、ヒータの結晶加熱側とは反対側のヒータ部分をいう。
【0012】
本発明にかかる単結晶の製造装置において、図1に示すように、固液界面加熱用ヒータ12の材質がカーボンまたは鉄−クロム−アルミニウム合金であって、結晶成長方向に平行な方向の熱反射板11の長さをD、結晶成長方向に平行な方向の該ヒータ12の長さをHとするとき、0.1D≦H≦Dの関係にあることが好ましい。
【0013】
高温に耐えるため、固液界面加熱用ヒータを含めたヒータの材質としては、窒素ガス雰囲気などの還元雰囲気中ではカーボンが、空気雰囲気などの酸化雰囲気中では鉄−クロム−アルミニウム合金が好ましく用いられる。鉄−クロム−アルミニウム合金としては、たとえばカンタルAPM、カンタルAF、カンタルDなどのカンタル合金が特に好ましく用いられる。
【0014】
また、結晶成長方向に平行な方向の熱反射板の長さをD、結晶成長方向に平行な方向の上記ヒータの長さをHとするとき、H<0.1Dであるとヒータ上下部からの熱の放射を十分に反射することができず、H>Dとすることは設計上困難である。
【0015】
また、本発明にかかる単結晶の製造装置において、図2に示すように、固液界面加熱用ヒータ22の形状がたとえばヒータ線22a〜22fにより構成されるらせん形状であり、らせんのピッチ(ヒータ線の中心から隣のヒータ線の中心までの距離)をHp、ヒータ線の直径をL、結晶成長方向に平行な方向の該ヒータ22の長さをHとするとき、L≦Hp≦0.5Hの関係にあることが好ましい。設計上Hp<Lとすることはできず、Hp>0.5Hであるとヒータの加熱性能が低下する傾向にある。特に、L<Hp≦0.5Hの範囲内であれば、ヒータの上下部の空隙のみならず、ヒータ線のらせん間の適度の空隙を通じてヒータの裏側部から放射された熱を表側(結晶加熱側)に反射することができるため、ヒータの加熱効率が向上する。
【0016】
また、熱反射板の材質は、熱を反射する能力を有する耐熱物質であれば特に制限はないが、還元雰囲気ではパイロリティックボロンナイトライド(以下、PBNという)、ボロンナイトライド(以下、BNという)またはパイロリティックボロンナイトライドコートカーボン(以下、PBNコートカーボンという)などが好ましく用いられる。また、酸化雰囲気ではSiO2、Al2O3またはPtなどが好ましく用いられる。
【0017】
また、本発明にかかる単結晶の製造装置においては、GaAs、GaP、GaSb、InAsまたはInPなどのIII−V族化合物半導体単結晶、CdTe、Hg1−xCdxTeまたはZnSeなどのII−VI族化合物半導体単結晶などの単結晶を好ましく製造することができる。
【0018】
また、本発明にかかる単結晶の製造装置は、単結晶がチョクラルスキー法(CZ法)、液体封止型チョクラルスキー法(LEC法)、水平ブリッジマン法(HB法)または垂直ブリッジマン法(VB法)にしたがって製造される場合に好ましく用いることができる。
【0019】
図3に、本発明をVB法の装置に適用した具体例を示す。VB装置300において、チャンバ320内に断熱筒319が設けられ、断熱筒319内には固液界面加熱用ヒータ306を含む10個の円筒形状のヒータ301〜310が配置され、その内部を昇降可能なように昇降軸318上端部に固定されたステージ317上に先端部が細くなったるつぼ312が設けられている。るつぼ312の先端部には種結晶315が取付けられ、種結晶315から単結晶316が成長するようその上方に原料融液314が収容される。原料融液314と単結晶316との固液界面を加熱するため、原料融液314と単結晶316との固液界面がヒータの上端306uと下端306dの間にあるように配置されている固液界面加熱用ヒータ306には、該ヒータ306の上下部および裏側部を被覆する熱反射板311が設けられており、該ヒータ306の表側部(結晶加熱側部)への加熱が促進される。
【0020】
また、図4に、本発明をLEC法に適用した具体例を示す。LEC装置400において、チャンバ420内には、回転可能な下軸408に支持されてサセプタ413が設けられる。サセプタ413内には、るつぼ412が設けられる。また、サセプタ413の周囲には、固液界面加熱用ヒータ402を含む3個のヒータ401〜403が配置される。るつぼ412内には、原料融液414が収容されるとともに、融液上に液体封止剤417が設けられる。一方、チャンバ420内において、るつぼ412の中心上方には回転昇降可能な上軸409が設けられる。以上のように構成される装置において、単結晶の成長は、窒素およびアルゴンなどの不活性ガスの加圧雰囲気下で行なわれ、上軸409の下端に取付けられた種結晶415から単結晶416が引き上げられる。原料融液414と単結晶416との固液界面を加熱するため、原料融液414と単結晶416との固液界面がヒータの上端402uと下端402dの間にあるように配置されている固液界面加熱用ヒータ402には、該ヒータ402の上下部および裏側部を被覆する熱反射板411が設けられており、該ヒータ306の表側部(結晶加熱側部)への加熱が促進される。
【0021】
【実施例】
(実施例1)
図3に示されたVB装置を用いて、VB法により直径75mmのノンドープGaAs単結晶を成長させた。成長に当たって、るつぼ312は内径75mmのPBN製るつぼを使用した。るつぼの下部を円錐形に形成し、その下端に種結晶315を取付けた。次いで、るつぼ312にGaAs多結晶原料7kgを収容した。次いで、原料を収容したるつぼ312は、昇降軸318上端部に固定されたステージ317上に載置した。固液界面加熱用ヒータ306を含む10個のヒータ301〜310は、いずれも直径100mm、厚み20mmのカーボン製ヒータである。原料融液314と単結晶316との固液界面を加熱するため、原料融液314と単結晶316との固液界面がヒータの上端306uと下端306dの間にあるように配置されている固液界面加熱用ヒータ306の上下方向(結晶成長方向)の長さ(H)は50mmである。ここで、熱反射板311は、PBNコートカーボンを材質とする上下方向の断面がコの字形のリング状であって、上下部における内直径85mm、外直径160mm、厚み10mmであり、中央部における内直径140mm、外直径160mm、厚み10mmであり、上下方向長さ(D)が72mmのものを用いた。固液界面加熱用ヒータ306によって加熱される固液界面の加熱温度は1240℃であり、1個のGaAs単結晶を成長させるための1回の加熱時間は10日(240時間)であった。ヒータ306が破壊するまでの本装置の使用回数と単結晶の平均収率を表1に示す。
【0022】
(比較例1)
ヒータ306に熱反射板311を設けていない従来のVB装置を用いて、実施例1と同様の条件で、ヒータ306が破壊するまでの本装置の使用回数と単結晶の平均収率を調べ、その結果を表1に示した。
【0023】
(実施例2〜6)
ヒータ306の形状が直径3mmのヒータ線により構成されるらせん形状であって、そのらせんの内直径および上下方向の長さ(らせん最上部のヒータ線かららせん最下部のヒータ線との距離)、熱反射板311の大きさおよび形状ならびにヒータ306の加熱温度および加熱時間を実施例1と同じ条件にして、ヒータ306が破壊するまでの本装置の使用回数と単結晶の平均収率を調べ、その結果を表1に示した。
【0024】
【表1】
【0025】
表1において、比較例1に比べ実施例1では、固液界面加熱用ヒータに熱反射板を設けることにより、該ヒータに流す電流を大きくすることなく固液界面への加熱を促進することができるため、単結晶の製造装置における該ヒータが破壊されるまでの使用回数が20回から35回に大きくなり、単結晶収率が74%から85%に大きくなった。
【0026】
また、固液界面加熱用ヒータの形状がヒータ線から構成されるらせん形状である場合には、らせんのピッチ(ヒータ線の中心から隣のヒータ線の中心までの距離)をHp、ヒータ線の直径をL、ヒータ結晶成長方向に平行な方向のヒータの長さをHとするとき、L≦Hp≦0.5Hの関係が好ましく、実施例2〜4に示すように0.08H≦Hp≦0.24Hの場合には使用回数が40回を越え、さらに実施例2および3に示すように0.08H≦Hp≦0.12Hの場合には単結晶収率も90%を越えた。
【0027】
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。
【0028】
【発明の効果】
以上のように、本発明にかかる単結晶の製造装置によれば、固液界面加熱用ヒータに熱反射板を設けることにより、該ヒータに流す電流を大きくすることなく固液界面および固液界面を含む近傍領域への加熱を促進することができるため、単結晶の製造装置における該ヒータが破壊されるまでの使用回数が大きくなり、単結晶収率が大きくなる。
【0029】
すなわち、本発明によれば、ヒータの破壊、劣化を起こさせることなく固液界面加熱用ヒータの熱量を増加させ、高い収率で単結晶を製造することができる単結晶の製造装置を提供することができる。
【図面の簡単な説明】
【図1】本発明にかかる熱反射板およびヒータの一の態様を示す断面模式図である。
【図2】本発明にかかる熱反射板およびヒータの別の態様を示す断面模式図である。
【図3】本発明をVB法の装置に適用した一の具体例を示す模式図である。
【図4】本発明をLEC法の装置に適用した一の具体例を示す模式図である。
【符号の説明】
11,21,311,411 熱反射板、12,22,306,402 固液界面加熱用ヒータ、306u,402d 上端、306d,402d 下端、301,302,303,304,305,307,308,309,310,401,403 ヒータ、22a,22b,22c,22d,22e,22f ヒータ線、300 VB装置、312,412 るつぼ、314、414 原料融液、315,415 種結晶、316,416 単結晶、317 ステージ、318 昇降軸、319,419 断熱筒、320,420 チャンバ、400 LEC装置、408 下軸、409 上軸、413 サセプタ、417 液体封材止剤。
【発明の属する技術分野】
本発明は、結晶成長炉内の温度分布を制御して単結晶を製造するための装置に関し、特に化合物半導体単結晶を製造するための装置である。
【0002】
【従来の技術】
従来の単結晶の製造方法、たとえば垂直ブリッジマン法(VB法)などにおいては、一度原料と種結晶の一部分を融解させた後、るつぼを下方に移動させることにより、上方へ単結晶成長を行なっている。
【0003】
現在、単結晶の収率を向上させるために、原料融液と結晶との固液界面を加熱するヒータ(以下、固液界面加熱用ヒータという)の熱量を増加させることが提案されている(たとえば、特許文献1参照。)。これは、固液界面加熱用ヒータの熱量を増加させることにより、固液界面の形状が結晶成長方向に凸型の状態で結晶成長をさせることができ、多結晶化を防止することができるからである。
【0004】
ここで、固液界面加熱用ヒータの熱量を増加させるためには該ヒータに流す電流を増加する方法をとるのが一般的であるが、過電流によるヒータの破壊、劣化等の問題があった。
【0005】
【特許文献1】
特開平11−157981号公報
【0006】
【発明が解決しようとする課題】
本発明は、ヒータの破壊、劣化を起こさせることなく固液界面加熱用ヒータの熱量を増加させ、高い収率で単結晶を製造することができる単結晶の製造装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明にかかる単結晶の製造装置は、原料融液と結晶との固液界面がヒータの上端と下端の間にあるように配置されている固液界面加熱用ヒータの上下部および裏側部を被覆する熱反射板を設けたことを特徴とする。
【0008】
本発明にかかる単結晶の製造装置においては、固液界面加熱用ヒータの材質がカーボンまたは鉄−クロム−アルミニウム合金であって、結晶成長方向に平行な方向の熱反射板の長さをD、結晶成長方向に平行な方向の該ヒータの長さをHとするとき、0.1D≦H≦Dの関係にあることを特徴とすることができる。
【0009】
また、本発明にかかる単結晶の製造装置においては、さらに、固液界面加熱用ヒータの形状がヒータ線により構成されるらせん形状であり、らせんのピッチをHp、ヒータ線の直径をL、結晶成長方向に平行な方向の該ヒータの長さをHとするとき、L≦Hp≦0.5Hの関係にあることを特徴とすることができる。
【0010】
さらに、本発明における単結晶の製造装置においては、熱反射板の材質がパイロリティックボロンナイトライド、ボロンナイトライド、パイロリティックボロンナイトライドコートカーボン、SiO2、Al2O3またはPtの少なくともいずれかで形成されること、単結晶がIII−V族化合物半導体単結晶またはII−VI族化合物半導体単結晶であること、単結晶が、チョクラルスキー(CZ)法、液体封止型チョクラルスキー(LEC)法、水平ブリッジマン(HB)法または垂直ブリッジマン(VB)法にしたがって製造されることとすることができる。
【0011】
【発明の実施の形態】
本発明にかかる単結晶の製造装置は、原料融液と結晶との固液界面がヒータの上端と下端の間にあるように配置されている固液界面加熱用ヒータの上下部および裏側部を被覆する熱反射板を設けられている。かかる熱反射板が設けられているため、従来は該ヒータの上下方向に放射されていた熱および該ヒータの裏側部に放射されていた熱が、該ヒータの結晶加熱側である表側に効率よく集中させることができ、該ヒータの表側(結晶加熱側)部への加熱を促進することができるため、該ヒータに流す電流を大きくすることなく、結晶との固液界面領域を他の領域より高温に加熱することができる。ここで、ヒータの裏側部とは、ヒータの結晶加熱側とは反対側のヒータ部分をいう。
【0012】
本発明にかかる単結晶の製造装置において、図1に示すように、固液界面加熱用ヒータ12の材質がカーボンまたは鉄−クロム−アルミニウム合金であって、結晶成長方向に平行な方向の熱反射板11の長さをD、結晶成長方向に平行な方向の該ヒータ12の長さをHとするとき、0.1D≦H≦Dの関係にあることが好ましい。
【0013】
高温に耐えるため、固液界面加熱用ヒータを含めたヒータの材質としては、窒素ガス雰囲気などの還元雰囲気中ではカーボンが、空気雰囲気などの酸化雰囲気中では鉄−クロム−アルミニウム合金が好ましく用いられる。鉄−クロム−アルミニウム合金としては、たとえばカンタルAPM、カンタルAF、カンタルDなどのカンタル合金が特に好ましく用いられる。
【0014】
また、結晶成長方向に平行な方向の熱反射板の長さをD、結晶成長方向に平行な方向の上記ヒータの長さをHとするとき、H<0.1Dであるとヒータ上下部からの熱の放射を十分に反射することができず、H>Dとすることは設計上困難である。
【0015】
また、本発明にかかる単結晶の製造装置において、図2に示すように、固液界面加熱用ヒータ22の形状がたとえばヒータ線22a〜22fにより構成されるらせん形状であり、らせんのピッチ(ヒータ線の中心から隣のヒータ線の中心までの距離)をHp、ヒータ線の直径をL、結晶成長方向に平行な方向の該ヒータ22の長さをHとするとき、L≦Hp≦0.5Hの関係にあることが好ましい。設計上Hp<Lとすることはできず、Hp>0.5Hであるとヒータの加熱性能が低下する傾向にある。特に、L<Hp≦0.5Hの範囲内であれば、ヒータの上下部の空隙のみならず、ヒータ線のらせん間の適度の空隙を通じてヒータの裏側部から放射された熱を表側(結晶加熱側)に反射することができるため、ヒータの加熱効率が向上する。
【0016】
また、熱反射板の材質は、熱を反射する能力を有する耐熱物質であれば特に制限はないが、還元雰囲気ではパイロリティックボロンナイトライド(以下、PBNという)、ボロンナイトライド(以下、BNという)またはパイロリティックボロンナイトライドコートカーボン(以下、PBNコートカーボンという)などが好ましく用いられる。また、酸化雰囲気ではSiO2、Al2O3またはPtなどが好ましく用いられる。
【0017】
また、本発明にかかる単結晶の製造装置においては、GaAs、GaP、GaSb、InAsまたはInPなどのIII−V族化合物半導体単結晶、CdTe、Hg1−xCdxTeまたはZnSeなどのII−VI族化合物半導体単結晶などの単結晶を好ましく製造することができる。
【0018】
また、本発明にかかる単結晶の製造装置は、単結晶がチョクラルスキー法(CZ法)、液体封止型チョクラルスキー法(LEC法)、水平ブリッジマン法(HB法)または垂直ブリッジマン法(VB法)にしたがって製造される場合に好ましく用いることができる。
【0019】
図3に、本発明をVB法の装置に適用した具体例を示す。VB装置300において、チャンバ320内に断熱筒319が設けられ、断熱筒319内には固液界面加熱用ヒータ306を含む10個の円筒形状のヒータ301〜310が配置され、その内部を昇降可能なように昇降軸318上端部に固定されたステージ317上に先端部が細くなったるつぼ312が設けられている。るつぼ312の先端部には種結晶315が取付けられ、種結晶315から単結晶316が成長するようその上方に原料融液314が収容される。原料融液314と単結晶316との固液界面を加熱するため、原料融液314と単結晶316との固液界面がヒータの上端306uと下端306dの間にあるように配置されている固液界面加熱用ヒータ306には、該ヒータ306の上下部および裏側部を被覆する熱反射板311が設けられており、該ヒータ306の表側部(結晶加熱側部)への加熱が促進される。
【0020】
また、図4に、本発明をLEC法に適用した具体例を示す。LEC装置400において、チャンバ420内には、回転可能な下軸408に支持されてサセプタ413が設けられる。サセプタ413内には、るつぼ412が設けられる。また、サセプタ413の周囲には、固液界面加熱用ヒータ402を含む3個のヒータ401〜403が配置される。るつぼ412内には、原料融液414が収容されるとともに、融液上に液体封止剤417が設けられる。一方、チャンバ420内において、るつぼ412の中心上方には回転昇降可能な上軸409が設けられる。以上のように構成される装置において、単結晶の成長は、窒素およびアルゴンなどの不活性ガスの加圧雰囲気下で行なわれ、上軸409の下端に取付けられた種結晶415から単結晶416が引き上げられる。原料融液414と単結晶416との固液界面を加熱するため、原料融液414と単結晶416との固液界面がヒータの上端402uと下端402dの間にあるように配置されている固液界面加熱用ヒータ402には、該ヒータ402の上下部および裏側部を被覆する熱反射板411が設けられており、該ヒータ306の表側部(結晶加熱側部)への加熱が促進される。
【0021】
【実施例】
(実施例1)
図3に示されたVB装置を用いて、VB法により直径75mmのノンドープGaAs単結晶を成長させた。成長に当たって、るつぼ312は内径75mmのPBN製るつぼを使用した。るつぼの下部を円錐形に形成し、その下端に種結晶315を取付けた。次いで、るつぼ312にGaAs多結晶原料7kgを収容した。次いで、原料を収容したるつぼ312は、昇降軸318上端部に固定されたステージ317上に載置した。固液界面加熱用ヒータ306を含む10個のヒータ301〜310は、いずれも直径100mm、厚み20mmのカーボン製ヒータである。原料融液314と単結晶316との固液界面を加熱するため、原料融液314と単結晶316との固液界面がヒータの上端306uと下端306dの間にあるように配置されている固液界面加熱用ヒータ306の上下方向(結晶成長方向)の長さ(H)は50mmである。ここで、熱反射板311は、PBNコートカーボンを材質とする上下方向の断面がコの字形のリング状であって、上下部における内直径85mm、外直径160mm、厚み10mmであり、中央部における内直径140mm、外直径160mm、厚み10mmであり、上下方向長さ(D)が72mmのものを用いた。固液界面加熱用ヒータ306によって加熱される固液界面の加熱温度は1240℃であり、1個のGaAs単結晶を成長させるための1回の加熱時間は10日(240時間)であった。ヒータ306が破壊するまでの本装置の使用回数と単結晶の平均収率を表1に示す。
【0022】
(比較例1)
ヒータ306に熱反射板311を設けていない従来のVB装置を用いて、実施例1と同様の条件で、ヒータ306が破壊するまでの本装置の使用回数と単結晶の平均収率を調べ、その結果を表1に示した。
【0023】
(実施例2〜6)
ヒータ306の形状が直径3mmのヒータ線により構成されるらせん形状であって、そのらせんの内直径および上下方向の長さ(らせん最上部のヒータ線かららせん最下部のヒータ線との距離)、熱反射板311の大きさおよび形状ならびにヒータ306の加熱温度および加熱時間を実施例1と同じ条件にして、ヒータ306が破壊するまでの本装置の使用回数と単結晶の平均収率を調べ、その結果を表1に示した。
【0024】
【表1】
【0025】
表1において、比較例1に比べ実施例1では、固液界面加熱用ヒータに熱反射板を設けることにより、該ヒータに流す電流を大きくすることなく固液界面への加熱を促進することができるため、単結晶の製造装置における該ヒータが破壊されるまでの使用回数が20回から35回に大きくなり、単結晶収率が74%から85%に大きくなった。
【0026】
また、固液界面加熱用ヒータの形状がヒータ線から構成されるらせん形状である場合には、らせんのピッチ(ヒータ線の中心から隣のヒータ線の中心までの距離)をHp、ヒータ線の直径をL、ヒータ結晶成長方向に平行な方向のヒータの長さをHとするとき、L≦Hp≦0.5Hの関係が好ましく、実施例2〜4に示すように0.08H≦Hp≦0.24Hの場合には使用回数が40回を越え、さらに実施例2および3に示すように0.08H≦Hp≦0.12Hの場合には単結晶収率も90%を越えた。
【0027】
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。
【0028】
【発明の効果】
以上のように、本発明にかかる単結晶の製造装置によれば、固液界面加熱用ヒータに熱反射板を設けることにより、該ヒータに流す電流を大きくすることなく固液界面および固液界面を含む近傍領域への加熱を促進することができるため、単結晶の製造装置における該ヒータが破壊されるまでの使用回数が大きくなり、単結晶収率が大きくなる。
【0029】
すなわち、本発明によれば、ヒータの破壊、劣化を起こさせることなく固液界面加熱用ヒータの熱量を増加させ、高い収率で単結晶を製造することができる単結晶の製造装置を提供することができる。
【図面の簡単な説明】
【図1】本発明にかかる熱反射板およびヒータの一の態様を示す断面模式図である。
【図2】本発明にかかる熱反射板およびヒータの別の態様を示す断面模式図である。
【図3】本発明をVB法の装置に適用した一の具体例を示す模式図である。
【図4】本発明をLEC法の装置に適用した一の具体例を示す模式図である。
【符号の説明】
11,21,311,411 熱反射板、12,22,306,402 固液界面加熱用ヒータ、306u,402d 上端、306d,402d 下端、301,302,303,304,305,307,308,309,310,401,403 ヒータ、22a,22b,22c,22d,22e,22f ヒータ線、300 VB装置、312,412 るつぼ、314、414 原料融液、315,415 種結晶、316,416 単結晶、317 ステージ、318 昇降軸、319,419 断熱筒、320,420 チャンバ、400 LEC装置、408 下軸、409 上軸、413 サセプタ、417 液体封材止剤。
Claims (6)
- 原料融液と結晶との固液界面がヒータの上端と下端の間にあるように配置されている固液界面加熱用ヒータの上下部および裏側部を被覆する熱反射板を設けたことを特徴とする単結晶の製造装置。
- 固液界面加熱用ヒータの材質がカーボンまたは鉄−クロム−アルミニウム合金であって、
結晶成長方向に平行な方向の熱反射板の長さをD、結晶成長方向に平行な方向の該ヒータの長さをHとするとき、
0.1D≦H≦D
の関係にあることを特徴とする請求項1に記載の単結晶の製造装置。 - 固液界面加熱用ヒータの形状がヒータ線により構成されるらせん形状であり、
らせんのピッチをHp、ヒータ線の直径をL、結晶成長方向に平行な方向の該ヒータの長さをHとするとき、
L≦Hp≦0.5H
の関係にあることを特徴とする請求項1または請求項2に記載の単結晶の製造装置。 - 熱反射板の材質が、パイロリティックボロンナイトライド、ボロンナイトライド、パイロリティックボロンナイトライドコートカーボン、SiO2、Al2O3またはPtの少なくともいずれかで形成されることを特徴とする請求項1〜請求項3のいずれかに記載の単結晶の製造装置。
- 単結晶がIII−V族化合物半導体単結晶またはII−VI族化合物半導体単結晶であることを特徴とする請求項1〜請求項4のいずれかに記載の単結晶の製造装置。
- 単結晶が、チョクラルスキー法、液体封止型チョクラルスキー法、水平ブリッジマン法または垂直ブリッジマン法にしたがって製造されることを特徴とする請求項1〜請求項5のいずれかに記載の単結晶の製造装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003065010A JP2004269329A (ja) | 2003-03-11 | 2003-03-11 | 単結晶の製造装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003065010A JP2004269329A (ja) | 2003-03-11 | 2003-03-11 | 単結晶の製造装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004269329A true JP2004269329A (ja) | 2004-09-30 |
Family
ID=33126147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003065010A Withdrawn JP2004269329A (ja) | 2003-03-11 | 2003-03-11 | 単結晶の製造装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004269329A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006327837A (ja) * | 2005-05-23 | 2006-12-07 | Nikon Corp | 蛍石の単結晶製造装置及びそれを用いた蛍石単結晶の製造方法 |
-
2003
- 2003-03-11 JP JP2003065010A patent/JP2004269329A/ja not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006327837A (ja) * | 2005-05-23 | 2006-12-07 | Nikon Corp | 蛍石の単結晶製造装置及びそれを用いた蛍石単結晶の製造方法 |
JP4569872B2 (ja) * | 2005-05-23 | 2010-10-27 | 株式会社ニコン | 蛍石の単結晶製造装置及びそれを用いた蛍石単結晶の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8337616B2 (en) | Apparatus and method for producing single crystal | |
US8524000B2 (en) | Pulling assemblies for pulling a multicrystalline silicon ingot from a silicon melt | |
US10487418B2 (en) | Seed chuck assemblies and crystal pulling systems for reducing deposit build-up during crystal growth process | |
JP2004224663A (ja) | 単結晶成長装置 | |
EP1122341A1 (en) | Single crystal SiC | |
JP2004269329A (ja) | 単結晶の製造装置 | |
CN104911695A (zh) | 一种带有石墨纸夹层的硅料加热埚 | |
US8691013B2 (en) | Feed tool for shielding a portion of a crystal puller | |
JP7128124B2 (ja) | 多結晶シリコン棒、多結晶シリコンロッドおよびその製造方法 | |
JP2004099390A (ja) | 化合物半導体単結晶の製造方法及び化合物半導体単結晶 | |
JP4184622B2 (ja) | 炭化珪素単結晶インゴットの製造方法 | |
JP5776587B2 (ja) | 単結晶製造方法 | |
JP2007194513A (ja) | 結晶半導体粒子の製造方法及び光電変換装置 | |
JP2018150181A (ja) | 単結晶育成用坩堝および単結晶育成方法 | |
CN204727983U (zh) | 一种带有石墨纸夹层的硅料加热埚 | |
JP2004277266A (ja) | 化合物半導体単結晶の製造方法 | |
JP7476890B2 (ja) | SiC単結晶インゴットの製造方法 | |
JP4142931B2 (ja) | 粒状シリコン結晶の製造装置および製造方法 | |
JP2004269328A (ja) | 単結晶の製造装置 | |
JP2004345888A (ja) | 化合物半導体単結晶の製造方法 | |
JP2001080987A (ja) | 化合物半導体結晶の製造装置及びそれを用いた製造方法 | |
JP2003128496A (ja) | 単結晶の製造装置および製造方法 | |
JP4155085B2 (ja) | 化合物半導体単結晶の製造方法 | |
JP2004161559A (ja) | 化合物半導体製造装置 | |
JP2007184496A (ja) | 結晶半導体粒子の製造方法および光電変換装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060606 |