JP2004268542A - Manufacturing method for thermoplastic resin vessel - Google Patents

Manufacturing method for thermoplastic resin vessel Download PDF

Info

Publication number
JP2004268542A
JP2004268542A JP2003066061A JP2003066061A JP2004268542A JP 2004268542 A JP2004268542 A JP 2004268542A JP 2003066061 A JP2003066061 A JP 2003066061A JP 2003066061 A JP2003066061 A JP 2003066061A JP 2004268542 A JP2004268542 A JP 2004268542A
Authority
JP
Japan
Prior art keywords
manufacturing
thermoforming
preform
thermoplastic resin
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003066061A
Other languages
Japanese (ja)
Other versions
JP4449312B2 (en
Inventor
Tsutomu Iwasaki
力 岩崎
Yasushi Hatano
靖 波多野
Masato Kogure
正人 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2003066061A priority Critical patent/JP4449312B2/en
Publication of JP2004268542A publication Critical patent/JP2004268542A/en
Application granted granted Critical
Publication of JP4449312B2 publication Critical patent/JP4449312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method which enables manufacture with high efficiency of a thermoplastic resin vessel of which the whole, including a flange, has a sufficient heat resistance as occasion demands, in addition to that it is free of a problem in a manufacturing method wherein first a sheet is extruded. <P>SOLUTION: A preform is prepared by injection molding and a flange part of the preform is crystalLized. In a thermoforming process, subsequently, the preform is formed in a forming shape of a female forming tool member heated to a crystallization start temperature or above and a melting point or below, by air-pressure forming and/or vacuum forming, and is also fixed thermally. Then, it is shrunk back for shaping into a forming shape of a plug member and also cooled down. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、飲食料のための容器として好都合に使用することができるカップ形状熱可塑性樹脂容器の製造方法に関する。
【0002】
【従来の技術】
周知の如く、飲食料のための容器として、フランジ、このフランジの内縁から垂下する筒形状側壁及び側壁の下端を閉じる底壁とを有するカップ形状熱可塑性樹脂容器が広く実用に供されている。かような容器は、一般に、熱可塑性樹脂シートを押出成形し、次いでシートを加熱し軟化せしめてシートの複数領域を同時に圧空及び/又は真空成形して所要カップ形状にせしめ、しかる後にカップ形状に成形された部分をこれを囲繞する部位で切断してシートから分離することによって製造されている。
【0003】
然るに、上述したとおりの製造方法においては、カップ形状に成形された部分を切り離したシートの残部(所謂スケルトン部)がシートの相当部分、通常40乃至60%、を占め、かかる残部が無駄に破棄され、従って材料歩留りが著しく低くなる。シートの残部は溶融して再使用することも意図されるが、再使用によって材料品質が低下せしめられ、材料品質の過剰低下を回避するためには再使用をシートの残部の全体ではなくてその一部のみに制限せざるを得ない。シート層が主層と共にガスバリアー層等の付加層を含有している多層シートである場合には、シートの残部を再使用することは実際上不可能である。また、容器の肉厚がシートの厚さに強く依存し、容器の肉厚分布を適宜に選定することが困難である。更に、製造工程の都合上、シートはロール状に巻き付けることができることが望まれ、それ故にシートの厚さは例えば1.2mm以下に制限され、これに起因して容器の底壁の厚さ、従って強度が過小になってしまう傾向がある。
【0004】
下記特許文献1には、熱成形主部とフランジ部とを有する熱可塑性樹脂前成形体(所謂プリフォーム)を射出成形によって成形し、次いでかかる前成形体の熱成形主部をプラグアシスト真空及び圧空成形してカップ形状熱可塑性樹脂容器を成形する製造方法が開示されている。
【0005】
また、下記特許文献2には、熱成形主部とフランジ部とを有する熱可塑性樹脂前成形体を射出成形によって成形し、次いでかかる前成形体の熱成形主部をマッチドモールド真空成形してカップ形状熱可塑性樹脂容器を製造する方法が開示されている。マッチドモールド真空成形の際に、一方の成形型部材は結晶開始温度よりも高温に加熱され、従ってカップ形状に成形された熱可塑性容器は熱固定される。
【0006】
【特許文献1】
特開平5−69478号公報
【特許文献2】
特公平7−67737号公報
【0007】
【発明が解決しようとする課題】
上記特許文献1及び上記特許文献2に開示されている製造方法においては、最初にシートを押出成形する製造方法における上述したとおりの問題はない。しかしながら、これらの製造方法も未だ充分に満足し得るものではなく、次のとおりの解決すべき問題を有する。上記特許文献1に開示されている製造方法においては、熱可塑性樹脂が熱固定されることがなく、それ故に製造された熱可塑性樹脂容器は耐熱性に劣る。上記特許文献2に開示されている製造方法によれば、熱可塑性樹脂が熱固定される故に耐熱性が向上せしめられるが、熱成形主部の熱成形が結晶化開始温度よりも高温に加熱された一方の成形型部材と結晶化開始温度以下である他方の成形型部材とを密接に嵌合せしめることに起因して、熱固定に要する時間及び熱成形された容器の冷却に要する時間が比較的長くなり、製造効率が低い。
【0008】
更に、上記特許文献1に開示されている製造方法及び上記特許文献2に開示されている製造方法のいずれにおいても、最終的に成形される熱可塑性樹脂容器のフランジには耐熱処理が施されておらず、フランジの耐熱性が不充分である場合が少なくない。
【0009】
本発明は上記事実に鑑みてなされたものであり、その第一の技術的課題は、最初にシートを押出成形する製造方法における上述した問題がないことに加えて、充分な耐熱性を備えた熱可塑性樹脂容器を高効率で製造することができる、新規且つ改良された製造方法を提供することである。
【0010】
本発明の第二の技術的課題は、フランジも充分な耐熱性を備えた熱可塑性樹脂容器を製造することができる、新規且つ改良された製造方法を提供することである。
【0011】
【課題を解決するための手段】
本発明者等は鋭意検討の結果、熱成形工程において、該前成形体を結晶化開始温度以上で且つ融点以下に加熱された雌成形型部材の成形形状に圧空及び/又は真空成形すると共に熱固定し、次いでプラグ部材の成形形状にシュリンクバックして賦形すると共に冷却することによって、上記第一の技術的課題を達成することができることを見出した。
【0012】
即ち、本発明の第一の局面によれば、上記第一の技術的課題を達成する製造方法として、射出成形によって熱可塑性樹脂前成形体を成形する射出成形工程と、該前成形体を熱成形してカップ形状熱可塑性樹脂容器を成形する熱成形工程とを含む熱可塑性樹脂容器の製造方法において、
該熱成形工程は、該前成形体を結晶化開始温度以上で且つ融点以下に加熱された雌成形型部材の成形形状に圧空及び/又は真空成形すると共に熱固定し、次いでプラグ部材の成形形状にシュリンクバックして賦形すると共に冷却することを含む、ことを特徴とする製造方法が提供される。
【0013】
更に、本発明者等は鋭意検討の結果、フランジ部をガラス転移点点温度以上で且つ融点以下に加熱し加圧延伸して結晶化せしめる、或いは前成形体のフランジ部を結晶化開始温度以上で且つ融点以下に加熱して結晶化せしめることによって、上記第二の技術的課題を達成することができることを見出した。
【0014】
即ち、本発明に第二の局面に従えば、上記第二の技術的課題を達成する製造方法として、熱成形主部とフランジ部とから構成された前成形体における該熱成形主部を熱成形してカップ形状熱可塑性樹脂容器を成形する熱成形工程を含む熱可塑性樹脂容器の製造方法において、
該フランジ部をガラス転移点点温度以上で且つ融点以下に加熱し加圧延伸して結晶化せしめるフランジ部結晶化工程を含む、或いは
該フランジ部を結晶化開始温度以上で且つ融点以下に加熱して結晶化せしめるフランジ部結晶化工程を含む、ことを特徴とする製造方法が提供される。
【0015】
該熱成形工程において、該前成形体を該雌成形型部材の成形形状に圧空及び/又は真空成形するのに先立って、該前成形体をガラス転移点温度以上で且つ結晶化開始温度以下に加熱するのが好ましい。好ましくは、該フランジ部結晶化工程は該射出成形工程の後で且つ該熱成形工程の前に遂行される。該熱成形工程の後に該フランジ部を所要形状にトリミングするトリミング工程を含むのが好適である。該前成形体は多層構造とすることができる。
【0016】
【発明の実施の形態】
以下、添付図面を参照して、本発明に従って構成された熱可塑性樹脂容器の製造方法の好適実施形態について、更に詳細に説明する。
【0017】
本発明に従う製造方法の好適実施形態においては、最初に、適宜の熱可塑性樹脂を射出成形して、図1に図示するとおりの形態の前成形体2を成形する。射出成形様式自体は周知の形態でよい。図示の前成形体2は略円板形状の熱成形主部4とその周囲に位置する環状フランジ部6とから構成されている。フランジ部6は比較的肉厚であり、例えば1.8mm程度の肉厚を有する。
【0018】
前成形体2を射出成形するために好適に使用することができる熱可塑性樹脂としては、これに限定されるものではないが、例えばポリエステル系樹脂、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂及びポリカーボネート系樹脂を挙げることができる。
【0019】
本発明の製造方法においては、種々のポリエステル系樹脂を好適に使用することができるが、特に延伸によって優れた透明性及び耐衝撃性が得られ且つ熱固定が有効に作用するポリエステル樹脂が望ましく、ガラス転移点温度が室温以上で結晶性を有するポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリ乳酸を主たる構成々分とするポリエステルが特に好適に使用することができる。殊に、経済性、成形性及び成形品物性の見地から、エチレンテレフタレート単位が80モル%以上、特に90モル%以上を占めるポリエチレンテレフタレートが好適である。かようなポリエチレンテレフタレートを用いた場合の共重合成分としては、イソフタル酸、2,6−ナフタレンジカルボン酸、1,4−ブタンジオール、1,4−シクロヘキサンジメタノール等が好ましい。熱可塑性ポリエステル樹脂としてはポリエチレンテレフタレートが最も好適であるが、これに限られるものではなく、ポリエチレン/ブチレンテレフタレート、ポリエチレンテレフタレート/2,6−ナフタレート、ポリエチレンテレフタレート/イソフタレートや、これらとポリブチレンテレフタレート、ポリブチレンテレフタレート/イソフタレート、ポリエチレン−2,6−ナフタレート、ポリブチレンテレフタレート/アジペート、ポリエチレン−2,6−ナフタレート/イソフタレート、ポリブチレンテレフタレート/アジペート、或いはこれらの2種以上とのブレンド物等も使用することができる。ポリエステルは、プリフォームの成形性、容器成形での成形性、容器の機械的性質及び耐熱性の点で、溶媒としてフェノール/テトラクロロエタン混合溶媒を用いて測定した固有粘度〔IV〕が0.5以上、特に0.6乃至1.5の範囲にあるものが好ましい。ポリエステルには、改質樹脂成分として、エチレン系重合体、熱可塑性エラストマー、ポリアリレート、ポリカーボネートなどの少なくとも1種をブレンドすることができる。この改質樹脂成分は、一般にポリエステル100重量部当たり60重量部迄の量、特に好適には3乃至20重量部の量で用いるのが望ましい。
【0020】
ポリオレフィン系樹脂としては、例えば、低−中−高密度ポリエチレン、アイソタクチックポリプロピレン、シンジオタチックポリプロピレン、プロピレン−エチレン共重合体、エチレン−酢酸ビニル共重合体、エチレン系不飽和カルボン酸乃至その無水物でグラフト変性されたオレフィン樹脂等を挙げることがきる。
【0021】
ポリカーボネート系樹脂としては、二環二価フェノール類とホスゲンとか誘導される炭酸エステル樹脂を挙げることができ、ビスフェノール類、例えば、2,2’−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)、2,2’−ビス(4−ヒドロキシフェニル)ブタン(ビスフェノールB)、1, 2−ビス(4ーヒドロキシフェニル)エタン等から誘導されたポリカーボネートが好適である。
【0022】
本発明の製造方法において使用される熱可塑性樹脂には、それ自体公知の配合剤、例えば酸化防止剤、熱安定剤、紫外線吸収剤、帯電防止剤、充填剤、滑剤、無機系乃至有機系の着色剤などを配合することができる。
【0023】
図2を参照して説明を続けると、射出成形装置(図示していない)から取り出された前成形体2は、所要熱成形温度に加熱され、しかる後に全体を番号8で示す熱成形装置に供給される。特にポリエステル形樹脂の如く前成形体2が実質上非晶状態で得られる場合には、前成形体2の加熱温度はガラス転移点温度(Tg)以上で且つ結晶化開始温度(Tic)以下であるのが好ましい。加熱温度がガラス転移点温度(Tg)より小さいと熱成形に過大な力を必要とする。一方、結晶化開始温度(Tic)を越えると球晶が形成されて透明性が損なわれる傾向がある。尚、明細書中で使用するガラス転移点温度(Tg)及び結晶化開始温度(Tic)は、測定対象とする成形体より任意に約10mgを採取して、示差走査熱量計(DSC)を用い、窒素ガス雰囲気下において300℃で3分間ホールドした後室温まで急冷し、加熱速度毎分20℃で昇温して得たDSC曲線より求めたものに基づいている。
【0024】
図示の熱成形装置8は、雌成形型部材10、加圧・締付部材12及びプラグ部材14を含んでいる。雌成形型部材10にはその上面から下方に延びる成形空洞16が形成されている。この成形空洞16の内周面上部は円筒形状であり、内周面中間部及び下部は下方に向かって内径が漸次低減せしめられている逆円錐台筒形状であり、底面は実質上水平な円形である。雌成形型部材10には、その底壁を貫通する連通孔18も形成されている。加圧・締付部材12は環状であり、その中央に配設されている開口の内径は雌成形型部材10の形成されている成形空洞16の上端の内径と実質上同一にせしめられている。プラグ部材14は円柱形状の上部と下方に向かって外径が漸次低減せしめられた逆円錐台柱形状の下部とを有する。プラグ部材14には軸線方向に貫通して延びる連通孔20が形成されている。
【0025】
図2に図示する如く、所要熱成形温度に加熱された前成形体2は雌成形型部材10の上面上に載置され、その熱成形主部4が成形空洞16に対応して位置せしめられる。しかる後に、図3に図示する如く、加圧・締付部材12が下降せしめられ、雌成形型部材10の上面と加圧・締付部材12の下面との間で前成形体2のフランジ部6が加圧され締付けられる。そして、フランジ部6に耐熱性を付与する場合はフランジ部6を局部的に結晶化開始温度(Tic)〜融点(Tm)以下に加熱して結晶化する。また、本発明者等の経験によれば、ガラス転移点温度以上に加熱されているフランジ部6を相当な圧力、例えば4.5乃至13MPa程度の圧力、で加圧すると、フランジ部6が延伸せしめられてフランジ部6の厚さが例えば1/3乃至1/2程度に低減せしめられると共に、樹脂の流動に起因して配向されて結晶化せしめられる。更に、結晶化開始温度(Tic)〜融点(Tm)以下に加熱された雌成形型部材10の上面にフランジ部6を接触させることにより、上記樹脂の流動配向によって生じる成形ひずみの緩和と耐熱性を付与する、結晶化が行われる。そして、かかる結晶化と成形ひずみの緩和によってフランジ部6の耐熱性と強度が向上せしめられる。フランジ部6における樹脂の流動を促進するために、フランジ部6の加圧・締付に先立って、フランジ部6の上面、下面、加圧・締付部材12の下面或いは雌成形型部材10の上面のいずれかにシリコンオイルの如き適宜の潤滑剤を塗布するのが好適である。図示の実施形態においては、加圧・締付部材12を下降せしめてフランジ部6を加圧・締付するとフランジ部6が結晶化され、従って加圧・締付部材12の下降により、フランジ部6の締付工程が遂行せしめられると共に、フランジ部6の結晶化工程が遂行される。
【0026】
次いで、 前成形体2の熱成形主部4の熱成形が遂行される。この熱成形は2段階で遂行、即ち圧空及び真空成形とこれに続くシュリンクバックによって遂行される。熱成形工程の第一段階においては、プラグ部材14が漸次下降せしめられる。図3と図4とを比較参照することによって理解される如く、プラグ部材14が漸次下降せしめられると、これに応じて前成形体2の熱成形主部4が漸次延伸せしめられる。更に、プラグ部材14の連通孔20が圧縮空気源(図示していない)に連通され、そしてまた雌成形型部材10の連通孔18が真空源(図示していない)に連通され、従って圧縮空気加圧による圧空成形と共に真空吸引による真空成形と共にが遂行され、前成形体2の熱成形主部4は雌成形型部材10の成形形状、即ち成形空洞16の内面に対応した形状に成形せしめられる。図示の実施形態において、プラグ部材14の連通孔20を圧縮空気源に連通せしめて圧空成形を遂行すると共に雌成形型部材10の連通孔18を真空源に連通せしめて真空成形を遂行しているが、所望ならば圧空成形と真空成形とのいずれか一方のみを遂行することもできる。圧空及び/又は真空成形は、プラグ部材14の下降を開始すると同時、プラグ部材14の下降途中或いはプラグ部材14の下降を終了した後のいずれの時点で開始してもよい。このとき、プラグ部材14の温度は成形体の品質に影響を与えない範囲であれば任意に設定可能である。例えば、前成形体2がポリエステル系樹脂から構成される場合、室温近傍から熱可塑性樹脂の結晶化開始温度(Tic)までの範囲が好ましい。これは室温より冷やすと、プラグ部材14の表面に結露することがあり、また、結晶化開始温度(Tic)を越えると、前成形体2が部分的に加熱され、延伸されすぎる場合が生じるからである。圧空及び/又は真空成形における延伸倍率は、耐衝撃性及び透明性を付与する点で加工前の肉厚toと加工後の肉厚t1 の比to/t1 (成形前後での比重の変化が小さい場合には面積延伸倍率に相当する)が3以上、特に4乃至10であるのが好ましい。3未満では延伸が不十分なため、球晶が発生しやすく、耐衝撃性や透明性が劣ってくる点で好ましくない。延伸倍率が10を越えると配向結晶化が強くなり過ぎ、後述する熱固定時の圧空を高圧力にしなければならない。
【0027】
上述した圧空及び/又は真空成形の際には、雌成形型部材10を電気抵抗加熱器の如き適宜の加熱手段(図示していない)によって加熱し、成形空洞16の内面を熱可塑性樹脂の結晶化開始温度以上で且つ融点以下、例えば180℃程度の温度、にせしめる。従って、圧空及び/又は真空成形された熱成形主部4は圧空及び/真空成形と実質上同時に雌成形型部材10の成形空洞16の内面に接触せしめられることによって加熱されて熱固定される。熱固定温度としては、熱可塑性樹脂の結晶化開始温度(Tic)より高温であるが融点(Tm)以下、特に融点(Tm)−10℃以下であるのが好ましい。熱固定温度が融点(Tm)を越えると熱成形主部4が雌成形型部材10に溶着してしまう傾向がある。
【0028】
圧空及び/又は真空成形並びに熱固定に続いて、熱成形工程における第二段階が遂行される。この第二段階においては、図5に図示する如く、雌成形型10の連通孔18が圧縮空気源に連通され、プラグ部材14の連通孔20が真空源に連通せしめられる。従って、圧縮空気加圧と真空吸引とによって熱成形主部4がプラグ部材14の成形形状、即ちプラグ部材14の外形状にシュリンクバックされ、最終形状即ち容器22に賦形され、そしてまたプラグ部材14に接触せしめられることによって冷却される。所望ならば、シュリンクバックの際にはプラグ部材14を積極的に冷却して容器22の冷却を促進することができる。
【0029】
容器22が充分に冷却された後に、熱成形装置8から容器22を取り出す。取り出した容器22は環状フランジ24、このフランジ24の内周縁から垂下する側壁26及び側壁26の下端を閉じる底壁28を有する。図示の実施形態においては、更に、図6に図示する如く、加圧延伸せしめられたフランジ24をトリミングして所要外径にせしめる。フランジ24のトリミングは周知の様式によって遂行することができる。
【0030】
以上、添付図面を参照して本発明に従って構成された製造方法の好適実施形態について詳細に説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲から逸脱することなく種々の変形乃至修正が可能であることが理解されるべきである。例えば、上述した実施形態においては単一熱可塑性樹脂から形成された前成形体2を射出成形し、次いでかかる前成形体2を熱成形しているが、所望ならば主熱可塑性樹脂とこの主熱可塑性樹脂内に包み込まれた付加熱可塑性樹脂とから成る多層構造の前成形体を射出成形し、かかる前成形体を熱成形して容器を製造するこもできる。付加熱可塑性樹脂としてはガスバリアー性に優れた樹脂、リサイクル樹脂、酸素吸収性樹脂及び耐湿性樹脂等を挙げることができる。
【0031】
【発明の効果】
本発明の第一の局面においては、最初にシートを押出成形する製造方法における問題がないことに加えて、充分な耐熱性を備えた熱可塑性樹脂容器を高効率で製造することができる。
【0032】
本発明の第二の局面においては、フランジも充分な耐熱性を備えた熱可塑性樹脂容器を製造することができる。
【図面の簡単な説明】
【図1】射出成形された前成形体を示す断面図。
【図2】熱成形装置に前成形体を供給した状態を示す断面図。
【図3】前成形体のフランジ部を加圧延伸する様式を示す断面図。
【図4】前成形体の熱成形主部を圧空及び真空成形する様式を示す断面図。
【図5】前成形体の熱成形主部をシュリンクバックする様式を示す断面図。
【図6】フランジをトリミングして完成された容器を示す断面図。
【符号の説明】
2:前成形体
4:熱成形主部
6:フランジ部
8:熱成形装置
10:雌成形型部材
12:加圧・締付部材
14:プラグ部材
22:容器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a cup-shaped thermoplastic resin container that can be conveniently used as a container for food and drink.
[0002]
[Prior art]
As is well known, cup-shaped thermoplastic resin containers having a flange, a cylindrical side wall depending from the inner edge of the flange, and a bottom wall closing the lower end of the side wall are widely used as containers for food and drink. Such containers are generally made by extruding a thermoplastic resin sheet, then heating and softening the sheet to simultaneously compress and / or vacuum form multiple areas of the sheet to the required cup shape and then into the cup shape. The molded part is manufactured by cutting it at a part surrounding it and separating it from the sheet.
[0003]
However, in the manufacturing method as described above, the remaining portion of the sheet (so-called skeleton portion) from which the cup-shaped portion has been cut occupies a considerable portion of the sheet, usually 40 to 60%, and the remaining portion is discarded wastefully. Therefore, the material yield is significantly reduced. The remainder of the sheet is also intended to be melted and reused, but reuse reduces the material quality and to avoid excessive degradation of material quality, reuse is not the entire remainder of the sheet. It must be limited to only a part. When the sheet layer is a multilayer sheet containing an additional layer such as a gas barrier layer together with the main layer, it is practically impossible to reuse the remainder of the sheet. In addition, the thickness of the container strongly depends on the thickness of the sheet, and it is difficult to select an appropriate thickness distribution for the container. Furthermore, for the convenience of the manufacturing process, it is desired that the sheet can be wound in a roll shape, and therefore the thickness of the sheet is limited to, for example, 1.2 mm or less, and thus the thickness of the bottom wall of the container, Therefore, the strength tends to be too low.
[0004]
In Patent Document 1 below, a thermoplastic resin preform (so-called preform) having a thermoforming main portion and a flange portion is formed by injection molding, and then the thermoforming main portion of the pre-formed body is plug-assisted vacuum and A manufacturing method for forming a cup-shaped thermoplastic resin container by pressure forming is disclosed.
[0005]
Further, in Patent Document 2 below, a thermoplastic resin preform having a thermoformed main portion and a flange portion is formed by injection molding, and then the thermoformed main portion of the preform is subjected to matched mold vacuum forming to form a cup. A method of manufacturing a shaped thermoplastic resin container is disclosed. At the time of matched mold vacuum forming, one mold member is heated to a temperature higher than the crystal start temperature, and thus the thermoplastic container formed into a cup shape is heat-set.
[0006]
[Patent Document 1]
JP-A-5-69478 [Patent Document 2]
Japanese Examined Patent Publication No. 7-67737 [0007]
[Problems to be solved by the invention]
In the manufacturing methods disclosed in Patent Document 1 and Patent Document 2, there is no problem as described above in the manufacturing method in which a sheet is first extruded. However, these production methods are still not fully satisfactory and have the following problems to be solved. In the manufacturing method disclosed in Patent Document 1, the thermoplastic resin is not thermally fixed, and therefore the manufactured thermoplastic resin container is inferior in heat resistance. According to the manufacturing method disclosed in Patent Document 2, the heat resistance is improved because the thermoplastic resin is heat-set, but the thermoforming of the thermoforming main part is heated to a temperature higher than the crystallization start temperature. Comparison of the time required for heat setting and the time required for cooling the thermoformed container due to the close fitting of the other mold member with the other mold member having a temperature lower than the crystallization start temperature. Manufacturing efficiency is low.
[0008]
Furthermore, in any of the manufacturing method disclosed in Patent Document 1 and the manufacturing method disclosed in Patent Document 2, the flange of the thermoplastic resin container to be finally molded is subjected to heat treatment. In many cases, the heat resistance of the flange is insufficient.
[0009]
The present invention has been made in view of the above-mentioned facts, and its first technical problem is that it has sufficient heat resistance in addition to the above-described problem in the manufacturing method in which a sheet is first extruded. It is an object of the present invention to provide a new and improved production method capable of producing a thermoplastic resin container with high efficiency.
[0010]
The second technical problem of the present invention is to provide a new and improved production method capable of producing a thermoplastic resin container having sufficient heat resistance in the flange.
[0011]
[Means for Solving the Problems]
As a result of diligent study, the inventors of the present invention formed the preformed body into a molded shape of a female mold member heated to a temperature higher than the crystallization start temperature and lower than the melting point in the thermoforming step, It has been found that the first technical problem described above can be achieved by fixing and then shrinking back to a molded shape of the plug member and shaping and cooling.
[0012]
That is, according to the first aspect of the present invention, as a manufacturing method for achieving the first technical problem, an injection molding step of molding a thermoplastic resin preform by injection molding, and a heat treatment of the preform. In a method for manufacturing a thermoplastic resin container, including a thermoforming step of molding and molding a cup-shaped thermoplastic resin container,
In the thermoforming step, the preformed body is compressed and / or vacuum-molded into a molded shape of a female mold member heated above the crystallization start temperature and below the melting point and heat-set, and then the molded shape of the plug member The manufacturing method is characterized in that it includes shrinking and shaping and cooling.
[0013]
Furthermore, as a result of intensive studies, the present inventors have heated the flange part to a temperature above the glass transition point temperature and below the melting point and pressurized and crystallized, or the flange part of the preform has a temperature above the crystallization start temperature. And it discovered that said 2nd technical subject could be achieved by heating to below melting | fusing point and crystallizing.
[0014]
That is, according to the second aspect of the present invention, as a manufacturing method for achieving the second technical problem, the thermoformed main part in the pre-formed body composed of the thermoformed main part and the flange part is heated. In the method of manufacturing a thermoplastic resin container including a thermoforming step of forming and molding a cup-shaped thermoplastic resin container,
Including a flange crystallization step in which the flange portion is heated to a temperature not lower than the glass transition point and not higher than the melting point and pressurized to be crystallized, or the flange portion is heated not lower than the crystallization start temperature and not higher than the melting point. There is provided a manufacturing method characterized by including a flange crystallization step for crystallizing.
[0015]
In the thermoforming step, prior to pressure forming and / or vacuum forming the preform into the shape of the female mold member, the preform is brought to a temperature above the glass transition temperature and below the crystallization start temperature. Heating is preferred. Preferably, the flange crystallization step is performed after the injection molding step and before the thermoforming step. It is preferable to include a trimming step of trimming the flange portion to a required shape after the thermoforming step. The preform may have a multilayer structure.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, with reference to an accompanying drawing, a suitable embodiment of a manufacturing method of a thermoplastic resin container constituted according to the present invention is described in detail.
[0017]
In a preferred embodiment of the production method according to the present invention, first, an appropriate thermoplastic resin is injection-molded to form a preform 2 in the form shown in FIG. The injection molding mode itself may be a well-known form. The illustrated pre-formed body 2 includes a substantially disk-shaped thermoformed main portion 4 and an annular flange portion 6 positioned around the thermoformed main portion 4. The flange part 6 is comparatively thick, for example, has a thickness of about 1.8 mm.
[0018]
Examples of the thermoplastic resin that can be suitably used for injection molding the preform 2 include, but are not limited to, a polyester resin, a polyolefin resin, a polystyrene resin, a polyamide resin, and the like. A polycarbonate resin can be mentioned.
[0019]
In the production method of the present invention, various polyester resins can be suitably used, and particularly, a polyester resin in which excellent transparency and impact resistance can be obtained by stretching and heat setting acts effectively is desirable. A polyester mainly composed of polyethylene terephthalate, polypropylene terephthalate, and polylactic acid having a glass transition temperature of room temperature or higher and crystallinity can be particularly preferably used. In particular, polyethylene terephthalate in which ethylene terephthalate units occupy 80 mol% or more, particularly 90 mol% or more is preferable from the viewpoint of economy, moldability, and molded article physical properties. As a copolymerization component when such polyethylene terephthalate is used, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,4-butanediol, 1,4-cyclohexanedimethanol and the like are preferable. Polyethylene terephthalate is most preferred as the thermoplastic polyester resin, but is not limited thereto, polyethylene / butylene terephthalate, polyethylene terephthalate / 2,6-naphthalate, polyethylene terephthalate / isophthalate, and these and polybutylene terephthalate, Polybutylene terephthalate / isophthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate / adipate, polyethylene-2,6-naphthalate / isophthalate, polybutylene terephthalate / adipate, or a blend of two or more thereof. Can be used. Polyester has an intrinsic viscosity [IV] of 0.5 using a phenol / tetrachloroethane mixed solvent as a solvent in terms of preform moldability, moldability in container molding, mechanical properties of the container, and heat resistance. In particular, those in the range of 0.6 to 1.5 are preferable. Polyester can be blended with at least one of ethylene-based polymer, thermoplastic elastomer, polyarylate, polycarbonate and the like as a modified resin component. This modified resin component is generally used in an amount of up to 60 parts by weight, particularly preferably 3 to 20 parts by weight, per 100 parts by weight of polyester.
[0020]
Examples of polyolefin resin include low-medium-high density polyethylene, isotactic polypropylene, syndiotactic polypropylene, propylene-ethylene copolymer, ethylene-vinyl acetate copolymer, ethylenically unsaturated carboxylic acid or anhydride thereof. Examples thereof include olefin resins graft-modified with products.
[0021]
Examples of polycarbonate resins include carbonate resins derived from bicyclic dihydric phenols and phosgene. Bisphenols such as 2,2′-bis (4-hydroxyphenyl) propane (bisphenol A), Polycarbonates derived from 2,2′-bis (4-hydroxyphenyl) butane (bisphenol B), 1,2-bis (4-hydroxyphenyl) ethane and the like are preferred.
[0022]
The thermoplastic resins used in the production method of the present invention include known compounding agents such as antioxidants, heat stabilizers, ultraviolet absorbers, antistatic agents, fillers, lubricants, inorganic to organic types. A coloring agent etc. can be mix | blended.
[0023]
The description will be continued with reference to FIG. 2. The preform 2 taken out from the injection molding apparatus (not shown) is heated to a required thermoforming temperature, and then the whole is formed into a thermoforming apparatus denoted by numeral 8. Supplied. In particular, when the preform 2 is obtained in a substantially amorphous state such as a polyester resin, the heating temperature of the preform 2 is not less than the glass transition temperature (Tg) and not more than the crystallization start temperature (Tic). Preferably there is. If the heating temperature is lower than the glass transition temperature (Tg), an excessive force is required for thermoforming. On the other hand, when the crystallization start temperature (Tic) is exceeded, spherulites are formed and transparency tends to be impaired. As for the glass transition temperature (Tg) and crystallization start temperature (Tic) used in the specification, about 10 mg is arbitrarily sampled from the molded article to be measured, and a differential scanning calorimeter (DSC) is used. Based on a DSC curve obtained by holding at 300 ° C. for 3 minutes in a nitrogen gas atmosphere, rapidly cooling to room temperature, and heating at a heating rate of 20 ° C. per minute.
[0024]
The illustrated thermoforming apparatus 8 includes a female mold member 10, a pressurizing / clamping member 12, and a plug member 14. The female mold member 10 is formed with a molding cavity 16 extending downward from the upper surface thereof. The upper part of the inner peripheral surface of the molding cavity 16 has a cylindrical shape, the middle part and the lower part of the inner peripheral surface have an inverted truncated cone shape whose inner diameter is gradually reduced downward, and the bottom surface is a substantially horizontal circular shape. It is. The female mold member 10 is also formed with a communication hole 18 penetrating the bottom wall. The pressurizing / clamping member 12 has an annular shape, and the inner diameter of the opening disposed in the center thereof is substantially the same as the inner diameter of the upper end of the molding cavity 16 in which the female mold member 10 is formed. . The plug member 14 has a columnar upper part and an inverted truncated cone-columnar lower part whose outer diameter is gradually reduced downward. The plug member 14 is formed with a communication hole 20 extending in the axial direction.
[0025]
As shown in FIG. 2, the pre-formed body 2 heated to the required thermoforming temperature is placed on the upper surface of the female mold member 10, and the thermoforming main portion 4 is positioned corresponding to the forming cavity 16. . Thereafter, as shown in FIG. 3, the pressurizing / clamping member 12 is lowered, and the flange portion of the preform 2 is formed between the upper surface of the female mold member 10 and the lower surface of the pressurizing / clamping member 12. 6 is pressurized and tightened. And when giving heat resistance to the flange part 6, the flange part 6 is locally heated to crystallization start temperature (Tic)-below melting | fusing point (Tm), and is crystallized. Further, according to the experience of the present inventors, when the flange portion 6 heated to the glass transition temperature or higher is pressurized with a considerable pressure, for example, a pressure of about 4.5 to 13 MPa, the flange portion 6 is stretched. As a result, the thickness of the flange portion 6 is reduced to about 1/3 to 1/2, for example, and is oriented and crystallized due to the flow of the resin. Further, the flange portion 6 is brought into contact with the upper surface of the female mold member 10 heated to a temperature lower than the crystallization start temperature (Tic) to the melting point (Tm), thereby reducing the molding strain caused by the flow orientation of the resin and heat resistance. Crystallization is performed to provide And the heat resistance and intensity | strength of the flange part 6 are improved by relaxation of this crystallization and a shaping | molding distortion. In order to promote the flow of the resin in the flange portion 6, prior to pressurizing and tightening the flange portion 6, the upper surface and lower surface of the flange portion 6, the lower surface of the pressurizing / clamping member 12, or the female mold member 10. It is preferable to apply an appropriate lubricant such as silicone oil to any one of the upper surfaces. In the illustrated embodiment, when the pressure / clamping member 12 is lowered and the flange part 6 is pressurized / clamped, the flange part 6 is crystallized. 6 is performed, and the crystallization process of the flange portion 6 is performed.
[0026]
Next, thermoforming of the thermoforming main portion 4 of the preform 2 is performed. This thermoforming is carried out in two stages, ie, compressed air and vacuum forming followed by shrink back. In the first stage of the thermoforming process, the plug member 14 is gradually lowered. As understood by comparing and referring to FIGS. 3 and 4, when the plug member 14 is gradually lowered, the thermoforming main portion 4 of the pre-formed body 2 is gradually stretched accordingly. Further, the communication hole 20 of the plug member 14 communicates with a compressed air source (not shown), and the communication hole 18 of the female mold member 10 communicates with a vacuum source (not shown), and thus compressed air. Both the pressure forming by pressure and the vacuum forming by vacuum suction are performed, and the thermoforming main portion 4 of the pre-formed body 2 is formed into a shape corresponding to the forming shape of the female mold member 10, that is, the inner surface of the forming cavity 16. . In the illustrated embodiment, the pressure forming is performed by communicating the communication hole 20 of the plug member 14 with a compressed air source, and the vacuum molding is performed by communicating the communication hole 18 of the female mold member 10 with a vacuum source. However, if desired, only one of pressure forming and vacuum forming can be performed. The compressed air and / or vacuum forming may be started at any time after the plug member 14 starts to descend, at the same time as the plug member 14 descends, or after the plug member 14 finishes descending. At this time, the temperature of the plug member 14 can be arbitrarily set as long as it does not affect the quality of the molded body. For example, when the preform 2 is made of a polyester resin, a range from near room temperature to the crystallization start temperature (Tic) of the thermoplastic resin is preferable. If the temperature is lower than room temperature, condensation may occur on the surface of the plug member 14, and if the crystallization start temperature (Tic) is exceeded, the preform 2 may be partially heated and stretched too much. It is. The draw ratio in compressed air and / or vacuum forming is the ratio to / t1 between the thickness to 1 before processing and the thickness t1 after processing in terms of imparting impact resistance and transparency (change in specific gravity before and after forming is small). In this case, it is preferably 3 or more, particularly 4 to 10). If it is less than 3, stretching is insufficient, so that spherulites are likely to be generated, and this is not preferable in terms of inferior impact resistance and transparency. When the draw ratio exceeds 10, the orientation crystallization becomes too strong, and the pressure air at the time of heat setting to be described later must be made high.
[0027]
In the above-described compressed air and / or vacuum forming, the female mold member 10 is heated by an appropriate heating means (not shown) such as an electric resistance heater, and the inner surface of the molding cavity 16 is crystallized from a thermoplastic resin. It is set to a temperature not lower than the start temperature and not higher than the melting point, for example, about 180 ° C. Accordingly, the thermoformed main portion 4 formed by compressed air and / or vacuum forming is heated and heat-set by being brought into contact with the inner surface of the forming cavity 16 of the female mold member 10 substantially simultaneously with the compressed air and / or vacuum forming. The heat setting temperature is higher than the crystallization start temperature (Tic) of the thermoplastic resin, but is preferably not higher than the melting point (Tm), particularly preferably not higher than the melting point (Tm) −10 ° C. When the heat setting temperature exceeds the melting point (Tm), the thermoforming main part 4 tends to be welded to the female mold member 10.
[0028]
Following compressed air and / or vacuum forming and heat setting, a second stage in the thermoforming process is performed. In this second stage, as shown in FIG. 5, the communication hole 18 of the female mold 10 is communicated with the compressed air source, and the communication hole 20 of the plug member 14 is communicated with the vacuum source. Accordingly, the thermoforming main portion 4 is shrunk back to the molding shape of the plug member 14, that is, the outer shape of the plug member 14, by the compressed air pressurization and the vacuum suction, and is shaped into the final shape, that is, the container 22, and also the plug member. It is cooled by being brought into contact with 14. If desired, the plug member 14 can be actively cooled during shrinkback to facilitate cooling of the container 22.
[0029]
After the container 22 is sufficiently cooled, the container 22 is taken out from the thermoforming device 8. The taken out container 22 has an annular flange 24, a side wall 26 that hangs down from the inner periphery of the flange 24, and a bottom wall 28 that closes the lower end of the side wall 26. Further, in the illustrated embodiment, as shown in FIG. 6, the flange 24 which has been pressure-stretched is trimmed to have a required outer diameter. Trimming of the flange 24 can be accomplished in a known manner.
[0030]
The preferred embodiments of the manufacturing method configured according to the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such embodiments and does not depart from the scope of the present invention. It should be understood that various variations and modifications are possible. For example, in the above-described embodiment, the preform 2 formed from a single thermoplastic resin is injection-molded, and then the preform 2 is thermoformed. If desired, the main thermoplastic resin and the main It is also possible to produce a container by injection molding a preform having a multilayer structure composed of an additional thermoplastic resin wrapped in a thermoplastic resin, and thermoforming the preform. Examples of the additional thermoplastic resin include a resin excellent in gas barrier properties, a recycled resin, an oxygen-absorbing resin, and a moisture-resistant resin.
[0031]
【The invention's effect】
In the first aspect of the present invention, a thermoplastic resin container having sufficient heat resistance can be produced with high efficiency, in addition to no problems in the production method of first extruding a sheet.
[0032]
In the second aspect of the present invention, a thermoplastic resin container having sufficient heat resistance can be manufactured.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a pre-formed body that has been injection-molded.
FIG. 2 is a cross-sectional view showing a state in which a preform is supplied to a thermoforming apparatus.
FIG. 3 is a cross-sectional view showing a manner in which a flange portion of a pre-formed body is stretched under pressure.
FIG. 4 is a cross-sectional view showing a manner in which a main part of a thermoformed main body is compressed and vacuum formed.
FIG. 5 is a cross-sectional view showing a manner of shrinking back a thermoformed main part of a pre-formed body.
FIG. 6 is a cross-sectional view showing a container completed by trimming a flange.
[Explanation of symbols]
2: Pre-formed body 4: Thermoforming main part 6: Flange part 8: Thermoforming apparatus 10: Female mold member 12: Pressure / clamping member 14: Plug member 22: Container

Claims (11)

射出成形によって熱可塑性樹脂前成形体を成形する射出成形工程と、該前成形体を熱成形してカップ形状熱可塑性樹脂容器を成形する熱成形工程とを含む熱可塑性樹脂容器の製造方法において、
該熱成形工程は、該前成形体を結晶化開始温度以上で且つ融点以下に加熱された雌成形型部材の成形形状に圧空及び/又は真空成形すると共に熱固定し、次いでプラグ部材の成形形状にシュリンクバックして賦形すると共に冷却することを含む、ことを特徴とする製造方法。
In a method for producing a thermoplastic resin container comprising an injection molding step of molding a thermoplastic resin preform by injection molding, and a thermoforming step of thermoforming the preform and molding a cup-shaped thermoplastic resin container,
In the thermoforming step, the preformed body is compressed and / or vacuum formed into a molded shape of a female mold member heated above the crystallization start temperature and below the melting point and heat-set, and then the molded shape of the plug member A manufacturing method comprising: shrinking back to form and cooling.
該熱成形工程において、該前成形体を該雌成形型部材の成形形状に圧空及び/又は真空成形するのに先立って、該前成形体をガラス転移点温度以上で且つ結晶化開始温度以下に加熱する、請求項1記載の製造方法。In the thermoforming step, prior to pressure forming and / or vacuum forming the preform into the shape of the female mold member, the preform is brought to a temperature above the glass transition temperature and below the crystallization start temperature. The manufacturing method of Claim 1 which heats. 該前成形体は熱成形主部とフランジ部とから構成されており、該フランジ部をガラス転移点温度以上で且つ融点以下に加熱し加圧延伸して結晶化せしめるフランジ部結晶化工程を含む、請求項1又は2記載の製造方法。The preform is composed of a thermoforming main portion and a flange portion, and includes a flange portion crystallization step in which the flange portion is heated to a temperature not lower than the glass transition temperature and not higher than the melting point, and is stretched under pressure to be crystallized. The manufacturing method of Claim 1 or 2. 該前成形体は熱成形主部とフランジ部とから構成されており、該フランジ部を結晶化開始温度以上で且つ融点以下に加熱して結晶化せしめるフランジ部結晶化工程を含む、請求項1又は2記載の製造方法。The said preform is comprised from the thermoforming main part and the flange part, The flange part crystallization process which heats this flange part more than crystallization start temperature and below melting | fusing point is made to crystallize. Or the manufacturing method of 2. 該フランジ部結晶化工程は該射出成形工程の後で且つ該熱成形工程の前に遂行される、請求項3又は4記載の製造方法。The manufacturing method according to claim 3 or 4, wherein the flange crystallization step is performed after the injection molding step and before the thermoforming step. 該熱成形工程の後に該フランジ部を所要形状にトリミングするトリミング工程を含む、請求項3から5までのいずれかに記載の製造方法。The manufacturing method according to any one of claims 3 to 5, further comprising a trimming step of trimming the flange portion to a required shape after the thermoforming step. 熱成形主部とフランジ部とから構成された前成形体における該熱成形主部を熱成形してカップ形状熱可塑性樹脂容器を成形する熱成形工程を含む熱可塑性樹脂容器の製造方法において、
該フランジ部をガラス転移点点温度以上で且つ融点以下に加熱し加圧延伸して結晶化せしめるフランジ部結晶化工程を含む、ことを特徴とする製造方法。
In the method for manufacturing a thermoplastic resin container, including a thermoforming step of forming a cup-shaped thermoplastic resin container by thermoforming the thermoformed main part in a pre-formed body composed of a thermoformed main part and a flange part,
A manufacturing method comprising a flange portion crystallization step in which the flange portion is heated to a temperature not lower than the glass transition point and not higher than a melting point, and is stretched under pressure to be crystallized.
熱成形主部とフランジ部とから構成された前成形体における該熱成形主部を熱成形してカップ形状熱可塑性樹脂容器を成形する熱成形工程を含む熱可塑性樹脂容器の製造方法において、
該フランジ部を結晶化開始温度以上で且つ融点以下に加熱して結晶化せしめるフランジ部結晶化工程を含む、ことを特徴とする製造方法。
In the method for manufacturing a thermoplastic resin container, including a thermoforming step of forming a cup-shaped thermoplastic resin container by thermoforming the thermoformed main part in a pre-formed body composed of a thermoformed main part and a flange part,
A manufacturing method comprising a flange portion crystallization step in which the flange portion is heated to a temperature not lower than a crystallization start temperature and not higher than a melting point to be crystallized.
該フランジ部結晶化工程は該熱成形工程の前に遂行される、請求項7又は8記載の製造方法。9. The manufacturing method according to claim 7, wherein the flange crystallization step is performed before the thermoforming step. 該熱成形工程の後に該フランジ部を所要形状にトリミングするトリミング工程を含む、請求項7から9までのいずれかに記載の製造方法。The manufacturing method according to any one of claims 7 to 9, further comprising a trimming step of trimming the flange portion to a required shape after the thermoforming step. 該前成形体は多層構造である、請求項1から10までのいずれかに記載の製造方法。The manufacturing method according to claim 1, wherein the preform has a multilayer structure.
JP2003066061A 2003-03-12 2003-03-12 Method for manufacturing thermoplastic resin container Expired - Fee Related JP4449312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003066061A JP4449312B2 (en) 2003-03-12 2003-03-12 Method for manufacturing thermoplastic resin container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003066061A JP4449312B2 (en) 2003-03-12 2003-03-12 Method for manufacturing thermoplastic resin container

Publications (2)

Publication Number Publication Date
JP2004268542A true JP2004268542A (en) 2004-09-30
JP4449312B2 JP4449312B2 (en) 2010-04-14

Family

ID=33126876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003066061A Expired - Fee Related JP4449312B2 (en) 2003-03-12 2003-03-12 Method for manufacturing thermoplastic resin container

Country Status (1)

Country Link
JP (1) JP4449312B2 (en)

Also Published As

Publication number Publication date
JP4449312B2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
AU2007306534B2 (en) Heat-resistant molded foam articles and process for their manufacture
KR20090029753A (en) Plastic multi-piece containers and methods and systems of making same
US8465817B2 (en) Polyester container
KR101199692B1 (en) Polyester container having excellent heat resistance and shock resistance and method of producing the same
EP1213125B1 (en) Method of producing a heat-resistant resin container
JP3870867B2 (en) Method for manufacturing thermoplastic resin container
JP4853110B2 (en) Manufacturing method of resin integrated molded body
US7655179B2 (en) Heat-resistant resin container and method of producing the same
JP2003159743A (en) Method for making synthetic resin vessel
JP4466060B2 (en) Method for manufacturing thermoplastic resin container
JP4449312B2 (en) Method for manufacturing thermoplastic resin container
JP2002137282A (en) Hollow molded object and method for manufacturing the same
JP2002104365A (en) Heat resistant resin container and its manufacturing method
JP2005280757A (en) Stackable cup-shaped container
EP0466947B1 (en) A process for molding a multiple layer structure and a container made therefrom
CA2980557C (en) Container and method of manufacture
JP4635506B2 (en) Polyester container excellent in heat resistance and impact resistance and production method thereof
JP2006327650A (en) Synthetic resin cup shaped container
JPH0615643A (en) Manufacture of premolded body
JP2004050642A (en) Manufacturing method for thermoplastic resin container
KR20210034542A (en) Heat-shrinkable plastic member, composite preform and composite container
IE72977B1 (en) A process for molding a multiple layer structure and a container made therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

R150 Certificate of patent or registration of utility model

Ref document number: 4449312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees