JP2003159743A - Method for making synthetic resin vessel - Google Patents

Method for making synthetic resin vessel

Info

Publication number
JP2003159743A
JP2003159743A JP2001362600A JP2001362600A JP2003159743A JP 2003159743 A JP2003159743 A JP 2003159743A JP 2001362600 A JP2001362600 A JP 2001362600A JP 2001362600 A JP2001362600 A JP 2001362600A JP 2003159743 A JP2003159743 A JP 2003159743A
Authority
JP
Japan
Prior art keywords
synthetic resin
vacuum
container
molded body
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001362600A
Other languages
Japanese (ja)
Inventor
Yasushi Hatano
靖 波多野
Masato Kogure
正人 小暮
Tsutomu Iwasaki
力 岩崎
Makoto Eto
誠 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2001362600A priority Critical patent/JP2003159743A/en
Publication of JP2003159743A publication Critical patent/JP2003159743A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/02Combined thermoforming and manufacture of the preform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/001Shaping in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/006Using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/007Using fluid under pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/04Combined thermoforming and prestretching, e.g. biaxial stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/04Combined thermoforming and prestretching, e.g. biaxial stretching
    • B29C51/06Combined thermoforming and prestretching, e.g. biaxial stretching using pressure difference for prestretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/14Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor using multilayered preforms or sheets

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for making a synthetic resin vessel capable of making a vessel in high efficiency without wasting a material and with excellent external appearance and strength. <P>SOLUTION: A molded body is subjected to compression molding and after the molded body is drawn in compliance with requirement, thermoforming, preferably plug-assist vacuum forming and/or pressure forming, is carried out. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、合成樹脂容器、特
に飲食料等のための容器として好都合に使用することが
できる合成樹脂容器の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a synthetic resin container, particularly a synthetic resin container which can be conveniently used as a container for food and drink.

【0002】[0002]

【従来の技術】周知の如く、飲食料のための容器とし
て、フランジとこのフランジの内縁から垂下する円筒或
いは多角筒形状の側壁と側壁の下端を閉じる底壁とを有
し、側壁の少なくとも大部分は下方に向かって内側に傾
斜しているカップ乃至トレー状である合成樹脂容器が広
く実用に供されている。かような容器は、最初に合成樹
脂シートを押出成形し、次いでシートを加熱して軟化せ
しめシートの複数領域を同時に真空及び/又は圧空成形
して所要形状にせしめ、しかる後に所要形状部を囲繞す
る部位を切断し、かくして所要形状部をシートから離脱
せしめることによって製造されている。
As is well known, as a container for food and drink, it has a flange, a cylindrical or polygonal side wall hanging from the inner edge of the flange, and a bottom wall closing the lower end of the side wall. A synthetic resin container in the shape of a cup or a tray whose part is inclined inward toward the bottom is widely used. Such a container is formed by first extruding a synthetic resin sheet, then heating and softening the sheet to simultaneously vacuum and / or pneumatically form multiple regions of the sheet into the required shape, and then enclosing the required shape portion. It is manufactured by cutting the portion to be cut and thus separating the required shape portion from the sheet.

【0003】特開平5−69478号公報及び特公平7
−67737号公報には、上述した製造方法に代えて、
シート状前成形体(プリフォーム)を射出成形し、次い
で前成形体を真空及び/圧空成形して合成樹脂容器を製
造することが開示されている。
JP-A-5-69478 and JP-B-7
-67737, in place of the above-mentioned manufacturing method,
It is disclosed that a sheet-shaped preform (preform) is injection-molded, and then the preform is vacuum and / or pressure-formed to produce a synthetic resin container.

【0004】[0004]

【発明が解決しようとする課題】然るに、最初にシート
を押出成形する上述したとおりの従来の製造方法には、
所要形状部を切り離したシートの残部(所謂スケルトン
部)がシートの相当部分、通常40乃至60%、を占
め、かかる残部が無駄に破棄され、それ故に材料歩留り
が著しく低い、という問題がある。シートの残部は溶融
して再使用することも意図されるが、再使用によって材
料品質が低下せしめられ、材料品質の過剰低下を回避す
るためには再使用をシートの残部の全体ではなくてその
一部のみに制限せざるを得ない。シートが主層と共にガ
スバリアー層等の付加層を含有している場合には、シー
トの残部を再使用することは実際上不可能である。更
に、製造工程の都合上、シートはロール状に巻き付ける
ことができることが必要であり、それ故にシートの厚さ
は所定値、例えば1.2mm程度、以下に制限され、こ
れに起因して容器の底壁の厚さ、従って強度が過小にな
ってしまう傾向がある。
However, the conventional manufacturing method as described above, in which the sheet is first extruded, involves the following steps:
There is a problem that the remaining portion of the sheet (so-called skeleton portion) separated from the required shape portion occupies a considerable portion of the sheet, usually 40 to 60%, and the remaining portion is wastefully discarded, and therefore the material yield is extremely low. The rest of the sheet is also intended to be melted and reused, but reuse causes the material quality to deteriorate, and to avoid excessive degradation of material quality, reuse the rest of the sheet rather than the entire sheet. There is no choice but to limit it to only a part. If the sheet contains additional layers such as a gas barrier layer together with the main layer, it is practically impossible to reuse the rest of the sheet. Further, for the convenience of the manufacturing process, it is necessary that the sheet can be wound in a roll shape, and therefore the thickness of the sheet is limited to a predetermined value, for example, about 1.2 mm or less, which causes the thickness of the container to decrease. The thickness of the bottom wall, and thus the strength, tends to be too small.

【0005】特開平5−69478号公報及び特公平7
−67737号公報に開示されている上述したとおりの
製造方法によれば、最初にシートを押出成形する製造方
法における上述したとおりの問題はない。しかしなが
ら、かかる製造方法においては、射出成形の際の射出ゲ
ートの存在に起因して局部的な突起が前成形体に必然的
に生成され、かかる突起の存在により容器の外観が毀損
される傾向がある。また、射出成形の成形効率が比較的
低いことに起因して、容器の製造効率が制限される。更
に、射出成形の場合、樹脂温度を高くする必要があるこ
ととサイクル時間が長いため樹脂の滞留時間が長くなる
ことに起因して合成樹脂素材の品質が低下、更に詳しく
はポリエステル樹脂の場合、固有粘度が相当低下すると
共にアセトアルデヒド値が高くなるという問題もある。
これらは容器強度、リサイクル性、衛生性を低下させる
点で望ましくない。
Japanese Unexamined Patent Publication No. 5-69478 and Japanese Patent Publication No.
According to the manufacturing method as described above, which is disclosed in Japanese Patent Publication No. 67737, there is no problem as described above in the manufacturing method in which the sheet is first extrusion-molded. However, in such a manufacturing method, a local protrusion is inevitably generated in the pre-molded product due to the presence of the injection gate during injection molding, and the presence of such a protrusion tends to damage the appearance of the container. is there. Also, the production efficiency of the container is limited due to the relatively low injection molding efficiency. Further, in the case of injection molding, it is necessary to raise the resin temperature and the cycle time is long, so the quality of the synthetic resin material is deteriorated due to the long residence time of the resin. More specifically, in the case of polyester resin, There is also a problem that the intrinsic viscosity is considerably lowered and the acetaldehyde value is increased.
These are not desirable in that the container strength, recyclability and hygiene are deteriorated.

【0006】本発明は上記事実に鑑みてなされたもので
あり、その主たる技術的課題は、材料を無駄に破棄する
ことなく、優れた外観及び強度を有する容器を高効率で
製造することを可能にする、新規且つ改良された合成樹
脂容器の製造方法を提供することである。
The present invention has been made in view of the above facts, and its main technical problem is to manufacture a container having an excellent appearance and strength with high efficiency without wastefully discarding materials. Another object of the present invention is to provide a new and improved method for producing a synthetic resin container.

【0007】[0007]

【課題を解決するための手段】本発明者等は鋭意研究の
結果、前成形体を圧縮成形し、かかる前成形体を必要に
応じて延伸せしめた後に熱成形するこによって上記主た
る技術的課題を達成することができることを見出した。
ここで、熱成形とは、圧縮空気によって型に沿わせて成
形する圧空成形、真空によって型に沿わせる真空成形、
真空成形と圧空成形とを組み合わせた真空圧空成形、補
助プラグで前成形体を予張しながら又は予張した後真空
及び/又は圧空成形するプラグアシスト成形、前成形体
を雌型と雄型の間に挟んでプレス成形するマッチドモー
ル成形、前成形体の周縁を保持しプラグで押圧してプラ
グの形状に沿わせて成形するプラグ成形等を意味し、本
発明には、真空及び/又は圧空成形が適し、特にプラグ
アシスト真空及び/又は圧空成形が好適である。尚、こ
こで言う熱成形には、通常のブロー成形(溶融ブロー成
形、延伸ブロー成形等)は含まれない。
Means for Solving the Problems As a result of intensive studies by the present inventors, the above-mentioned main technical problem is obtained by compression-molding a pre-molded body, stretching the pre-molded body as necessary, and then thermoforming it. It has been found that can be achieved.
Here, thermoforming is compressed air forming along a mold with compressed air, vacuum forming along a mold by vacuum,
Vacuum pressure forming that combines vacuum forming and pressure forming, plug assist forming that performs vacuum and / or air forming while preforming the preform with an auxiliary plug or after preforming, preforming the female and male molds. Matched molding that is press-molded by sandwiching it between them, plug molding that presses the periphery of the pre-molded body and presses it with a plug to mold along the shape of the plug, and the like, and the present invention includes vacuum and / or compressed air. Molding is suitable, especially plug-assisted vacuum and / or pressure molding. The thermoforming referred to here does not include ordinary blow molding (melt blow molding, stretch blow molding, etc.).

【0008】即ち、本発明によれば、上記主たる技術的
課題を達成する合成樹脂容器の製造方法として、合成樹
脂素材を圧縮成形して前成形体を成形する圧縮成形工程
と、該前成形体を熱成形して成形体にせしめる熱成形工
程とを含む、ことを特徴とする合成樹脂容器の製造方法
が提供される。
That is, according to the present invention, as a method of manufacturing a synthetic resin container that achieves the above-mentioned main technical problems, a compression molding step of molding a synthetic resin material to form a preformed body, and the preformed body. And a thermoforming step of thermoforming to obtain a molded body.

【0009】該熱成形としては、真空及び/又は圧空成
形、特にプラグアシスト真空及び/又は圧空成形である
のが好適である。好ましくは、該熱成形工程の前又はこ
れと同時に該前成形体を延伸する延伸工程と、該熱成形
工程と同時に又はその後に該成形体をヒートセットする
ヒートセット工程と、該成形体をシュリンクバックし、
賦形し、冷却する後工程を含む。該合成樹脂素材がポリ
エステル系樹脂から成るのが好都合である。合成樹脂容
器はフランジと該フランジの内縁から垂下する筒状側壁
と該側壁の下端を閉じる底壁とを有し、該側壁の少なく
とも一部分は下方に向かって内側に傾斜しているカップ
乃至トレー状でよい。該合成樹脂素材は主合成樹脂とガ
スバリアー性樹脂とを含むことができる。本発明で成形
する合成樹脂容器には、目的に合わせて、公知の任意の
形態のフランジを設けることができる。例えば、ヒート
シール蓋により密封することを目的として天面をフラッ
トにすることや、突起シール用の環状突起を1又は複数
個設けることができる。また、容器に剛性を付与する目
的とする場合には、フランジの先端をカールさせた部分
(スカート部)を形成することができる。その他、金属
蓋を巻き締めるのに適した形態とすることもできる。
The thermoforming is preferably vacuum and / or pneumatic forming, particularly plug-assisted vacuum and / or pneumatic forming. Preferably, a stretching step of stretching the preformed body before or at the same time as the thermoforming step, a heat setting step of heat setting the molded body simultaneously with or after the thermoforming step, and a shrinking of the molded body Back
It includes a post-process of shaping and cooling. Conveniently, the synthetic resin material comprises a polyester resin. The synthetic resin container has a flange, a cylindrical side wall that hangs from the inner edge of the flange, and a bottom wall that closes the lower end of the side wall, and at least a portion of the side wall is cup-shaped or tray-shaped that inclines downward. Good. The synthetic resin material may include a main synthetic resin and a gas barrier resin. The synthetic resin container molded in the present invention may be provided with a flange of any known form depending on the purpose. For example, the top surface may be flattened for the purpose of sealing with a heat-sealing lid, or one or a plurality of annular protrusions for protrusion sealing may be provided. Further, for the purpose of imparting rigidity to the container, it is possible to form a curled portion (skirt portion) at the tip of the flange. In addition, it may be in a form suitable for winding and tightening the metal lid.

【0010】[0010]

【発明の実施の形態】以下、添付図面を参照して、本発
明の合成樹脂容器の製造方法の好適実施形態について、
更に詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the method for producing a synthetic resin container of the present invention will be described below with reference to the accompanying drawings.
Further details will be described.

【0011】図1及び図2を参照して説明すると、本発
明の合成樹脂容器の製造方法の好適実施形態において
は、最初に、圧縮成形装置2を使用して圧縮成形工程が
遂行される。図示の圧縮成形装置2は静止下側型部材4
と可動上側型部材6とを具備している。図1に図示する
如く、下側型部材4に対して上側型部材6を開位置、即
ち上昇せしめられた位置、に位置せしめ、下側型部材4
上に軟化乃至溶融状態の合成樹脂素材8を供給する。次
いで、下側型部材6を図2に図示する閉位置まで下降せ
しめ、かくして合成樹脂素材8から前成形体10を圧縮
成形する。図示の実施形態における前成形体10は、環
状フランジ12、かかるフランジ12の内周縁から垂下
する側壁14及び側壁14の下端を閉じる円形底壁16
を有する。側壁14は下方に向かって内側に傾斜して延
びる逆円錐台筒形状であり、その高さは比較的小さい。
Referring to FIGS. 1 and 2, in the preferred embodiment of the method for manufacturing a synthetic resin container according to the present invention, first, the compression molding apparatus 2 is used to perform the compression molding process. The illustrated compression molding apparatus 2 includes a stationary lower mold member 4
And a movable upper mold member 6. As shown in FIG. 1, the upper mold member 6 is positioned in the open position, that is, the raised position with respect to the lower mold member 4, and the lower mold member 4 is moved.
A synthetic resin material 8 in a softened or melted state is supplied on top. Next, the lower mold member 6 is lowered to the closed position shown in FIG. 2, and thus the preform 10 is compression-molded from the synthetic resin material 8. The preformed body 10 in the illustrated embodiment includes an annular flange 12, a side wall 14 hanging from an inner peripheral edge of the flange 12, and a circular bottom wall 16 closing a lower end of the side wall 14.
Have. The side wall 14 is in the shape of an inverted truncated cone that extends inwardly downward and has a relatively small height.

【0012】本発明の合成樹脂容器の製造方法において
は、適宜の熱可塑性樹脂を合成樹脂素材として使用する
ことができる。熱可塑性樹脂としては、これに限定され
るものではないが、例えばポリエステル系樹脂、ポリオ
レフィン系樹脂、ポリスチレン系樹脂、ポリアミド系樹
脂、ポリカーボネート系樹脂を挙げることができる。
In the synthetic resin container manufacturing method of the present invention, an appropriate thermoplastic resin can be used as the synthetic resin material. Examples of the thermoplastic resin include, but are not limited to, polyester resins, polyolefin resins, polystyrene resins, polyamide resins, and polycarbonate resins.

【0013】ポリオレフィン系樹脂としては、例えば、
低−中−高密度ポリエチレン、アイソタクチックポリプ
ロピレン、シンジオタチックポリプロピレン、プロピレ
ン−エチレン共重合体、エチレン−酢酸ビニル共重合
体、エチレン系不飽和カルボン酸乃至その無水物でグラ
フト変性されたオレフィン樹脂等を挙げることがきる。
ポリエステル系樹脂としては、主として芳香族ジカルボ
ン酸成分とグリコール成分とから成るものである。芳香
族ジカルボン酸としては、テレフタル酸、イソフタル
酸、ナフタレンジカルボン酸、P−β−オキシエトキシ
安息香酸、ビフェニル−4,4’−ジカルボン酸、ジフ
ェノキシエタン−4,4’−ジカルボン酸、5−ナトリ
ウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、
アジピン酸、セバシン酸、トリメリット酸、ピロメリッ
ト酸などが挙げられる。グリコールとしては、エチレン
グリコール、ジエチレングリコール、トリエチレングリ
コール、プロピレングリコール、1,4−ブタンジオー
ル、ネオペンチルグリコール、1,3−又は1,4−シ
クロヘキサンジメタノール、1,6−ヘキシレングリコ
ール、グリセロール、トリメチロールプロパン、ペンタ
エリスリトール、ジペンタエリスリトール、ソルビタ
ン、ビスフェノールA、ビスフェノールAのエチレンオ
キサイド付加物、ビスフェノールS等を挙げることがで
きる。その他のポリエステル系樹脂として、ポリ乳酸お
よび乳酸と他の成分との共重合体も使用できる。ポリ乳
酸としては、配向結晶化を促進させ、高い耐熱性と熱固
定(ヒートセット)効果を得るために、融点が160〜
200℃のL−乳酸が4%以下、より好ましくは2.5
%以下の樹脂が好ましい。また、ポリ乳酸の熱固定温度
としては70〜150℃、好ましくは80〜120℃が
よい。尚、本文中で使用する融点(Tm)、ガラス転移
温度(Tg)、昇温結晶化ピーク温度(Tc)、昇温結
晶化開始温度(Tic)は、測定対象とする成形体より
任意に約10mgを採取して、示差走査熱量計(DS
C)を用い、窒素ガス雰囲気下において300℃で3分
間ホールドした後室温まで急冷し、加熱速度毎分20℃
で昇温して得たDSC曲線より求めたものに基づいてい
る。
As the polyolefin resin, for example,
Low-medium-high density polyethylene, isotactic polypropylene, syndiotactic polypropylene, propylene-ethylene copolymer, ethylene-vinyl acetate copolymer, olefin resin graft-modified with ethylenically unsaturated carboxylic acid or its anhydride And so on.
The polyester resin is mainly composed of an aromatic dicarboxylic acid component and a glycol component. Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, P-β-oxyethoxybenzoic acid, biphenyl-4,4'-dicarboxylic acid, diphenoxyethane-4,4'-dicarboxylic acid, 5- Sodium sulfoisophthalic acid, hexahydroterephthalic acid,
Examples thereof include adipic acid, sebacic acid, trimellitic acid, pyromellitic acid and the like. As the glycol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,3- or 1,4-cyclohexanedimethanol, 1,6-hexylene glycol, glycerol, Examples thereof include trimethylolpropane, pentaerythritol, dipentaerythritol, sorbitan, bisphenol A, an ethylene oxide adduct of bisphenol A, and bisphenol S. As other polyester resins, polylactic acid and copolymers of lactic acid and other components can also be used. As polylactic acid, in order to promote oriented crystallization and obtain high heat resistance and heat fixing (heat setting) effect, the melting point is 160 to
L-lactic acid at 200 ° C. is 4% or less, more preferably 2.5.
% Or less of the resin is preferable. The heat setting temperature of polylactic acid is 70 to 150 ° C, preferably 80 to 120 ° C. The melting point (Tm), the glass transition temperature (Tg), the temperature rising crystallization peak temperature (Tc), and the temperature rising crystallization start temperature (Tic) used in the present text are arbitrarily selected from the compact to be measured. Differential scanning calorimeter (DS)
C), hold at 300 ° C. for 3 minutes in a nitrogen gas atmosphere, then rapidly cool to room temperature, heating rate 20 ° C./min.
It is based on the value obtained from the DSC curve obtained by heating at.

【0014】本発明の合成樹脂容器の製造方法において
は、種々のポリエステル系樹脂を好適に使用することが
できるが、特に延伸によって優れた透明性及び耐衝撃性
が得られ且つ熱固定が有効に作用するポリエステル樹脂
が望ましく、ガラス転移温度が室温以上で結晶性を有す
るポリエチレンテレフタレート、ポリプロピレンテレフ
タレート、ポリ乳酸を主たる構成々分とするポリエステ
ルが特に好適に使用することができる。殊に、経済性、
成形性及び成形品物性の見地から、エチレンテレフタレ
ート単位が80モル%以上、特に90モル%以上を占め
るポリエチレンテレフタレートが好適である。かような
ポリエチレンテレフタレートを用いた場合の共重合成分
としては、イソフタル酸、2,6−ナフタレンジカルボ
ン酸、1,4−ブタンジオール、1,4−シクロヘキサ
ンジメタノール等が好ましい。熱可塑性ポリエステル樹
脂としてはポリエチレンテレフタレートが最も好適であ
るが、これに限られるものではなく、ポリエチレン/ブ
チレンテレフタレート、ポリエチレンテレフタレート/
2,6−ナフタレート、ポリエチレンテレフタレート/
イソフタレートや、これらとポリブチレンテレフタレー
ト、ポリブチレンテレフタレート/イソフタレート、ポ
リエチレン−2,6−ナフタレート、ポリブチレンテレ
フタレート/アジペート、ポリエチレン−2,6−ナフ
タレート/イソフタレート、ポリブチレンテレフタレー
ト/アジペート、或いはこれらの2種以上とのブレンド
物等も使用することができる。ポリエステルは、プリフ
ォームの成形性、容器成形での成形性、容器の機械的性
質及び耐熱性の点で、溶媒としてフェノール/テトラク
ロロエタン混合溶媒を用いて測定した固有粘度〔IV〕
が0.5以上、特に0.6乃至1.5の範囲にあるもの
が好ましい。ポリエステルには、改質樹脂成分として、
エチレン系重合体、熱可塑性エラストマー、ポリアリレ
ート、ポリカーボネートなどの少なくとも1種をブレン
ドすることができる。この改質樹脂成分は、一般にポリ
エステル100重量部当たり60重量部迄の量、特に好
適には3乃至20重量部の量で用いるのが望ましい。
In the method for producing a synthetic resin container of the present invention, various polyester resins can be preferably used, but particularly excellent transparency and impact resistance can be obtained by stretching and heat setting is effective. A polyester resin that acts is desirable, and a polyester mainly composed of polyethylene terephthalate, polypropylene terephthalate, and polylactic acid having a glass transition temperature of room temperature or higher and having crystallinity can be particularly preferably used. Economics,
From the viewpoint of moldability and physical properties of molded products, polyethylene terephthalate in which the ethylene terephthalate unit accounts for 80 mol% or more, particularly 90 mol% or more is preferable. As a copolymerization component when such polyethylene terephthalate is used, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,4-butanediol, 1,4-cyclohexanedimethanol and the like are preferable. Polyethylene terephthalate is most suitable as the thermoplastic polyester resin, but the thermoplastic polyester resin is not limited to this, and polyethylene / butylene terephthalate, polyethylene terephthalate /
2,6-naphthalate, polyethylene terephthalate /
Isophthalate, and polybutylene terephthalate, polybutylene terephthalate / isophthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate / adipate, polyethylene-2,6-naphthalate / isophthalate, polybutylene terephthalate / adipate, or these. It is also possible to use a blended product of two or more of the above. Polyester is an intrinsic viscosity [IV] measured using a phenol / tetrachloroethane mixed solvent as a solvent in terms of moldability of a preform, moldability in container molding, mechanical properties of a container and heat resistance.
Is preferably 0.5 or more, and particularly preferably in the range of 0.6 to 1.5. For polyester, as a modified resin component,
At least one kind of ethylene polymer, thermoplastic elastomer, polyarylate, polycarbonate and the like can be blended. The modifying resin component is generally used in an amount of up to 60 parts by weight, particularly preferably 3 to 20 parts by weight, per 100 parts by weight of polyester.

【0015】ポリカーボネート系樹脂としては、二環二
価フェノール類とホスゲンとか誘導される炭酸エステル
樹脂を挙げることができ、ビスフェノール類、例えば、
2,2’−ビス(4−ヒドロキシフェニル)プロパン
(ビスフェノールA)、2,2’−ビス(4−ヒドロキ
シフェニル)ブタン(ビスフェノールB)、1, 2−ビ
ス(4ーヒドロキシフェニル)エタン等から誘導された
ポリカーボネートが好適である。
Examples of the polycarbonate resin include carbonic acid ester resins derived from bicyclic dihydric phenols and phosgene. Bisphenols such as, for example,
From 2,2'-bis (4-hydroxyphenyl) propane (bisphenol A), 2,2'-bis (4-hydroxyphenyl) butane (bisphenol B), 1,2-bis (4-hydroxyphenyl) ethane, etc. Derived polycarbonate is preferred.

【0016】本発明の合成樹脂容器製造方法において使
用される合成樹脂には、それ自体公知の配合剤、例えば
酸化防止剤、熱安定剤、紫外線吸収剤、帯電防止剤、充
填剤、滑剤、無機系乃至有機系の着色剤などを配合する
ことができる。
The synthetic resin used in the method for producing a synthetic resin container according to the present invention includes the compounding agents known per se, such as an antioxidant, a heat stabilizer, an ultraviolet absorber, an antistatic agent, a filler, a lubricant and an inorganic material. An organic or organic colorant may be added.

【0017】図3を参照して説明を続けると、圧縮成形
装置2から取り出された前成形体10は、加熱されて軟
化された後に、プラグアシスト真空及び圧空成形装置1
8に供給される。このときの前成形体10の加熱温度
は、一般に主合成樹脂のガラス転移温度(Tg)以上、
融点(Tm)+50℃以下の範囲が好ましい。特に、例
えば、ポリエステル系樹脂のように前成形体10が実質
的に非晶の状態で得られる場合には、Tg以上結晶化ピ
ーク温度(Tc)以下の温度が好ましく、Tg+5〜T
c−10℃の範囲が更に好ましい。これは、Tg未満で
は大きな成形圧力が必要となるばかりでなく、成形自体
が困難となってくることから好ましくない。一方、Tc
を越えると球晶が形成され、透明性が損なわれてくると
共に、成形も困難となってくることから好ましくない。
また、例えばポリプロピレン系樹脂のように前成形体1
0が実質的に結晶化した状態で得られる場合には、Tm
±50℃が好ましく、更にTm±30℃が好ましい。
尚、前成形体10は、必ずしも全体を均一に加熱する必
要はなく、加工したい場所及び加工の程度に合わせて、
赤外線ヒータ加熱など、公知の方法を用いて加熱するこ
とができる。図3を参照して更に説明を続けると、図示
のプラグアシスト真空及び圧空成形装置18は、静止型
部材20、締付け部材22及びプラグ部材24を含んで
いる。型部材20にはその上面から下方に延びる成形空
洞26が形成されている。かかる成形空洞26は下方に
向かって内径が漸次減少する逆円錐台形状でよい。型部
材20には、更に、その下端面から成形空洞26まで延
びる連通孔28が形成されている。締付け部材22は全
体として環状であり、その中央に位置する開口の内径は
型部材20に形成されている上記成形空洞26の上端の
内径と実質上同一にせしめられている。プラグ部材24
は下方に向かって外径が漸次減少する逆円錐台形状であ
るプラグ部30を有する。プラグ部30の下面には浅い
円形凹部32が形成されている。プラグ部材24には、
更に、円形凹部32まで延びる連通孔34が形成されて
いる。締付け部材22を図3に実線で示す上昇位置に位
置せしめた状態で、型部材20上に上記前成形体10が
載置される。前成形体10のフランジ12が型部材20
の上面上に位置し、側壁14及び底壁16は成形空洞2
6内に没入せしめられる。次いで、締付け部材22が図
3に二点鎖線で示す位置まで下降せしめられ、型部材2
0の上面と締付け部材22の下面との間に前成形体10
のフランジ12が挟持される。
Continuing the description with reference to FIG. 3, the pre-molded body 10 taken out from the compression molding apparatus 2 is heated and softened, and then the plug-assisted vacuum and pressure molding apparatus 1 is used.
8 are supplied. The heating temperature of the preform 10 at this time is generally higher than the glass transition temperature (Tg) of the main synthetic resin,
It is preferably in the range of melting point (Tm) + 50 ° C. or lower. Particularly, for example, when the pre-molded body 10 is obtained in a substantially amorphous state like a polyester resin, a temperature of Tg or more and a crystallization peak temperature (Tc) or less is preferable, and Tg + 5 to T
The range of c-10 ° C is more preferable. If it is less than Tg, not only a large molding pressure is required, but also the molding itself becomes difficult, which is not preferable. On the other hand, Tc
If it exceeds, the spherulites are formed, the transparency is impaired, and the molding becomes difficult, which is not preferable.
In addition, for example, a pre-molded body 1 such as polypropylene resin
When 0 is obtained in a substantially crystallized state, Tm
± 50 ° C. is preferable, and Tm ± 30 ° C. is more preferable.
The pre-molded body 10 does not necessarily need to be uniformly heated as a whole, and may be formed according to a place to be processed and a degree of processing.
The heating can be performed using a known method such as heating with an infrared heater. Continuing with the description with reference to FIG. 3, the illustrated plug-assisted vacuum and pneumatic forming apparatus 18 includes a stationary mold member 20, a clamping member 22 and a plug member 24. The mold member 20 is formed with a molding cavity 26 extending downward from the upper surface thereof. The molding cavity 26 may have an inverted truncated cone shape whose inner diameter gradually decreases downward. The mold member 20 is further formed with a communication hole 28 extending from the lower end surface thereof to the molding cavity 26. The tightening member 22 has an annular shape as a whole, and the inner diameter of the opening located at the center thereof is made substantially the same as the inner diameter of the upper end of the molding cavity 26 formed in the mold member 20. Plug member 24
Has a plug portion 30 having an inverted truncated cone shape whose outer diameter gradually decreases downward. A shallow circular recess 32 is formed on the lower surface of the plug portion 30. The plug member 24 includes
Further, a communication hole 34 extending to the circular recess 32 is formed. The preform 10 is placed on the mold member 20 with the tightening member 22 in the raised position shown by the solid line in FIG. The flange 12 of the preform 10 is the mold member 20.
Located on the upper surface of the side wall 14 and the bottom wall 16 of the molding cavity 2
Immersed in 6. Then, the tightening member 22 is lowered to the position shown by the chain double-dashed line in FIG.
0 between the upper surface of 0 and the lower surface of the tightening member 22.
The flange 12 is clamped.

【0018】次いで、プラグ部材24が漸次下降せしめ
られて延伸工程が遂行される。図3と図4とを比較参照
することによって理解される如く、プラグ部材24が漸
次下降せしめられると、これに応じて前成形体10の側
壁14及び底壁16が漸次延伸せしめられる。更に、型
部材20の連通孔28が真空源(図示していない)に連
通され、そしてまたプラグ部材24の連通孔34が圧縮
空気源(図示していない)に連通され、従って真空吸引
による真空成形と共に圧縮空気加圧による圧空成形が遂
行され、前成形体10は型部材20に形成されている成
形空洞26の内面に対応した形状の成形体36にせしめ
られる。図示の実施形態において、型部材20の連通孔
28を真空源に連通せしめて真空成形を遂行すると共に
プラグ部材24の連通孔34を圧縮空気源に連通せしめ
て圧空成形を遂行しているが、所望ならば真空成形と圧
空成形とのいずれか一方のみを遂行することもできる。
真空及び/又は圧空成形は、プラグ部材24の下降を開
始すると同時、プラグ部材24の下降途中或いはプラグ
部材24の下降を終了した後のいずれの時点で開始して
もよい。このとき、プラグ部材24の温度は成形体の品
質に影響を与えない範囲であれば任意に設定可能であ
る。例えば、前成形体10がポリエステル系樹脂から構
成される場合、室温近傍から前成形体10の加熱温度
(To)+50℃の範囲が好ましい。これは室温より冷
やすと、プラグ部材24の表面に結露することがあり、
また、To+50℃を越えると、前成形体10が部分的
に加熱され、延伸されすぎる場合が生じるからである。
更に説明を続けると、成形体36はこの時点で最終成形
品として取り出してもよい。この場合、型部材20は成
形体36が取り出し可能な温度であればよく、一般的に
はこれに限定されるものではないが、10℃以上70℃
以下がよい。成形体36の各部の延伸倍率としては、加
工前の肉厚toと加工後の肉厚tの比to/t(成
形前後での比重の変化が小さい場合には面積延伸倍率に
相当する)が耐衝撃性や透明性を付与する点で1.5以
上が好ましい。
Next, the plug member 24 is gradually lowered and the drawing process is performed. As can be understood by comparing and referring to FIGS. 3 and 4, when the plug member 24 is gradually lowered, the side wall 14 and the bottom wall 16 of the preform 10 are gradually stretched accordingly. Further, the communication hole 28 of the mold member 20 is communicated with a vacuum source (not shown), and the communication hole 34 of the plug member 24 is also communicated with a compressed air source (not shown), so that a vacuum is generated by vacuum suction. Pressure molding by compressed air pressure is performed together with molding, and the pre-molded body 10 is made into a molded body 36 having a shape corresponding to the inner surface of the molding cavity 26 formed in the mold member 20. In the illustrated embodiment, the communication hole 28 of the mold member 20 is connected to a vacuum source for vacuum forming, and the communication hole 34 of the plug member 24 is connected to a compressed air source for pressure forming. If desired, only one of vacuum forming and pressure forming can be performed.
The vacuum and / or pneumatic forming may be started at the same time when the lowering of the plug member 24 is started, during the lowering of the plug member 24, or at any time after the lowering of the plug member 24 is finished. At this time, the temperature of the plug member 24 can be arbitrarily set as long as it does not affect the quality of the molded body. For example, when the pre-molded body 10 is made of a polyester resin, it is preferable that the temperature ranges from near room temperature to the heating temperature (To) of the pre-molded body 10 + 50 ° C. When this is cooled from room temperature, dew condensation may occur on the surface of the plug member 24,
Further, if it exceeds To + 50 ° C., the pre-molded body 10 may be partially heated and stretched too much.
Continuing with the description, the molded body 36 may be taken out as a final molded product at this point. In this case, the mold member 20 only needs to have a temperature at which the molded body 36 can be taken out, and is not limited to this temperature in general, but 10 ° C or higher and 70 ° C or higher.
The following is good. The stretch ratio of each part of the molded body 36 is a ratio to / t 1 of the wall thickness to before processing and the wall thickness t 1 after processing (corresponding to the area stretching ratio when the change in the specific gravity before and after molding is small. Is preferably 1.5 or more from the viewpoint of imparting impact resistance and transparency.

【0019】図示の実施形態においては、上述した真空
及び/又は圧空成形の際には、型部材20が電気抵抗加
熱器の如き適宜の加熱手段(図示していない)によって
加熱され、成形空洞26の内面が例えば180℃程度の
高温にせしめられる。従って、真空及び/又は圧空成形
された成形体36は真空及び/圧空成形と実質上同時に
型部材26に接触せしめられることによって加熱されヒ
ートセットされる。かようなヒートセット工程は、所望
ならば真空及び/又は圧空成形の後に遂行する、従って
真空及び/又は圧空成形の後に型部材20の加熱を開始
する、こともできる。ヒートセット温度としては、主合
成樹脂のガラス転移温度Tg以上融点Tm以下が好まし
く、昇温結晶化開始温度Tic以上Tm−10℃以下が
更に好ましい。ヒートセット温度がTg未満では十分な
ヒートセットが得られず、Tmを越えると成形体36が
型部材20に溶着し、かつヒートセット効果も得られな
くなる点で好ましくない。ヒートセットする場合の成形
体36の延伸倍率としては、加工前の肉厚toと加工後
の肉厚tの比to/tが2以上が好ましく、3〜1
2の範囲が更に好ましい。これは、2未満では延伸が不
十分なため、球晶が発生しやすく、耐衝撃性や透明性が
劣ってくる点で好ましくない。また、12を越えると配
向結晶化が強くなり過ぎ、後述するシュリンクバックを
施して成形する場合には、シュリンクバックが不十分と
なり、成形品の賦形が不十分となる傾向が現れることか
ら好ましくない。
In the illustrated embodiment, the mold member 20 is heated by a suitable heating means (not shown) such as an electric resistance heater during the above-described vacuum and / or pressure forming, and the molding cavity 26 is formed. The inner surface of the is heated to a high temperature of, for example, about 180 ° C. Accordingly, the vacuum and / or pressure-formed molded body 36 is heated and heat set by being brought into contact with the mold member 26 substantially simultaneously with vacuum and / or pressure-formed. Such a heat setting step may be performed after vacuum and / or pneumatic forming, if desired, so that heating of the mold member 20 is started after vacuum and / or pneumatic forming. The heat setting temperature is preferably the glass transition temperature Tg or higher and the melting point Tm or lower of the main synthetic resin, and more preferably the temperature rising crystallization start temperature Tic or higher and Tm-10 ° C or lower. If the heat setting temperature is lower than Tg, sufficient heat setting cannot be obtained, and if the heat setting temperature exceeds Tm, the molded body 36 is welded to the mold member 20 and the heat setting effect cannot be obtained, which is not preferable. As for the draw ratio of the molded body 36 in the case of heat setting, the ratio to / t 1 of the wall thickness to before processing and the wall thickness t 1 after processing is preferably 2 or more, and 3 to 1
The range of 2 is more preferable. If it is less than 2, the stretching is insufficient, so that spherulites are likely to occur and impact resistance and transparency are deteriorated, which is not preferable. Further, if it exceeds 12, oriented crystallization becomes too strong, and when shrink-back molding described later is carried out, shrink-back becomes insufficient and the molded product tends to be insufficiently shaped, which is preferable. Absent.

【0020】真空及び/又は圧空成形工程並びにヒート
セット工程に続いて、シュリンクバックし、賦形し冷却
する後工程が遂行される。かかる後工程においては、図
5に図示する如く、型部材20の連通孔28が圧縮空気
源に連通され、プラグ部材24の連通孔34が真空源に
連通せしめられる。従って、真空吸引と圧縮空気加圧に
よって成形体36がプラグ部材24のプラグ部30に対
応した形状にシュリンクバックされ、最終形状即ち容器
38に賦形される。シュリングバックさせる量は、型部
材20の内寸法とプラグ部材24のプラグ部30の寸法
により決められるが、これらの寸法差が小さい程成形条
件の幅が広くなり好ましい。一般的には、プラグ部30
の寸法は型部材20の内寸法に対して90%以上乃至ほ
ぼ同寸法(マッチドモールド成形)とするとよい。ま
た、最終形状の賦形はプラグ部材24とは異なる雄型を
用いることもできる。シュリングバックの後、最終成形
品即ち容器38を冷却し、締付け部材22を上昇せしめ
て容器38を取り出す。かようにして成形された容器3
8は、図5に図示する如く、環状フランジ40と、この
フランジ40の内縁から垂下する側壁42と、側壁42
の下端を閉じる底壁44とを有するカップ状である。側
壁42は下方に向かって外径が漸次低減する(従って下
方に向かって内側に傾斜している)円錐台形状である。
底壁44の中央部にはプラグ部材24の底面に形成され
ている円形凹部32に対応した円形凹部46が形成され
ている。側壁42が円錐台形状である図示の容器38
は、型部材20を所謂割型構造にすることなく、単に上
方に引き出すことによって型部材20から取り出すこと
ができる。図示の容器38においては、側壁42はその
上端から下端まで下方に向かって内側に傾斜せしめられ
ているが、図5に二点鎖線で示す如く、側壁42の上端
部に下方に向かって若干だけ外側に傾斜する突条部46
を形成し、複数個の容器38を積重した時に隣接するフ
ランジ40が密接し容器38の離脱が困難になるのを回
避することもでき、この場合も上記突条部46が比較的
小さい場合には単に上方に引き出すことによって型部材
20から容器38を取り出すことができる。
After the vacuum and / or pressure forming step and the heat setting step, a post-step of shrink-back, shaping and cooling is performed. In the subsequent step, as shown in FIG. 5, the communication hole 28 of the mold member 20 is connected to the compressed air source, and the communication hole 34 of the plug member 24 is connected to the vacuum source. Therefore, the molded body 36 is shrink-backed into a shape corresponding to the plug portion 30 of the plug member 24 by vacuum suction and compressed air pressurization, and is shaped into the final shape, that is, the container 38. The amount to be shrunk back is determined by the inner size of the mold member 20 and the size of the plug portion 30 of the plug member 24. The smaller the difference between these sizes, the wider the range of molding conditions, which is preferable. Generally, the plug portion 30
It is advisable to set the dimension of 90% or more to almost the same dimension as the inner dimension of the mold member 20 (matched molding). Further, a male mold different from the plug member 24 can be used for shaping the final shape. After the shrink back, the final molded product, that is, the container 38 is cooled, the tightening member 22 is raised, and the container 38 is taken out. Container 3 molded in this way
As shown in FIG. 5, 8 is an annular flange 40, a side wall 42 that hangs from the inner edge of the flange 40, and a side wall 42.
And a bottom wall 44 that closes the lower end of the. The side wall 42 has a truncated cone shape in which the outer diameter is gradually reduced downward (and thus is inclined inward downward).
A circular recess 46 corresponding to the circular recess 32 formed on the bottom surface of the plug member 24 is formed at the center of the bottom wall 44. Illustrated container 38 whose side wall 42 is frustoconical
Can be taken out from the mold member 20 by simply pulling it upward without forming the mold member 20 into a so-called split mold structure. In the illustrated container 38, the side wall 42 is slanted inward downward from the upper end to the lower end thereof, but as shown by the chain double-dashed line in FIG. The ridge portion 46 inclined outward
It is also possible to prevent the adjacent flanges 40 from coming into close contact with each other when a plurality of containers 38 are stacked to make it difficult to separate the containers 38, and in this case as well, when the protrusion 46 is relatively small. The container 38 can be removed from the mold member 20 by simply pulling it upwards.

【0021】図6乃至図10は本発明の合成樹脂容器製
造方法の他の実施形態における各工程を図示している。
図6乃至図10に図示する実施形態においては、圧縮成
形装置102に供給される合成樹脂素材108は、主合
成樹脂層109とこの主合成樹脂層109内に包み込ま
れた付加合成樹脂層111とから構成されている。主合
成樹脂層109を構成する合成樹脂は図1に図示する上
記合成樹脂素材8を構成する合成樹脂と同一でよい。一
方、付加合成樹脂層を構成する合成樹脂は、ガスバリア
ー性樹脂、リサイクル樹脂、酸素吸収性樹脂、耐湿性樹
脂等の合成樹脂であるのが好適である。
6 to 10 illustrate respective steps in another embodiment of the synthetic resin container manufacturing method of the present invention.
In the embodiment shown in FIGS. 6 to 10, the synthetic resin material 108 supplied to the compression molding apparatus 102 includes a main synthetic resin layer 109 and an additional synthetic resin layer 111 enclosed in the main synthetic resin layer 109. It consists of The synthetic resin forming the main synthetic resin layer 109 may be the same as the synthetic resin forming the synthetic resin material 8 shown in FIG. On the other hand, the synthetic resin that constitutes the additional synthetic resin layer is preferably a synthetic resin such as a gas barrier resin, a recycled resin, an oxygen absorbing resin, or a moisture resistant resin.

【0022】ガスバリアー性樹脂としては、公知の任意
のもの、例えば酸素バリアー性樹脂としてはエチレン−
ビニルアルコール共重合体(EVOH)、ナイロン樹脂
(Ny)、ガスバリアー性ポリエステル樹脂(BPR)
等、また、水蒸気バリアー性樹脂としては環状オレフィ
ン系共重合体(COC)等を用いることができる。エチ
レン−ビニルアルコール共重合体としては、ビニルアル
コール含有量が40乃至85モル%、特に50乃至80
モル%のエチレン−ビニルアルコール共重合体が適して
いる。ナイロン樹脂としては、例えばナイロン6、ナイ
ロン6,6、ナイロン6/ナイロン6,6共重合体、キ
シリレン基含有ポリアミドを挙げることができる。ナイ
ロン樹脂を構成するω−アミノカルボン酸成分として
は、ε−カプロラクタム、アミノヘプタン酸、アミノオ
クタン酸等が挙げられ、ジアミン成分としては、ヘキサ
メチレンジアミンのような脂肪族ジアミン、ピペラジン
のような脂環族ジアミン、m−キシリレンジアミン及び
/又はp−キシリレンジアミンなどが挙げられ、二塩基
酸成分としては、脂肪族ジカルボン酸、例えばアジピン
酸、セバシン酸、スベリン酸等、芳香族ジカルボン酸、
例えばテレフタル酸、イソフタル酸等が挙げられる。特
にバリアー性に優れたものとして、ジアミン成分の35
モル%以上、特に50モル%以上がm−キシリレン及び
/又はp−キシリレンジアミンであり、二塩基酸成分が
脂肪族ジカルボン酸及び/又は芳香族ジカルボン酸であ
り、所望により全アミド反復単位当たり25モル%以
下、特に20モル%以下のω−アミノカルボン酸単位を
含むポリアミドが挙げられる。ガスバリアー性樹脂とし
て、ガスバリアー性ポリエステルを用いることもでき
る。このガスバリアー性ポリエステルの1種は、重合体
鎖中に、テレフタル酸成分とイソフタル酸成分とを、9
5:5乃至5:95、特に75:25乃至25:75の
モル比で含有し、且つエチレングリコール成分とビス
(2−ヒドロキシエトキシ)ベンゼン成分とを、99.
99:0.01乃至2:98、特に99.95:0.0
5乃至40:60のモル比で含有するのが好ましい。
The gas barrier resin is any known resin, for example, the oxygen barrier resin is ethylene-
Vinyl alcohol copolymer (EVOH), nylon resin (Ny), gas barrier polyester resin (BPR)
Further, a cyclic olefin-based copolymer (COC) or the like can be used as the water vapor barrier resin. The ethylene-vinyl alcohol copolymer has a vinyl alcohol content of 40 to 85 mol%, particularly 50 to 80 mol%.
A mol% ethylene-vinyl alcohol copolymer is suitable. Examples of the nylon resin include nylon 6, nylon 6,6, nylon 6 / nylon 6,6 copolymer, and xylylene group-containing polyamide. Examples of the ω-aminocarboxylic acid component constituting the nylon resin include ε-caprolactam, aminoheptanoic acid, aminooctanoic acid, etc., and examples of the diamine component include aliphatic diamines such as hexamethylenediamine and fats such as piperazine. Examples thereof include cyclic diamine, m-xylylenediamine and / or p-xylylenediamine. As dibasic acid components, aliphatic dicarboxylic acids such as adipic acid, sebacic acid and suberic acid, aromatic dicarboxylic acids,
Examples thereof include terephthalic acid and isophthalic acid. Especially, as a material having excellent barrier properties, 35 of diamine component is used.
Mol% or more, particularly 50 mol% or more is m-xylylene and / or p-xylylenediamine, the dibasic acid component is an aliphatic dicarboxylic acid and / or aromatic dicarboxylic acid, and, if desired, per all amide repeating units Polyamides containing 25 mol% or less, especially 20 mol% or less ω-aminocarboxylic acid units are mentioned. As the gas barrier resin, a gas barrier polyester can also be used. One type of this gas barrier polyester has a terephthalic acid component and an isophthalic acid component in the polymer chain.
5: 5 to 5:95, particularly 75:25 to 25:75 in a molar ratio and containing an ethylene glycol component and a bis (2-hydroxyethoxy) benzene component in 99.
99: 0.01 to 2:98, especially 99.95: 0.0
It is preferably contained in a molar ratio of 5 to 40:60.

【0023】リサイクル樹脂としては、例えばリサイク
ルポリエステルが挙げられる。使用済みポリエステル容
器を回収して得られるポリエステル樹脂としては、固有
粘度(IV)が0.5乃至1.0の範囲にあるのが好ま
しい。リサイクル樹脂は単独で使用することもできる
し、バージン樹脂とブレンドして用いることもできる。
Examples of the recycled resin include recycled polyester. The polyester resin obtained by collecting the used polyester container preferably has an intrinsic viscosity (IV) in the range of 0.5 to 1.0. The recycled resin can be used alone or in a blend with the virgin resin.

【0024】酸素吸収性樹脂としては、金属系の酸化触
媒と酸化性樹脂乃至酸化性有機成分とを含有するもの、
ポリフェノール類、アスコルビン酸類などと塩基性物質
とを含有するものとが使用される。酸化性樹脂乃至酸化
性有機成分としては、遷移金属系触媒の触媒の作用によ
り、空気中の酸素により酸化を受ける樹脂または有機成
分である。酸化性樹脂としては、(1)ポリプロピレン
のように3級炭素を有する樹脂、(2)エチレン−一酸
化炭素共重合体のようにカルボニル基を有する樹脂、
(3)MXD6などベンゼン環を有するポリアミド樹
脂、(4)ポリブタジエン、ポリイソプレンおよびこれ
らの共重合体のように、主鎖に不飽和二重結合を有する
樹脂、(5)シクロヘキセン基などのような不飽和二重
結合を側鎖に有する樹脂が使用される。酸化性有機成分
としては、(6)アスコルビン酸類、(7)システィン
などが挙げられ、これらは炭酸ナトリウム、酢酸カリウ
ムなどの塩基性物質との共存下で、水分を吸収し、酸素
を吸収する。金属系の酸化触媒としては、鉄、コバル
ト、ニッケル等の周期律表第VIII族の金属化合物が
好ましいが、他に銅、銀等(第I族)、錫、チタン、ジ
ルコニウム等(第IV族)、バナジウム(第V族)、ク
ロム等(VI族)、マンガン等(VII族)の金属化合
物を挙げることができる。これらの金属化合物の内、コ
バルト化合物は、酸素吸収速度が大きく、特に好適であ
る。遷移金属系触媒は、上記遷移金属の低価数の無機酸
塩或いは有機酸塩或いは錯塩の形で一般に使用される。
これらの触媒は、樹脂当たり金属量換算で100乃至2
000ppmの量で用いるのがよい。
The oxygen-absorbing resin contains a metal-based oxidation catalyst and an oxidizing resin or an oxidizing organic component,
Those containing polyphenols, ascorbic acids, etc. and a basic substance are used. The oxidizing resin or the oxidizing organic component is a resin or an organic component that is oxidized by oxygen in the air due to the action of the transition metal catalyst. As the oxidizable resin, (1) a resin having a tertiary carbon such as polypropylene, (2) a resin having a carbonyl group such as an ethylene-carbon monoxide copolymer,
(3) Polyamide resin having a benzene ring such as MXD6, (4) Resin having an unsaturated double bond in the main chain such as polybutadiene, polyisoprene and copolymers thereof, (5) Cyclohexene group, etc. A resin having an unsaturated double bond in the side chain is used. Examples of the oxidizing organic component include (6) ascorbic acids and (7) cystine, which absorb water and oxygen in the presence of a basic substance such as sodium carbonate and potassium acetate. As the metal-based oxidation catalyst, metal compounds of Group VIII of the periodic table such as iron, cobalt and nickel are preferable, but in addition, copper, silver and the like (Group I), tin, titanium, zirconium and the like (Group IV). ), Vanadium (group V), chromium (group VI), manganese (group VII), and the like. Among these metal compounds, the cobalt compound has a large oxygen absorption rate and is particularly preferable. The transition metal-based catalyst is generally used in the form of an inorganic acid salt, an organic acid salt or a complex salt of the above transition metal having a low valence.
These catalysts are 100 to 2 in terms of metal amount per resin.
It is recommended to use it in an amount of 000 ppm.

【0025】更に、必要に応じて任意の樹脂層を合成樹
脂素材に含有せしめることができる。例えば、熱可塑性
樹脂層とガスバリアー性樹脂層とに接着性がない場合に
は、これらの層間に接着剤樹脂層を介在させることがで
きる。接着剤樹脂としては、特に限定されないが、酸変
性オレフィン系樹脂、例えば、無水マレイン酸グラフト
ポリエチレン、無水マレイン酸グラフトポリプロピレン
などを用いることができる。
Further, an optional resin layer may be contained in the synthetic resin material if necessary. For example, when the thermoplastic resin layer and the gas barrier resin layer do not have adhesiveness, an adhesive resin layer can be interposed between these layers. The adhesive resin is not particularly limited, but an acid-modified olefin resin such as maleic anhydride grafted polyethylene or maleic anhydride grafted polypropylene can be used.

【0026】図6乃至図10に図示する実施形態におい
ては、圧縮成形工程において成形させる前成形体110
は、環状フランジ112とかかるフランジ112の内周
縁から下方に延在する凹状主部113とから構成されて
いる。図7を参照することによって理解される如く、凹
状主部113は下端且つ半径方向中央に向かって厚さが
漸次増大せしめられている。プラグアシスト真空及び圧
空成形装置118における型部材120に形成されてい
る成形空洞126の内周面は、その上部が下方に向かっ
て内径が漸次増大する円錐台形状であり、その中間部乃
至下部が円筒形状である。図6乃至図10に図示する実
施形態における上述した点以外は、図1乃至図5に図示
する実施形態と実質上同一であり、それ故に説明を省略
する。
In the embodiment shown in FIGS. 6 to 10, the pre-molded body 110 to be molded in the compression molding process.
Is composed of an annular flange 112 and a concave main portion 113 extending downward from the inner peripheral edge of the flange 112. As will be understood by referring to FIG. 7, the concave main portion 113 has a thickness gradually increasing toward the lower end and the radial center. The inner peripheral surface of the molding cavity 126 formed in the mold member 120 in the plug-assisted vacuum and compressed air molding apparatus 118 has a truncated cone shape whose upper portion has an inner diameter gradually increasing downward, and whose middle portion or lower portion is It has a cylindrical shape. Except for the points described above in the embodiment illustrated in FIGS. 6 to 10, the embodiment is substantially the same as the embodiment illustrated in FIGS. 1 to 5, and therefore the description thereof will be omitted.

【0027】図11乃至図16は本発明の合成樹脂容器
製造方法の更に他の実施形態を図示した。以下に説明す
るこの実施形態は、浅いカップ状容器又はトレー状容器
の成形のように真空及び/又は圧空成形工程での加工量
が比較的少ないため、耐衝撃性、透明性及び耐熱性を付
与することが困難である場合、予め延伸工程を含めるこ
とによってその問題を解決することができる。図11乃
至図16に図示する実施形態においては、圧縮成形装置
202において成形される前成形体210は矩形板形状
である。かかる前成形体210は、圧縮成形装置202
から取り出された後に、前記したと同様に主合成樹脂の
ガラス転移温度Tg以上融点Tm以下に加熱されて軟化
され、そして延伸せしめられる。かかる延伸は、図13
に図示する如く、前成形体210の周縁部を複数個の可
動把持手段211で把持し、かかる可動把持手段211
を図13に実線で示す位置から二点鎖線で示す位置まで
移動せしめ、かくして前成形体210を平面積が拡大さ
れた延伸体213に延伸する。延伸は加工前の肉厚to
と加工後の肉厚tの比to/tが1.5以上9以下
であることが好ましく、特に1.5以上6以下が好まし
い。この肉厚比が1.5未満では最終容器の各部の加工
量が不足することがあり、9を越えると延伸配向結晶化
が進み、この延伸工程の後の真空及び/又は圧空成形工
程での加工が困難となる。尚、延伸方法は前記した方法
に限定されるものではなく、公知の任意の方法が適用で
きる。
11 to 16 show another embodiment of the synthetic resin container manufacturing method of the present invention. This embodiment described below imparts impact resistance, transparency and heat resistance because the amount of processing in the vacuum and / or compressed air molding step is relatively small, such as molding of a shallow cup-shaped container or tray-shaped container. If it is difficult to do so, the problem can be solved by including a stretching step in advance. In the embodiment illustrated in FIGS. 11 to 16, the pre-molded body 210 molded in the compression molding device 202 has a rectangular plate shape. The pre-molded body 210 is used in the compression molding device 202.
After being taken out from the resin, it is heated to the glass transition temperature Tg or higher and the melting point Tm or lower of the main synthetic resin to be softened and stretched as described above. Such stretching is shown in FIG.
As shown in FIG. 5, the peripheral edge portion of the pre-molded body 210 is gripped by a plurality of movable gripping means 211, and the movable gripping means 211 are gripped.
Is moved from the position shown by the solid line in FIG. 13 to the position shown by the chain double-dashed line, and thus the preform 210 is stretched to the stretched body 213 having an increased plane area. Stretching is to thickness before processing
It is preferable that the ratio to / t 1 of the processed thickness t 1 is 1.5 or more and 9 or less, and particularly preferably 1.5 or more and 6 or less. If this wall thickness ratio is less than 1.5, the amount of processing in each part of the final container may be insufficient, and if it exceeds 9, stretch oriented crystallization proceeds, and the vacuum and / or pressure forming step after this stretching step may occur. Processing becomes difficult. The stretching method is not limited to the method described above, and any known method can be applied.

【0028】しかる後に、上記延伸体213をプラグア
シスト真空及び圧空成形装置218に供給する。図示の
プラグアシスト真空及び圧空成形装置218は、静止型
部材220、締付け部材222及びプラグ部材224を
含んでいる。型部材220にはその上面から下方に延び
る比較的浅い成形空洞226が形成されている。成形空
洞226は4側面が下方に向かって内側に傾斜した逆四
角錐台形状である。型部材220には、下端面から成形
空洞226まで延びる2個の連通孔228が形成されて
いる。締付け部材222は全体として矩形フレーム形状
であり、その中央に位置する区営開口は型部材220に
形成されている上記成形空洞226の上端の形状と実質
上同一にせしめられている。プラグ部材224は4側面
が下方に向かって内側に傾斜した逆四角錐台形状である
プラグ部230を有する。プラグ部230の下面には浅
い矩形凹部232が形成されている。プラグ部材224
には、更に、矩形凹部232まで延びる2個の連通孔2
34が形成されている。締付け部材222を図14に実
線で示す上昇位置に位置せしめた状態で、型部材220
上に上記延伸体213が載置される。次いで、締付け部
材222が図14に二点鎖線で示す位置まで下降せしめ
られ、型部材220の上面と締付け部材222の下面と
の間に延伸体213の周縁部が挟持される。
Thereafter, the stretched body 213 is supplied to the plug-assisted vacuum and pressure forming apparatus 218. The illustrated plug assist vacuum and pressure forming apparatus 218 includes a stationary mold member 220, a clamping member 222 and a plug member 224. The mold member 220 is formed with a relatively shallow molding cavity 226 extending downward from the upper surface thereof. The molding cavity 226 has an inverted quadrangular pyramid shape in which four side surfaces are inclined inwardly downward. The mold member 220 is formed with two communication holes 228 extending from the lower end surface to the molding cavity 226. The tightening member 222 has a rectangular frame shape as a whole, and the central opening located at the center of the tightening member 222 is substantially the same as the upper end of the molding cavity 226 formed in the mold member 220. The plug member 224 has a plug portion 230 having an inverted quadrangular pyramid shape in which four side surfaces are inclined inwardly downward. A shallow rectangular recess 232 is formed on the lower surface of the plug portion 230. Plug member 224
In addition, the two communication holes 2 extending to the rectangular recess 232.
34 is formed. With the tightening member 222 in the raised position shown by the solid line in FIG.
The stretched body 213 is placed on the top. Next, the tightening member 222 is moved down to the position shown by the chain double-dashed line in FIG. 14, and the peripheral portion of the stretched body 213 is sandwiched between the upper surface of the mold member 220 and the lower surface of the tightening member 222.

【0029】次いで、プラグ部材224が漸次下降せし
められ、延伸体213の中央主部に更に延伸が加えられ
る。加えて、型部材220の連通孔228が真空源(図
示していない)に連通され、そしてまたプラグ部材22
4の連通孔234が圧縮空気源(図示していない)に連
通され、従って真空吸引による真空成形と共に圧縮空気
加圧による圧空成形が遂行され、図15に明確に図示す
る如く、延伸体213は型部材220に形成されている
成形空洞226の内面に対応した形状の成形体236に
せしめられる。図示の実施形態においても、型部材22
0の連通孔228を真空源に連通せしめて真空成形を遂
行すると共にプラグ部材224の連通孔234を圧縮空
気源に連通せしめて圧空成形を遂行しているが、所望な
らば真空成形と圧空成形とのいずれか一方のみを遂行す
ることもできる。真空及び/又は圧空成形は、プラグ部
材224の下降を開始すると同時、プラグ部材224の
下降途中或いはプラグ部材224の下降を終了した後の
いずれの時点で開始してもよい。
Next, the plug member 224 is gradually lowered, and further stretching is applied to the central main portion of the stretched body 213. In addition, the communication hole 228 of the mold member 220 is connected to a vacuum source (not shown), and also the plug member 22.
4 communicating with a compressed air source (not shown), and therefore vacuum forming by vacuum suction and pressure forming by compressed air pressurization are performed, and as shown clearly in FIG. The molded body 236 has a shape corresponding to the inner surface of the molding cavity 226 formed in the mold member 220. Also in the illustrated embodiment, the mold member 22
No. 0 communication hole 228 is connected to a vacuum source to perform vacuum forming, and communication hole 234 of the plug member 224 is connected to a compressed air source to perform pressure forming, but if desired, vacuum forming and pressure forming are performed. It is also possible to carry out either one of and. The vacuum and / or pneumatic forming may be started at the same time when the lowering of the plug member 224 is started, at any time during the lowering of the plug member 224 or after the lowering of the plug member 224 is completed.

【0030】上述した真空及び/又は圧空成形の際に
は、型部材220を電気抵抗加熱器の如き適宜の加熱手
段(図示していない)によって加熱し、成形空洞226
の内面を主合成樹脂のガラス転移温度Tg以上融点Tm
以下の高温にせしめることができる。かくすると、真空
及び/又は圧空成形された成形体236は真空及び/圧
空成形と実質上同時に型部材220に接触せしめられる
ことによって加熱されヒートセットされる。かようなヒ
ートセット工程は、所望ならば真空及び/又は圧空成形
の後に遂行する、従って真空及び/又は圧空成形の後に
型部材220の加熱を開始する、こともできる。
During the above-described vacuum and / or pneumatic forming, the mold member 220 is heated by an appropriate heating means (not shown) such as an electric resistance heater to form the molding cavity 226.
The inner surface of the glass is above the glass transition temperature Tg of the main synthetic resin and the melting point Tm
The following high temperatures can be used. Thus, the vacuum- and / or pressure-formed compact 236 is heated and heat-set by being brought into contact with the mold member 220 substantially simultaneously with vacuum and / or pressure-formed. Such a heat setting step may be performed after vacuum and / or pneumatic forming, if desired, thus heating of the mold member 220 may be started after vacuum and / or pneumatic forming.

【0031】真空及び/又は圧空成形工程並びにヒート
セット工程に続いて、シュリンクバックし、賦形し冷却
する後工程が遂行される。かかる後工程においては、図
16に図示する如く、型部材220の連通孔228が圧
縮空気源に連通され、プラグ部材224の連通孔234
が真空源に連通せしめられる。従って、真空吸引と圧縮
空気加圧によって成形体236がプラグ部材224のプ
ラグ部230に対応した形状にシュリンクバックされ、
最終形状即ち容器238に賦形される。しかる後に、容
器238を冷却し、締付け部材222を上昇せしめて容
器238を取り出す。かようにして成形された容器38
は、図16に図示する如く、矩形フランジ240と、こ
のフランジ240の内縁から垂下する側壁242と、側
壁242の下端を閉じる底壁244とを有するトレー状
である。側壁242は四側面が下方に向かって内側に傾
斜して延びる四角錐台形状である。底壁244の中央部
にはプラグ部材224の底面に形成されている矩形凹部
232に対応した矩形凹部246が形成されている。側
壁242が四角錐形状である図示の容器238も、型部
材220を所謂割型構造にすることなく、単に上方に引
き出すことによって型部材220から取り出すことがで
きる。型部材220から容器238を取り出した後に、
必要に応じて容器238の矩形フランジ240にトリミ
ング下降を加え、矩形フランジ240の外縁を所要形状
に仕上げることができる。図11乃至図16に図示する
実施形態における上述した構成以外は図1乃至図5に図
示する実施形態と同一でよい。
After the vacuum and / or pressure forming step and the heat setting step, a post-step of shrink-back, shaping and cooling is performed. In such a post-process, as shown in FIG. 16, the communication hole 228 of the mold member 220 is connected to the compressed air source, and the communication hole 234 of the plug member 224 is connected.
Is connected to the vacuum source. Therefore, the molded body 236 is shrink-backed into a shape corresponding to the plug portion 230 of the plug member 224 by vacuum suction and compressed air pressurization,
The final shape or container 238 is shaped. Then, the container 238 is cooled, the fastening member 222 is raised, and the container 238 is taken out. Container 38 molded in this way
As shown in FIG. 16, is a tray shape having a rectangular flange 240, a side wall 242 hanging from the inner edge of the flange 240, and a bottom wall 244 closing the lower end of the side wall 242. The side wall 242 has a truncated pyramid shape in which four side surfaces extend downward and incline. A rectangular recess 246 corresponding to the rectangular recess 232 formed on the bottom surface of the plug member 224 is formed at the center of the bottom wall 244. The illustrated container 238 whose side wall 242 has a quadrangular pyramid shape can also be taken out from the mold member 220 by simply pulling it upward without forming the mold member 220 into a so-called split mold structure. After removing the container 238 from the mold member 220,
If necessary, the rectangular flange 240 of the container 238 can be trimmed downward to finish the outer edge of the rectangular flange 240 into a desired shape. The configuration may be the same as the embodiment shown in FIGS. 1 to 5 except for the above-described configuration in the embodiment shown in FIGS. 11 to 16.

【0032】[0032]

【実施例】以下に、本発明を実施例によって詳細に説明
するが、本発明はこれらの実施例に制限されるものでは
ない。
The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.

【0033】[0033]

【実施例1】固有粘度0.8d1/gのポリエチレンテ
レフタレート樹脂(三井化学(株)SA135、イソフ
タル酸2モル%含有)を押出機に供給し、ダイ温度27
0℃の条件で円柱状に押出し切断した。得られた樹脂塊
を溶融状態のまま、図1と同様に圧縮成形装置2の下側
型部材4の中心部にセット、型締め圧力120kgf/
cmで圧縮成形し、単層で実質上非晶性の前成形体
(プリフォーム)10を得た。得られたプリフォームの
重さは13gであった。
Example 1 A polyethylene terephthalate resin having an intrinsic viscosity of 0.8 d1 / g (SA135, Mitsui Chemicals, Inc., containing 2 mol% of isophthalic acid) was supplied to an extruder, and a die temperature of 27 was used.
It was extruded into a cylindrical shape and cut under the condition of 0 ° C. The obtained resin block is set in the molten state in the center of the lower mold member 4 of the compression molding apparatus 2 as in FIG. 1, and the mold clamping pressure is 120 kgf /
By compression molding at cm 2 , a single layer of substantially non-crystalline preform (preform) 10 was obtained. The weight of the obtained preform was 13 g.

【0034】このプリフォームをガラス転移温度以上の
90℃に加熱して、図3と同様にプラグアシスト真空及
び圧空成形装置18の型部材20にセットし、締付け部
材22でフランジ部をホールドした後、プラグアシスト
して真空圧空成形した。このとき、型部材20を30
℃、プラグ部材24を60℃、締付け部材22を30℃
とした。このようにして、図4と同様の型部材で冷却
し、フランジ付カップ透明状容器を得た。尚、容器寸法
はフランジ外径75mm、同内径64mm、底部外径4
8mm、高さ85mmで、満中内容量は210ccであ
った。
After heating this preform to 90 ° C. above the glass transition temperature and setting it on the mold member 20 of the plug-assisted vacuum and compressed air forming apparatus 18 as in FIG. 3, and holding the flange portion with the tightening member 22. , Plug assist and vacuum pressure molding. At this time, the mold member 20 is set to 30
℃, plug member 24 60 ℃, tightening member 22 30 ℃
And In this way, a transparent cup-shaped container with a flange was obtained by cooling with a mold member similar to that shown in FIG. The container dimensions are: flange outer diameter 75 mm, inner diameter 64 mm, bottom outer diameter 4
It had a size of 8 mm and a height of 85 mm, and the full-volume content was 210 cc.

【0035】[0035]

【実施例2】型部材20を180℃、プラグ部材24を
90℃とし、プラグアシストして真空圧空成形して、成
形体を型部材20に沿わせた状態で2秒間ヒートセット
した後シュリンクバックさせて、プラグ部材24に沿わ
せ、賦形、冷却した以外は実施例1と同様にして、フラ
ンジ付カップ状容器を得た。
Example 2 Mold member 20 was set to 180 ° C., plug member 24 was set to 90 ° C., vacuum assisted vacuum molding was performed with plug assist, and the molded body was heat set for 2 seconds along the mold member 20 and then shrink-backed. Then, a cup-shaped container with a flange was obtained in the same manner as in Example 1 except that the container was placed along the plug member 24, shaped, and cooled.

【0036】[0036]

【実施例3】2重多層ダイを使用し、外表面側を構成す
る主合成樹脂となる前記ポリエチレンテレフタレート樹
脂を連続的に押し出し、かつ内芯側を構成するガズバリ
アー層となるポリメタキシリレンアジパミド樹脂(三菱
ガス化学(株)製MXD6)を間欠的に押し出し、この
複合溶融押出物を切断して円柱状溶融樹脂塊を得た。切
断のタイミングはMXD6が溶融樹脂塊のほぼ中心に位
置し、且つ外表面側の主合成樹脂に封入されている溶融
樹脂塊を圧縮成形した以外は、実施例2と同様にして、
内外層がポリエチレンテレフタレート樹脂、中間層がM
XD6であるフランジ付カップ状容器を得た。尚、ガス
バリアー層は全体の5重量%とした。
Example 3 A polymeta-xylylene adipate, which is a double-layered die and continuously extrudes the polyethylene terephthalate resin, which is the main synthetic resin forming the outer surface side, and a gaz barrier layer, which forms the inner core side. Mid resin (MXD6 manufactured by Mitsubishi Gas Chemical Co., Inc.) was extruded intermittently, and this composite melt extrudate was cut to obtain a columnar molten resin mass. The cutting timing was the same as in Example 2 except that the MXD6 was located almost at the center of the molten resin mass and the molten resin mass enclosed in the main synthetic resin on the outer surface side was compression molded.
The inner and outer layers are polyethylene terephthalate resin, and the middle layer is M
A cup-shaped container with a flange of XD6 was obtained. The gas barrier layer was 5% by weight of the whole.

【0037】[0037]

【実施例4】内芯側の樹脂をポリエチレンテレフタレー
トの再生樹脂とした以外は実施例3と同様にして、フラ
ンジ付カップ状容器を得た。尚、再生樹脂は全体の25
重量%とした。
Example 4 A cup-shaped container with a flange was obtained in the same manner as in Example 3 except that the resin on the inner core side was a recycled resin of polyethylene terephthalate. The recycled resin is 25
It was set to% by weight.

【0038】[0038]

【実施例5】実施例1で得られたカップ状容器を180
℃の雰囲気下でシュリンクさせた後、180℃の別の型
部材(図示されていない)にセットし、再度真空圧空し
て2秒間のヒートセットを施した。更に、90℃の別の
プラグ部材(図示されていない)を挿入し、これにシュ
リンクバックさせて冷却賦形し、フランジ付透明カップ
状容器を得た。尚、容器寸法はフランジ外径75mm、
同内径64mm、底部外径54mm、高さ51mmで、
満中内容量14ccであった。
Example 5 The cup-shaped container obtained in Example 1
After shrinking under an atmosphere of ℃, it was set on another mold member (not shown) at 180 ℃, vacuum pressure again, and heat set for 2 seconds. Further, another plug member (not shown) at 90 ° C. was inserted, and this was shrink-backed and cooled to give a transparent cup-shaped container with a flange. In addition, the container dimensions are 75 mm flange outer diameter,
Same inner diameter 64mm, bottom outer diameter 54mm, height 51mm,
It was a full capacity 14 cc.

【0039】[0039]

【実施例6】固有粘度0.74d1/gのポリエチレン
テレフタレート樹脂(三井化学(株)J125T)を押
出機に供給し、ダイ温度270℃の条件で押出し切断し
た。得られた樹脂塊を溶融状態のまま、圧縮成形装置2
の下側型部材4の中心部にセットし、型締め圧力120
kgf/cmで圧縮成形し、単層の円盤状プリフォー
ムを得た。得られたプリフォームの重さは18gであっ
た。
Example 6 A polyethylene terephthalate resin (J125T, manufactured by Mitsui Chemicals, Inc.) having an intrinsic viscosity of 0.74 d1 / g was supplied to an extruder and extruded and cut under a die temperature of 270 ° C. The obtained resin block is kept in a molten state and the compression molding device 2 is used.
Set in the center of the lower mold member 4 of
Compression molding was performed at kgf / cm 2 to obtain a single-layer disc-shaped preform. The weight of the obtained preform was 18 g.

【0040】このプリフォームをガラス転移温度以上の
100℃に加熱して、端部を把握手段211(図13で
は四方向に延伸するが、本実施例では円周方向に延伸し
ている)で把持して放射状に厚みが半分、すなわち面積
延伸倍率2倍に延伸し、これを把持したまま160℃の
型部材220にセットし、60℃の締付け部材222で
フランジ部を把持した後、真空圧空成形した。更に、こ
の型部材220で3秒間のヒートセットした後、型部材
220内に挿入した90℃の雄型にシュリンクバックさ
せて冷却賦形し、周囲をトリミングして透明なトレー状
容器を得た。尚、容器寸法はフランジ外径130mm、
同内径120mm、底部外径100mm、高さ30m
m、満中内容量は280ccであった。また、材料のロ
ス率は周囲をトリミングした不要部分が14%であり、
シートから熱成形する従来の成形方法のロス率50%以
上に比べて1/3以下となり、ロス率が大幅に改善され
た。
This preform is heated to 100 ° C. which is higher than the glass transition temperature, and the end portion is grasped by a grasping means 211 (in FIG. 13, it is stretched in four directions, but in this embodiment, it is stretched in the circumferential direction). Grasping and radially halving the thickness, that is, stretching at an area stretching ratio of 2 times, setting it in the mold member 220 at 160 ° C. while holding it, and holding the flange portion by the clamping member 222 at 60 ° C. Molded. Further, after heat-setting for 3 seconds with this mold member 220, a male mold at 90 ° C. inserted in the mold member 220 was shrink-backed and cooled, and the periphery was trimmed to obtain a transparent tray-shaped container. . In addition, the container dimensions are flange outer diameter 130 mm,
Same inner diameter 120 mm, bottom outer diameter 100 mm, height 30 m
m, and the content capacity of Manchuria was 280 cc. In addition, the loss rate of the material is 14% in the unnecessary part that trimmed the periphery,
Compared with the loss rate of 50% or more in the conventional molding method in which the sheet is thermoformed, it is 1/3 or less, and the loss rate is significantly improved.

【0041】シュリンク工程まで施して耐熱性を付与し
た実施例2ら6までの容器に90℃の熱水を充填し、耐
熱性を評価したが、いずれのサンプルも見かけ上の変形
は認められなかった。また、この試験の前後での満中内
容量の変化を測定し、容積収縮率を評価したが、いずれ
も1%以下と問題とならないレベルであった。また、満
中内容量の約8分目の水を入れ、電子レンジで沸騰させ
たが同様の結果となり、十分な耐熱性が認められた。こ
れらの評価結果と材料のロス率を表1に示した。
Heat resistance was evaluated by filling hot water of 90 ° C. in the containers of Examples 2 to 6 which had been subjected to the shrinking step to impart heat resistance, but no apparent deformation was observed in any of the samples. It was In addition, the change in the full-volume content before and after this test was measured to evaluate the volumetric shrinkage rate, but all were at a level of 1% or less, which was not a problem. In addition, about 8 minutes of water in the full content was put and boiled in a microwave oven, but similar results were obtained, and sufficient heat resistance was recognized. Table 1 shows these evaluation results and the loss rate of the material.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【発明の効果】本発明の合成樹脂容器の製造方法によれ
ば、材料を無駄に破棄することなく、優れた外観、強
度、耐熱性及びガスバリアー性を有する容器を高効率で
製造することができる。
According to the method for manufacturing a synthetic resin container of the present invention, a container having excellent appearance, strength, heat resistance and gas barrier property can be manufactured with high efficiency without wasting materials. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の合成樹脂容器の製造方法の好適実施形
態における圧縮工程の開始段階を示す簡略断面図。
FIG. 1 is a simplified cross-sectional view showing a starting step of a compression step in a preferred embodiment of the method for manufacturing a synthetic resin container of the present invention.

【図2】本発明の合成樹脂容器の製造方法の好適実施形
態における圧縮工程の最終段階を示す簡略断面図。
FIG. 2 is a simplified cross-sectional view showing the final stage of the compression step in the preferred embodiment of the method for manufacturing a synthetic resin container of the present invention.

【図3】本発明の合成樹脂容器の製造方法の好適実施形
態における延伸工程並びに真空及び圧空成形工程の開始
段階を示す簡略断面図。
FIG. 3 is a schematic cross-sectional view showing a starting step of a stretching step and a vacuum and pressure forming step in a preferred embodiment of the method for producing a synthetic resin container of the present invention.

【図4】本発明の合成樹脂容器の製造方法の好適実施形
態における延伸工程並びに真空及び圧空成形工程の最終
段階を示す簡略断面図。
FIG. 4 is a simplified cross-sectional view showing the final steps of the stretching step and the vacuum and pressure forming steps in the preferred embodiment of the method for producing a synthetic resin container of the present invention.

【図5】本発明の合成樹脂容器の製造方法の好適実施形
態における後工程の最終段階を示す簡略断面図。
FIG. 5 is a simplified cross-sectional view showing a final stage of a post-process in a preferred embodiment of the synthetic resin container manufacturing method of the present invention.

【図6】本発明の合成樹脂容器の製造方法の他の実施形
態における圧縮工程の開始段階を示す簡略断面図。
FIG. 6 is a simplified cross-sectional view showing a starting step of a compression step in another embodiment of the synthetic resin container manufacturing method of the present invention.

【図7】本発明の合成樹脂容器の製造方法の他の実施形
態における圧縮工程の最終段階を示す簡略断面図。
FIG. 7 is a simplified cross-sectional view showing the final stage of the compression step in another embodiment of the synthetic resin container manufacturing method of the present invention.

【図8】本発明の合成樹脂容器の製造方法の他の実施形
態における延伸工程並びに真空及び圧空成形工程の開始
段階を示す簡略断面図。
FIG. 8 is a simplified cross-sectional view showing a starting step of a stretching step and a vacuum and pressure forming step in another embodiment of the synthetic resin container manufacturing method of the present invention.

【図9】本発明の合成樹脂容器の製造方法の他の実施形
態における延伸工程並びに真空及び圧空成形工程の最終
段階を示す簡略断面図。
FIG. 9 is a schematic cross-sectional view showing the final steps of the stretching step and the vacuum and pressure forming steps in another embodiment of the synthetic resin container manufacturing method of the present invention.

【図10】本発明の合成樹脂容器の製造方法の他の実施
形態における後工程の最終段階を示す簡略断面図。
FIG. 10 is a simplified cross-sectional view showing a final stage of a post-process in another embodiment of the synthetic resin container manufacturing method of the present invention.

【図11】本発明の合成樹脂容器の製造方法の更に他の
実施形態における圧縮工程の開始段階を示す簡略断面
図。
FIG. 11 is a simplified cross-sectional view showing a starting step of a compression step in still another embodiment of the method for manufacturing a synthetic resin container of the present invention.

【図12】本発明の合成樹脂容器の製造方法の更に他の
実施形態における圧縮工程の最終段階を示す簡略断面
図。
FIG. 12 is a simplified cross-sectional view showing the final stage of the compression step in still another embodiment of the method for manufacturing a synthetic resin container of the present invention.

【図13】本発明の合成樹脂容器の製造方法の更に他の
実施形態における延伸工程を示す簡略断面図。
FIG. 13 is a simplified cross-sectional view showing a stretching step in still another embodiment of the method for manufacturing a synthetic resin container of the present invention.

【図14】本発明の合成樹脂容器の製造方法の他の実施
形態における追加延伸工程並びに真空及び圧空成形工程
の開始段階を示す簡略断面図。
FIG. 14 is a simplified cross-sectional view showing a starting stage of an additional stretching step and a vacuum and pressure forming step in another embodiment of the synthetic resin container manufacturing method of the present invention.

【図15】本発明の合成樹脂容器の製造方法の更に他の
実施形態における追加延伸工程並びに真空及び圧空成形
工程の最終段階を示す簡略断面図。
FIG. 15 is a simplified cross-sectional view showing the final stages of the additional stretching step and the vacuum and pressure forming step in still another embodiment of the method for producing a synthetic resin container of the present invention.

【図16】本発明の合成樹脂容器の製造方法の更に他の
実施形態における後工程の最終段階を示す簡略断面図。
FIG. 16 is a simplified cross-sectional view showing the final stage of a post-process in still another embodiment of the method for manufacturing a synthetic resin container according to the present invention.

【符号の説明】[Explanation of symbols]

2:圧縮成形装置 4:下側型部材 6:上側型部材 8:合成樹脂素材 10:前成形体 18:プラグアシスト真空及び圧空成形装置 20:型部材 22:締付け部材 24:プラグ部材 26:成形空洞 36:成形体 38:容器 40:容器のフランジ 42:容器の側壁 44:容器の底壁 108:合成樹脂素材 110:前成形体 118:プラグアシスト真空及び圧空成形装置 120:型部材 126:成形空洞 202:圧縮成形装置 210:前成形体 213:延伸体 218:プラグアシスト真空及び圧空成形装置 220:型部材 222:締付け部材 224:プラグ部材 226:成形空洞 236:成形体 238:容器 240:容器のフランジ 242:容器の側壁 244:容器の底壁 2: Compression molding equipment 4: Lower mold member 6: Upper mold member 8: Synthetic resin material 10: Pre-molded body 18: Plug-assisted vacuum and pneumatic molding equipment 20: Mold member 22: Tightening member 24: Plug member 26: Molding cavity 36: molded body 38: Container 40: Flange of container 42: Side wall of container 44: Bottom wall of container 108: Synthetic resin material 110: Pre-molded body 118: Plug-assisted vacuum and air pressure molding device 120: Mold member 126: Molding cavity 202: Compression molding device 210: Pre-molded body 213: Stretched body 218: Plug Assist Vacuum and Pneumatic Forming Equipment 220: Mold member 222: Tightening member 224: Plug member 226: Mold cavity 236: molded body 238: Container 240: Flange of container 242: Side wall of container 244: Bottom wall of container

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年12月5日(2001.12.
5)
[Submission date] December 5, 2001 (2001.12.
5)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

フロントページの続き (72)発明者 江藤 誠 神奈川県横浜市保土ヶ谷区岡沢町22−4 Fターム(参考) 4F208 AA24 AG07 AG24 AH55 AH56 AH58 MA01 MA02 MA03 MA05 MA06 MB01 MC03 MC04 MG01 MG24 MH06 MH09 MK15 Continued front page    (72) Inventor Makoto Eto             22-4 Okazawa-machi, Hodogaya-ku, Yokohama-shi, Kanagawa F-term (reference) 4F208 AA24 AG07 AG24 AH55 AH56                       AH58 MA01 MA02 MA03 MA05                       MA06 MB01 MC03 MC04 MG01                       MG24 MH06 MH09 MK15

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 合成樹脂素材を圧縮成形して前成形体を
成形する圧縮成形工程と、該前成形体を熱成形して成形
体にせしめる熱成形工程とを含む、ことを特徴とする合
成樹脂容器の製造方法。
1. A synthetic method comprising: a compression molding step of compression molding a synthetic resin material to form a pre-molded body; and a thermoforming step of thermo-molding the pre-molded body to obtain a molded body. A method for manufacturing a resin container.
【請求項2】 該熱成形が真空及び/又は圧空成形であ
る、請求項1記載の合成樹脂容器の製造方法。
2. The method for producing a synthetic resin container according to claim 1, wherein the thermoforming is vacuum and / or pressure forming.
【請求項3】 該真空及び/又は圧空成形がプラグアシ
スト真空及び/又は圧空成形である、請求項2記載の合
成樹脂容器の製造方法。
3. The method for producing a synthetic resin container according to claim 2, wherein the vacuum and / or pneumatic molding is plug-assisted vacuum and / or pneumatic molding.
【請求項4】 該熱成形工程の前又はこれと同時に該前
成形体を延伸する延伸工程を含む、請求項1から3まで
のいずれかに記載の合成樹脂容器の製造方法。
4. The method for producing a synthetic resin container according to claim 1, further comprising a stretching step of stretching the preformed body before or at the same time as the thermoforming step.
【請求項5】 該熱成形工程と同時に又はその後に該成
形体をヒートセットするヒートセット工程を含む、請求
項1から4までのいずれかに記載の合成樹脂容器の製造
方法。
5. The method for producing a synthetic resin container according to claim 1, further comprising a heat setting step of heat setting the molded body simultaneously with or after the thermoforming step.
【請求項6】 該成形体をシュリンクバックし、賦形
し、冷却する後工程を含む、請求項1から5までのいず
かに記載の合成樹脂容器の製造方法。
6. The method for producing a synthetic resin container according to claim 1, further comprising a post-process of shrink-backing, shaping and cooling the molded body.
【請求項7】 該合成樹脂素材がポリエステル系樹脂か
ら成る、請求項1から6までのいずれかに記載の合成樹
脂容器の製造方法。
7. The method for producing a synthetic resin container according to claim 1, wherein the synthetic resin material is a polyester resin.
【請求項8】 合成樹脂容器がフランジと該フランジの
内縁から垂下する筒状側壁と該側壁の下端を閉じる底壁
とを有し、該側壁の少なくとも一部分は下方に向かって
内側に傾斜しているカップ乃至トレー状である、請求項
1から7までのいずれかに記載の合成樹脂容器の製造方
法。
8. A synthetic resin container has a flange, a cylindrical side wall hanging from an inner edge of the flange, and a bottom wall closing a lower end of the side wall, and at least a part of the side wall is inclined inward toward a lower side. The method for producing a synthetic resin container according to any one of claims 1 to 7, which is in the form of a cup or a tray.
【請求項9】 該合成樹脂素材が主合成樹脂とガスバリ
アー性樹脂とを含む、請求項1から8までのいずれかに
記載の合成樹脂容器の製造方法。
9. The method for producing a synthetic resin container according to claim 1, wherein the synthetic resin material contains a main synthetic resin and a gas barrier resin.
JP2001362600A 2001-11-28 2001-11-28 Method for making synthetic resin vessel Pending JP2003159743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001362600A JP2003159743A (en) 2001-11-28 2001-11-28 Method for making synthetic resin vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001362600A JP2003159743A (en) 2001-11-28 2001-11-28 Method for making synthetic resin vessel

Publications (1)

Publication Number Publication Date
JP2003159743A true JP2003159743A (en) 2003-06-03

Family

ID=19173076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001362600A Pending JP2003159743A (en) 2001-11-28 2001-11-28 Method for making synthetic resin vessel

Country Status (1)

Country Link
JP (1) JP2003159743A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005077642A1 (en) * 2004-02-16 2005-08-25 Sacmi Cooperativa Meccanici Imola Societa'cooperativa Forming containers
WO2006011612A1 (en) * 2004-07-27 2006-02-02 Toyo Seikan Kaisha, Ltd. Polyester container excellent in resistance to heat and impact, and method for production thereof
JP2006035747A (en) * 2004-07-29 2006-02-09 Toyo Seikan Kaisha Ltd Polyester vessel showing excellence in heat resistance and impact resistance and its manufacturing method
JP2006062353A (en) * 2004-07-27 2006-03-09 Toyo Seikan Kaisha Ltd Heat treatment method for flange part, its heat treatment device and manufacturing method for resin container with flange
JP2012236401A (en) * 2011-04-28 2012-12-06 Yoshino Kogyosho Co Ltd Container manufacturing method, container and container manufacturing apparatus using the method, and container
ITMO20120122A1 (en) * 2012-05-09 2013-11-10 Illycaffe Spa APPARATUS AND METHOD OF FORMING AND OBJECT SO SO REALIZED
KR101394890B1 (en) 2013-05-13 2014-05-13 디아인텍 주식회사 Mold assembly for pneumatic forming and method for manufacturing cap using the same
JP2015168462A (en) * 2014-03-06 2015-09-28 東洋製罐グループホールディングス株式会社 Method for molding synthetic resin container
JP2017518210A (en) * 2014-05-01 2017-07-06 ジーアールエイト・エンジニアリング・リミテッドGr8 Engineering Limited Blow molded container and its manufacture
WO2024074851A1 (en) * 2022-10-07 2024-04-11 Par-Pak Europe Limited A method of thermoforming plastics containers

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7658882B2 (en) 2004-02-16 2010-02-09 Sacmi Cooperativa Meccanici Imola Societa' Cooperativa Forming containers
WO2005077642A1 (en) * 2004-02-16 2005-08-25 Sacmi Cooperativa Meccanici Imola Societa'cooperativa Forming containers
US7833467B2 (en) 2004-07-27 2010-11-16 Toyo Seikan Kaisha, Ltd. Polyester container having excellent heat resistance and shock resistance and method of producing the same
JP2006062353A (en) * 2004-07-27 2006-03-09 Toyo Seikan Kaisha Ltd Heat treatment method for flange part, its heat treatment device and manufacturing method for resin container with flange
JP4561519B2 (en) * 2004-07-27 2010-10-13 東洋製罐株式会社 Heat treatment method for flange part, heat treatment apparatus for flange part, and method for producing resin container with flange
WO2006011612A1 (en) * 2004-07-27 2006-02-02 Toyo Seikan Kaisha, Ltd. Polyester container excellent in resistance to heat and impact, and method for production thereof
JP2006035747A (en) * 2004-07-29 2006-02-09 Toyo Seikan Kaisha Ltd Polyester vessel showing excellence in heat resistance and impact resistance and its manufacturing method
JP4635506B2 (en) * 2004-07-29 2011-02-23 東洋製罐株式会社 Polyester container excellent in heat resistance and impact resistance and production method thereof
JP2012236401A (en) * 2011-04-28 2012-12-06 Yoshino Kogyosho Co Ltd Container manufacturing method, container and container manufacturing apparatus using the method, and container
ITMO20120122A1 (en) * 2012-05-09 2013-11-10 Illycaffe Spa APPARATUS AND METHOD OF FORMING AND OBJECT SO SO REALIZED
US10173362B2 (en) 2012-05-09 2019-01-08 Illycaffe' S.P.A. Forming apparatus and method and object thus made
KR101394890B1 (en) 2013-05-13 2014-05-13 디아인텍 주식회사 Mold assembly for pneumatic forming and method for manufacturing cap using the same
JP2015168462A (en) * 2014-03-06 2015-09-28 東洋製罐グループホールディングス株式会社 Method for molding synthetic resin container
JP2017518210A (en) * 2014-05-01 2017-07-06 ジーアールエイト・エンジニアリング・リミテッドGr8 Engineering Limited Blow molded container and its manufacture
WO2024074851A1 (en) * 2022-10-07 2024-04-11 Par-Pak Europe Limited A method of thermoforming plastics containers

Similar Documents

Publication Publication Date Title
AU682397B2 (en) Multilayer preform used for plastic blow molding and method for making the preform
US20080044603A1 (en) Plastic multi-piece containers and methods and systems of making same
US8465817B2 (en) Polyester container
EP1213125B1 (en) Method of producing a heat-resistant resin container
JP4265122B2 (en) Multilayer bottle
JP2003159743A (en) Method for making synthetic resin vessel
JP3870867B2 (en) Method for manufacturing thermoplastic resin container
US7655179B2 (en) Heat-resistant resin container and method of producing the same
JP4239436B2 (en) Multilayer preform and multilayer bottle using the same
JP4479147B2 (en) Polyester resin container and manufacturing method thereof
JP4736169B2 (en) Heat resistant resin container and method for producing the same
JP2002137282A (en) Hollow molded object and method for manufacturing the same
JP4604660B2 (en) Polyester container and method for producing the same
JP4214685B2 (en) Manufacturing method of heat-resistant container
JP4466060B2 (en) Method for manufacturing thermoplastic resin container
JP2005280757A (en) Stackable cup-shaped container
JP4273735B2 (en) Cup-shaped polyester container
JP4449312B2 (en) Method for manufacturing thermoplastic resin container
JP4506018B2 (en) Heat and impact resistant containers
JP2007276188A (en) Molding method of flanged container
JP2004050642A (en) Manufacturing method for thermoplastic resin container
JPH0577334A (en) Multilayered thin wall container with flange and manufacture of the container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070724