JP2004268319A - Method for printing continuous fine line by flexographic printing and method for manufacturing laminate/electromagnetic wave shielding material using the former - Google Patents

Method for printing continuous fine line by flexographic printing and method for manufacturing laminate/electromagnetic wave shielding material using the former Download PDF

Info

Publication number
JP2004268319A
JP2004268319A JP2003059589A JP2003059589A JP2004268319A JP 2004268319 A JP2004268319 A JP 2004268319A JP 2003059589 A JP2003059589 A JP 2003059589A JP 2003059589 A JP2003059589 A JP 2003059589A JP 2004268319 A JP2004268319 A JP 2004268319A
Authority
JP
Japan
Prior art keywords
printing
lines
electromagnetic wave
metal film
wave shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003059589A
Other languages
Japanese (ja)
Inventor
Yuji Kuwabara
祐司 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2003059589A priority Critical patent/JP2004268319A/en
Publication of JP2004268319A publication Critical patent/JP2004268319A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To ensure that a continuous fine line whose line width is so fine as to be not more than 30 μm can be formed by flexographic printing without depending upon halftone dot printing. <P>SOLUTION: In this printing method, flexographic printing is performed using an anilox roll with not less than 800 lines/inch. In this case, the cells of the anilox roll are of a tortoise shell shape, and the angle(α) of the continuous fine line with a printing width direction and the angle(β) of the cell of the anilox roll are different so that the angles(α) and (β) do not coincide with each other. Consequently, a Moire pattern due to the interference between the anilox roll and the continuous fine line can be prevented from occurring, and also a plane unevenness of the line width due to the Moire pattern can be prevented from occurring. In addition, the flexographic printing method is used for patterning the electromagnetic wave shielding material with light transmitting properties or other laminates such as a wiring board and an electrode. Thus these laminates can be manufactured. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば線幅が30μm以下等と非常に細い細線を、フレキソ印刷で形成する印刷方法に関する。また、該細線をモアレも発生せずに形成するフレキソ印刷方法に関する。また、この印刷方法を利用した、電磁波シールド材の製造方法、或いはまた、導電性パターンや磁性パターン等として、配線基板、電極等の電磁波シールド材以外の積層体にも応用可能な積層体の製造方法に関する。
【0002】
【従来の技術】
従来、基材上に導電性や磁性を有する層をパターン状に積層する事で、その電気的性質、磁気的性質等を利用した各種の積層体が製造されている。例えば、電磁波シールド材、静電シールド材、配線基板、電極、電子部品、その他積層体等である。
【0003】
ここで、電磁波シールド材の場合を一例に挙げれば、先ず、一般的な電気機器等のハウジング等の用途では、例えば、プラスチックの成形品に対して、銅等の導電性金属の真空蒸着やメッキ、或いは、導電性塗料の塗布等で、シールド層を全面に積層するのが普通であり、また、そのシールド層は透光性も無いのが普通である。一方、窓ガラス、或いはCRT、PDP等の表示部等の用途では、透光性(透視性)も要求される為、不透明なシールド層は格子状等とパターン状に設けることで、透明性を確保している。
【0004】
上記の様な透光性も備えた電磁波シールド材を製造する方法としては、例えば次の(1)〜(3)の様な知られている。
【0005】
(1)基材には、非導電性材料だが透明性が得られるプラスチック等の透明性基材を用いて、この基材上に、導電性インキ等を、細線からなる格子柄等のパターン状にスクリーン印刷等で印刷してインキ層としてシールド層を設けることで、該インキ層の非形成部分で透光性を確保する方法。
【0006】
(2)基材上に、無電解メッキ触媒を含む触媒インキを、所望のパターン状にスクリーン印刷等で印刷後、無電解メッキを行うことで、該触媒インキ上に金属メッキ層をパターン状に形成してシールド層とする方法(特許文献1、等参照)。
【0007】
(3)基材上にシールド層とする層を最初は全面に設けておき、これをエッチング等によりパターン化する方法。例えば、銅等の金属をメッキしたり金属箔を積層したりして、基材上に導電性金属膜を全面に設けた後、この上に、エッチングレジストパターンをスクリーン印刷して、エッチングして、導電性金属膜を所望のパターンのシールド層とする方法。
【0008】
(4)また、以上に於いてシールド層のパターン化の為の印刷方式としては、一般的なスクリーン印刷を採用した方法を例示してきたが、本発明者らは、例えば100μm以下の連続した細線の形成に、フレキソ印刷を採用した方法を既に提案している(特許文献2)。
なお、フレキソ印刷は、古くから、軟包装分野、板紙、その他各種分野に於いて利用されており、樹脂製の版へのインキ供給にアニロックスロールを使用し、網点による階調画像表現もできる印刷方式として知られている(非特許文献1、等参照)。
しかし、この様なフレキソ印刷を、3色分解等の色分解を利用する等して多数の網点の集合体からなる印刷パターンの形成にでは無く、連続したパターンの細線からなる印刷パターンの形成に適用して、その細線で格子柄パターン等のシールド層を形成することで、従来にない種々の利点が得られる。それは、スクリーン印刷の場合に比べれば、連続帯状物による連続印刷、及び大面積が可能となる上、印刷方向では無限に連続した細線も可能で、しかも、生産性も向上する等の種々の利点である。なお、細線という細かいパターンの形成技術としては、フォトポリマーを使用する露光法もあるが、印刷法に比べてコスト面で不利である。
【0009】
【特許文献1】
特開平11−170420号公報
【特許文献2】
特開2002−223095号公報
【非特許文献1】
香田 裕誌監修、香田 裕誌他著、「フレキソ印刷総覧」、初版、(株)加工技術研究会、2000年11月9日
【0010】
【発明が解決しようとする課題】
以上の様に、連続細線からなるパターンの印刷に、フレキソ印刷を利用すれば、上述の如く、スクリーン印刷等では得られない種々の利点が得られるが、問題もあった。それは、印刷形成すべき連続細線の線幅が細くなる程、印刷版上での連続細線の線幅に対して、実際に印刷された印刷物上での連続細線の線幅が大きくなるという、線幅の太り傾向が大きくなるという問題であった。
【0011】
この線幅の太りが問題となるのは、具体的には、例えば、透光性の電磁波シールド材で言えば、その透光性の更なる向上の為に、可能な限り細い連続細線(例えば30μm以下等)を断線も起こさずに印刷しようとするときである。透光性の電磁波シールド材は、建築物の窓用途等もそうであるが、特にPDP等のディスプレイ用途では、連続細線によってもたらされる透光性は、表示の視認性及び表示品質に直接影響する重要な特性だからである。
【0012】
すなわち、本発明の課題は、多数の網点の集合体によらない連続細線を、印刷時の線幅の太りを減らして、フレキソ印刷で可能な限り細く印刷形成できる様にすることである。そして、そのフレキソ印刷技術を利用して、基材上に連続細線からなるシールド層を積層した電磁波シールド材等の、積層体の製造方法を提供することでもある。
【0013】
【課題を解決するための手段】
上記課題を解決すべく、本発明では、フレキソ印刷にて、連続した細線を印刷する方法において、該フレキソ印刷のアニロックスロールの線数を、800線/インチ以上の線数にて印刷する、フレキソ印刷による連続細線の印刷方法とした。
また、本発明の印刷方法のより好ましい形態は、(印刷形成された)線幅が30μm以下の連続細線を印刷する場合である。
なお、「連続細線」なる表現のうち「連続」とは、従来の階調画像印刷等で利用される多数の網点の集合体として印刷形成された線では無い事を、区別する意味での表現である。
【0014】
この様な構成することで、連続細線を、線の太りを減らして印刷できる。特に線幅30μm以下の場合では、この効果が顕著に得られる。従って、線幅30μm以下の連続細線の印刷形成も可能となる。
【0015】
また、本発明のフレキソ印刷による連続細線の印刷方法は、上記方法に於ける、より好ましい形態として、更に、アニロックスロールのセル形状が亀甲型であり、且つ連続細線の印刷幅方向に対する角度αと、アニロックスロールのセルの印刷幅方向に対する角度βとを、異なる角度とする様にした。
この様にすることで、連続細線のパターンとアニロックスロールのセル配列との干渉によるモアレ発生を防げ、ムラの無い均一な線幅の連続細線が容易に印刷できる様になる。
【0016】
また、本発明の積層体の製造方法では、上記いずれかの印刷方法を連続細線のパターン形成に利用する製造方法であり、パターン形成の形態に応じて、次の3形態がある。
【0017】
先ず、第一の形態による積層体の製造方法(この方法を説明の便宜上、「A法」と呼ぶことにする。以下同様。)では、基材上に、導電性インキ及び/又は磁性インキを、上記いずれかの印刷方法にて、パターン状に印刷する事で、基材上に導電性インキ層及び/又は磁性インキ層を積層した積層体を製造する様にした。
なお、上記表現に於いて、前と後ろの各々の「及び/又は」の相互関係は、当然の事だが、導電性インキには導電性インキ層が対応し、磁性インキには磁性インキ層が対応する。
【0018】
次に、第二の形態による積層体の製造方法(B法)では、基材上に接着剤を介して、導電性金属膜を積層し、該導電性金属膜の表面に、前記いずれかの印刷方法にて、レジストパターンを形成し、しかる後、エッチング処理により、レジストパターンで被覆されていない導電性金属膜の部分を除去することで、基材上にパターン状の導電性金属膜が積層された積層体を製造する様にした。
【0019】
次に、第三の形態による積層体の製造方法(C法)では、基材上に、無電解メッキ触媒を含む触媒インキ層を、前記いずれかの印刷方法にて、パターン状に形成した後、無電解メッキにより、前記触媒インキ層上に金属メッキ層として導電性金属膜或いは磁性金属膜を形成し積層する様にした。
【0020】
以上の様な積層体の製造方法とすることで、そのいずれの形態に於いても、前記した本発明のフレキソ印刷による連続細線の印刷方法で得られる効果を、享受できる。すなわち、線幅の細い連続細線、特に線幅30μm以下の細線でも形成できる。また、連続細線の角度αと、アニロックスロールのセルの角度βとによるモアレ発生も防げる。これらの結果、ムラの無い均一な線幅の連続細線を形成できる。
【0021】
そして、本発明の電磁波シールド材の製造方法では、上記積層体の製造方法の3形態(A法、B法、C法)のいずれかの形態を利用して、積層体構造となる電磁波シールド材を製造する様にしたものである。
【0022】
この様な電磁波シールド材の製造方法とすることで、そのシールド性能を担うシールド層に対して、前記した本発明のフレキソ印刷による連続細線の印刷方法で得られる効果を、享受できる。すなわち、線幅の細い連続細線、特に線幅30μm以下の細線でも形成できる。従って、透光性に優れたものを製造できる。また、連続細線の角度αと、アニロックスロールのセルの角度βとによるモアレ発生も防げ、ムラの無い均一な線幅の連続細線を形成できるので、透光性の電磁波シールド材とした場合等では視覚的にも高品質のものが得られる。
【0023】
【発明の実施の形態】
以下、本発明について、実施の形態を説明する。
【0024】
〔1.フレキソ印刷による連続細線の印刷方法〕
先ず、図1は、本発明の対象となる連続細線Lのパターン例と、アニロックスロールの亀甲型のセルCの例と、前記連続細線の印刷幅方向に対する角度αと、アニロックスロールのセルの同じく印刷幅方向に対する角度βとの、角度関係を説明する説明図(平面図)である。なお、図1中、印刷方向(MD)は、図面上向きの白抜き矢印で示した方向であり、印刷幅方向(TD)は、この白抜き矢印に直角の方向となる。
【0025】
図1の如く、本発明でいう連続細線Lは、多数の網点の集合体によらない線である。そして、本発明では、アニロックスロールとして、特にその線数が800線/インチ以上のものを使用する。これによって、連続細線の線幅Wが、(印刷後に於いて)特に30μm以下のものでも、線幅の太りが比較的少なく印刷形成できる様になる。なお、30μm以下が可能とは言っても、現在のところ1μmもの極細の細線までは難しい。線幅の下限は、各種条件にもよるが、現状では大よそ10μm程度までは可能である事を確認した。
【0026】
例えば、実施例及び比較例の結果を示した表2の如く、フレキソ印刷版の版面上では連続細線の線幅が同じ15μであっても、印刷されると線幅が太る。その結果、アニロックスロールの線数が800線/インチのときは、印刷後の連続細線の線幅は27.3μm、1000線/インチのときのは23.3μm、1200線/インチのときは21.7μmと、30μm以下の線幅をフレキソ印刷で形成できる。これに対して、アニロックスロールの線数が800線/インチから、僅か100線/インチ分粗いだけの、700線/インチの場合は、印刷後の連続細線の線幅は47.5μmと、800線/インチのときの線幅27.3μmに対して、線幅が太る傾向が急激に強くなり、30μm以下の連続細線を印刷形成できなくなる。以上の如く、アニロックスロールの線数は800線/インチ以上とすれば、線幅30μm以下の連続細線をフレキソ印刷で形成できることがわかる。なお、ここではセル形状が亀甲型のアニロックスロールを用いた。また、800線/インチ以上と線数の細かいアニロックスロールは、表面がセラミックス製のものがレーザー彫刻等によって容易にセルを形成できる等の点で好適である。
【0027】
なお、アニロックスロールの線数の表現に於いて、現在でも慣用的に使用されている関係上、旧単位系の「インチ」を含む表現としたが、もしも、新SI単位系で表現するならば、800線/インチは315線/cmに該当する。
【0028】
ところで、本発明の対象となる連続細線は、その連続細線が成すパターン形状については、特に限定は無く、用途に応じたものとなる。例えば、図1に例示の連続細線Lは、2方向に直交(図面に対しては傾斜している)する多数の連続細線で、且つ正方格子状のパターンを成す場合の一例である。この様な線間に開口部を有するパターンは、例えば、PDP等のディスプレイや建築物窓用途等の電磁波シールド材に、透光性を付与するのに好適なパターンである。
また、連続細線の成すパターン形状は、正方格子状以外では、三角格子、六角格子、ストライプ、煉瓦積み模様等、正多角形、非多角形等、その他形状等であり、むしろ、配線基板や電極等では所謂配線パターン形状等となる。
【0029】
一方、アニロックスロールには、そのセル形状として従来から各種形状が知られている。例えば、ピラミッド型、格子型、斜線型、亀甲型等である。なお、これらセルの立体形状は、ピラミッド型が四角錐、格子型が四角錐台、斜線型が断面V字形の溝形状、亀甲型が六角錐である。これらのうち、従来の網点による階調画像印刷等で一般的なのは、ピラミッド型のセルである。しかし、本発明では網点の集合体として細線を印刷するのでは無いので、このピラミッド型が最適とは限らない。
【0030】
そこで、本発明者は、これらを比較研究したところ、亀甲型のセルが最適であることを見出した。
表1は、アニロックスロールの各種セル形状と、インキ転移性、モアレの発生のしにくさの関係を、比較したものである。なお、表1中、◎は優秀、○は良好、△はやや良好、×は不良を示す。インキ転移性であれば、×から◎にいくに従って、インキ転移性は良くなる。モアレの発生のしにくさであれば、×から◎にいくに従って、モアレは発生しにくくなる。
【0031】
【表1】

Figure 2004268319
【0032】
表1如く、セル形状が従来から一般的に多用されているピラミッド型では、インキ転移性が悪い上に、モアレもどちらかと言うと発生し易い。一方、格子型はピラミッド型に比べてインキ転移性はやや良くなるが、モアレの発生し難さは同じである。インキ転移性の点では、斜線型が非常に優れているが、モアレは非常に発生し易い。一方、亀甲型はインキ転移性は斜線型程では無いが良好であり、しかも、モアレも発生し難く。この様に、亀甲型が連続細線の印刷には適していることが分かる。
【0033】
ところで、亀甲型はモアレが一番発生しにくいとは言え、全く無制限に使用したのでは、やはりモアレが発生することもある。そこで、モアレが発生しない様にするには、好ましくは、図1の如く、連続細線の印刷幅方向に対する角度αと、アニロックスロールの亀甲型のセルの印刷幅方向に対する角度βとが、一致しない様に異なる角度関係(α≠β)とすると良い。α及びβの角度は、これらの角度関係が異なれば、後は、形成すべき連続細線の用途等を考慮して任意で良い。
なお、亀甲型のセルに於いて、セルの角度βとは、図1の如く、隣り合うセルの中心点同士を結んだ線と、印刷幅方向に対する角度である。具体的には、例えば、連続細線の角度αを75度、セルの角度βを60度等と、異なる角度関係とすると良い。
なお、モアレが発生すると、連続細線の太り具合が、モアレ模様に従って面的に太めの領域と、そうでない領域とが発生して、均一な線幅の連続細線が形成できなくなる。
【0034】
なお、ここまで説明してきたフレキソ印刷方法が、その利用分野が限定されるものではない。その利用分野として、これから、電磁波シールド材等を含む積層体の製造方法を説明するが、以下の説明に限定されるものでもない。
それは、本フレキソ印刷方法は、例えば、電磁波シールド材、配線基板、電極等の各種の積層体、その他物品に対して、従来では性能面、或いはコスト面で、工業製品としては不十分であったもの、或いは全く工業製品として成り立たなかったものを、実用可能ならしめるという効果は、本方法の利用分野に於いて奥行きが深いからである。特に、ナノテクノロジー等、微細加工技術が一段と脚光を浴びている昨今に於いては、この様な印刷技術は、微細加工技術の基盤技術として極めて重要な技術だからである。
【0035】
〔2.積層体、電磁波シールド材の製造方法〕
次に、上述した如きフレキソ印刷方法の利用形態の具体例として、電磁波シールド材等の積層体の製造方法について説明する。積層体としては各種あり得るが、その一つとして電磁波シールド材がある。そこで、電磁波シールド材の製造方法と、積層体の製造方法を、纏めて説明する。
【0036】
ところで、本明細書にて、電磁波シールド材等の積層体の製造方法として取上げる方法は、前述の如く、A法、B法、C法の3方法であるが、これら各方法に於いて、上述したフレキソ印刷の利用(工程)部分以外の構成要素についは、従来から知られている公知の方法である。しかし、該構成要素がこれら公知の方法であっても、上述フレキソ印刷方法を適用することによって、工業製品として新たに実用可能ならしめるという効果を有する方法でもある。
【0037】
〔2.1 A法〕
先ず、A法は、上述した如きフレキソ印刷方法にて、基材上に導電性インキ及び/又は磁性インキを連続細線からなるパターン状に印刷して、インキ層として導電性インキ層及び/又は磁性インキ層を積層することで、積層体、或いは、電磁波シールド材を製造する方法である。
【0038】
ここで、図2(A)の断面図で、このA法で得られる、電磁波シールド材等の積層体を、その一形態で例示する。電磁波シールド材等の積層体10は、基材1の片面に、インキ層2として導電性インキ層や磁性インキ層が、連続細線からなるパターン状に形成された構成である。なお、インキ層2は、基材1の両面にあっても良いが、電磁波シールド材の場合は、通常、基材の片面である。
【0039】
基材1としては、基本的にはフレキソ印刷を適用できる様な形状、材料であれば特に限定は無い。基材は、製造する積層体の用途に応じたものを用いれば良い。例えば、基材は、樹脂板(乃至はフィルムやシート)、セラミックス、琺瑯、ガラス繊維等による繊維強化樹脂板、樹脂成形物等である。
【0040】
例えば、積層体として、透光性も備えた電磁波シールド材を製造するのであれば、基材は、透明な物であれば良い。この様な透明な基材としては、その材料は、ポリエステル樹脂、アクリル樹脂、ポリカーボネート樹脂、スチレン樹脂、或いは、ポリプロピレン、ポリエチレン、ポリブテン、ポリメチルペンテン等のポリオレフィン系樹脂等の樹脂材料、或いはガラス等の無機材料が使用される。なお、基材の形状は、通常はシート(フィルム)、平板等である。シートや平板の厚さは、特に制限は無いが、電磁波シールド材では、用途によるが、例えばシートでは50〜500μm、板では1〜10mm等である。
【0041】
なお、ここで、基材ついて説明したことは、他のB法、C法に於ける基材についても同様であるので、B法、C法では、そこで使用する基材についての説明は省略する。
【0042】
次に、導電性インキ層と磁性インキ層であるが、導電性インキ層は導電性インキを用いて形成し、磁性インキ層は磁性インキを用いて形成するが、導電性インキを印刷し且つ磁性インキも印刷して、導電性インキ層と磁性インキ層の両層を形成しても良い。
【0043】
導電性インキとしては、金属粒子等の導電性を持つ導電性粒子を分散させた公知のインキを使用すれば良い。上記金属粒子としては、金、銀、銅、アルミニウム、鉄、ニッケル等が使用できる。また導電性粒子として、必要に応じカーボンブラック、黒鉛等の非金属粒子を添加、分散したインキを使用することもできる。導電性粒子の形状とは、球形、多面体でも良いが、好ましくは、鱗片形、針形の方が粒子間の導通の点で望ましい。インキのバインダー樹脂としては、基材の材質、要求物性等に応じた公知の樹脂が適宜使用される。例えば、バインダー樹脂としては、2液硬化型ウレタン樹脂等のウレタン樹脂、エポキシ樹脂、アクリル樹脂、アルキド樹脂、ポリエステル樹脂、或いは紫外線や電子線で硬化させる電離放射線硬化性樹脂等を、一種又は二種以上の混合樹脂として用いる。特に、バインダー樹脂として電離放射線硬化性樹脂は、無溶剤型インキも可能な為、導電性粒子をインキ中に高含有できる点で好ましい樹脂である。なお、インキ中には、通常、導電性粒子及びバインダー樹脂の他、必要に応じその他公知の添加剤、また溶剤乾燥型インキとする場合には、イソプロピルアルコール等の適宜な溶剤を含ませる。
【0044】
また、磁性インキとしては、上記導電性インキに於いて、導電性粒子の代わりに磁性粒子を分散させたインキを使用すれば良い。磁性粒子としては、軟磁性体、フェライト等の粒子が使用できる。軟磁性体としては、軟鉄、ケイ素鋼、パーマロイ、センダスト等の高透磁率金属等が用いられ、フェライトとしては、Ni−Znフェライト、Mn−Znフェライト等が用いられる。
【0045】
〔2.2 B法〕
B法は、基材上に接着剤を介して導電性金属膜を積層し、この導電性金属膜の表面に、前述した如きフレキソ印刷方法にて連続細線からなるレジストパターンを形成し、しかる後、エッチング処理にて、レジストパターンで被覆されていない導電性金属膜の部分を除去することで、基材上にパターン状の導電性金属膜が積層された、積層体、或いは、電磁波シールド材を製造する方法である。
【0046】
ここで、図2(B)の断面図で、このB法で得られる、電磁波シールド材等の積層体を、その一形態で例示する。同図の電磁波シールド材等の積層体10は、基材1の片面に、接着剤(層)3を介して、連続細線からなるパターン状に導電性金属膜4が積層された構成である。なお、同図では、導電性金属膜4上に、そのエッチング処理時のレジストパターン5を除去せずに残した構成でもある。なお、導電性金属膜4等は基材1の両面に形成しても良いが、電磁波シールド材の場合、通常は、基材の片面である。
【0047】
導電性金属膜4としては、導電性を有し、更にエッチングできる金属膜(箔)であれば特に制限は無く、用途に応じたものを適宜使用すれば良く、具体的には、例えば、銅、アルミニウム等の導電性金属箔を用いる。導電性金属膜(箔)の厚みは、用途等に応じたものとすれば良いが、30μm以下等と細い線幅を精度良く得るには、なるべく薄く、線幅にもよるが、例えば20μm以下、より好ましくは10μm以下とするのが良い。
【0048】
導電性金属膜は、エッチング処理の前段階では、通常は基材の全面に、導電性金属箔として接着剤(層)3で積層した状態となっている。基材と導電性金属箔との積層は、公知の方法、例えば一般的にはドライラミネーション法が用いられる。なお、導電性金属箔の不要部分がエッチング除去された部分では、図2(B)に例示の様に、通常は接着剤層3が残存する。
【0049】
接着剤層3に用いる接着剤には、用途に応じた公知の接着剤を適宜使用すれば良い。例えば、ウレタン樹脂系、エポキシ樹脂系等の硬化型接着剤、或いは、熱可塑性樹脂系接着剤、ゴム系接着剤等である。
【0050】
レジストパターン5は、導電性金属膜5を所望のパターンにする為のエッチングレジストであり、前述フレキソ印刷方法で形成する。このレジストパターン5は、図2(B)に例示の如く、エッチング処理後も、導電性金属膜4上に残すことで、導電性金属膜4に対する保護層等として機能させることもできる。レジストパターンの形成に用いるインキは、フレキソ印刷できるものであれば特に制限は無く、例えば、樹脂系、溶剤系(無溶剤)等は適宜選択すれば良い。例えば、樹脂系では、ウレタン樹脂系、エポキシ樹脂系、或いは、紫外線等の電離放射線で硬化する電離放射線硬化性樹脂系等のインキを使用する。また、レジストパターン5は着色剤添加で着色層としても良い。
なお、導電性金属膜のエッチング処理は、公知のエッチング液で行えば良く、例えば導電性金属膜の金属が銅の場合では、一般的には、塩化第二鉄溶液、塩化銅溶液等を用いる。
【0051】
〔2.3 C法〕
C法は、前述した如きフレキソ印刷方法にて、基材上に無電解メッキ触媒を含む触媒インキ層をパターン状に形成した後、無電解メッキにより前記触媒インキ層上に金属メッキ層として導電性金属膜或いは磁性金属膜を前記パターン状に形成し積層することで、積層体、或いは、電磁波シールド材を製造する方法である。
【0052】
ここで、図2(C)の断面図で、このC法で得られる、電磁波シールド材等の積層体を、その一形態で例示する。同図の電磁波シールド材等の積層体10は、基材1の片面に、無電解メッキ触媒を含む触媒インキ層6が連続細線からなるパターン状に形成され、この触媒インキ層6上に更に、導電性金属膜或いは磁性金属膜の無電解メッキによる金属メッキ層7が形成された構成である。なお、金属メッキ7等は基材1の両面に形成しても良いが、電磁波シールド材の場合、通常は、基材の片面である。
【0053】
触媒インキ層6の形成に用いる触媒インキは、無電解メッキ触媒が添加されたインキであり、該電解メッキ触媒としては、パラジウム、金、銀、白金等の貴金属のコロイド状の微粒子等であり、なかでもパラジウムが代表的には用いられる。
なお、パラジウムのコロイド粒子を用いる場合、該コロイド粒子と反対の表面電荷を有する粒子として微細アルミナゲル、シリカゲル等の触媒担持体に、該コロイド粒子を担持させて用いることが望ましい。それは、パラジウムコロイド粒子が、触媒インキ層の表面に露出し易くなる上、触媒インキにチキソトロピー性を与え、細線輪郭のインキ切れをシャープにし、滲みや太りを減らせるからである。
【0054】
なお、触媒インキのバインダー樹脂としては、インキとして公知の樹脂、例えば、2液硬化型ウレタン樹脂等のウレタン樹脂、エポキシ樹脂、アクリル樹脂、アルキド樹脂、ポリエステル樹脂等を一種又は二種以上の混合樹脂として用いる。また、触媒インキは、バインダー樹脂、無電解メッキ触媒、及び、適宜な溶剤の他、印刷適性等の物性調整の為、必要に応じ適宜、公知の体質顔料、界面活性剤、着色剤等の添加剤を添加することができる。
【0055】
触媒インキ層6上に、無電解メッキにより形成する金属メッキ層5は、導電性を有する導電性金属膜、或いは磁性を有する磁性金属膜として形成する。この様な金属メッキ層を無電解メッキで形成するには、用途に応じた公知の無電解メッキ浴によって行えば良い。金属メッキ層の金属としては、注目する性質が導電性であるか或いは磁性であるかにより、導電性金属或いは磁性金属として導電性或いは磁性を確保できる金属であれば特に制限は無く、例えば、銅、鉄、ニッケル、クロム、銀、金、白金、コバルト等である。
【0056】
【実施例】
次に実施例及び比較例により本発明を更に説明する。
【0057】
〔実施例1〕
図2(B)の如き断面図の構成で、透光性を有する電磁波シールド材となる積層体10を、B法によって、次の様にして作製した。
【0058】
先ず、易接着処理された透明なポリエチレンテレフタレートフィルム(厚さ100μm)からなる基材1の片面に、導電性金属膜4として厚さ4μmの圧延銅箔を、2液硬化型ウレタン樹脂系接着剤による接着剤層3によってラミネートした。
この後、導電性金属膜4上に、エポキシアクリレート系で顔料としてカーボンブラックを含有(顔料/ビヒクル比:約25%)する紫外線硬化型のレジストインキをフレキソ印刷した後、紫外線照射して該インキを硬化させて、図1の様な連続細線からなる正方格子状のレジストパターン5を印刷形成した。レジストパターンの線幅は、23.3μmと30μm以下に出来た。アニロックスロールの線数と、印刷された連続細線の線幅との関係を、表2に纏めて示す。
【0059】
なお、上記フレキソ印刷の印刷条件は、アニロックスロールにはセラミックスロールを用い、その線数は1000線/インチ、セル形状は亀甲型、印刷幅方向に対するセルの角度βは60度である。また、連続細線は、フレキソ印刷版の版面上では、連続細線Lの線幅Wは15μm、線間スペースSは250μmで、印刷幅方向に対する連続細線の角度αは75度である。この角度αと前記角度βとは15度角度が異なる。
【0060】
上記の様にして得られた印刷物を、50℃の塩化第二鉄水溶液に約30秒間浸漬し、レジストパターン非形成部分に露出した導電性金属膜を溶解、除去して、電磁波シールド材として積層体を作製した。この電磁波シールド材は、高透光性を有し、1GHz以下、及び1〜5GHzの周波数域で、それぞれ40〜50dBの電磁波シールド性能を有するものであった。
【0061】
〔実施例2〕
実施例1に於いて、アニロックスロールの線数を1200線/インチに変更した他は、実施例1と同様にして、積層体として電磁波シールド材を作製した。印刷形成されたレジストパターンの連続細線の線幅は、21.7μmと30μm以下のものが得られ、良好であった。
【0062】
〔実施例3〕
実施例1に於いて、アニロックスロールの線数を800線/インチに変更した他は、実施例1と同様にして、積層体として電磁波シールド材を作製した。印刷形成されたレジストパターンの連続細線の線幅は、27.3μmと30μm以下のものが得られ、良好であった。
【0063】
〔比較例1〕
実施例1に於いて、アニロックスロールの線数を700線/インチに変更した他は、実施例1と同様にして、積層体として電磁波シールド材を作製した。印刷形成されたレジストパターンの連続細線の線幅は、47.5μmと極端に太くなってしまった。
【0064】
【表2】
Figure 2004268319
【0065】
【発明の効果】
(1)本発明のフレキソ印刷による連続細線の印刷方法によれば、連続細線を、印刷時の線の太りを減らして印刷できる。特に線幅30μm以下の場合では、この効果が顕著に得られ、従って、線幅30μm以下の連続細線の印刷形成も可能となる。
(2)更に、アニロックスロールのセル形状が亀甲型であり、且つ、印刷幅方向に対する、連続細線の角度αと、アニロックスロールのセルの角度βとを、一致させない異なる角度とすれば、連続細線のパターンとアニロックスロールのセル配列との干渉によるモアレ発生を防げ、ムラの無い均一な線幅の連続細線を印刷できる。
(3)また、本発明の積層体の製造方法、或いは電磁波シールド材の製造方法の各方法(A法、B法、C法)では、その連続細線に於いて、上記(1)や(2)の効果が得られる。従って、電磁波シールド材では、透光性に優れたものを製造でき、また、モアレ発生も防げるので、ムラの無い均一な線幅の連続細線を形成でき、透光性の電磁波シールド材の製造に於いては、視覚的にも高品質のものが得られる。
【図面の簡単な説明】
【図1】本発明で形成する連続細線のパターン例と、その印刷幅方向に対する角度αと、アニロックスロールのセルの印刷幅方向に対する角度βの角度関係を説明する説明図。
【図2】積層体の各種構成例を例示する断面図。
【符号の説明】
1 基材
2 インキ層
3 接着剤層
4 導電性金属膜
5 レジストパターン
6 触媒インキ層
7 金属メッキ層
10 電磁波シールド材、乃至は積層体
C アニロックスロールのセル
L 連続細線
S 線間スペース
W 線幅
α 連続細線が印刷幅方向と成す角度
β アニロックスロールのセルが印刷幅方向と成す角度[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a printing method for forming a very thin thin line having a line width of 30 μm or less by flexographic printing. Further, the present invention relates to a flexographic printing method for forming the thin line without generating moiré. In addition, a method of manufacturing an electromagnetic wave shielding material using this printing method, or a method of manufacturing a laminate that can be applied to a laminate other than an electromagnetic wave shielding material such as a wiring board or an electrode as a conductive pattern or a magnetic pattern. About the method.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, various types of laminates have been manufactured by laminating a layer having conductivity or magnetism on a base material in a pattern and utilizing the electrical properties, magnetic properties, and the like. For example, it is an electromagnetic wave shielding material, an electrostatic shielding material, a wiring board, an electrode, an electronic component, and other laminates.
[0003]
Here, taking the case of an electromagnetic wave shielding material as an example, first, in applications such as a housing of a general electric device, for example, vacuum deposition or plating of a conductive metal such as copper on a plastic molded product. Alternatively, a shield layer is usually laminated on the entire surface by applying a conductive paint or the like, and the shield layer is usually not translucent. On the other hand, in applications such as window glass or display units such as CRTs and PDPs, translucency (transparency) is also required. Therefore, by providing an opaque shield layer in a grid or the like and in a pattern, transparency is provided. Have secured.
[0004]
The following methods (1) to (3) are known as a method of manufacturing an electromagnetic wave shielding material having the above-mentioned light transmissivity.
[0005]
(1) A non-conductive material, such as plastic, is used as the base material, but a transparent base material such as plastic is used. A conductive ink or the like is formed on the base material in a pattern such as a grid pattern made of fine wires. A screen layer or the like to provide a shield layer as an ink layer, thereby ensuring light-transmitting properties in a portion where the ink layer is not formed.
[0006]
(2) A catalyst ink containing an electroless plating catalyst is printed on a substrate in a desired pattern by screen printing or the like, and then electroless plating is performed to form a metal plating layer on the catalyst ink in a pattern. A method of forming a shield layer (see Patent Document 1, etc.).
[0007]
(3) A method in which a layer serving as a shield layer is first provided on the entire surface of the base material, and this is patterned by etching or the like. For example, by plating a metal such as copper or laminating a metal foil, a conductive metal film is provided on the entire surface of the base material, and then an etching resist pattern is screen-printed thereon and etched. A method in which a conductive metal film is used as a shield layer having a desired pattern.
[0008]
(4) In the above description, as a printing method for patterning the shield layer, a method employing general screen printing has been exemplified. However, the present inventors have proposed, for example, a continuous fine line of 100 μm or less. A method that employs flexographic printing has already been proposed for the formation of (Patent Document 2).
In addition, flexographic printing has long been used in the field of flexible packaging, paperboard, and various other fields. Anilox rolls are used to supply ink to resin plates, and gradation images can be expressed by halftone dots. It is known as a printing method (see Non-Patent Document 1, etc.).
However, such flexographic printing is not used to form a print pattern composed of an aggregate of many halftone dots by utilizing color separation such as three-color separation, but to form a print pattern composed of a continuous pattern of fine lines. By forming a shield layer such as a lattice pattern with the fine wires by applying the method described above, various unprecedented advantages can be obtained. Compared with screen printing, continuous printing with continuous strips and large area are possible, and infinitely continuous fine lines are possible in the printing direction, and various advantages such as improved productivity are also achieved. It is. As a technique for forming a fine pattern such as a fine line, there is an exposure method using a photopolymer, but it is disadvantageous in cost as compared with a printing method.
[0009]
[Patent Document 1]
JP-A-11-170420
[Patent Document 2]
JP-A-2002-223095
[Non-patent document 1]
Supervision of Hiroshi Kota, Hiroshi Kota et al., "Flexographic Printing Directory", First Edition, Processing Technology Research Group, November 9, 2000
[0010]
[Problems to be solved by the invention]
As described above, if flexographic printing is used to print a pattern consisting of continuous fine lines, various advantages not obtained by screen printing or the like can be obtained as described above, but there are problems. That is, as the line width of the continuous thin line to be printed is thinner, the line width of the continuous thin line on the printed material actually printed becomes larger than the line width of the continuous thin line on the printing plate. The problem is that the tendency to increase the width increases.
[0011]
The problem of the increase in the line width is, specifically, for example, in the case of a translucent electromagnetic wave shielding material, in order to further improve the translucency, a continuous thin wire as thin as possible (for example, (For example, 30 μm or less) when printing is to be performed without causing disconnection. The light-transmitting electromagnetic wave shielding material is also used for windows of buildings and the like, but particularly for display applications such as PDPs, the light transmission provided by continuous fine lines directly affects the visibility and display quality of the display. This is an important characteristic.
[0012]
That is, an object of the present invention is to make it possible to form a continuous thin line, which does not depend on an aggregate of many halftone dots, as thin as possible by flexographic printing by reducing the line width at the time of printing. Another object of the present invention is to provide a method for manufacturing a laminate such as an electromagnetic wave shielding material obtained by laminating a shield layer made of a continuous fine wire on a base material by utilizing the flexographic printing technique.
[0013]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a method for printing continuous thin lines by flexographic printing, wherein the number of lines of the anilox roll in the flexographic printing is printed at a line number of 800 lines / inch or more. A printing method for continuous fine lines by printing was used.
Further, a more preferable embodiment of the printing method of the present invention is a case where a continuous fine line having a line width (printed) of 30 μm or less is printed.
The term “continuous” in the expression “continuous thin line” is used to distinguish that it is not a line printed and formed as an aggregate of many halftone dots used in conventional gradation image printing and the like. It is an expression.
[0014]
With such a configuration, continuous thin lines can be printed with reduced line thickness. In particular, when the line width is 30 μm or less, this effect is remarkably obtained. Therefore, it is possible to print and form continuous fine lines having a line width of 30 μm or less.
[0015]
In the method for printing continuous fine lines by flexographic printing of the present invention, as a more preferred form in the above method, further, the cell shape of the anilox roll is turtle-shaped, and the angle α to the printing width direction of the continuous fine lines is The angle β of the cells of the anilox roll with respect to the printing width direction is set to be different.
By doing so, it is possible to prevent the occurrence of moiré due to interference between the pattern of the continuous fine lines and the cell arrangement of the anilox roll, and it is possible to easily print continuous fine lines having a uniform line width without unevenness.
[0016]
Further, the method for manufacturing a laminate according to the present invention is a manufacturing method in which any one of the printing methods described above is used for forming a pattern of a continuous thin line, and there are the following three forms depending on the form of the pattern formation.
[0017]
First, in the method for producing a laminate according to the first embodiment (this method will be referred to as “method A” for convenience of description, and the same applies hereinafter), a conductive ink and / or a magnetic ink is formed on a substrate. By printing in a pattern by any one of the printing methods described above, a laminate in which a conductive ink layer and / or a magnetic ink layer were laminated on a substrate was manufactured.
In addition, in the above expression, the mutual relationship between the front and rear "and / or" is, of course, the conductive ink layer corresponds to the conductive ink, and the magnetic ink layer corresponds to the magnetic ink. Corresponding.
[0018]
Next, in the method for producing a laminate according to the second embodiment (method B), a conductive metal film is laminated on a substrate via an adhesive, and the surface of the conductive metal film is coated with any one of the above-described ones. A resist pattern is formed by a printing method, and thereafter, a portion of the conductive metal film that is not covered with the resist pattern is removed by etching, so that a patterned conductive metal film is laminated on the base material. The manufactured laminated body was manufactured.
[0019]
Next, in the method for producing a laminate according to the third embodiment (method C), a catalyst ink layer containing an electroless plating catalyst is formed on a substrate in a pattern by any of the printing methods described above. A conductive metal film or a magnetic metal film was formed as a metal plating layer on the catalyst ink layer by electroless plating and laminated.
[0020]
By adopting the method for manufacturing a laminate as described above, in any of the embodiments, the effects obtained by the above-described method for printing continuous thin lines by flexographic printing of the present invention can be enjoyed. That is, a continuous thin line having a small line width, particularly a thin line having a line width of 30 μm or less can be formed. Further, moire can be prevented from occurring due to the angle α of the continuous fine line and the angle β of the cell of the anilox roll. As a result, a continuous fine line having a uniform line width without unevenness can be formed.
[0021]
In the method of manufacturing an electromagnetic wave shielding material according to the present invention, the electromagnetic wave shielding material having a laminated structure is formed by using any one of the three forms (Method A, Method B, and Method C) of the method for manufacturing a laminated body. Is to be manufactured.
[0022]
By adopting such a method of manufacturing an electromagnetic wave shielding material, it is possible to enjoy the effect obtained by the above-described method of printing a continuous fine wire by flexographic printing of the present invention on the shield layer having the shielding performance. That is, a continuous thin line having a small line width, particularly a thin line having a line width of 30 μm or less can be formed. Therefore, a product excellent in light transmittance can be manufactured. In addition, moire can be prevented from occurring due to the angle α of the continuous thin wire and the angle β of the cell of the anilox roll, and a continuous thin wire having a uniform line width without unevenness can be formed. Visually high quality can be obtained.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0024]
[1. Flexographic printing method for continuous fine lines]
First, FIG. 1 shows an example of a pattern of a continuous thin line L which is an object of the present invention, an example of a turtle-shaped cell C of an anilox roll, an angle α of the continuous thin line with respect to a printing width direction, and a cell of an anilox roll. FIG. 3 is an explanatory diagram (plan view) illustrating an angle relationship with an angle β with respect to a printing width direction. In FIG. 1, the printing direction (MD) is a direction indicated by a white arrow pointing upward in the drawing, and the printing width direction (TD) is a direction perpendicular to the white arrow.
[0025]
As shown in FIG. 1, a continuous thin line L according to the present invention is a line that does not depend on an aggregate of many halftone dots. In the present invention, an anilox roll having a line number of 800 lines / inch or more is used. As a result, even if the line width W of the continuous thin line is particularly 30 μm or less (after printing), the line width can be relatively small and the print can be formed. It should be noted that, although it is possible to achieve a thickness of 30 μm or less, it is difficult at present to reach a fine line as fine as 1 μm. Although the lower limit of the line width depends on various conditions, it has been confirmed that the lower limit of the line width can be about 10 μm at present.
[0026]
For example, as shown in Table 2 showing the results of Examples and Comparative Examples, even if the line width of continuous fine lines is the same of 15 μm on the plate surface of the flexographic printing plate, the line width increases when printed. As a result, when the number of lines of the anilox roll is 800 lines / inch, the line width of the continuous fine line after printing is 27.3 μm, when it is 1000 lines / inch, it is 23.3 μm, and when it is 1200 lines / inch, it is 21 lines. A line width of 0.7 μm and a line width of 30 μm or less can be formed by flexographic printing. On the other hand, when the number of lines of the anilox roll is from 800 lines / inch to 700 lines / inch, which is coarse by only 100 lines / inch, the line width of the continuous fine line after printing is 47.5 μm, which is 800 With respect to the line width of 27.3 μm at the time of line / inch, the tendency of the line width to increase suddenly increases, and it becomes impossible to print and form a continuous fine line of 30 μm or less. As described above, when the number of lines of the anilox roll is 800 lines / inch or more, it is understood that continuous thin lines having a line width of 30 μm or less can be formed by flexographic printing. In this case, an anilox roll having a tortoiseshell cell shape was used. Further, an anilox roll having a fine line number of 800 lines / inch or more is preferable in that a ceramic surface can easily form cells by laser engraving or the like.
[0027]
In addition, in the expression of the number of lines of the anilox roll, the expression including "inch" of the old unit system was used because it is conventionally used even now, but if it is expressed in the new SI unit system, , 800 lines / inch correspond to 315 lines / cm.
[0028]
By the way, as for the continuous thin line which is the object of the present invention, the pattern shape formed by the continuous thin line is not particularly limited, and it depends on the application. For example, the continuous thin line L illustrated in FIG. 1 is an example of a case in which a large number of continuous thin lines orthogonal to two directions (inclined with respect to the drawing) form a square lattice pattern. Such a pattern having openings between lines is a pattern suitable for imparting translucency to an electromagnetic wave shielding material such as a display such as a PDP or a window for a building.
In addition, the pattern shape of the continuous fine line, other than the square lattice, other than triangular lattice, hexagonal lattice, stripe, brickwork pattern, regular polygon, non-polygon, etc., rather, wiring board or electrode For example, a so-called wiring pattern shape is used.
[0029]
On the other hand, various shapes of anilox rolls are conventionally known as cell shapes. For example, a pyramid type, a lattice type, an oblique line type, a tortoiseshell type, and the like are available. The three-dimensional shape of these cells is quadrangular pyramid for the pyramid type, truncated pyramid for the lattice type, groove shape with a V-shaped cross section for the diagonal type, and hexagonal pyramid for the turtle type. Of these, pyramid-shaped cells are generally used for gradation image printing using conventional halftone dots. However, since the present invention does not print a thin line as an aggregate of halftone dots, the pyramid type is not always optimal.
[0030]
Then, the present inventor conducted a comparative study on these, and found that a tortoiseshell type cell was optimal.
Table 1 compares the relationship between the various cell shapes of the anilox roll and the ink transferability and the difficulty in generating moire. In Table 1, ◎ indicates excellent, ○ indicates good, Δ indicates somewhat good, and × indicates bad. In the case of ink transfer properties, the ink transfer properties become better as going from × to ◎. If it is difficult to generate moiré, moiré becomes less likely to occur from x to ◎.
[0031]
[Table 1]
Figure 2004268319
[0032]
As shown in Table 1, the pyramid type, whose cell shape has been widely used in the past, has poor ink transferability and tends to generate moire. On the other hand, the grid type has a slightly better ink transfer property than the pyramid type, but the same difficulty of generating moiré. In terms of ink transferability, the oblique line type is very excellent, but moire is very likely to occur. On the other hand, the turtle shell type has good ink transferability, although not as good as the oblique line type, and furthermore, moire hardly occurs. Thus, it can be seen that the tortoiseshell type is suitable for printing continuous fine lines.
[0033]
By the way, although the moire is least likely to occur in the tortoiseshell type, moire may still occur when used without restriction. Therefore, in order to prevent the occurrence of moiré, preferably, as shown in FIG. 1, the angle α of the continuous fine line with respect to the printing width direction does not coincide with the angle β of the anilox roll with respect to the printing width direction of the turtle-shaped cells. It is preferable that the angle relationship be different (α ≠ β). If the angles α and β are different from each other, the angles α and β may be arbitrarily determined in consideration of the application of the continuous thin wire to be formed.
In the tortoiseshell-shaped cell, the cell angle β is, as shown in FIG. 1, a line connecting the center points of adjacent cells and an angle with respect to the printing width direction. Specifically, for example, it is preferable that the angle α of the continuous thin line is 75 degrees and the angle β of the cell is 60 degrees, which is different from each other.
When moiré occurs, the thickness of the continuous fine line is thicker and thinner according to the moiré pattern, and a continuous fine line having a uniform line width cannot be formed.
[0034]
It should be noted that the flexographic printing method described so far is not limited in its application field. As a field of use thereof, a method of manufacturing a laminate including an electromagnetic wave shielding material and the like will be described below, but is not limited to the following description.
This is because the flexographic printing method is, for example, an electromagnetic shielding material, a wiring board, various kinds of laminates such as electrodes, and other articles, conventionally, performance or cost was insufficient as an industrial product. The effect of making a product, or a product that did not work at all as an industrial product, practicable is due to its depth in the field of application of the method. In particular, in recent years, in which fine processing technology such as nanotechnology is in the limelight, such a printing technology is a very important technology as a basic technology of the fine processing technology.
[0035]
[2. Laminate, manufacturing method of electromagnetic wave shielding material)
Next, as a specific example of the use of the flexographic printing method as described above, a method of manufacturing a laminate such as an electromagnetic wave shielding material will be described. There are various types of laminates, and one of them is an electromagnetic wave shielding material. Therefore, a method for manufacturing an electromagnetic wave shielding material and a method for manufacturing a laminate will be described together.
[0036]
By the way, in this specification, three methods of the method A, the method B, and the method C are used as described above as a method of manufacturing a laminated body such as an electromagnetic wave shielding material. The components other than the used (process) portion of the flexographic printing are conventionally known methods. However, even if these constituent elements are these known methods, they are also methods that have the effect of applying the above-described flexographic printing method to make them practically usable as industrial products.
[0037]
[2.1 Method A]
First, in the method A, a conductive ink and / or a magnetic ink is printed in a pattern consisting of continuous fine lines on a substrate by the flexographic printing method as described above, and a conductive ink layer and / or a magnetic ink is formed as an ink layer. This is a method for producing a laminate or an electromagnetic wave shielding material by laminating ink layers.
[0038]
Here, in the cross-sectional view of FIG. 2A, an example of a laminated body such as an electromagnetic wave shielding material obtained by the method A is shown as an example. The laminate 10 such as an electromagnetic shielding material has a configuration in which a conductive ink layer or a magnetic ink layer is formed as an ink layer 2 on one surface of a substrate 1 in a pattern composed of continuous fine lines. The ink layer 2 may be provided on both surfaces of the substrate 1, but in the case of an electromagnetic wave shielding material, it is usually provided on one surface of the substrate.
[0039]
The substrate 1 is not particularly limited as long as it has a shape and a material which can basically apply flexographic printing. What is necessary is just to use the thing according to the use of the laminated body to manufacture as a base material. For example, the substrate is a resin plate (or film or sheet), a fiber-reinforced resin plate made of ceramics, enamel, glass fiber, or the like, a resin molded product, or the like.
[0040]
For example, if an electromagnetic wave shielding material having translucency is manufactured as a laminate, the substrate may be a transparent material. As such a transparent base material, the material is a resin material such as a polyester resin, an acrylic resin, a polycarbonate resin, a styrene resin, or a polyolefin resin such as polypropylene, polyethylene, polybutene, polymethylpentene, or glass. Is used. The shape of the substrate is usually a sheet (film), a flat plate or the like. The thickness of the sheet or the flat plate is not particularly limited. For example, the thickness is 50 to 500 μm for a sheet and 1 to 10 mm for a plate, although it depends on the application.
[0041]
Here, the description of the base material is the same for the base materials in the other methods B and C, and therefore, in the methods B and C, the description of the base material used therein is omitted. .
[0042]
Next, there are a conductive ink layer and a magnetic ink layer. The conductive ink layer is formed using conductive ink, and the magnetic ink layer is formed using magnetic ink. Ink may also be printed to form both the conductive ink layer and the magnetic ink layer.
[0043]
As the conductive ink, a known ink in which conductive particles having conductivity such as metal particles are dispersed may be used. As the metal particles, gold, silver, copper, aluminum, iron, nickel and the like can be used. In addition, as the conductive particles, an ink in which non-metal particles such as carbon black and graphite are added and dispersed as necessary can be used. The shape of the conductive particles may be a sphere or a polyhedron, but a scaly shape or a needle shape is more preferable in terms of conduction between the particles. As the binder resin for the ink, a known resin according to the material of the base material, required physical properties, and the like is appropriately used. For example, as the binder resin, one or two kinds of urethane resins such as a two-component curable urethane resin, an epoxy resin, an acrylic resin, an alkyd resin, a polyester resin, or an ionizing radiation curable resin cured by ultraviolet light or an electron beam. Used as the above mixed resin. In particular, an ionizing radiation-curable resin as a binder resin is a preferable resin in that a solvent-free ink can be used, so that conductive particles can be contained in the ink at a high content. The ink usually contains conductive particles and a binder resin, as well as other known additives, if necessary, and an appropriate solvent such as isopropyl alcohol when a solvent-drying ink is used.
[0044]
Further, as the magnetic ink, an ink obtained by dispersing magnetic particles in place of the conductive particles in the above-described conductive ink may be used. As the magnetic particles, particles such as a soft magnetic material and ferrite can be used. As the soft magnetic material, a high magnetic permeability metal such as soft iron, silicon steel, permalloy, or sendust is used, and as the ferrite, Ni-Zn ferrite, Mn-Zn ferrite, or the like is used.
[0045]
[2.2 Method B]
In the B method, a conductive metal film is laminated on a base material via an adhesive, and a resist pattern composed of continuous fine wires is formed on the surface of the conductive metal film by the flexographic printing method as described above. In the etching process, by removing the portion of the conductive metal film that is not covered with the resist pattern, a patterned conductive metal film is laminated on the base material, a laminate, or an electromagnetic wave shielding material. It is a manufacturing method.
[0046]
Here, in the cross-sectional view of FIG. 2B, a laminated body such as an electromagnetic wave shielding material obtained by the method B is illustrated in one form. A laminated body 10 such as an electromagnetic wave shielding material shown in FIG. 1 has a configuration in which a conductive metal film 4 is laminated on one surface of a base material 1 via an adhesive (layer) 3 in a pattern of continuous fine wires. In FIG. 2, the resist pattern 5 during the etching process is left on the conductive metal film 4 without being removed. The conductive metal film 4 and the like may be formed on both surfaces of the substrate 1, but in the case of an electromagnetic wave shielding material, it is usually on one surface of the substrate.
[0047]
The conductive metal film 4 is not particularly limited as long as it is a metal film (foil) that has conductivity and can be further etched, and any film depending on the application may be used as appropriate. And a conductive metal foil such as aluminum. The thickness of the conductive metal film (foil) may be determined according to the application or the like. In order to accurately obtain a thin line width of 30 μm or less, the thickness is as thin as possible. , More preferably 10 μm or less.
[0048]
Before the etching process, the conductive metal film is usually in a state where the adhesive (layer) 3 is laminated as a conductive metal foil on the entire surface of the base material. For lamination of the base material and the conductive metal foil, a known method, for example, a dry lamination method is generally used. In the portion where the unnecessary portion of the conductive metal foil is removed by etching, the adhesive layer 3 usually remains as illustrated in FIG. 2B.
[0049]
As the adhesive used for the adhesive layer 3, a known adhesive depending on the application may be used as appropriate. For example, a curable adhesive such as a urethane resin or an epoxy resin, a thermoplastic resin adhesive, a rubber adhesive, or the like is used.
[0050]
The resist pattern 5 is an etching resist for forming the conductive metal film 5 into a desired pattern, and is formed by the above-described flexographic printing method. The resist pattern 5 can also function as a protective layer or the like for the conductive metal film 4 by being left on the conductive metal film 4 even after the etching process, as illustrated in FIG. The ink used for forming the resist pattern is not particularly limited as long as it can be used for flexographic printing. For example, a resin-based or solvent-based (solvent-free) ink may be appropriately selected. For example, in the case of a resin, an ink such as a urethane resin, an epoxy resin, or an ionizing radiation-curable resin that cures with ionizing radiation such as ultraviolet light is used. The resist pattern 5 may be formed into a colored layer by adding a coloring agent.
Note that the conductive metal film may be etched with a known etching solution. For example, when the metal of the conductive metal film is copper, a ferric chloride solution, a copper chloride solution, or the like is generally used. .
[0051]
[2.3 C method]
In the method C, the catalyst ink layer containing the electroless plating catalyst is formed in a pattern on the base material by the flexographic printing method as described above, and then a conductive metal layer is formed on the catalyst ink layer by electroless plating. This is a method of manufacturing a laminated body or an electromagnetic wave shielding material by forming a metal film or a magnetic metal film in the pattern shape and laminating the same.
[0052]
Here, in the cross-sectional view of FIG. 2C, a laminated body such as an electromagnetic wave shielding material obtained by the method C is illustrated in one form. In a laminated body 10 such as an electromagnetic wave shielding material shown in FIG. 1, a catalyst ink layer 6 containing an electroless plating catalyst is formed on one surface of a base material 1 in a pattern composed of continuous fine wires. In this configuration, a metal plating layer 7 is formed by electroless plating of a conductive metal film or a magnetic metal film. The metal plating 7 and the like may be formed on both surfaces of the substrate 1, but in the case of an electromagnetic wave shielding material, it is usually on one surface of the substrate.
[0053]
The catalyst ink used to form the catalyst ink layer 6 is an ink to which an electroless plating catalyst is added, and the electroplating catalyst is palladium, gold, silver, colloidal fine particles of a noble metal such as platinum, or the like. Among them, palladium is typically used.
When colloidal particles of palladium are used, it is desirable that the colloidal particles are supported on a catalyst carrier such as fine alumina gel or silica gel as particles having a surface charge opposite to that of the colloidal particles. This is because the palladium colloid particles are more likely to be exposed on the surface of the catalyst ink layer, give thixotropy to the catalyst ink, sharpen the thin-line contour, and reduce bleeding and fatness.
[0054]
As the binder resin for the catalyst ink, a resin known as an ink, for example, a urethane resin such as a two-component curable urethane resin, an epoxy resin, an acrylic resin, an alkyd resin, a polyester resin, or a mixture of two or more resins Used as In addition, the catalyst ink may contain, as necessary, a known extender, a surfactant, a coloring agent, and the like, in addition to a binder resin, an electroless plating catalyst, and an appropriate solvent, in order to adjust physical properties such as printability. Agents can be added.
[0055]
The metal plating layer 5 formed by electroless plating on the catalyst ink layer 6 is formed as a conductive metal film having conductivity or a magnetic metal film having magnetism. In order to form such a metal plating layer by electroless plating, a known electroless plating bath depending on the application may be used. The metal of the metal plating layer is not particularly limited as long as it is a metal that can secure conductivity or magnetism as a conductive metal or a magnetic metal, depending on whether the property of interest is conductive or magnetic. , Iron, nickel, chromium, silver, gold, platinum, cobalt and the like.
[0056]
【Example】
Next, the present invention will be further described with reference to Examples and Comparative Examples.
[0057]
[Example 1]
With the configuration of the cross-sectional view as shown in FIG. 2B, a laminated body 10 to be a light-transmitting electromagnetic wave shielding material was produced by the method B as follows.
[0058]
First, a rolled copper foil having a thickness of 4 μm as a conductive metal film 4 is coated on one surface of a substrate 1 made of a transparent polyethylene terephthalate film (thickness: 100 μm) which has been subjected to an easy adhesion treatment, and a two-component curable urethane resin adhesive With the adhesive layer 3 according to the above.
Thereafter, an ultraviolet-curable resist ink containing carbon black as an pigment (pigment / vehicle ratio: about 25%) is flexographic-printed on the conductive metal film 4 and then irradiated with ultraviolet light. Was cured to form a square lattice resist pattern 5 composed of continuous fine lines as shown in FIG. 1 by printing. The line width of the resist pattern was 23.3 μm and 30 μm or less. Table 2 shows the relationship between the number of anilox roll lines and the line width of the printed continuous thin line.
[0059]
The printing conditions for the flexographic printing were as follows: a ceramics roll was used for the anilox roll, the number of lines was 1000 lines / inch, the cell shape was a turtle-shape, and the cell angle β with respect to the printing width direction was 60 degrees. On the surface of the flexographic printing plate, the width W of the continuous fine line L is 15 μm, the space S between the lines is 250 μm, and the angle α of the continuous fine line with respect to the printing width direction is 75 degrees. The angle α differs from the angle β by 15 degrees.
[0060]
The printed matter obtained as described above is immersed in an aqueous ferric chloride solution at 50 ° C. for about 30 seconds to dissolve and remove the conductive metal film exposed on the portion where the resist pattern is not formed, and laminated as an electromagnetic wave shielding material. The body was made. This electromagnetic wave shielding material had high translucency, and each had an electromagnetic wave shielding performance of 40 to 50 dB in a frequency range of 1 GHz or less and 1 to 5 GHz.
[0061]
[Example 2]
An electromagnetic wave shielding material was produced as a laminate in the same manner as in Example 1 except that the number of lines of the anilox roll was changed to 1200 lines / inch. The line width of the continuous fine line of the resist pattern formed by printing was 21.7 μm and 30 μm or less, which was excellent.
[0062]
[Example 3]
An electromagnetic wave shielding material was produced as a laminate in the same manner as in Example 1 except that the number of lines of the anilox roll was changed to 800 lines / inch. The line width of the continuous fine line of the printed resist pattern was 27.3 μm and 30 μm or less, which was excellent.
[0063]
[Comparative Example 1]
An electromagnetic wave shielding material was produced as a laminate in the same manner as in Example 1 except that the number of lines of the anilox roll was changed to 700 lines / inch. The line width of the continuous fine line of the resist pattern formed by printing was extremely thick at 47.5 μm.
[0064]
[Table 2]
Figure 2004268319
[0065]
【The invention's effect】
(1) According to the method for printing continuous thin lines by flexographic printing of the present invention, continuous thin lines can be printed with reduced line thickness at the time of printing. In particular, when the line width is 30 μm or less, this effect is remarkably obtained, and therefore, it is possible to print and form a continuous fine line having a line width of 30 μm or less.
(2) Further, if the cell shape of the anilox roll is a turtle-shape and the angle α of the continuous fine line and the angle β of the cell of the anilox roll with respect to the printing width direction are different angles that do not match, the continuous fine line This prevents the occurrence of moiré due to interference between the pattern and the cell arrangement of the anilox roll, and enables printing of continuous fine lines having a uniform line width without unevenness.
(3) In each method (methods A, B, and C) of the method of manufacturing a laminate or the method of manufacturing an electromagnetic wave shielding material of the present invention, the above-mentioned (1) or (2) ) Is obtained. Therefore, as the electromagnetic wave shielding material, it is possible to manufacture a material having excellent translucency, and also to prevent the occurrence of moire, so that a continuous fine wire having a uniform line width without unevenness can be formed, and the electromagnetic wave shielding material can be manufactured. In this case, high quality can be obtained visually.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram illustrating an example of a pattern of a continuous thin line formed in the present invention, an angle α of the pattern with respect to a printing width direction, and an angle β of an anilox roll cell with respect to a printing width direction.
FIG. 2 is a cross-sectional view illustrating various configuration examples of a laminate.
[Explanation of symbols]
1 Substrate
2 Ink layer
3 adhesive layer
4 Conductive metal film
5 resist pattern
6 Catalyst ink layer
7 Metal plating layer
10 Electromagnetic wave shielding material or laminated body
C Anilox Roll Cell
L continuous thin line
S Space between lines
W line width
α Angle formed by continuous thin line with printing width direction
β The angle between the anilox roll cell and the print width direction

Claims (7)

フレキソ印刷にて、連続した細線を印刷する方法において、
該フレキソ印刷のアニロックスロールの線数を、800線/インチ以上の線数にて印刷する、フレキソ印刷による連続細線の印刷方法。
In the method of printing continuous fine lines by flexographic printing,
A method of printing continuous fine lines by flexographic printing, wherein the number of lines of the anilox roll in the flexographic printing is printed at a number of lines of 800 lines / inch or more.
線幅が30μm以下の連続細線を印刷する、請求項1記載の、フレキソ印刷による連続細線の印刷方法。The method for printing continuous thin lines by flexographic printing according to claim 1, wherein continuous thin lines having a line width of 30 µm or less are printed. アニロックスロールのセル形状が亀甲型であり、且つ連続細線の印刷幅方向に対する角度αと、アニロックスロールのセルの印刷幅方向に対する角度βとを、異なる角度とする、請求項1又は2記載の、フレキソ印刷による連続細線の印刷方法。The cell shape of the anilox roll is a tortoiseshell type, and the angle α of the continuous fine line with respect to the printing width direction and the angle β of the cell of the anilox roll with respect to the printing width direction are different angles, according to claim 1 or 2, A method for printing continuous fine lines by flexographic printing. 基材上に、導電性インキ及び/又は磁性インキを、請求項1〜3の何れか1項記載の印刷方法にて、パターン状に印刷する事で、基材上に導電性インキ層及び/又は磁性インキ層を積層した積層体を製造する、積層体の製造方法。A conductive ink and / or a magnetic ink is printed on the substrate in a pattern by the printing method according to any one of claims 1 to 3, whereby the conductive ink layer and / or the magnetic ink is formed on the substrate. Alternatively, a method for producing a laminate, in which a laminate in which magnetic ink layers are laminated is produced. 基材上に接着剤を介して、導電性金属膜を積層し、該導電性金属膜の表面に、請求項1〜3の何れか1項記載の印刷方法にて、レジストパターンを形成し、しかる後、エッチング処理により、レジストパターンで被覆されていない導電性金属膜の部分を除去することで、基材上にパターン状の導電性金属膜が積層された積層体を製造する、積層体の製造方法。A conductive metal film is laminated on the base material via an adhesive, and a resist pattern is formed on the surface of the conductive metal film by the printing method according to any one of claims 1 to 3, Thereafter, an etching process is performed to remove a portion of the conductive metal film that is not covered with the resist pattern, thereby producing a laminate in which a patterned conductive metal film is laminated on a base material. Production method. 基材上に、無電解メッキ触媒を含む触媒インキ層を、請求項1〜3の何れか1項記載の印刷方法にて、パターン状に形成した後、無電解メッキにより、前記触媒インキ層上に金属メッキ層として導電性金属膜或いは磁性金属膜を形成し積層する、積層体の製造方法。A catalyst ink layer containing an electroless plating catalyst is formed on the base material in a pattern by the printing method according to any one of claims 1 to 3, and then electroless plating is performed on the catalyst ink layer. Forming a conductive metal film or a magnetic metal film as a metal plating layer and laminating the same. 請求項4〜6の何れか1項記載の積層体の製造方法にて、基材上に電磁波シールド性能を有するパターンを形成する、電磁波シールド材の製造方法。The method for producing an electromagnetic wave shielding material according to any one of claims 4 to 6, wherein a pattern having electromagnetic wave shielding performance is formed on a substrate.
JP2003059589A 2003-03-06 2003-03-06 Method for printing continuous fine line by flexographic printing and method for manufacturing laminate/electromagnetic wave shielding material using the former Pending JP2004268319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003059589A JP2004268319A (en) 2003-03-06 2003-03-06 Method for printing continuous fine line by flexographic printing and method for manufacturing laminate/electromagnetic wave shielding material using the former

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003059589A JP2004268319A (en) 2003-03-06 2003-03-06 Method for printing continuous fine line by flexographic printing and method for manufacturing laminate/electromagnetic wave shielding material using the former

Publications (1)

Publication Number Publication Date
JP2004268319A true JP2004268319A (en) 2004-09-30

Family

ID=33122361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003059589A Pending JP2004268319A (en) 2003-03-06 2003-03-06 Method for printing continuous fine line by flexographic printing and method for manufacturing laminate/electromagnetic wave shielding material using the former

Country Status (1)

Country Link
JP (1) JP2004268319A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219523A (en) * 2005-02-08 2006-08-24 Toyo Ink Mfg Co Ltd Active energy ray curing type electroconductive ink for flexographic printing and printed matter and non-contact type medium using the same
JP2007049101A (en) * 2005-08-12 2007-02-22 Morimura Chemicals Ltd Circuit substrate, circuit substrate forming ink and method for forming circuit substrate
GB2437112A (en) * 2006-04-11 2007-10-17 Nicholas Jim Stone A method of making an electrical device
JP2009078501A (en) * 2007-09-27 2009-04-16 Toppan Printing Co Ltd Pattern forming method by letterpress printing, and method for producing organic functional element
JP2010510091A (en) * 2006-11-15 2010-04-02 スリーエム イノベイティブ プロパティズ カンパニー Flexographic printing with curing during transfer to substrate
US8608972B2 (en) 2006-12-05 2013-12-17 Nano Terra Inc. Method for patterning a surface
US8685260B2 (en) 2006-04-11 2014-04-01 Novalia Ltd. Conductive polymer electrodes
JP2016026396A (en) * 2007-06-14 2016-02-12 レイセオン カンパニー Microwave integrated circuit package and method for forming such package

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219523A (en) * 2005-02-08 2006-08-24 Toyo Ink Mfg Co Ltd Active energy ray curing type electroconductive ink for flexographic printing and printed matter and non-contact type medium using the same
JP4710342B2 (en) * 2005-02-08 2011-06-29 東洋インキScホールディングス株式会社 Active energy ray-curable conductive ink for flexographic printing, printed matter using the same, and non-contact type media
JP2007049101A (en) * 2005-08-12 2007-02-22 Morimura Chemicals Ltd Circuit substrate, circuit substrate forming ink and method for forming circuit substrate
US8673681B2 (en) 2006-04-11 2014-03-18 Novalia Ltd. Electrical device fabrication
GB2437112A (en) * 2006-04-11 2007-10-17 Nicholas Jim Stone A method of making an electrical device
WO2007128998A2 (en) * 2006-04-11 2007-11-15 Nicholas Stone A method of making an electrical device
WO2007128998A3 (en) * 2006-04-11 2008-03-20 Nicholas Stone A method of making an electrical device
US8685260B2 (en) 2006-04-11 2014-04-01 Novalia Ltd. Conductive polymer electrodes
GB2437112B (en) * 2006-04-11 2011-04-13 Nicholas Jim Stone A method of making an electrical device
JP2010510091A (en) * 2006-11-15 2010-04-02 スリーエム イノベイティブ プロパティズ カンパニー Flexographic printing with curing during transfer to substrate
US9340053B2 (en) 2006-11-15 2016-05-17 3M Innovative Properties Company Flexographic printing with curing during transfer to substrate
US9579877B2 (en) 2006-11-15 2017-02-28 3M Innovative Properties Company Flexographic printing with curing during transfer to substrate
US8608972B2 (en) 2006-12-05 2013-12-17 Nano Terra Inc. Method for patterning a surface
JP2016026396A (en) * 2007-06-14 2016-02-12 レイセオン カンパニー Microwave integrated circuit package and method for forming such package
JP2009078501A (en) * 2007-09-27 2009-04-16 Toppan Printing Co Ltd Pattern forming method by letterpress printing, and method for producing organic functional element

Similar Documents

Publication Publication Date Title
JP4549545B2 (en) Electromagnetic shielding material manufacturing method and pattern forming method
KR101200349B1 (en) Transparent electrically conductive film and process for producing the same
KR101285514B1 (en) Touch panel and display apparatus comprising the same
KR20130100950A (en) Substrate with a transparent conductive layer, manufacturing method for said substrate, transparent conductive film laminate for use in a touch panel, and touch panel
CN105453001B (en) Electronic unit is bonded to patterning nano wire transparent conductor
US20140085551A1 (en) Conductive substrate and touch panel comprising same
US20110175841A1 (en) Touch-input-function added protective film for electronic instrument display window
CN102473370A (en) Electronic displays and metal micropatterned substrates having a graphic
EP2632236A1 (en) Patterned base, method for manufacturing same, information input device, and display device
US7560135B2 (en) Electromagnetic-wave shielding and light transmitting plate and manufacturing method thereof
KR101359737B1 (en) Touch panel and display apparatus comprising the same
JP3017987B1 (en) Transparent electromagnetic wave shield member and method of manufacturing the same
JP2014191717A (en) Method for manufacturing touch panel
JP2004268319A (en) Method for printing continuous fine line by flexographic printing and method for manufacturing laminate/electromagnetic wave shielding material using the former
JP3017988B1 (en) Transparent electromagnetic wave shield member and method of manufacturing the same
JP3532146B2 (en) Transparent electromagnetic wave shielding member and method of manufacturing the same
JP2002133944A (en) Conductive ink composition, method for printing very fine pattern using the same, and manufacturing method of translucent electromagnetic shield member
KR20090088030A (en) Film containing conductive micro mesh
US9282647B2 (en) Method of making micro-channel structure for micro-wires
JP3544498B2 (en) Transparent electromagnetic wave shielding member and method of manufacturing the same
JP4261162B2 (en) Circuit manufacturing method and circuit board including the circuit
JP2001177290A (en) Light transmission electromagnetic shield member and manufacturing method therefor
JP4237996B2 (en) Light transmissive electromagnetic shielding sheet
JP2000269683A (en) Method for manufacturing light transmission electromagnetic wave shielding member
JP2006049006A (en) Transparent surface heating element and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090807

A02 Decision of refusal

Effective date: 20091201

Free format text: JAPANESE INTERMEDIATE CODE: A02