JP2004268182A - Polishing method of base board with metallic film - Google Patents

Polishing method of base board with metallic film Download PDF

Info

Publication number
JP2004268182A
JP2004268182A JP2003060771A JP2003060771A JP2004268182A JP 2004268182 A JP2004268182 A JP 2004268182A JP 2003060771 A JP2003060771 A JP 2003060771A JP 2003060771 A JP2003060771 A JP 2003060771A JP 2004268182 A JP2004268182 A JP 2004268182A
Authority
JP
Japan
Prior art keywords
polishing
substrate
metal film
base board
metallic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003060771A
Other languages
Japanese (ja)
Inventor
Hisafumi Shintani
尚史 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2003060771A priority Critical patent/JP2004268182A/en
Publication of JP2004268182A publication Critical patent/JP2004268182A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve surface roughness of a polishing surface of a base board with a metallic film without reducing productivity. <P>SOLUTION: This polishing method of the base board with the metallic film provides a polishing method including an acid polishing process of using a polishing liquid having pH being a range of 1 to 7, and an alkaline polishing process of using a polishing liquid having pH being a range of 7 to 14 thereafter. The base board with the metallic film is desirably formed by arranging a metallic film different from the base board on the base board selected from one group composed of aluminum, copper, brass, glass, carbon, and silicon. The polishing liquid desirably includes one or more kinds of oxides selected from one group composed of alumina, zirconium oxide, titanium oxide, cerium oxide and silica. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、化学機械研磨方法の技術分野に属し、より詳細には、化学機械研磨装置における研磨速度を制御することにより、安定稼動を可能とする化学機械研磨方法に関する。
【0002】
【従来の技術】
従来、半導体基板の研磨には、化学機械研磨法(以下、CMP法)が用いられている。この方法は、珪素がpHが高い領域(pH=7以上)で化学的に溶解性があることを利用し、砥粒と併用し、効率良く研磨する方法である。これに対し金属面を研磨する場合は、pHの低い領域(pH=7以下)で研磨することにより、半導体基板と同様に効率良く研磨することが可能である。しかし、金属面の場合その金属の種類や組成比によっては、特定の金属だけが溶出したり、仕上がり面が荒れてしまう場合が多々ある。
そのため、研磨液としてpHの高い領域(pH=7以上)のものを使用しなければならずその結果、研磨速度が低くなり、平坦性や生産性が低下してしまうという問題があった。平均うねりの少ない研磨面を得るために、異なったモノモーダル数粒子径分布を有するコロイダルシリカ粒子群を用いるアプローチも近年報告されている(特許文献1)。
【0003】
【特許文献1】
特開2002−30274号公報
【0004】
【発明が解決しようとする課題】
本発明は、上記の様な従来技術に伴う問題点を解決しようとするものであって、生産性を低下させずに、金属膜付基板の研磨面の面粗さを改善しようとするものである。
【0005】
【課題を解決するための手段】
本発明は、研磨液のpHを最初の研磨で低くすることで研磨効率を向上させ、最終研磨においてpHを高くすることで研磨面の面粗さを改善しようとするものである。
つまり、研磨液のpHのコントロールのみで研磨速度を調整するものである。さらに、研磨終了時には研磨面が腐蝕しない領域までpHを高めることにより、研磨面の面粗さも向上させるものである。
【0006】
本発明は、具体的には、金属膜付基板の研磨方法であって、研磨液のpHが1以上7未満の範囲である酸性研磨工程と、その後の研磨液のpHが7を超えて14以下の範囲であるアルカリ研磨工程とを含む研磨方法を提供する。
【0007】
【発明の実施の形態】
以下に、本発明の金属膜付基板面の研磨において、研磨液のpHコントロールによる研磨方法について詳細に説明する。
金属膜付基板の基板は、好ましくは、アルミニウムと銅と真鍮とガラスとカーボンと珪素とからなる一群から選ばれる。
研磨する金属膜付基板は、好ましくは、金属膜付アルミニウムディスク、金属膜付銅ディスク、金属膜付ガラスディスク、金属膜付カーボンディスク、又は金属膜付珪素ディスクであって、この基板上に基板とは異なる金属膜を配した金属膜付基板である。この基板上に基板とは異なる金属膜を配するのは、基板の強度向上や記録メディアとしての用途が主であるためである。基板の厚さは、特に限定されないが、通常0.1〜1mmである。
【0008】
研磨する金属膜付基板の金属膜は、単金属又は2種以上の合金もしくは2種以上の多層膜である。金属膜は、好ましくは、コバルトとニッケルと鉄と白金と銅とからなる一群から選ばれる一種又は二種以上の合金、又は二種以上の多層膜である。金属膜の厚さは、特に限定されないが、好ましくは、0.1〜10μmである。
【0009】
金属膜を金属基板に設ける方法は、特に限定されず、公知の方法が用いられる。好ましい方法としては、スパッタ法、メッキ法、ペースト法、接着法、焼結法等である。
【0010】
この金属膜を、迅速にかつ平坦に研磨するため、研磨液を研磨初期にはCMP法によるところの、化学的エッチングと機械的研磨を組み合わせるために、酸性側(pH<7)に設定し、研磨速度を向上させる(酸性研磨工程)。
最終研磨においては、機械研磨のみとするためにアルカリ側(pH>7)に設定する(アルカリ研磨工程)。
酸性研磨工程とアルカリ研磨工程との間には、必要であれば、中和熱の発生を防止するため水を用いるリンス研磨工程を設けてもよい。アルカリ研磨工程の後には、洗浄工程、乾燥工程を設けることができる。
【0011】
研磨液のpHコントロールは、酸性側は、無機酸(塩酸、硝酸、硫酸等)、有機酸(酢酸、酒石酸、クエン酸等)、アルカリ側は、無機塩(水酸化カリウム、水酸化ナトリウム、水酸化リチウム、アンモニア等)、有機塩(酢酸ナトリウム、酒石酸ナトリウム、クエン酸ナトリウム等)又はイオン交換により調整することができるが、研磨する材料の特性に応じ選択することができ、特に限定されるものでない。
これら研磨液を用いて、1台以上の精密両面研磨機で研磨を行い、研磨中に研磨液を酸系からアルカリ系に切り替えることにより達成できる。
【0012】
研磨液は、好ましくは、アルミナと酸化ジルコニウムと酸化チタンと酸化セリウムとシリカとからなる一群から選ばれる1種以上の酸化物粒子を含む分散液である。粒子の大きさは、特に限定されず、用途に応じて選択できるが、通常はナノメーターオーダー又はマイクロメーターオーダーである。研磨液の濃度は、用途に応じて適宜希釈して用いることができる。
酸性研磨工程に用いる研磨液とアルカリ研磨工程に用いる研磨液は、同じ金属酸化物粒子を含んでいてもよいし、異なる金属酸化物粒子を含んでいてもよい。
【0013】
研磨液は、掛け捨て、循環式のどちらでも良いが、製造コストから考えて循環式が好ましいと考えられるが、被研磨物と特性に応じてどちらでも選択は可能である。
特に、本発明の利点としては、研磨装置に2個以上の研磨タンクを設置することにより、研磨パッド、砥粒の粒度、研磨装置の条件(回転速度、面圧など)を変えることなく、研磨レートをコントロールできることから、従来より少ない研磨装置で迅速な研磨が可能となる。研磨液のpHのみのコントロールなので、砥粒サイズ変更による洗浄や研磨パッドの張替えの必要が無いためである。
【0014】
本発明の研磨方法は、磁気記録媒体に用いられる、軟磁性膜付基板の研磨に特に好ましい。軟磁性膜付基板は、軟磁性膜の上に硬磁性膜である記録層を設けると、ハードディスク等となるものである。なお、軟磁性膜とは、保磁力で定義すると数十Oe以下の膜であり、保持力数百Oe以上の硬磁性膜と区別される。
基板としては、Si単結晶基板やガラス基板が挙げられる。軟磁性膜としては、好ましくは、コバルトとニッケルと鉄とからなる一群から選ばれる一種以上の金属が挙げられる。軟磁性膜の研磨は、アルカリ条件で研磨速度が遅いため、通常、酸性条件下で行なわれるが、膜が曇る問題がある。本発明の研磨方法を用いると、この曇りの問題が解消される。推測であるが、酸性条件下の研磨のみでは酸化物が生成されて曇りを発生させたものと考えられる。
【0015】
【実施例】
以下、本発明を実施例に基づき説明するが、本発明はこれに限定されるものではない。なお、実施例1〜2と比較例1〜2に使用した研磨方法のスキームを図1に示す。
実施例1
金属膜付基板としてNi−Fe(重量比1:1)膜が5μm付着した3.5インチガラス基板を1枚準備した。
研磨機は6B型両面研磨機(キャリアサイズ6インチ)とし、研磨パッドはファイナル用のスエードタイプを用い、研磨した。研磨液は、PHが2と11の60〜80nmのコロイダルシリカを準備した。(pH調整はイオン交換法で行った)
研磨工程は図1のように、最初PH=2の研磨液を使用し、リンス後、PH=11の研磨液で研磨した。研磨後、洗浄剤を用いて洗浄・乾燥を行った後、原子間力顕微鏡(日本電子社製走査プローブ顕微鏡JSPM−4200)を用いて、AFM観察を行い、面粗さを測定した。
【0016】
比較例1〜2
実施例1の比較として、最初から最後までpH=2の研磨液を使用したものと最初から最後までpH=11の研磨液を使用したものを比較検討品とした。
【0017】
実施例2
金属膜付基板としてNi−Fe(重量比1:1)膜が2μm付着した3.5インチSi基板を1枚準備した。
研磨機は6B型両面研磨機(キャリアサイズ6インチ)とし、研磨パッドはファイナル用のスエードタイプを用い研磨した。研磨液は、pHが4と11の30〜50nmのコロイダルシリカを準備した。なお、pH調整はイオン交換法で行った。研磨工程は図1のように、最初pH=4の研磨液を使用し、リンス後、pH=11の研磨液で研磨した。研磨後、洗浄剤を用いて洗浄・乾燥を行った後、原子間力顕微鏡(日本電子社製走査プローブ顕微鏡JSPM−4200)を用いて、AFM観察を行い面粗さを測定した。
【0018】
使用した各評価方法について以下に説明し、結果を表1に示す。
金属膜厚の測定
卓上型蛍光X線分析計(セイコーインスツルメンツ社製SEA5120)を用いて、研磨前後の膜厚を測定し、研磨量を算出した。また、研磨速度は研磨量/研磨時間で算出した。
【0019】
面粗さの測定
原子間力顕微鏡(日本電子社製走査プローブ顕微鏡JSPM−4200)を用いて、AFM観察を行い、面粗さを測定した。観察エリアは10μm角とした。
【0020】
平坦度の測定
フラットネステスター(ニデック社製ビデオフラットネステスターFT−7)により、干渉じまの数で平坦度を測定した。
【0021】
【表1】

Figure 2004268182
【0022】
実施例1および比較例1〜2の結果より、pH=2の研磨液のみで研磨した比較例1は、研磨速度は速いものの、研磨面の面粗さが大きくなってしまった。また、pH=11の研磨液のみで研磨した比較例2は面粗さは改善しているが、研磨速度が遅くなってしまった。さらに、平坦性についても、研磨速度が影響して比較例1より低下してしまった。
これに対し、実施例1は、研磨速度も速く、面粗、平坦性についても良好な結果が得られた。
実施例2については、面圧や研磨液のpHや砥粒の粒度の細粒化により、研磨速度は遅くなったものの、面粗さや平坦性は良好な結果が得られた。
【0023】
【発明の効果】
本発明によれば、1台の研磨機により従来の多段研磨と同等の面粗さ、研磨速度が得られる上、トータル作業時間も多段研磨に比べ短縮できた。さらに研磨機と研磨パッド、作業スペースを節約でき、低コスト化が可能となった。
【図面の簡単な説明】
【図1】実施例1〜2と比較例1〜2に使用した研磨方法のスキームを示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention belongs to the technical field of a chemical mechanical polishing method, and more particularly, to a chemical mechanical polishing method that enables stable operation by controlling a polishing rate in a chemical mechanical polishing apparatus.
[0002]
[Prior art]
Conventionally, a chemical mechanical polishing method (hereinafter, referred to as a CMP method) has been used for polishing a semiconductor substrate. This method utilizes the fact that silicon is chemically soluble in a high pH region (pH = 7 or more), and is used in combination with abrasive grains for efficient polishing. On the other hand, when polishing a metal surface, it is possible to polish efficiently in the same manner as a semiconductor substrate by polishing in a low pH region (pH = 7 or less). However, in the case of a metal surface, depending on the type and composition ratio of the metal, there are many cases where only a specific metal is eluted or the finished surface is roughened.
Therefore, a polishing solution having a high pH range (pH = 7 or more) must be used, and as a result, there is a problem that the polishing rate is reduced, and the flatness and productivity are reduced. An approach using colloidal silica particles having different monomodal number particle size distributions in order to obtain a polished surface with a small average waviness has recently been reported (Patent Document 1).
[0003]
[Patent Document 1]
JP-A-2002-30274
[Problems to be solved by the invention]
The present invention is intended to solve the problems associated with the prior art as described above, and is intended to improve the surface roughness of a polished surface of a substrate with a metal film without reducing productivity. is there.
[0005]
[Means for Solving the Problems]
The present invention seeks to improve the polishing efficiency by lowering the pH of the polishing liquid in the first polishing, and to improve the surface roughness of the polished surface by increasing the pH in the final polishing.
That is, the polishing rate is adjusted only by controlling the pH of the polishing liquid. Furthermore, at the end of polishing, the surface roughness of the polished surface is also improved by increasing the pH to a region where the polished surface does not corrode.
[0006]
More specifically, the present invention relates to a method for polishing a substrate with a metal film, wherein an acidic polishing step in which the pH of the polishing liquid is in the range of 1 or more and less than 7, The present invention provides a polishing method including an alkali polishing step in the following range.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a polishing method by controlling the pH of the polishing liquid in polishing the substrate surface with the metal film of the present invention will be described in detail.
The substrate of the substrate with a metal film is preferably selected from a group consisting of aluminum, copper, brass, glass, carbon, and silicon.
The substrate with a metal film to be polished is preferably an aluminum disk with a metal film, a copper disk with a metal film, a glass disk with a metal film, a carbon disk with a metal film, or a silicon disk with a metal film. This is a substrate provided with a metal film provided with a metal film different from the above. The reason why a metal film different from that of the substrate is provided on the substrate is mainly to improve the strength of the substrate and to use it as a recording medium. The thickness of the substrate is not particularly limited, but is usually 0.1 to 1 mm.
[0008]
The metal film of the substrate with a metal film to be polished is a single metal, two or more alloys, or two or more multilayer films. The metal film is preferably one or more alloys selected from the group consisting of cobalt, nickel, iron, platinum, and copper, or two or more multilayer films. The thickness of the metal film is not particularly limited, but is preferably 0.1 to 10 μm.
[0009]
The method for providing the metal film on the metal substrate is not particularly limited, and a known method is used. Preferred methods include a sputtering method, a plating method, a paste method, a bonding method, and a sintering method.
[0010]
In order to quickly and flatly polish this metal film, a polishing solution is set to an acidic side (pH <7) in order to combine chemical etching and mechanical polishing in the initial stage of polishing by a CMP method. Improve the polishing rate (acid polishing step).
In the final polishing, it is set on the alkali side (pH> 7) in order to perform only mechanical polishing (alkali polishing step).
Between the acidic polishing step and the alkaline polishing step, if necessary, a rinsing polishing step using water to prevent generation of heat of neutralization may be provided. After the alkali polishing step, a washing step and a drying step can be provided.
[0011]
For the pH control of the polishing liquid, the acidic side is an inorganic acid (hydrochloric acid, nitric acid, sulfuric acid, etc.), the organic acid (acetic acid, tartaric acid, citric acid, etc.), and the alkaline side is an inorganic salt (potassium hydroxide, sodium hydroxide, water). It can be adjusted by lithium ion, ammonia, etc.), organic salts (sodium acetate, sodium tartrate, sodium citrate, etc.) or ion exchange, but can be selected according to the characteristics of the material to be polished, and are particularly limited. Not.
The polishing can be achieved by performing polishing with one or more precision double-side polishing machines using these polishing liquids and switching the polishing liquid from an acid type to an alkaline type during polishing.
[0012]
The polishing liquid is preferably a dispersion liquid containing one or more oxide particles selected from the group consisting of alumina, zirconium oxide, titanium oxide, cerium oxide and silica. The size of the particles is not particularly limited and can be selected according to the application, but is usually on the order of nanometers or micrometers. The concentration of the polishing liquid can be appropriately diluted according to the intended use.
The polishing liquid used for the acidic polishing step and the polishing liquid used for the alkali polishing step may contain the same metal oxide particles or different metal oxide particles.
[0013]
The polishing liquid may be either of a dropping type or a circulating type, but a circulating type is considered preferable from the viewpoint of manufacturing cost. However, either type can be selected according to the object to be polished and the characteristics.
In particular, an advantage of the present invention is that by installing two or more polishing tanks in a polishing apparatus, polishing can be performed without changing the polishing pad, the grain size of abrasive grains, and the conditions (rotational speed, surface pressure, etc.) of the polishing apparatus. Since the rate can be controlled, rapid polishing can be performed with a smaller number of polishing apparatuses than before. This is because since only the pH of the polishing liquid is controlled, there is no need to perform cleaning by changing the abrasive grain size or change the polishing pad.
[0014]
The polishing method of the present invention is particularly preferable for polishing a substrate with a soft magnetic film used for a magnetic recording medium. A substrate with a soft magnetic film becomes a hard disk or the like when a recording layer that is a hard magnetic film is provided on the soft magnetic film. The soft magnetic film is a film having a coercive force of several tens Oe or less and is distinguished from a hard magnetic film having a coercive force of several hundreds Oe or more.
Examples of the substrate include a Si single crystal substrate and a glass substrate. The soft magnetic film preferably includes at least one metal selected from the group consisting of cobalt, nickel and iron. Polishing of the soft magnetic film is usually performed under acidic conditions because the polishing rate is low under alkaline conditions, but there is a problem that the film becomes cloudy. The use of the polishing method of the present invention eliminates the problem of fogging. It is speculated that it is considered that only polishing under acidic conditions generated oxides and caused fogging.
[0015]
【Example】
Hereinafter, the present invention will be described based on examples, but the present invention is not limited thereto. FIG. 1 shows a scheme of the polishing method used in Examples 1 and 2 and Comparative Examples 1 and 2.
Example 1
As a substrate with a metal film, one 3.5-inch glass substrate to which a Ni—Fe (weight ratio: 1: 1) film was adhered to 5 μm was prepared.
The polishing machine was a 6B type double-side polishing machine (carrier size 6 inches), and the polishing pad was a final suede type polishing. As a polishing liquid, colloidal silica having a pH of 2 and 11 and a thickness of 60 to 80 nm was prepared. (PH adjustment was performed by ion exchange method)
In the polishing step, as shown in FIG. 1, a polishing liquid having a pH of 2 was first used, and after rinsing, polishing was carried out with a polishing liquid having a pH of 11. After polishing, washing and drying were performed using a detergent, AFM observation was performed using an atomic force microscope (scanning probe microscope JSPM-4200 manufactured by JEOL Ltd.), and the surface roughness was measured.
[0016]
Comparative Examples 1-2
As a comparison of Example 1, a product using a polishing solution having a pH of 2 from the beginning to the end and a product using a polishing solution having a pH of 11 from the beginning to the end were used as comparative products.
[0017]
Example 2
As a substrate with a metal film, one 3.5-inch Si substrate to which a Ni—Fe (weight ratio 1: 1) film was adhered to 2 μm was prepared.
The polishing machine was a 6B double-side polishing machine (carrier size 6 inches), and the polishing pad was polished using a suede type for final. As the polishing liquid, colloidal silica having a pH of 4 and 11 and a thickness of 30 to 50 nm was prepared. The pH was adjusted by an ion exchange method. In the polishing step, as shown in FIG. 1, a polishing liquid having a pH of 4 was used first, and after rinsing, polishing was performed with a polishing liquid having a pH of 11. After the polishing, cleaning and drying were performed using a cleaning agent, and AFM observation was performed using an atomic force microscope (JSPM-4200, a scanning probe microscope manufactured by JEOL Ltd.) to measure the surface roughness.
[0018]
Each evaluation method used is described below, and the results are shown in Table 1.
Measurement of Metal Film Thickness The film thickness before and after polishing was measured using a tabletop fluorescent X-ray analyzer (SEA5120 manufactured by Seiko Instruments Inc.), and the polishing amount was calculated. The polishing rate was calculated by polishing amount / polishing time.
[0019]
AFM observation was performed using an atomic force microscope (a scanning probe microscope JSPM-4200 manufactured by JEOL Ltd.) to measure the surface roughness. The observation area was 10 μm square.
[0020]
Measurement of flatness The flatness was measured by the number of interference fringes using a flatness tester (Video Flatness Tester FT-7 manufactured by Nidek).
[0021]
[Table 1]
Figure 2004268182
[0022]
From the results of Example 1 and Comparative Examples 1 and 2, in Comparative Example 1 in which polishing was performed only with a polishing liquid having a pH of 2, although the polishing rate was high, the surface roughness of the polished surface was large. In Comparative Example 2 in which polishing was performed only with a polishing liquid having a pH of 11, the surface roughness was improved, but the polishing rate was reduced. Further, the flatness was also lower than that of Comparative Example 1 due to the influence of the polishing rate.
On the other hand, in Example 1, the polishing rate was high, and good results were obtained in terms of surface roughness and flatness.
In Example 2, although the polishing rate was reduced due to the reduction in the surface pressure, the pH of the polishing solution, and the grain size of the abrasive grains, good results were obtained in the surface roughness and flatness.
[0023]
【The invention's effect】
According to the present invention, the same surface roughness and polishing speed as those of the conventional multi-stage polishing can be obtained with one polishing machine, and the total working time can be reduced as compared with the multi-stage polishing. Furthermore, the polishing machine, polishing pad and work space can be saved, and cost reduction has become possible.
[Brief description of the drawings]
FIG. 1 shows a scheme of a polishing method used in Examples 1 and 2 and Comparative Examples 1 and 2.

Claims (5)

金属膜付基板の研磨方法であって、pHが1以上7未満の範囲である研磨液を用いる酸性研磨工程と、その後にpHが7を超えて14以下の範囲である研磨液を用いるアルカリ研磨工程とを含んでなる研磨方法。A method for polishing a substrate with a metal film, comprising: an acidic polishing step using a polishing liquid having a pH in the range of 1 to less than 7, followed by an alkaline polishing using a polishing liquid having a pH in the range of more than 7 to 14 A polishing method comprising the steps of: 上記金属膜付基板が、アルミニウムと銅と真鍮とガラスとカーボンと珪素とからなる一群から選ばれる基板上に、該基板とは異なる金属の膜を配したものである請求項1に記載の研磨方法。The polishing method according to claim 1, wherein the substrate with a metal film is a substrate selected from the group consisting of aluminum, copper, brass, glass, carbon, and silicon, and a film of a metal different from the substrate is disposed on the substrate. Method. 上記酸性研磨工程と上記アルカリ研磨工程で用いる研磨液が、アルミナと酸化ジルコニウムと酸化チタンと酸化セリウムとシリカとからなる一群から選ばれる1種以上の酸化物を含んでなる請求項1又は請求項2に記載の研磨方法。The polishing solution used in the acidic polishing step and the alkali polishing step, the polishing liquid contains at least one oxide selected from the group consisting of alumina, zirconium oxide, titanium oxide, cerium oxide, and silica. 3. The polishing method according to 2. 上記金属膜付基板の金属膜が、単金属又は2種以上の合金もしくは2種以上の多層膜である請求項1〜3のいずれかに記載の研磨方法。The polishing method according to any one of claims 1 to 3, wherein the metal film of the substrate with a metal film is a single metal, two or more alloys, or two or more multilayer films. 上記金属膜付基板の金属膜が、軟磁性膜である請求項1〜4のいずれかに記載の研磨方法。The polishing method according to claim 1, wherein the metal film of the substrate with a metal film is a soft magnetic film.
JP2003060771A 2003-03-07 2003-03-07 Polishing method of base board with metallic film Pending JP2004268182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003060771A JP2004268182A (en) 2003-03-07 2003-03-07 Polishing method of base board with metallic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003060771A JP2004268182A (en) 2003-03-07 2003-03-07 Polishing method of base board with metallic film

Publications (1)

Publication Number Publication Date
JP2004268182A true JP2004268182A (en) 2004-09-30

Family

ID=33123178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003060771A Pending JP2004268182A (en) 2003-03-07 2003-03-07 Polishing method of base board with metallic film

Country Status (1)

Country Link
JP (1) JP2004268182A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7712204B2 (en) 2006-03-31 2010-05-11 Tdk Corporation Manufacturing method of a thin-film magnetic head
JP2011183530A (en) * 2010-03-10 2011-09-22 Fujimi Inc Polishing composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7712204B2 (en) 2006-03-31 2010-05-11 Tdk Corporation Manufacturing method of a thin-film magnetic head
JP2011183530A (en) * 2010-03-10 2011-09-22 Fujimi Inc Polishing composition

Similar Documents

Publication Publication Date Title
JP4450142B2 (en) Polishing composition
JP2008013655A (en) Grinding liquid composition for glass substrate
JP2002294225A (en) Polishing composition and manufacturing method of memory hard disk using the same
JP4213858B2 (en) Polishing liquid composition
JP6060166B2 (en) Manufacturing method of glass substrate for magnetic disk
CN103247304B (en) The manufacture method of substrate and the manufacture method of disk
CN102473423B (en) The manufacture method of glass substrate for disc
WO2017038201A1 (en) Method for producing glass substrate for information recording medium, method for producing information recording medium, information recording medium glass substrate, and magnetic recording medium
JP2001167430A (en) Substrate for magnetic disk and its manufacturing method
JP2004268182A (en) Polishing method of base board with metallic film
JP3472687B2 (en) Method of manufacturing magnetic disk substrate
JP6467025B2 (en) Manufacturing method of glass substrate
JP4156174B2 (en) Polishing liquid composition
JP5939350B1 (en) Glass substrate for magnetic recording medium, magnetic recording medium
JP2016115378A (en) Glass substrate for magnetic recording media, and magnetic recording medium
JP5983897B1 (en) Glass substrate for magnetic disk and magnetic disk
JP2005206866A (en) Pretreatment method for electroless plating, method for manufacturing substrate for magnetic recording media including the pretreatment method, and substrate for magnetic recording media manufactured by the manufacturing method
JP4228902B2 (en) Magnetic recording medium and method for manufacturing the same
JP4076852B2 (en) Micro waviness reducing agent
JP2004342294A (en) Substrate for perpendicular magnetic recording medium, and its manufacturing method
JP3506182B2 (en) Manufacturing method of magnetic recording medium
JP2011086371A (en) Manufacturing method of glass substrate for magnetic disk
JPH11167711A (en) Production of magnetic disk substrate
JPH11263968A (en) Polishing slurry and polishing method
JP2006021259A (en) Polishing method of magnetic disk base board and magnetic disk medium