JP2004265767A - 金属錯体色素の物性予測手法 - Google Patents
金属錯体色素の物性予測手法 Download PDFInfo
- Publication number
- JP2004265767A JP2004265767A JP2003055690A JP2003055690A JP2004265767A JP 2004265767 A JP2004265767 A JP 2004265767A JP 2003055690 A JP2003055690 A JP 2003055690A JP 2003055690 A JP2003055690 A JP 2003055690A JP 2004265767 A JP2004265767 A JP 2004265767A
- Authority
- JP
- Japan
- Prior art keywords
- dye
- somo
- dyes
- unoccupied
- physical property
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 230000000704 physical effect Effects 0.000 title claims abstract description 19
- 239000000434 metal complex dye Substances 0.000 title description 3
- 230000003993 interaction Effects 0.000 claims abstract description 16
- 238000006243 chemical reaction Methods 0.000 claims abstract description 10
- 230000003647 oxidation Effects 0.000 claims description 21
- 238000007254 oxidation reaction Methods 0.000 claims description 21
- 239000000126 substance Substances 0.000 claims description 12
- 150000001875 compounds Chemical class 0.000 claims description 10
- 239000000975 dye Substances 0.000 abstract description 32
- 238000004364 calculation method Methods 0.000 description 12
- 238000005457 optimization Methods 0.000 description 7
- 238000005314 correlation function Methods 0.000 description 5
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 4
- 238000005284 basis set Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000003077 quantum chemistry computational method Methods 0.000 description 3
- 238000003775 Density Functional Theory Methods 0.000 description 2
- 238000004965 Hartree-Fock calculation Methods 0.000 description 2
- 239000012327 Ruthenium complex Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 238000005094 computer simulation Methods 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 238000004770 highest occupied molecular orbital Methods 0.000 description 2
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 1
- 238000004057 DFT-B3LYP calculation Methods 0.000 description 1
- 238000004957 LCAO calculation Methods 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 101001007176 Uncultured marine euryarchaeote Long-chain alcohol oxidase Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- UIPVMGDJUWUZEI-UHFFFAOYSA-N copper;selanylideneindium Chemical compound [Cu].[In]=[Se] UIPVMGDJUWUZEI-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000004776 molecular orbital Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
Landscapes
- Photovoltaic Devices (AREA)
- Hybrid Cells (AREA)
Abstract
【課題】高変換効率を有する色素の合成に際し効率良く候補となる色素を選択する手法を提供する。
【解決手段】色素増感型太陽電池の光電変換効率を与える物性を予測する手法において、酸化還元体と色素との相互作用力を用いる。この酸化還元体と色素との相互作用力は色素の酸化状態の非占有SOMOの準位、或いは色素の酸化状態の非占有SOMO軌道の形及び電荷密度により求める。色素は相互作用活性サイトに属する原子が非占有SOMOを有することが好ましい。また、色素の酸化状態の非占有SOMO軌道の軌道エネルギーが0.4eV以下であることが好ましい。
【効果】色素増感型太陽電池において、高効率が期待できる錯体色素の選択が可能になる。
【選択図】 図1
【解決手段】色素増感型太陽電池の光電変換効率を与える物性を予測する手法において、酸化還元体と色素との相互作用力を用いる。この酸化還元体と色素との相互作用力は色素の酸化状態の非占有SOMOの準位、或いは色素の酸化状態の非占有SOMO軌道の形及び電荷密度により求める。色素は相互作用活性サイトに属する原子が非占有SOMOを有することが好ましい。また、色素の酸化状態の非占有SOMO軌道の軌道エネルギーが0.4eV以下であることが好ましい。
【効果】色素増感型太陽電池において、高効率が期待できる錯体色素の選択が可能になる。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、色素増感型太陽電池用の金属錯体色素の物性予測手法に関する。
【0002】
【従来の技術】
太陽電池はクリーンな再生型エネルギー源として大きく期待されており、単結晶シリコン系、多結晶シリコン系、アモルファスシリコン系の太陽電池やテルル化カドミウム、セレン化インジウム銅などの化合物からなる太陽電池の実用化をめざした研究がなされているが、家庭用電源として普及させるためにはいずれの電池も製造コストが高いことや原材料の確保が困難なことやリサイクルの問題、また大面積化が困難であるなど克服しなければならない多くの問題を抱えている。大面積化や低価格化を目指し有機材料をを用いた太陽電池が提案されてきたがいずれも変換効率が1%程度と実用化にはほど遠いものであった。
【0003】
こうした状況の中、1991年にグレッツェルらによりNatureに色素によって増感された半導体微粒子を用いた光電変換素子および太陽電池、ならびにこの太陽電池の作製に必要な材料および製造技術が開示された。(例えば、Nature第353巻、737頁、1991年(非特許文献1)、特開平1−220380号公報(特許文献1)。この電池はルテニウム色素によって増感された多孔質チタニア薄膜を作用電極とする湿式太陽電池である。この太陽電池の利点は安価な材料を高純度に精製する必要なく用いれるため、安価な光電変換素子として提供できること、さらに用いられる色素の吸収がブロードであり、広い可視光の波長域にわたって太陽光を電気に変換できることである。しかしながら実用化のためにはさらなる変換効率の向上が必要であり、より長波長域まで光を吸収する色素の開発が望まれている。
この色素の合成に際してはこれまで経験に基づき候補となる錯体色素を選択し合成を行っているため、非効率である。
【0004】
これら色素の物性に関する理論的な検討については、Acc.Chem.Res.2000,33,269〜277(非特許文献2)、Coordination Chemistry Review 2000,208,213〜225(非特許文献3)、J.Phys.Chem.A 2002,106,11354〜11360(非特許文献4)で基底状態のHOMO、LUMOの計算や、励起状態の電子状態の計算が為されているが、酸化状態の検討は為されていない。
【0005】
【特許文献1】
特開平1−220380号公報
【非特許文献1】
Nature第353巻、737頁、1991年
【非特許文献2】
Acc.Chem.Res.2000,33,269〜277
【非特許文献3】
Coordination Chemistry Review 2000,208,213〜225
【非特許文献4】
J.Phys.Chem.A 2002,106,11354〜11360
【0006】
【発明が解決しようとする課題】
本発明の目的は、高変換効率を有する色素の合成に際し効率良く候補となる色素を選択する手法を提供することである。
【0007】
【課題を解決するための手段】
本発明は、色素増感型太陽電池の光電変換効率を与える物性を予測する手法において、酸化還元体と色素との相互作用力を用いることを特徴とする物性予測手法に関する。
【0008】
また、本発明は、酸化還元体と色素との相互作用力を、酸化状態の錯体色素の非占有SOMOの準位により評価することを特徴とする上記の物性予測手法に関する。
【0009】
また、本発明は、酸化還元体と色素との相互作用力を、色素の酸化状態の非占有SOMO軌道の形および電荷密度により評価することを特徴とする上記の物性予測手法に関する。
【0010】
また、本発明は、該色素において、相互作用活性サイトに属する原子が非占有SOMOを有することを特徴とする上記の物性予測手法に関する。
【0011】
また、本発明は、色素の酸化状態の非占有SOMO軌道の軌道エネルギーが−0.4eV以下であることを特徴とする上記の物性予測手法に関する。
【0012】
また、本発明は、該原子が正電荷を帯びていることを特徴とする上記の物性予測手法に関する。
【0013】
【発明の実施の形態】
本発明の物性予測手法においては、酸化還元体と色素との相互作用力を用いることを特徴とする。
【0014】
本発明の酸化還元体と色素との相互作用力は、酸化状態の錯体色素の非占有SOMOの軌道エネルギー準位により評価することができる。
【0015】
上記の酸化状態の非占有SOMO軌道の軌道エネルギーは、好ましくは−0.4eV以下、より好ましくは−4.0eV以下、さらにより好ましくは−8.0eV以下である。
【0016】
本発明の酸化還元体と色素との相互作用力は、色素の酸化状態の非占有SOMO軌道の形および電荷密度により評価することもできる。
すなわち、その酸化状態の非占有SOMO軌道のLCAO係数と原子軌道の確率振幅の積が0.03以上であるような位置に原子軌道を有する原子が相互作用サイト上にあることが好ましい。
また、この条件を満たす原子について、錯体の酸化状態の場合にその原子に属する電荷密度が好ましくは0以上、より好ましくは0.1以上、さらにより好ましくは0.2以上である。
【0017】
上記の各物性値は、計算機シミュレーションにより評価することができる。すなわち、計算手法としては特に限定はしないが錯体の構造最適化およびこの酸化状態の構造最適化には密度汎関数法が好適に用いられる。このときの具体的な交換相関関数としてVWNを、また基底関数系にはDNPを用いることができる。計算を簡略化するために、有効内核ポテンシャル近似を用いても良い。また必ずしも各軌道の電子の占有数を整数に限る必要はない。
【0018】
この計算で得られたモデルに対し、Single CI法を用いて、UV/Visスペクトルについての計算を行うことができ、具体的な手法としてはINDO−SCIがあげられる。
【0019】
構造最適化して得られた酸化状態のモデルに対し、量子化学計算により電子状態計算を行い、非占有SOMOおよび電荷を見積もることができる。計算手法としては密度汎関数法を用いることができる。このときの具体的な交換相関関数としてはVWNおよびB3LYPなどが挙げられる。このときの基底関数系としてはDNP、LANL2DZなどがあげられる。計算を簡略化するために、有効内核ポテンシャル近似を用いても良い。
【0020】
本発明の酸化状態の非占有SOMOおよび電荷を見積もる計算は、交換相関関数としてVWNを用い、基底関数系としてDNPを用いることにより行うことができる。また、電荷を見積もり方法についてはMulliken電荷密度を用いことができる。
【0021】
本発明は、上記の計算機シミュレーションで物性を予測することにより、金属錯体色素の合成候補の選択を行うことができる。
【0022】
【実施例】
(実施例1)
化1で表されるルテニウム錯体および化2で表されるルテニウム錯体を取り上げこれらを比較する。
【0023】
【化1】
【0024】
【化2】
【0025】
各金属錯体モデルの標準状態と酸化状態それぞれに対し、量子化学計算により構造最適化を行った。計算手法としては密度汎関数法(DFT)を用い、このときの交換相関関数としてVWN、基底関数系にはDNPを用いた。また、計算を簡略化するために、有効内核ポテンシャル近似を用いた。(構造最適化においてエネルギーに対する収束条件は10−5a.u.以下とした。構造最適計算で行われるSCFに対し、その収束条件はエネルギーに対して10−6 a.u.以下とした。)
【0026】
この構造最適化で得られた基底状態の錯体モデルに対し、Single CI法を用いて、UV/Visスペクトルについての計算を行った。具体的な手法としてはINDO−SCIがあげられる。(配置間相互作用に取り入れる分子軌道はHOMO、LUMOを中心として上下25軌道、計50軌道とした。)このときに得られたUV/Visスペクトルを図1示す。
【0027】
上記の構造最適化で得られた酸化状態の錯体モデルに対し、量子化学計算により電子状態計算を行った。計算手法としては密度汎関数法を用いた。このときの具体的な交換相関関数としてはVWNを用いた。このときの基底関数系としてはDNPを用いた。さらには計算を簡略化するために、有効内核ポテンシャル近似をもちいた。(SCF計算に対し、その収束条件はエネルギーに対して10−6 a.u.以下とし、各状態の電子の占有数について0以上2以下の整数を条件とした。)
【0028】
酸化状態の非占有SOMO軌道の軌道エネルギーは、化1で表される化合物について−8.023eV、化2で表される化合物について−7.052eVであり、化2で表される化合物が化1で表される化合物と比較してエネルギー的に還元されにくいことを示している。
【0029】
上記の結果に対し、酸化状態の非占有SOMO軌道の形を視覚化したものを図2に、酸化状態のMulliken 電荷密度を視覚化したものを図3に示す。
これら比較した結果は化1ではカチオニックなサイトと非占有SOMOの位置が一致しているが、化2ではカチオニックなサイトと非占有SOMOの位置が一致しておらず、化2で表される化合物が化1で表される化合物と比較して空間的に還元されにくいことを示している。
【0030】
【発明の効果】
本発明により、色素増感型太陽電池の光電変換効率において、高効率が期待できる錯体色素の選択が可能となる。
【図面の簡単な説明】
【図1】図1は実施例1において得られたUV/Visスペクトルである。
【図2】図2は本発明の実施例2において得られた錯体色素の酸化状態の非占有SOMO軌道の形である。
【図3】図3は本発明の実施例3において得られた酸化状態のMulliken 電荷密度である。
【発明の属する技術分野】
本発明は、色素増感型太陽電池用の金属錯体色素の物性予測手法に関する。
【0002】
【従来の技術】
太陽電池はクリーンな再生型エネルギー源として大きく期待されており、単結晶シリコン系、多結晶シリコン系、アモルファスシリコン系の太陽電池やテルル化カドミウム、セレン化インジウム銅などの化合物からなる太陽電池の実用化をめざした研究がなされているが、家庭用電源として普及させるためにはいずれの電池も製造コストが高いことや原材料の確保が困難なことやリサイクルの問題、また大面積化が困難であるなど克服しなければならない多くの問題を抱えている。大面積化や低価格化を目指し有機材料をを用いた太陽電池が提案されてきたがいずれも変換効率が1%程度と実用化にはほど遠いものであった。
【0003】
こうした状況の中、1991年にグレッツェルらによりNatureに色素によって増感された半導体微粒子を用いた光電変換素子および太陽電池、ならびにこの太陽電池の作製に必要な材料および製造技術が開示された。(例えば、Nature第353巻、737頁、1991年(非特許文献1)、特開平1−220380号公報(特許文献1)。この電池はルテニウム色素によって増感された多孔質チタニア薄膜を作用電極とする湿式太陽電池である。この太陽電池の利点は安価な材料を高純度に精製する必要なく用いれるため、安価な光電変換素子として提供できること、さらに用いられる色素の吸収がブロードであり、広い可視光の波長域にわたって太陽光を電気に変換できることである。しかしながら実用化のためにはさらなる変換効率の向上が必要であり、より長波長域まで光を吸収する色素の開発が望まれている。
この色素の合成に際してはこれまで経験に基づき候補となる錯体色素を選択し合成を行っているため、非効率である。
【0004】
これら色素の物性に関する理論的な検討については、Acc.Chem.Res.2000,33,269〜277(非特許文献2)、Coordination Chemistry Review 2000,208,213〜225(非特許文献3)、J.Phys.Chem.A 2002,106,11354〜11360(非特許文献4)で基底状態のHOMO、LUMOの計算や、励起状態の電子状態の計算が為されているが、酸化状態の検討は為されていない。
【0005】
【特許文献1】
特開平1−220380号公報
【非特許文献1】
Nature第353巻、737頁、1991年
【非特許文献2】
Acc.Chem.Res.2000,33,269〜277
【非特許文献3】
Coordination Chemistry Review 2000,208,213〜225
【非特許文献4】
J.Phys.Chem.A 2002,106,11354〜11360
【0006】
【発明が解決しようとする課題】
本発明の目的は、高変換効率を有する色素の合成に際し効率良く候補となる色素を選択する手法を提供することである。
【0007】
【課題を解決するための手段】
本発明は、色素増感型太陽電池の光電変換効率を与える物性を予測する手法において、酸化還元体と色素との相互作用力を用いることを特徴とする物性予測手法に関する。
【0008】
また、本発明は、酸化還元体と色素との相互作用力を、酸化状態の錯体色素の非占有SOMOの準位により評価することを特徴とする上記の物性予測手法に関する。
【0009】
また、本発明は、酸化還元体と色素との相互作用力を、色素の酸化状態の非占有SOMO軌道の形および電荷密度により評価することを特徴とする上記の物性予測手法に関する。
【0010】
また、本発明は、該色素において、相互作用活性サイトに属する原子が非占有SOMOを有することを特徴とする上記の物性予測手法に関する。
【0011】
また、本発明は、色素の酸化状態の非占有SOMO軌道の軌道エネルギーが−0.4eV以下であることを特徴とする上記の物性予測手法に関する。
【0012】
また、本発明は、該原子が正電荷を帯びていることを特徴とする上記の物性予測手法に関する。
【0013】
【発明の実施の形態】
本発明の物性予測手法においては、酸化還元体と色素との相互作用力を用いることを特徴とする。
【0014】
本発明の酸化還元体と色素との相互作用力は、酸化状態の錯体色素の非占有SOMOの軌道エネルギー準位により評価することができる。
【0015】
上記の酸化状態の非占有SOMO軌道の軌道エネルギーは、好ましくは−0.4eV以下、より好ましくは−4.0eV以下、さらにより好ましくは−8.0eV以下である。
【0016】
本発明の酸化還元体と色素との相互作用力は、色素の酸化状態の非占有SOMO軌道の形および電荷密度により評価することもできる。
すなわち、その酸化状態の非占有SOMO軌道のLCAO係数と原子軌道の確率振幅の積が0.03以上であるような位置に原子軌道を有する原子が相互作用サイト上にあることが好ましい。
また、この条件を満たす原子について、錯体の酸化状態の場合にその原子に属する電荷密度が好ましくは0以上、より好ましくは0.1以上、さらにより好ましくは0.2以上である。
【0017】
上記の各物性値は、計算機シミュレーションにより評価することができる。すなわち、計算手法としては特に限定はしないが錯体の構造最適化およびこの酸化状態の構造最適化には密度汎関数法が好適に用いられる。このときの具体的な交換相関関数としてVWNを、また基底関数系にはDNPを用いることができる。計算を簡略化するために、有効内核ポテンシャル近似を用いても良い。また必ずしも各軌道の電子の占有数を整数に限る必要はない。
【0018】
この計算で得られたモデルに対し、Single CI法を用いて、UV/Visスペクトルについての計算を行うことができ、具体的な手法としてはINDO−SCIがあげられる。
【0019】
構造最適化して得られた酸化状態のモデルに対し、量子化学計算により電子状態計算を行い、非占有SOMOおよび電荷を見積もることができる。計算手法としては密度汎関数法を用いることができる。このときの具体的な交換相関関数としてはVWNおよびB3LYPなどが挙げられる。このときの基底関数系としてはDNP、LANL2DZなどがあげられる。計算を簡略化するために、有効内核ポテンシャル近似を用いても良い。
【0020】
本発明の酸化状態の非占有SOMOおよび電荷を見積もる計算は、交換相関関数としてVWNを用い、基底関数系としてDNPを用いることにより行うことができる。また、電荷を見積もり方法についてはMulliken電荷密度を用いことができる。
【0021】
本発明は、上記の計算機シミュレーションで物性を予測することにより、金属錯体色素の合成候補の選択を行うことができる。
【0022】
【実施例】
(実施例1)
化1で表されるルテニウム錯体および化2で表されるルテニウム錯体を取り上げこれらを比較する。
【0023】
【化1】
【0024】
【化2】
【0025】
各金属錯体モデルの標準状態と酸化状態それぞれに対し、量子化学計算により構造最適化を行った。計算手法としては密度汎関数法(DFT)を用い、このときの交換相関関数としてVWN、基底関数系にはDNPを用いた。また、計算を簡略化するために、有効内核ポテンシャル近似を用いた。(構造最適化においてエネルギーに対する収束条件は10−5a.u.以下とした。構造最適計算で行われるSCFに対し、その収束条件はエネルギーに対して10−6 a.u.以下とした。)
【0026】
この構造最適化で得られた基底状態の錯体モデルに対し、Single CI法を用いて、UV/Visスペクトルについての計算を行った。具体的な手法としてはINDO−SCIがあげられる。(配置間相互作用に取り入れる分子軌道はHOMO、LUMOを中心として上下25軌道、計50軌道とした。)このときに得られたUV/Visスペクトルを図1示す。
【0027】
上記の構造最適化で得られた酸化状態の錯体モデルに対し、量子化学計算により電子状態計算を行った。計算手法としては密度汎関数法を用いた。このときの具体的な交換相関関数としてはVWNを用いた。このときの基底関数系としてはDNPを用いた。さらには計算を簡略化するために、有効内核ポテンシャル近似をもちいた。(SCF計算に対し、その収束条件はエネルギーに対して10−6 a.u.以下とし、各状態の電子の占有数について0以上2以下の整数を条件とした。)
【0028】
酸化状態の非占有SOMO軌道の軌道エネルギーは、化1で表される化合物について−8.023eV、化2で表される化合物について−7.052eVであり、化2で表される化合物が化1で表される化合物と比較してエネルギー的に還元されにくいことを示している。
【0029】
上記の結果に対し、酸化状態の非占有SOMO軌道の形を視覚化したものを図2に、酸化状態のMulliken 電荷密度を視覚化したものを図3に示す。
これら比較した結果は化1ではカチオニックなサイトと非占有SOMOの位置が一致しているが、化2ではカチオニックなサイトと非占有SOMOの位置が一致しておらず、化2で表される化合物が化1で表される化合物と比較して空間的に還元されにくいことを示している。
【0030】
【発明の効果】
本発明により、色素増感型太陽電池の光電変換効率において、高効率が期待できる錯体色素の選択が可能となる。
【図面の簡単な説明】
【図1】図1は実施例1において得られたUV/Visスペクトルである。
【図2】図2は本発明の実施例2において得られた錯体色素の酸化状態の非占有SOMO軌道の形である。
【図3】図3は本発明の実施例3において得られた酸化状態のMulliken 電荷密度である。
Claims (6)
- 色素増感型太陽電池の光電変換効率を与える物性を予測する手法において、酸化還元体と色素との相互作用力を用いることを特徴とする物性予測手法。
- 酸化還元体と色素との相互作用力を、酸化状態の錯体色素の非占有SOMOの準位により評価することを特徴とする請求項1に記載の物性予測手法。
- 酸化還元体と色素との相互作用力を、色素の酸化状態の非占有SOMO軌道の形および電荷密度により評価することを特徴とする請求項1に記載の物性予測手法。
- 該色素において、相互作用活性サイトに属する原子が非占有SOMOを有することを特徴とする請求項3に記載の物性予測手法。
- 色素の酸化状態の非占有SOMO軌道の軌道エネルギーが−0.4eV以下であることを特徴とする請求項4に記載の物性予測手法。
- 該原子が正電荷を帯びていることを特徴とする請求項3に記載の物性予測手法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003055690A JP2004265767A (ja) | 2003-03-03 | 2003-03-03 | 金属錯体色素の物性予測手法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003055690A JP2004265767A (ja) | 2003-03-03 | 2003-03-03 | 金属錯体色素の物性予測手法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004265767A true JP2004265767A (ja) | 2004-09-24 |
Family
ID=33119630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003055690A Pending JP2004265767A (ja) | 2003-03-03 | 2003-03-03 | 金属錯体色素の物性予測手法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004265767A (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101894674A (zh) * | 2010-05-28 | 2010-11-24 | 广东工业大学 | 一种染料敏化太阳能电池复合光阳极及其制备方法 |
CN101916670A (zh) * | 2010-08-25 | 2010-12-15 | 广东工业大学 | 一种TiO2纳米花薄膜光阳极及其制备方法 |
CN101976611A (zh) * | 2010-08-25 | 2011-02-16 | 广东工业大学 | TiO2纳米线阵列薄膜光阳极及其制备方法 |
JP2011057858A (ja) * | 2009-09-10 | 2011-03-24 | Ube Industries Ltd | 電子吸引基を置換基として持つ連結分子を有する二核ルテニウム錯体色素を有する光電変換素子、及び光化学電池 |
CN102254693A (zh) * | 2011-04-18 | 2011-11-23 | 陕西师范大学 | 染料敏化太阳电池光阳极的制备方法 |
CN102254692A (zh) * | 2011-04-18 | 2011-11-23 | 陕西师范大学 | 具有反光膜的染料敏化太阳电池光阳极的制备方法 |
CN104576074A (zh) * | 2015-01-09 | 2015-04-29 | 哈尔滨工业大学 | 一种超长TiO2纳米线阵列薄膜光阳极的制备方法 |
-
2003
- 2003-03-03 JP JP2003055690A patent/JP2004265767A/ja active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011057858A (ja) * | 2009-09-10 | 2011-03-24 | Ube Industries Ltd | 電子吸引基を置換基として持つ連結分子を有する二核ルテニウム錯体色素を有する光電変換素子、及び光化学電池 |
CN101894674A (zh) * | 2010-05-28 | 2010-11-24 | 广东工业大学 | 一种染料敏化太阳能电池复合光阳极及其制备方法 |
CN101894674B (zh) * | 2010-05-28 | 2012-11-07 | 广东工业大学 | 一种染料敏化太阳能电池复合光阳极及其制备方法 |
CN101916670A (zh) * | 2010-08-25 | 2010-12-15 | 广东工业大学 | 一种TiO2纳米花薄膜光阳极及其制备方法 |
CN101976611A (zh) * | 2010-08-25 | 2011-02-16 | 广东工业大学 | TiO2纳米线阵列薄膜光阳极及其制备方法 |
CN102254693A (zh) * | 2011-04-18 | 2011-11-23 | 陕西师范大学 | 染料敏化太阳电池光阳极的制备方法 |
CN102254692A (zh) * | 2011-04-18 | 2011-11-23 | 陕西师范大学 | 具有反光膜的染料敏化太阳电池光阳极的制备方法 |
CN104576074A (zh) * | 2015-01-09 | 2015-04-29 | 哈尔滨工业大学 | 一种超长TiO2纳米线阵列薄膜光阳极的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Berry et al. | Perovskite photovoltaics: the path to a printable terawatt-scale technology | |
Muñoz-García et al. | Dye-sensitized solar cells strike back | |
Ho et al. | Grain transformation and degradation mechanism of formamidinium and cesium lead iodide perovskite under humidity and light | |
Parisi et al. | The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach | |
JP4676970B2 (ja) | 光増感色素 | |
Licht | Multiple band gap semiconductor/electrolyte solar energy conversion | |
Sveinbjörnsson et al. | Monolithic perovskite/silicon tandem solar cell with 28.7% efficiency using industrial silicon bottom cells | |
JP5008615B2 (ja) | 光増感色素 | |
Arkan et al. | The role of the electronic structure and solvent in the dye-sensitized solar cells based on Zn-porphyrins: Theoretical study | |
Ishida et al. | β-(Ethynylbenzoic acid)-substituted push–pull porphyrins: DSSC dyes prepared by a direct palladium-catalyzed alkynylation reaction | |
JP5241546B2 (ja) | 感光剤染料 | |
He et al. | The influence of a dye–TiO 2 interface on DSSC performance: a theoretical exploration with a ruthenium dye | |
Lin et al. | Decoupled artificial photosynthesis via a catalysis-redox coupled COF|| BiVO4 photoelectrochemical device | |
Xie et al. | Theoretical investigations on the unsymmetrical effect of β-link Zn–porphyrin sensitizers on the performance for dye-sensitized solar cells | |
Gao et al. | Theoretical insight on hybrid nanocomposites of graphene quantum dot and carbazole–carbazole dyes as an efficient sensitizer of DSSC | |
Liu et al. | Study on photo-induced charge transfer in the heterointerfaces of CuInS2/CdS co-sensitized mesoporous TiO2 photoelectrode | |
Pushparaj et al. | Employing novel Si-over-Si technology to optimize PV effect in solar array | |
JP2004265767A (ja) | 金属錯体色素の物性予測手法 | |
Kumaran et al. | New phenoxazine-based organic dyes with various acceptors for dye-sensitized solar cells: synthesis, characterization, DSSCs fabrications and DFT study | |
Xing et al. | Phycoerythrobilin/phycourobilin as efficient sensitizers of dye-sensitized solar cell | |
Parisi et al. | Life cycle assessment of thin film non conventional photovoltaics: The case of dye sensitized solar cells | |
CN104078245A (zh) | 可同时光电转化与光能存储的纳米线阵列器件及其制备方法和应用 | |
Kour et al. | Recent advances in photovoltaic technology based on perovskite solar cell-A review | |
Conradie | Effective dyes for DSSCs–important experimental and calculated parameters | |
CN103268919A (zh) | 一种TiO2薄膜及P3HT/TiO2有机无机杂化的异质结薄膜的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050812 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20060921 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090603 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091021 |