JP2004263941A - Cogeneration system - Google Patents

Cogeneration system Download PDF

Info

Publication number
JP2004263941A
JP2004263941A JP2003054800A JP2003054800A JP2004263941A JP 2004263941 A JP2004263941 A JP 2004263941A JP 2003054800 A JP2003054800 A JP 2003054800A JP 2003054800 A JP2003054800 A JP 2003054800A JP 2004263941 A JP2004263941 A JP 2004263941A
Authority
JP
Japan
Prior art keywords
hot water
bathtub
water
heat load
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003054800A
Other languages
Japanese (ja)
Other versions
JP3970195B2 (en
Inventor
Yoshitaka Kashiwabara
義孝 栢原
Keiji Takimoto
桂嗣 滝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2003054800A priority Critical patent/JP3970195B2/en
Publication of JP2004263941A publication Critical patent/JP2004263941A/en
Application granted granted Critical
Publication of JP3970195B2 publication Critical patent/JP3970195B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Control For Baths (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cogeneration system capable of improving operating efficiency by effectively utilizing heat generated from a cogeneration device and supplying hot water into a bathtub, with respect to the cogeneration system comprising the cogeneration device generating heat and electric power, and an exhaust heat type heating means for heating hot water in a hot water storage tank by heat generated by the cogeneration device, and further comprising a hot water supply means for supplying hot water into the bathtub by performing tapping operation to supply the hot water into the bathtub until a water level in the bathtub reaches a predetermined hot water supply target water level. <P>SOLUTION: This cogeneration system comprises a bathtub state detecting means for detecting bathtub states relating to the water level and a water temperature in the bathtub, and the hot water supply means determines the set supplied hot water temperature on the basis of the state of remaining hot water as the bathtub state detected by the bathtub state detecting means and a hot water supply target state determined as the target of the bathtub state, and perform the tapping operation. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、熱と電力を発生する熱電併給装置と、前記熱電併給装置が発生する熱にて貯湯タンク内の湯水を加熱する排熱式加熱手段と、前記貯湯タンク内から取り出した湯水を浴槽内に供給する浴槽湯水供給手段と、前記浴槽湯水供給手段にて前記浴槽内に供給される湯水に対する給水の混合比調整により前記浴槽内へ供給される湯水の供給湯水温度を設定する供給湯水温度設定手段とを備えると共に、前記供給湯水温度設定手段により前記供給湯水温度を所定の設定供給湯水温度に設定しながら、前記浴槽内の水位が所定の湯張り目標水位となるまで、前記浴槽湯水供給手段により前記浴槽内に湯水を供給する落し込み操作を実行して前記浴槽内の湯張りを行う湯張り手段を備えたコジェネレーションシステムに関する。
【0002】
【従来の技術】
上記のようなコジェネレーションシステムは、熱電併給装置が、ガスエンジンを駆動源とする発電装置や燃料電池などから構成され、熱電併給装置を運転させるとともに、排熱式加熱手段を作動させることにより、熱電併給装置にて発生する熱を利用して貯湯タンク内に湯水を貯湯するように構成されている。
【0003】
更に、かかるコジェネレーションシステムは、その貯湯タンクに接続された給湯路及び湯張り路等からなる浴槽湯水供給手段により、貯湯タンク内から取り出した湯水を浴槽内に供給可能、且つ、上記給湯路等に設けられたミキシングバルブ等からなる供給湯水温度設定手段により、貯湯タンク内から取り出された湯水に混合比調整を伴って給水を混合し、その混合比調整により浴槽内へ供給される湯水の供給湯水温度を設定可能に構成することで、運転制御装置が機能する湯張り手段により、供給湯水温度を所定の設定供給湯水温度に設定しながら、前記浴槽内の水位が所定の設定水位となるまで、浴槽内に湯水を供給する落し込み操作を、自動的に実行可能である。
【0004】
従来のコジェネレーションシステムの湯張り手段は、上記落し込み操作において、浴槽内の残湯の有り無しに関わらず、浴槽内の水位が予め使用者により設定された湯張り目標水位となるまで、上記湯張り目標水位と同様に浴槽内の水温の目標として設定された湯張り目標水温と等しい設定供給湯水温度の湯水を浴槽内に供給するように構成されている。
【0005】
更に、上記浴槽内に上記湯張り目標水温よりも低い水温の残湯が存在ている状態で、上記落し込み操作が実行された場合には、落し込み操作後の浴槽内の水温は、上記湯張り目標水温よりも低くなる。そこで、コジェネレーションに、バーナの燃焼により貯湯タンク内に供給する湯水または前記貯湯タンク内から取り出した湯水を加熱する補助加熱手段と、この補助加熱手段で加熱された湯水との熱交換により浴槽内の水を加熱する浴槽水加熱用熱交換器とを設けて、前述の湯張り手段を、上記落し込み操作を実行した後に、上記補助加熱手段と上記浴槽水加熱用熱交換器とを働かせて、上記浴槽内の水を湯張り目標水温に加熱する追い焚き操作を実行することもある(例えば、特許文献1参照。)。
【0006】
また、熱電併給装置の運転効率を高めるためのコジェネレーションシステムとして、過去の運転実績に基づいて熱電併給装置の運転計画を行うように構成したものが提案されている。
かかるコジェネレーションシステムは、例えば、コンピュータからなる運転制御装置を、予測熱負荷データに基づいて前記熱電併給装置の運転計画を行う運転計画手段と、更に、記憶装置に蓄積した過去熱負荷データから上記運転計画に使用する予測熱負荷データを導出する熱負荷予測手段等として機能させるように構成される。
【0007】
【特許文献1】
特開2001−248908号公報
【0008】
【発明が解決しようとする課題】
しかし、前述の従来の湯張り手段を有するコジェネレーションシステムでは、前述のように、浴槽内に湯張り目標水温よりも低い水温の残湯が存在していた場合には、落し込み操作を実行した後の浴槽内の水温は湯張り目標水温よりも低くなるので、上記落し込み操作の後に、必ず、後の追い焚き操作を実行する必要がある。かかる追い焚き操作を実行した場合には、補助加熱手段を作動させて比較的高い温度の浴槽内の湯水を加熱する必要があるので、補助加熱手段において熱源併給設備とは別にエネルギが消費されることになり、コジェネレーションシステムの運転効率の低下を招くことがある。
【0009】
また、コジェネレーションシステムにおいて、浴槽内に残湯が存在する状態から湯張りを行った場合の熱負荷は、浴槽内に残湯が存在しない状態言い換えれば空状態から湯張りを行った場合の熱負荷と比較して、残湯が保有していた熱量だけ小さくなる。
しかし、前述の過去の熱負荷に基づいて熱電併給装置の運転計画を行うコジェネレーションシステムでは、使用者が浴槽内の残湯を使用して湯張りを行うか否かを考慮せずに、熱源併給装置の運転計画を行うので、使用者が浴槽内に残湯が存在する状態で湯張りを行った場合には、必要以上に熱電併給装置に熱を発生させてしまったり、逆に、使用者が残湯が存在しない状態で湯張りを行った場合には、浴槽内の湯張りを行うに充分な熱を熱電併給装置で発生させることができない場合があり、コジェネレーションシステムの運転効率の低下を招くことがある。
【0010】
本発明は、上記の事情に鑑みてなされたものであり、その目的は、熱電併給装置が発生する熱を有効利用して運転効率の向上を図り、浴槽内の湯張りを行うことができるコジェネレーションシステムを提供する点にある。
【0011】
【課題を解決するための手段】
上記目的を達成するための本発明に係るコジェネレーションシステムの第一特徴構成は、熱と電力を発生する熱電併給装置と、前記熱電併給装置が発生する熱にて貯湯タンク内の湯水を加熱する排熱式加熱手段と、前記貯湯タンク内から取り出した湯水を浴槽内に供給する浴槽湯水供給手段と、前記浴槽湯水供給手段にて前記浴槽内に供給される湯水に対する給水の混合比調整により前記浴槽内へ供給される湯水の供給湯水温度を設定する供給湯水温度設定手段とを備えると共に、前記供給湯水温度設定手段により前記供給湯水温度を所定の設定供給湯水温度に設定しながら、前記浴槽内の水位が所定の湯張り目標水位となるまで、前記浴槽湯水供給手段により前記浴槽内に湯水を供給する落し込み操作を実行して前記浴槽内の湯張りを行う湯張り手段を備えたコジェネレーションシステムであって、
前記浴槽内の水位と水温とに関する浴槽状態を検出可能な浴槽状態検出手段を備え、
前記湯張り手段が、前記浴槽状態検出手段で検出した浴槽状態である残湯状態と前記浴槽状態の目標として設定された湯張り目標状態とに基づいて前記設定供給湯水温度を決定して、前記落し込み操作を実行するように構成されている点にある。
【0012】
即ち、上記第一特徴構成のコジェネレーションシステムによれば、湯張り手段により実行される上記落し込み操作において、浴槽内の水位が予め設定された湯張り目標水位となるまで、貯湯タンク内から取り出した湯水を浴槽内に供給する際に、浴槽内に供給される湯水の温度を、浴槽内の残湯の水位及び水温に関する残湯状態と、浴槽内の目標設定水位及び目標設定水温に関する湯張り目標状態とに基づいて、落し込み操作後の浴槽内の水温が湯張り目標状態における湯張り目標水温を超えない範囲内で、貯湯タンク内の湯温以下のできるだけ高い設定供給湯水温度に設定して、できるだけ熱電併給装置が発生する熱を積極的に利用し、運転効率の向上を図ることができる。
【0013】
特に、浴槽内に残湯が存在している状態から落し込み操作を実行するときに、貯湯タンク内の湯水が湯張り目標水温より高い場合では、上記設定供給湯水温度を湯張り目標水温よりも高く設定して、貯湯タンク内の湯水の熱を有効利用し、落し込み操作後の浴槽内の水温を上記湯張り目標水温以下のできるだけ高い温度として、後の追い焚き操作で消費されるエネルギをできるだけ小さくすることができる。
【0014】
本発明に係るコジェネレーションシステムの第二特徴構成は、上記第一特徴構成に加えて、前記湯張り手段が、前記落し込み操作を実行する前に、前記浴槽湯水供給手段により前記浴槽内へ湯水を予備供給する予備落し込み操作を実行可能に構成されている点にある。
【0015】
即ち、上記第二特徴構成のコジェネレーションシステムによれば、浴槽内に残湯が存在しない場合、又は、浴槽内の残湯がすくなすぎる場合でも、予備落し込み操作を実行する前に予備落し込み操作を実行することで、落し込み操作を実行するときには、確実に、浴槽内に供給湯水温度を決定するのに充分な残湯を存在させることができ、その後、落し込み操作を実行して、熱電併給装置が発生する熱を有効利用することができる。
【0016】
また、上記浴槽状態検出手段により残湯が存在しない又は残湯が少なすぎると判断した後に、上記予備落し込み操作を実行することもできる。逆に、上記浴槽状態検出手段で浴槽状態を検出する前に、上記予備落し込み操作を実行することで、上記のように残湯状態を検出した後に予備落し込み操作を実行するよりも、早い時期に落し込み操作を実行可能なように、浴槽内に残湯を存在させることができる。更に、上記予備落し込み操作は、浴槽状態検出手段により、落し込み操作を実行するために必要な残湯が充分に存在すると検出されるまで繰り返し実行しても構わない。
【0017】
本発明に係るコジェネレーションシステムの第三特徴構成は、上記第二特徴構成に加えて、入力部の入力信号により前記浴槽内の残湯の有無を判定する残湯判定手段を備え、
前記湯張り手段が、前記残湯判定手段で前記残湯の有りを判定した場合には、前記予備落し込み操作をスキップして前記落し込み操作を実行し、前記残湯判定手段で前記残湯の無しを判定した場合には、前記予備落し込み操作を実行した後に前記落し込み操作を実行する点にある。
【0018】
即ち、上記第三特徴構成のコジェネレーションシステムによれば、例えば、使用者が残湯の使用を指令するための入力部の入力信号により残湯使用判定手段が残湯の不使用を判定した場合にのみ、予備落し込み操作を実行して、強制的に、落し込み操作を実行するときには残湯が存在する状態とし、逆に、残湯判定手段で残湯の有りを判定した場合には、既に浴槽内に残湯が存在しているとして、予備落し込み操作をスキップ(省略)して、湯張り時間の短縮を図る上に、落し込み操作において供給される湯水量をできるだけ大きくして、一層の運転効率向上を図ることができる。
また、前記湯張り手段が前記残湯判定手段で前記残湯の有りを判定した場合において、上記浴槽状態検出手段により残湯が存在しない又は残湯が少なすぎると判断した場合には、予備落し込み操作を実行しても構わない。
【0019】
本発明に係るコジェネレーションシステムの第四特徴構成は、上記第三特徴構成に加えて、予測熱負荷データに基づいて前記熱電併給装置の運転計画を行う運転計画手段と、
前記残湯判定手段の判定結果に応じて過去熱負荷データから前記予測熱負荷データを導出する熱負荷予測手段とを備えた点にある。
【0020】
即ち、上記第四特徴構成のコジェネレーションシステムによれば、上記熱負荷予測手段により、逐次記憶された過去における熱負荷に関する過去熱負荷データから、使用者が浴槽内に残湯が存在する状態で湯張りを行うか否かを残湯判定手段の判定結果により考慮して、予測熱負荷データを導出することができ、そのように浴槽内に残湯が存在する状態で湯張りを行うか否かに応じて導出した予測熱負荷データに基づいて、熱電併給装置の運転計画を行うことで、熱電併給装置をできるだけ実際の熱負荷に合わせて運転し、熱電併給設備が発生した熱を有効利用することで、運転効率を一層向上することができる。
【0021】
また、湯張り手段により実行される落し込み操作においては、残湯が存在している場合には、目標設定水温以上のできるだけ高い設定供給湯水温度の湯水を浴槽内に供給するので、その落し込み操作による熱負荷は、従来のように残湯が存在していても目標設定水温の湯水を浴槽内に供給した場合の熱負荷よりも大きくなり、その落し込み操作による熱負荷が自然に上記過去熱負荷データに反映されることになり、過去熱負荷データの信頼性が高くなり、上記熱負荷予測データの予測精度を向上することができる。
【0022】
本発明に係るコジェネレーションシステムの第五特徴構成は、上記第一乃至第四特徴構成に加えて、前記貯湯タンクから取り出した湯水との熱交換により、前記浴槽内の水を加熱する浴槽水加熱用熱交換器を備え、
前記湯張り手段が、前記落し込み操作を実行する前に、前記浴槽水加熱用熱交換器により前記浴槽内の残湯を予備加熱する予備加熱操作を実行可能に構成されている点にある。
【0023】
即ち、上記第五特徴構成のコジェネレーションシステムによれば、浴槽水加熱用熱交換器により貯湯タンク内から取り出した湯水との熱交換にて浴槽内の残湯を予備加熱しておくことで、後の落し込み操作において浴槽内に供給するべき湯水の供給湯水温度を、できるだけ貯湯タンク内の湯水の温度以下にして後の追い焚きを省略し、一層の運転効率向上を図ることができる。
【0024】
また、このように落し込み操作の前に予備加熱操作を実行することで、予備加熱操作における浴槽内の残湯が比較的低温であるため、補助加熱手段のバーナ等を働かせずに、熱電併給装置にて発生した熱により、又は、貯湯タンク内の湯水との熱交換により、その残湯を加熱することができる。
更に、上記予備加熱操作を、貯湯タンク内の貯湯量が満杯になったときに行うことで、熱電併給設備が発生する熱を一層有効利用することができる。
【0025】
上記目的を達成するための本発明に係るコジェネレーションシステムの第六特徴構成は、熱と電力を発生する熱電併給装置と、前記熱電併給装置が発生する熱にて貯湯タンク内の湯水を加熱する排熱式加熱手段と、前記貯湯タンク内から取り出した湯水を浴槽内に供給する浴槽湯水供給手段と、前記浴槽湯水供給手段にて前記浴槽内に供給される湯水に対する給水の混合比調整により前記浴槽内へ供給される湯水の供給湯水温度を設定する供給湯水温度設定手段とを備えると共に、前記供給湯水温度設定手段により前記供給湯水温度を所定の設定供給湯水温度に設定しながら、前記浴槽内の水位が所定の設定水位となるまで、前記浴槽湯水供給手段により前記浴槽内に湯水を供給する落し込み操作を実行して前記浴槽内の湯張りを行う湯張り手段を備えたコジェネレーションシステムであって、
入力部の入力信号により前記浴槽内の残湯の有無を判定する残湯判定手段と、
予測熱負荷データに基づいて前記熱電併給装置の運転計画を行う運転計画手段と、
前記残湯判定手段の判定結果に応じて過去熱負荷データから前記予測熱負荷データを導出する熱負荷予測手段とを備えた点にある。
【0026】
即ち、上記第六特徴構成のコジェネレーションシステムによれば、上記熱負荷予測手段により、逐次記憶された過去における熱負荷に関する過去熱負荷データから、使用者が浴槽内に残湯が存在する状態で湯張りを行うか否かを残湯判定手段の判定結果により考慮して、予測熱負荷データを導出することができ、そのように浴槽内に残湯が存在する状態で湯張りを行うか否かに応じて導出した予測熱負荷データに基づいて、熱電併給装置の運転計画を行うことで、熱電併給装置をできるだけ実際の熱負荷に合わせて運転し、熱電併給設備が発生した熱を有効利用することで、運転効率を向上することができる。
【0027】
本発明に係るコジェネレーションシステムの第七特徴構成は、上記第六特徴構成に加えて、前記浴槽内の水位と水温とに関する浴槽状態を検出可能な浴槽状態検出手段を備え、
前記熱負荷予測手段が、前記残湯判定手段で前記残湯の有りを判定した場合には、前記過去熱負荷データと、前記浴槽状態検出手段で検出した浴槽状態である残湯状態とから、前記予測熱負荷データを導出する点にある。
【0028】
即ち、上記第七特徴構成のコジェネレーションシステムによれば、残湯判定手段で残湯の有りを判定した場合に、負荷予測手段で、浴槽内に残湯が存在した状態で湯張りを行うことを想定した予測熱負荷データを、残湯の実際の水位及び水温とに関する残湯状態をも考慮して、上記予測熱負荷データを導出することで、一層の運転効率の向上を図ることができる。
【0029】
本発明に係るコジェネレーションシステムの第八特徴構成は、上記第六特徴構成に加えて、前記熱負荷予測手段が、前記残湯判定手段で前記残湯の有りを判定した場合には、過去において前記残湯の有りを判定したときの残湯有り過去熱負荷データから前記予測熱負荷データを導出し、前記残湯判定手段で前記残湯の無しを判定した場合には、過去において前記残湯の無しを判定したときの残湯無し過去熱負荷データから前記予測熱負荷データを導出する点にある。
【0030】
即ち、上記第八特徴構成のコジェネレーションシステムによれば、過去熱負荷データを記憶するに、過去において残湯判定手段で残湯が有りと判定し残湯がある状態で湯張りを行ったときの残湯有り過去熱負荷データと、そのときに残湯判定手段で残湯が無しと判定し残湯が無い状態で湯張りを行ったときの残湯無し過去熱負荷データとを各別に記憶して、負荷予測手段で、そのときに残湯判定手段の判定結果に応じて、残湯有り過去熱負荷データ又は残湯無し過去熱負荷データから、予測熱負荷データを導出することができる。即ち、残湯の実際の水位及び水温とに関する残湯状態を検出することなく、熱電併給装置をできるだけ実際の熱負荷に合わせて運転することができる。
【0031】
本発明に係るコジェネレーションシステムの第九特徴構成は、上記第八特徴構成に加えて、前記浴槽内の水位と水温とに関する浴槽状態を検出可能な浴槽状態検出手段を備え、
前記熱負荷予測手段が、前記残湯判定手段で前記残湯の有りを判定した場合には、過去において前記残湯の有りを判定したときの残湯有り過去熱負荷データと、前記浴槽状態検出手段で検出した浴槽状態である残湯状態とから、前記予測熱負荷データを導出する点にある。
【0032】
即ち、上記第九特徴構成のコジェネレーションシステムによれば、残湯判定手段で残湯の有りを判定した場合に、負荷予測手段において、各別に記憶されている残湯有り過去熱負荷データから、残湯の実際の水位及び水温とに関する残湯状態をも考慮して、一層精度良く予測熱負荷データを導出することができる。
【0033】
【発明の実施の形態】
本発明にかかるコジェネレーションシステムの実施の形態を図面に基づいて説明する。
【0034】
このコジェネレーションシステムは、図1および図2に示すように、ガスエンジンによって発電機を駆動するように構成された熱電併給装置1と、その熱電併給装置1の排熱を利用しながら、貯湯、給湯および暖房を行う貯湯ユニット2と、熱電併給装置1と貯湯ユニット2の運転を制御する運転制御部Hなどから構成されている。
【0035】
前記貯湯ユニット2は、湯水を貯湯する貯湯タンク3、貯湯タンク3内の湯水を循環するための熱源用循環路4、熱源用循環路4を通流する湯水を加熱する加熱手段5、熱源用循環路4を通流する湯水にて端末供給用の熱媒を加熱させる暖房用熱交換器6、熱源用循環路4を通流する湯水にて浴槽18内の水(以下、浴槽水と呼ぶ。)を加熱させる追い焚き用熱交換器7(浴槽水加熱用熱交換器の一例)などから構成されている。
【0036】
前記貯湯タンク3内には、その湯温を検出することにより貯湯量を検出するサーミスタSが複数設けられ、貯湯タンク3には、その底部から貯湯タンク3に水道水の供給圧を用いて給水する給水路8が接続され、その上部から給湯するための給湯路9が接続され、使用された量だけの水を給水路8から貯湯タンク3に給水するように構成されている。
【0037】
前記給湯路9には、給水路8から分岐された混合用給水路10が接続され、その接続箇所に給湯路9からの湯水と混合用給水路10からの水との混合比を調整自在なミキシングバルブ11が設けられている。
前記給水路8と混合用給水路10との分岐箇所には、給水温度を検出する給水サーミスタ12が設けられている。
【0038】
また、給湯路9におけるミキシングバルブ11よりも上流側には、貯湯タンク3の上部から給湯路9に給湯された湯水の温度を検出する貯湯出口サーミスタ13が設けられ、給湯路9におけるミキシングバルブ11よりも下流側には、ミキシングバルブ7にて混合された湯水の温度を検出するミキシングサーミスタ14および流量制御弁15が設けられている。
【0039】
前記給湯路9におけるミキシングサーミスタ14および流量制御弁15の配設箇所よりも下流側が、台所や洗面所などの図外の給湯栓に給湯する一般給湯路16と、浴槽18内に湯水を供給するための湯張り路17とに分岐されている。
そして、湯張り路17が浴槽18内からの風呂戻り路19に接続され、風呂戻り路19および風呂往き路20の両路を通して浴槽18内に湯水を供給するようにしている。
【0040】
前記一般給湯路16には、一般給湯路16を通流する湯水の流量を検出する給湯流量センサ21が設けられ、湯張り路17には、湯張り路17を通流する湯水の流量を検出する湯張り流量センサ22、湯張り電磁弁23、バキュームブレーカ24、湯張り逆止弁25が上流側から順に設けられている。
【0041】
浴槽湯水供給手段Aが、給湯路9、流量制御弁15、湯張り路17、湯張り電磁弁23、風呂戻り路19などにより構成され、上記流量制御弁15及び湯張り電磁弁23を開弁させて、貯湯タンク3内から取り出した湯水を、給湯路9、湯張り路17、及び、風呂戻り路19を通じて、浴槽18内に供給するように構成されている。
【0042】
供給湯水温度設定手段Bが、貯湯出口サーミスタ13、給水サーミスタ12、ミキシングバルブ7、ミキシングサーミスタ14などで構成され、浴槽湯水供給手段A等にて浴槽18内又は給湯栓に供給される湯水に対する給水の混合比調整し、浴槽18内又は給湯栓へ供給される湯水の供給湯水温度を設定するように構成されている。
【0043】
前記熱源用循環路4と貯湯タンク3とが、熱源用循環路4を通流する湯水を貯湯タンク3内に戻す、または、貯湯タンク3内の湯水を熱源用循環路4に取り出すために、貯湯タンク3の上部と底部の合計2箇所で連通接続されている。
そして、貯湯タンク3の上部には、熱源用循環路4の湯水を貯湯タンク3内に供給するための貯湯路26が連通接続され、その貯湯路26には、貯湯開閉弁27が設けられている。
また、貯湯タンク3の底部には、貯湯タンク3内の湯水を熱源用循環路4に取り出すための取り出し路28が連通接続され、その取り出し路18と熱源用循環路4との接続箇所に三方弁29が設けられている。
【0044】
そして、熱源用循環路4には、湯水の循環方向の順に、熱源用循環路4の湯水の循環量を検出する循環流量センサ30、循環ポンプ31、加熱手段5、熱源用循環路4の湯水の循環量を調整する循環流量調整バルブ32、加熱手段5にて加熱された湯水の温度を検出する加熱温サーミスタ33、湯水の通流を断続する断続弁34、暖房用熱交換器6、追い焚き用熱交換器7が設けられている。
【0045】
湯水循環手段Dが、熱源用循環路4、循環ポンプ31、循環流量センサ30、循環流量調整バルブ32、加熱温サーミスタ33、貯湯開閉弁27、および、断続弁34などにより構成されている。
そして、湯水循環手段Dは、貯湯タンク3から取り出した湯水を加熱手段5にて加熱し、その加熱した湯水を貯湯タンク3に貯湯したり、加熱手段5にて加熱した湯水を暖房用熱交換器6および追い焚き用熱交換器7に供給して、暖房用熱交換器6および追い焚き用熱交換器7を通過した湯水を加熱手段5に戻すように構成されている。
【0046】
前記加熱手段5は、熱電併給装置1におけるガスエンジンの冷却水により湯水を加熱する排熱式加熱手段5aと、バーナの燃焼により湯水を加熱する補助加熱手段5bとから構成されている。
【0047】
前記排熱式加熱手段5aは、熱電併給装置1の運転中に、冷却水循環ポンプ35を作動させて、ガスエンジンの冷却水を冷却水循環路36を通して排熱式加熱手段5aに供給させて、熱源用循環路4を通流する湯水を加熱するように構成されている。
【0048】
前記補助加熱手段5bは、図示はしないが、ガス燃焼式のバーナおよびこのバーナに燃焼用空気を供給するファンなどが設けられ、バーナの燃焼により熱源用循環路4を通流する湯水を加熱するように構成されている。
【0049】
前記暖房用熱交換器6には、暖房戻り路37および暖房往き路38が接続され、暖房ポンプ39を作動させることにより、暖房戻り路37および暖房往き路38を通して循環する端末供給用の熱媒を通過させて、加熱部4にて加熱された湯水にて端末供給用の熱媒を加熱させるように構成されている。
【0050】
前記暖房戻り路37には、熱媒の循環方向の上流側から順に、暖房戻り路37の熱媒の温度を検出する暖房戻りサーミスタ40、大気開放式の膨張タンク41、暖房ポンプ39が設けられ、暖房往き路38には、暖房往き路37の熱媒の温度を検出する暖房往きサーミスタ42が設けられている。
また、暖房戻り路37と暖房往き路38とが、バイパス路43にて連通接続されている。
【0051】
前記暖房ポンプ39を作動させることにより、膨張タンク41内の熱媒を暖房用熱交換器6を通過させる状態で暖房往き路38および暖房戻り路37を通して端末Tに循環供給するように構成されている。
また、端末Tは、詳述はしないが、床暖房装置や浴室乾燥暖房装置など供給される熱媒にて暖房を行う暖房端末にて構成されている。
【0052】
前記膨張タンク41には、貯留している熱媒の水位の上限を検出する上限センサ44および下限を検出する下限センサ45と、膨張タンク41から熱媒が溢れるオーバーフロー状態の発生を検出するオーバーフローセンサ46とが設けられている。
また、膨張タンク41には、給水路8から分岐させて膨張タンク41に給水するためのタンク給水路47が接続され、そのタンク給水路47には、補給水電磁弁48が設けられている。
そして、下限センサ45にて熱媒の水位が下限となると、上限センサ44にて熱媒の水位が上限となるまで補給水電磁弁48を開弁させて、膨張タンク41へ熱媒を補給するように構成されている。
【0053】
前記追い焚き用熱交換器7には、風呂戻り路19および風呂往き路20が接続され、風呂ポンプ49を作動させることにより、風呂戻り路19および風呂往き路20を通して追い焚き用熱交換器7と浴槽18内と間で浴槽水を循環させて、加熱手段5にて加熱された湯水との熱交換により浴槽水を加熱させるように構成されている。
【0054】
前記風呂戻り路19には、浴槽水の循環方向の上流側から順に、浴槽18内の水位を検出する圧力検出式の水位検出手段としての水位センサ50、風呂戻り路19の浴槽水の温度を検出する風呂戻りサーミスタ51、二方弁52、風呂ポンプ49、風呂水流スイッチ53が設けられている。
そして、浴槽内の浴槽状態としての水位と水温とを検出可能な浴槽状態検出手段Cが、水位センサ50及び風呂戻りサーミスタ51とで構成されている。
【0055】
前記運転制御部Hは、図2に示すように、リモコンRの指令などに基づいて、熱電併給装置1の運転制御、貯湯ユニット2の貯湯運転、給湯運転、暖房運転、更には、貯湯ユニット2の浴槽湯水供給手段A、供給湯水温度設定手段B、加熱手段5、及び、湯水循環手段Dなどの各種手段の作動を制御することにより、浴槽18内に目標設定水位且つ目標設定水温の湯水を貯める湯張り運転などの各種運転制御を実行するように構成されている。
【0056】
また、上記リモコンRには、使用者が浴槽18内に残湯が存在した状態で湯張り運転を行うように指令するための入力部として残湯使用ボタンR1が設けられている。そして、上記運転制御部Hが機能する残湯判定手段H2は、上記リモコンRの残湯使用ボタンR1が押されたときには、その日に実行する湯張り運転において、浴槽18内に残湯が存在すると判定し、逆に、湯張り運転までに上記残湯使用ボタンR1が押されなかった場合には、その日に実行する湯張り運転において、浴槽18内に残湯が存在しないと判定する。
【0057】
以下、上記運転制御部Hにより実行される各種運転制御について説明を加える。
前記貯湯運転は、断続弁34を開弁させかつ貯湯開閉弁27を開弁させた状態で、循環ポンプ31を作動させて、貯湯タンク3の底部から湯水を熱源用循環路4に取出し、加熱手段5にて所望の温度に加熱したのち、貯湯路26を通して貯湯タンク3の上部に供給する運転である。
そして、この貯湯運転は、熱電併給装置1の運転中に行われ、冷却水循環ポンプ35の作動により熱電併給装置1の排熱を利用して、排熱式加熱手段5aにて加熱された湯水を貯湯タンク3に貯湯するように構成されている。
【0058】
前記給湯運転は、給湯栓が開操作されたり、湯張り要求が指令されると開始され、貯湯タンク3内に貯湯されている湯水を取り出して、その湯水に水を混合させて所望の温度の湯水を給湯栓や浴槽18内に供給する運転である。
また、貯湯タンク3内に湯水が貯湯されていない場合などには、補助加熱手段5bにて湯水を加熱させる状態で上述の貯湯運転を行い、補助加熱手段5bにて加熱された湯水に水を混合させて所望の設定供給湯水温度の湯水を給湯栓や浴槽18内に供給するように構成されている。
【0059】
前記暖房運転は、断続弁34を開弁させかつ貯湯開閉弁27を閉弁させた状態で、循環ポンプ31を作動させて、加熱部4にて加熱された湯水を暖房用熱交換器6を通過させるとともに、暖房ポンプ39を作動させて、膨張タンク41内の熱媒を暖房用熱交換器6を通過させる状態で暖房往き路38および暖房戻り路37を通して端末Tに循環供給するように構成されている。
また、この暖房運転では、加熱温サーミスタ33の検出温度が、例えば、65〜70℃になるように、貯湯開閉弁27と断続弁34の開度を調整するようにしている。
【0060】
そして、この暖房運転では、熱電併給装置1が運転中であると、冷却水循環ポンプ35の作動により熱電併給装置1の排熱を利用して、排熱式加熱手段5aにて湯水を加熱させて、その加熱された湯水を暖房用熱交換器6に供給するように構成されている。
このように熱電併給装置1の排熱を利用している場合には、排熱利用式加熱手段5aにて湯水を加熱することにより端末Tで要求されている暖房負荷以上を賄うことができると、加熱温サーミスタ33の検出温度が貯湯設定温度になるように、貯湯開閉弁27と断続弁34とを開弁状態で開度調整する。
また、熱電併給装置1が運転されていない場合や、排熱式加熱手段5aにて湯水を加熱するだけでは端末Tで要求されている暖房負荷を賄えない場合には、貯湯開閉弁27を閉弁しかつ断続弁34を開弁させ、補助加熱手段5bにより湯水を加熱させて、その加熱された湯水を暖房用熱交換器6に供給して、端末Tで要求されている暖房負荷を賄うように構成されている。
【0061】
前記湯張り運転は、運転制御部Hが機能する湯張り手段H1が、リモコンR等の湯張り開始指令を指令するためのボタンが押されたとき、又は、リモコンR等において予め予約設定されていた湯張り開始時間となったときに実行する運転であり、この湯張り運転は、落し込み操作及び追い焚き操作などからなる。
【0062】
前記湯張り運転における落し込み操作は、上記浴槽18内の水位が予めリモコンR等において設定された湯張り目標水位に満たない場合に実行される操作であり、詳しくは、供給湯水温度設定手段Bにより、浴槽18内に供給される湯水に対する給水の混合比調整し、浴槽18内へ供給される湯水の供給湯水温度を所定の設定供給湯水温度に設定しながら、水位センサ50で検出される浴槽18内の水位が湯張り目標水位となるまで、浴槽湯水供給手段Aにより、上記流量制御弁15及び湯張り電磁弁23を開弁させて、貯湯タンク3内から取り出した湯水を浴槽18内へ供給する操作である。
【0063】
前記湯張り運転における追い焚き操作は、上記落し込み操作を実行した後に、上記浴槽18内の水温が予めリモコンR等において設定された湯張り目標水温に満たない場合に実行される操作であり、詳しくは、循環ポンプ31を作動させて、加熱手段5にて加熱された湯水を追焚用熱交換器7を通過させるとともに、風呂ポンプ49を作動させて、浴槽18内の湯水を追焚用熱交換器7を通過させる状態で風呂戻り路19および風呂往き路20を通して循環させて、風呂戻りサーミスタ51で検出される浴槽水の温度が、上記湯張り目標水位と同様に予め設定された目標湯張り水温となるまで、浴槽水を加熱させる操作である。
また、この追い焚き操作では、加熱温サーミスタ33の検出温度が、例えば、65〜70℃になるように、貯湯開閉弁27と断続弁34の開度を調整するようにしている。
【0064】
また、かかる追い焚き操作では、上述の暖房運転と同様に、熱電併給装置1が運転中であると、貯湯開閉弁27と断続弁34とを開弁状態で開度調整しながら、冷却水循環ポンプ35の作動により熱電併給装置1の排熱を利用して排熱式加熱手段5aにより加熱された湯水を追い焚き用熱交換器7に供給し、熱電併給装置1が運転されていない場合などには、、貯湯開閉弁27を閉弁しかつ断続弁34を開弁させ、補助加熱手段5bにて加熱された湯水を追い焚き用熱交換器7に供給して、浴槽18内で要求されている追い焚き負荷を賄うように構成されている。
【0065】
前記運転制御部Hの湯張り手段H1は、熱電併給装置1が発生する熱を有効利用してコジェネレーションシステム運転効率の向上を図るために、浴槽状態検出手段Cで検出した浴槽18内の残湯の水位及び水温である残湯状態と、湯張り目標水位及び湯張り目標水温である湯張り目標状態とに基づいて、上記落し込み操作における設定供給湯水温度を決定するように構成されている。以下、このような湯張り運転について、図3の湯張り運転のフロー図に基づいて説明を加える。
【0066】
湯張り手段H1により実行される湯張り運転において、先ず、湯張り手段H1は、残湯判定手段H2により、浴槽18内に残湯が存在するか否かを判定され(ステップ1)、残湯が無いと判定されたときのみ、後述する予備落し込み操作(ステップ2)が実行される。
【0067】
上記ステップ2の予備落し込み操作においては、供給湯水温度設定手段Bにより、浴槽18内へ供給される湯水の供給湯水温度を、湯張り目標水温以下のできるだけ高い温度に設定しながら、浴槽湯水供給手段Aにより、比較的少量の湯水を浴槽18内へ供給する操作である。
尚、上記ステップ1において判定される残湯の有り無しに関わらず、上記予備落し込み操作を実行しても構わない。
【0068】
上記ステップ1にて残湯判定手段H2で残湯が存在すると判定されたとき、又は、上記ステップ2にて上記予備落し込み操作を実行した後には、浴槽18内には、確実に残湯が存在することになるので、浴槽状態検出手段Cとしての水位センサ50及び風呂戻りサーミスタ51により、浴槽18内の水位V0と水温T0との残湯状態が検出され(ステップ3)、更に、この残湯状態から、浴槽18内の水位及び水温との浴槽状態を湯張り目標水位V1及び湯張り目標水温T1との湯張り目標状態とするために、浴槽18に供給するべき湯水の温度Ta(以下、追加湯水温度Taと呼ぶ。)を導出する(ステップ4)。
【0069】
ステップ4における追加湯水温度Taの導出方法について説明を加えると、追加湯水温度Taは、下記の数1に示す式により導出される。
【0070】
【数1】
Ta=(Q1−Q0)/(V1−V0)+W0
【0071】
尚、W0は、給水サーミスタ12で検出される給水の温度であり、Q1及びQ2は、下記の数2の式により導出される、残湯状態V0,T0から導出した残湯の保有熱量Q0、湯張り目標状態V1,T1から導出した湯張り後の浴槽18内の湯水の保有熱量Q1である。
【0072】
【数2】
Q0=V0×(T0−W0)
Q1=V1×(T1−W0)
【0073】
上記ステップ4にて追加湯水温度Taが導出された後には、上記追加湯水温度Taが、サーミスタSで検出された貯湯タンク3内の湯温TT(以下、貯湯温度TTと呼ぶ。)以下であるか否かが判定される(ステップ5)。
【0074】
そして、上記ステップ5にて、追加湯水温度Taが貯湯温度TT以下であると判定した場合には、後に実行される落し込み操作(ステップ8)において浴槽18内に供給する湯水の温度である設定供給湯水温度Tsetを、上記追加湯水温度Taに決定し(ステップ6)、逆に、追加湯水温度Taが貯湯温TTよりも大きいと判定した場合には、後に実行される落し込み操作(ステップ8)において浴槽18内に供給する湯水の温度である設定供給湯水温度Tsetを、上記貯湯温度TTに決定する(ステップ7)。
【0075】
このように、ステップ7の落し込み操作において浴槽18内に供給される湯水の設定供給湯水温度Tsetを決定することで、落し込み操作後の浴槽18内の水温が湯張り目標水温T1を超えない範囲内で、浴槽18内に供給する設定供給湯水温度Tsetを貯湯タンク3内の貯湯温度TT以下のできるだけ高い温度とすることができ、熱電併給装置1が発生する熱を積極的に利用し、コジェネレーションシステムの運転効率の向上を図ることができる。
【0076】
また、上記ステップ7にて設定供給湯水温度Tsetを貯湯温度TTに決定して上記ステップ8の落し込み操作を実行した場合、又は、上記ステップ6にて設定供給湯水温度Tsetを追加湯水温度Taに設定したものの、上記ステップ8の落し込み操作を実行している間に、貯湯温度TTが追加湯水温度Taを下回り、浴槽18内に追加湯水温度Taの湯水を供給できなかった場合には、上記落し込み操作を実行した後の浴槽18内の水温は、湯張り目標水温未満となっている。
そして、このような場合には、上記ステップ7の落し込み操作を実行した後に、追い焚き操作(ステップ9)を実行して、補助加熱手段5bを作動させて、浴槽18内の水温を湯張り目標水温となるまで追い焚きすることができる。
【0077】
また、上記湯張り運転を実行する前に、残湯使用ボタンR1が押されており、残湯判定手段H2が既に浴槽18内に残湯が存在すると判定している場合には、風呂ポンプ49を作動させて、追い焚き用熱交換器7により前記浴槽18内の残湯を予備加熱しておくこと予備加熱操作を実行しても構わない。このような予備加熱操作を実行することで、後の湯張り運転において導出される浴槽18に供給するべき湯水の追加湯水温度Taを、できるだけ貯湯タンク内の湯水の温度以下にして、後の追い焚きを省略又は短縮して、一層の運転効率向上を図ることができる。
【0078】
これまで説明してきたコジェネレーションシステムは、過去の運転実績に基づいて熱電併給装置1の運転計画を行うように構成することで、運転効率を一層向上することができ、以下、その構成について説明を加える。
【0079】
上記運転計画は、運転制御部Hが機能する予測負荷データに基づいて熱電併給装置1の運転計画を行う運転計画手段H3と、同じく運転制御部Hが機能する残湯判定手段H2の判定結果に応じて過去熱負荷データから予測熱負荷データを導出する熱負荷予測手段H4とにより実行される。
【0080】
即ち、上記熱負荷予測手段H4は、運転制御部Hに設けられた記憶手段H5に逐次記憶され記憶された過去における熱負荷に関する過去熱負荷データから、その日の湯張り運転において、使用者が浴槽18内に残湯が存在する状態で湯張りを行うか否かを残湯判定手段H2の判定結果により考慮して、1日分の予測熱負荷データを導出るように構成されている。
【0081】
また、前述のように本実施形態の湯張り運転における落し込み操作においては、目標設定水温以上のできるだけ高い設定供給湯水温度の湯水を貯湯タンク3内から浴槽18内に供給するので、上記記憶手段H5に記憶される過去熱負荷データは、残湯が存在しているときに目標設定水温の湯水を浴槽18内に供給しその後に追い炊きを行った場合における追い炊きによる熱負荷の少なくとも一部を反映したものとなる。
【0082】
詳しくは、記憶手段H5は、1日のうちのどの時間帯にどれだけの熱負荷があったかの1日分の過去熱負荷データを曜日と対応付ける状態で更新して記憶するように構成されている。
【0083】
過去熱負荷データについて説明すると、図4に示すように、1日分の過去熱負荷データが日曜日から土曜日までの曜日ごとに区分けした状態で記憶するように構成されている。
そして、1日分の過去熱負荷データは、24時間のうち1時間を単位時間として、単位時間当たりの過去熱負荷データの24個から構成されている。
【0084】
過去熱負荷データを更新する構成について説明を加えると、実際の使用状況から、単位時間当たりの熱負荷を供給湯水温度及び流量等にて計測し、その計測した熱負荷データを記憶する状態で1日分の実熱負荷データを曜日と対応付けて記憶させる。
そして、1日分の実熱負荷データが1週間分記憶されると、曜日ごとに、過去熱負荷データと実熱負荷データとを所定の割合で足し合わせることにより、新しい過去熱負荷データを求めて、その求めた新しい過去熱負荷データを記憶して、過去熱負荷データを更新するように構成されている。
【0085】
日曜日を例に挙げて具体的に説明すると、図4に示すように、過去熱負荷データのうち日曜日に対応する過去熱負荷データD1mと、実熱負荷データのうち日曜日に対応する実熱負荷データA1とから、下記の数3に示すように、日曜日に対応する新しい過去熱負荷データD1(m+1)が求められ、その求められた過去熱負荷データD1(m+1)を記憶する。
尚、下記の数3において、D1mを、日曜日に対応する過去熱負荷データとし、A1を、日曜日に対応する実熱負荷データとし、Kは、0.75の定数であり、D1(m+1)を、新しい過去熱負荷データとする。
【0086】
【数3】
D1(m+1)=(D1m×K)+{A1×(1−K)}
【0087】
前記予測熱負荷データの導出処理について説明を加えると、日付が変わるごとに実行され、その日のどの時間帯にどれだけの熱負荷が予測されているかの1日分の予測負荷データを求めるように構成されている。
すなわち、曜日ごとの7つの過去熱負荷データのうち、その日の曜日に対応する過去熱負荷データと前日の実熱負荷データとを所定の割合で足し合わせることにより、どの時間帯にどれだけの熱負荷が予測されているかのその日1日分の仮予測熱負荷データを求めるように構成されている。
【0088】
月曜日1日分の仮予測熱負荷データを求める場合を例に挙げて具体的に説明すると、図4に示すように、曜日ごとの7つの過去熱負荷データD1m〜D7mと曜日ごとの7つの実熱負荷データA1〜A7とが記憶されているので、月曜日に対応する過去熱負荷データD2mと、前日の日曜日に対応する実熱負荷データA1とから、下記の数4に示すように、月曜日の1日分の仮予測熱負荷データQ’を求める。
そして、1日分の仮予測熱負荷データQ’は、図5(イ)に示すように、1日分の予測熱負荷データからなる。
なお、下記の数4おいて、D2mを、月曜日に対応する過去熱負荷データとし、A1を、日曜日に対応する実熱負荷データとし、Kは、0.25の定数であり、Q’は、予測負荷データとする。
【0089】
【数4】
Q’=(D2m×K)+{A1×(1−K)}
【0090】
次に、熱負荷予測手段H4は、上記の仮予測熱負荷データQ’を加工して、残湯判定手段H2により残湯が存在する状態で湯張りを行うと判定した場合には、湯張りを行うと考えられる時間帯の熱負荷を小さく見積もった予測熱負荷データQa(図5(ロ))を導出し、逆に、その日が残湯が存在しない状態で湯張りを行うと判定した場合には、湯張りを行うと考えられる時間帯の熱負荷を大きく見積もった予測熱負荷データQb(図5(ハ))を導出する。
尚、仮予測熱負荷データにおいて、最も熱負荷が高い1時間及びその前の時間帯を、上記湯張りを行うと考えられる時間帯として認識することができる。
【0091】
詳しくは、熱負荷予測手段H4は、上記仮予測熱負荷データQ’から、湯張りにより消費されたと考えられる熱負荷qを導出する。
【0092】
この湯張りにより消費されたと考えられる熱負荷qは、下記の数5に示すように、空の浴槽18内に湯張り目標水位V1及び湯張り目標水温T1の湯水を貯めるための熱負荷(▲1▼)として導出することができるが、過去において、残湯が存在する状態での湯張りにおいて消費された熱負荷とその頻度との積、及び、残湯が存在しない状態での湯張りにおいて消費された熱負荷とその頻度との積の和(▲2▼)としても導出することができる。
【0093】
【数5】
q=Q1・・・▲1▼
q=(Q1−Q0’)×J+Q1×(1−J)・・・▲2▼
【0094】
尚、数5において、数2と同様に、W0は給水温度、Q1は湯張り目標状態V1,T1から導出した湯張り後の浴槽18内の湯水の保有熱量を示し、Jは、過去において残湯が存在する状態で湯張りを行った頻度を示す。また、Q0’は、湯張り時の残湯の保有熱量を示し、下記の数6に示すように、熱負荷予測時の残湯状態V0,T0から導出した残湯の保有熱量Q0から湯張り運転までの時間に放熱される放熱量を差し引いて導出することができる。
尚、数6において、Nは、湯張り運転までの時間を示す。
【0095】
【数6】
Q0’=Q0×放熱率
【0096】
そして、残湯判定手段H2によりその日の湯張り時に残湯が存在すると判定した場合には、熱負荷予測手段H4は、図5(ロ)に示すように、上記湯張りによる熱負荷qに対する残湯が存在した状態で湯張りを行うのに必要な熱負荷(Q1−Q0’)の差分を、仮予測熱負荷データQ’においてその日の湯張りを行う時間帯の熱負荷から差し引いて、予測熱負荷データを導出する。逆に、残湯判定手段H2によりその日の湯張り時に残湯が存在しない判定した場合には、熱負荷予測手段H4は、図5(ハ)に示すように、仮予測熱負荷データQ’における湯張りによる熱負荷qに対する残湯が存在しない状態で湯張りを行うのに必要な熱負荷(Q1)の差分を、仮予測熱負荷データQ’においてその日の湯張りを行う時間帯の熱負荷に追加して、予測熱負荷データを導出する。
【0097】
そして、上記のように浴槽18内に残湯が存在する状態で湯張りを行うか否かに応じて導出した予測熱負荷データに基づいて、運転計画手段H3により熱電併給装置1の運転計画を行うことで、熱電併給装置1をできるだけ実際の熱負荷に合わせて運転し、熱電併給設備1が発生した熱を有効利用することで、コジェネレーションシステムの運転効率を一層向上することができる。
【0098】
〔別実施形態〕
〈1〉上記実施の形態では、熱負荷予測手段H4が、過去熱負荷データD1m〜D7mと、浴槽状態検出手段Cで検出した熱負荷予測時の残湯状態V0,T0とから、残湯判定手段H2の判定結果に応じた予測熱負荷データQa,Qbを導出するように構成したが、別に、浴槽状態検出手段Cで検出した熱負荷予測時の残湯状態V0,T0を用いることなく、残湯判定手段H2の判定結果に応じた予測熱負荷データQa,Qbを導出することもでき、以下のその構成について説明を加える。
【0099】
即ち、記憶手段H5は、過去熱負荷データを記憶するに、残湯判定手段H2により残湯の有りを判定して浴槽18内の湯張りを行ったときの残湯有り過去熱負荷データと、残湯判定手段H2により残湯の無しを判定して浴槽18内の湯張りを行ったときの残湯無し過去熱負荷データとを、各別に記憶するように構成されている。
【0100】
そして、熱負荷予測手段H4は、残湯判定手段H2により残湯が存在する状態で湯張りを行うと判定した場合には、上記記憶手段H5に記憶されている残湯有り過去熱負荷データを用いて、残湯判定手段H2により残湯が存在しない状態で湯張りを行うと判定した場合には、上記記憶手段H5に記憶されている残湯無し過去熱負荷データを用いて、上記実施形態の仮予測熱負荷データの導出方法と同様に、予測熱負荷データを導出を導出することができる。
【0101】
そして、このように予測熱負荷データを導出することで、残湯判定手段H2により残湯が存在する状態で湯張りを行うと判定した場合には、過去において残湯が存在したときと同様に湯張り時の熱負荷を小さく見積もった予測熱負荷データを導出し、逆に、その日が残湯が存在しない状態で湯張りを行うと判定した場合には、過去において残湯が存在しないときと同様に湯張り時の熱負荷を大きく見積もった予測熱負荷データを導出することができる。
【0102】
〈2〉上記実施の形態では、加熱手段として、ガスエンジンの排熱により湯水を加熱する排熱式加熱手段5aと、ガス燃焼式の補助加熱手段5bとから構成したものを例示したが、排熱式加熱手段5aを、燃料電池の排熱により湯水を加熱するように構成したり、補助加熱手段5bを、液体燃料燃焼式のバーナを備えたものや、電気ヒータを備えたものを用いることができ、排熱式加熱手段5aおよび補助加熱手段5bの構成は適宜変更が可能である。
【0103】
〈3〉上記実施の形態では、湯張り運転において、残湯が無いと判定されたときに予備落し込み操作を実行したが、別に、残湯が無いと判定されたときには、予備落し込み操作を実行せずに、供給湯水温度を湯張り目標温度に設定して、直ぐに落し込み操作を実行して構わない。
【図面の簡単な説明】
【図1】本発明のコジェネレーションシステムの実施の形態を示す概略構成図
【図2】コジェネレーションシステムの制御ブロック図
【図3】湯張り運転のフロー図
【図4】過去熱負荷データの更新処理を説明する図
【図5】予測負荷データを示すグラフ図
【符号の説明】
1:熱電併給装置
3:貯湯タンク
5:加熱手段
5a:排熱式加熱手段
5b:補助加熱手段
7:追い焚き用熱交換器(浴槽水加熱用熱交換器)
18:浴槽
A:浴槽湯水供給手段
B:供給湯水温度設定手段
D:湯水循環手段
C:浴槽状態検出手段
R:リモコン
R1:残湯使用ボタン(入力部)
H:運転制御部
H1:湯張り手段
H2:残湯判定手段
H3:運転計画手段
H4:熱負荷予測手段
H5:記憶手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a combined heat and power device that generates heat and electric power, an exhaust heat type heating unit that heats hot and cold water in a hot water storage tank with heat generated by the combined heat and power device, and a bathtub that removes hot and cold water from inside the hot water storage tank. A bath water supply means for supplying water into the bath, and a supply water temperature for setting a supply water temperature of the water supplied to the bath by adjusting a mixing ratio of the water supply to the water supplied to the bath by the bath water supply means. Setting means, and setting the supply hot water temperature to a predetermined set supply hot water temperature by the supply hot water temperature setting means, until the water level in the bathtub reaches a predetermined hot water filling target water level. The present invention relates to a cogeneration system comprising a filling means for performing filling operation for supplying hot water into the bathtub by means to fill the bathtub.
[0002]
[Prior art]
In the cogeneration system as described above, the cogeneration system is configured by a power generator or a fuel cell using a gas engine as a driving source, and operates the cogeneration system and operates the exhaust heat type heating means. Hot water is stored in the hot water storage tank using heat generated by the cogeneration system.
[0003]
Further, the cogeneration system can supply hot and cold water taken out from the hot water storage tank into the bath tub by a hot tub hot water supply means including a hot water supply path and a hot water path connected to the hot water storage tank. The hot and cold water supplied from the hot water storage tank is mixed with the hot water with a mixing ratio adjustment by a hot water temperature setting means comprising a mixing valve and the like provided in the tank. By configuring the hot water temperature to be configurable, the operation control device functions to set the hot water temperature to a predetermined set hot water temperature while the hot water filling means functions until the water level in the bathtub reaches the predetermined hot water level. The dropping operation of supplying hot water into the bathtub can be automatically executed.
[0004]
The filling means of the conventional cogeneration system, in the dropping operation, regardless of the presence or absence of remaining hot water in the bathtub, until the water level in the bathtub reaches the hot water target water level set in advance by the user. The hot water of the set supply hot water temperature equal to the hot water target water temperature set as the target of the water temperature in the bathtub in the same manner as the hot water target water level is supplied into the bathtub.
[0005]
Further, when the dropping operation is performed in a state where there is remaining hot water having a water temperature lower than the hot water filling target water temperature in the bathtub, the water temperature in the bathtub after the dropping operation is changed to the above-mentioned hot water. It will be lower than the target water temperature. Therefore, in the cogeneration, an auxiliary heating means for heating the hot water supplied into the hot water storage tank or the hot water taken out from the hot water storage tank by the combustion of the burner, and a heat exchange between the hot water and the hot water heated by the auxiliary heating means, so that the inside of the bathtub is heated. And a bathtub water heating heat exchanger for heating the water is provided, and after the above-mentioned filling operation, the dropping operation is performed, the auxiliary heating means and the bathtub water heating heat exchanger are operated. In some cases, a reheating operation for heating the water in the bath tub to the target water temperature is performed (for example, see Patent Document 1).
[0006]
As a cogeneration system for improving the operation efficiency of the cogeneration system, a cogeneration system configured to perform an operation plan of the cogeneration system based on past operation results has been proposed.
Such a cogeneration system includes, for example, an operation control unit including a computer, an operation planning unit that performs an operation plan of the cogeneration system based on the predicted heat load data, and further, based on past heat load data accumulated in a storage device. It is configured to function as heat load predicting means for deriving predicted heat load data to be used for an operation plan.
[0007]
[Patent Document 1]
JP 2001-248908 A
[0008]
[Problems to be solved by the invention]
However, in the cogeneration system having the above-described conventional hot water filling means, as described above, when the remaining hot water having a water temperature lower than the hot water target water temperature exists in the bathtub, a dropping operation is performed. Since the subsequent water temperature in the bathtub is lower than the target water temperature, it is necessary to always perform a subsequent reheating operation after the dropping operation. When the reheating operation is performed, it is necessary to operate the auxiliary heating means to heat the water in the bath tub at a relatively high temperature, so that the auxiliary heating means consumes energy separately from the combined heat source equipment. As a result, the operation efficiency of the cogeneration system may be reduced.
[0009]
Also, in the cogeneration system, the heat load when the hot water is filled from the state where the remaining hot water exists in the bathtub is the heat load when the hot water is filled from the empty state when the hot water is not present in the bathtub. Compared with the load, the remaining hot water decreases by the amount of heat held.
However, in the cogeneration system that performs the operation planning of the cogeneration system based on the past heat load described above, the heat source is not considered without considering whether or not the user uses the remaining hot water in the bathtub to fill the bath. Since the operation plan of the cogeneration system is performed, if the user fills the bath with the remaining hot water in the bathtub, the cogeneration system may generate more heat than necessary, or If the user fills the bath with no remaining hot water, the cogeneration system may not be able to generate enough heat to fill the bathtub, thus reducing the operating efficiency of the cogeneration system. May cause a decrease.
[0010]
The present invention has been made in view of the above circumstances, and an object of the present invention is to improve the operation efficiency by effectively utilizing the heat generated by a cogeneration system, and to fill a bath in a bathtub. The point is to provide a generation system.
[0011]
[Means for Solving the Problems]
A first characteristic configuration of a cogeneration system according to the present invention for achieving the above object includes a cogeneration system that generates heat and electric power, and heats hot water in a hot water storage tank with heat generated by the cogeneration system. Exhaust heat type heating means, a bath water supply means for supplying hot water taken out of the hot water storage tank into the bath, and a mixing ratio adjustment of water supply to hot water supplied into the bath by the bath hot water supply means. A supply hot water temperature setting means for setting a supply hot water temperature of hot water supplied into the bathtub, and setting the supply hot water temperature to a predetermined set supply hot water temperature by the supply hot water temperature setting means. Until the water level reaches the predetermined hot water filling target water level, the bath tub hot water supply means executes a dropping operation of supplying hot water into the bath tub to fill the bath tub. A cogeneration system with the tension means,
A bathtub state detecting means capable of detecting a bathtub state related to the water level and the water temperature in the bathtub,
The bathing means determines the set supply hot water temperature based on a remaining hot water state that is a bathtub state detected by the bathtub state detection means and a bathing target state set as a target of the bathtub state, It is configured to perform a drop operation.
[0012]
That is, according to the cogeneration system having the first characteristic configuration, in the dropping operation performed by the hot water filling means, the water is taken out from the hot water storage tank until the water level in the bathtub reaches the preset hot water filling target water level. When the hot water is supplied into the bathtub, the temperature of the hot water supplied into the bathtub is adjusted by the remaining hot water state and the remaining water level in the bathtub, and the target water level and the target water temperature in the bathtub. Based on the target state, set the supply water temperature as high as possible but not higher than the water temperature in the hot water storage tank within the range that the water temperature in the bathtub after the dropping operation does not exceed the target water temperature in the water filling target state. As a result, the heat generated by the cogeneration system can be positively utilized as much as possible, and the operation efficiency can be improved.
[0013]
In particular, when the dropping operation is performed from the state where the remaining hot water exists in the bathtub, if the hot water in the hot water storage tank is higher than the hot water target water temperature, the set supply hot water temperature is higher than the hot water target water temperature. By setting the temperature high, the heat of the hot water in the hot water storage tank is used effectively, and the water temperature in the bathtub after the dropping operation is set as high as possible below the hot water target water temperature, and the energy consumed in the subsequent reheating operation is reduced. It can be as small as possible.
[0014]
A second feature configuration of the cogeneration system according to the present invention, in addition to the first feature configuration, is that the hot water filling means performs hot water supply into the bathtub by the bathtub hot water supply means before executing the dropping operation. Is provided so that a preparatory dropping operation for preliminarily supplying a preload can be performed.
[0015]
That is, according to the cogeneration system of the second characteristic configuration, when there is no remaining hot water in the bathtub, or even when the remaining hot water in the bathtub is too short, the preliminary dropping operation is performed before performing the preliminary dropping operation. By performing the operation, when performing the dropping operation, it is possible to ensure that there is sufficient remaining hot water in the bathtub to determine the supply hot water temperature, after that, performing the dropping operation, The heat generated by the cogeneration system can be effectively used.
[0016]
After the bathtub state detecting means determines that there is no remaining hot water or that the amount of remaining hot water is too small, the preparatory dropping operation can be executed. Conversely, performing the preliminary dropping operation before detecting the bathtub state by the bathtub state detection means is faster than performing the preliminary dropping operation after detecting the remaining hot water state as described above. Residual hot water can be made to exist in the bathtub so that the dropping operation can be performed at the appropriate time. Further, the preliminary dropping operation may be repeatedly performed until the bathtub state detecting means detects that there is sufficient residual hot water to execute the dropping operation.
[0017]
The third characteristic configuration of the cogeneration system according to the present invention, in addition to the second characteristic configuration, further includes a remaining hot water determination unit configured to determine whether there is remaining hot water in the bathtub based on an input signal of an input unit,
When the hot water filling means determines the presence of the remaining hot water by the remaining hot water determination means, skips the preliminary dropping operation and executes the dropping operation. When it is determined that there is no, the point is that the drop operation is executed after the preliminary drop operation is executed.
[0018]
That is, according to the cogeneration system having the third characteristic configuration, for example, when the remaining hot water use determining unit determines that the remaining hot water is not used by the input signal of the input unit for instructing the use of the remaining hot water by the user. Only, the preliminary dropping operation is executed, forcibly, when the dropping operation is executed, the remaining hot water is in a state where it is present, and conversely, when the remaining hot water determination means determines the presence of the remaining hot water, Assuming that the remaining hot water already exists in the bathtub, the preliminary dropping operation is skipped (omitted), and in addition to shortening the filling time, the amount of hot water supplied in the dropping operation is increased as much as possible. The operation efficiency can be further improved.
When the hot water filling means determines the presence of the remaining hot water by the remaining hot water determining means, and when the bathtub state detecting means determines that the remaining hot water does not exist or the amount of the remaining hot water is too small, the preliminary dropping is performed. May be performed.
[0019]
A fourth feature configuration of the cogeneration system according to the present invention, in addition to the third feature configuration, an operation planning unit that performs an operation plan of the cogeneration system based on the predicted heat load data,
Heat load predicting means for deriving the predicted heat load data from past heat load data according to the determination result of the remaining hot water determining means.
[0020]
That is, according to the cogeneration system of the fourth characteristic configuration, the heat load predicting means allows the user to use the past heat load data regarding the past heat load sequentially stored in a state in which the remaining hot water exists in the bathtub. Predicted heat load data can be derived by considering whether or not to fill the hot water based on the determination result of the remaining hot water determination means, and whether or not to perform the filling with the remaining hot water in the bathtub as described above. Based on the predicted heat load data derived according to the above, the operation plan of the combined heat and power equipment is made to operate according to the actual heat load as much as possible, and the heat generated by the combined heat and power equipment is effectively used. By doing so, the operation efficiency can be further improved.
[0021]
In addition, in the dropping operation performed by the hot water filling means, when remaining hot water is present, hot water having a set supply water temperature as high as possible or higher than the target set water temperature is supplied into the bathtub. The heat load due to the operation is larger than the heat load when the hot water of the target set water temperature is supplied into the bathtub even if residual hot water exists as in the past, and the heat load due to the dropping operation naturally increases in the past. Since the heat load data is reflected on the heat load data, the reliability of the past heat load data increases, and the prediction accuracy of the heat load prediction data can be improved.
[0022]
A fifth characteristic configuration of the cogeneration system according to the present invention, in addition to the first to fourth characteristic configurations, is a tub water heater that heats water in the bathtub by heat exchange with hot water taken out of the hot water storage tank. Equipped with a heat exchanger for
The hot water filling means is configured to be capable of performing a preheating operation of preheating the remaining hot water in the bathtub by the bathtub water heating heat exchanger before performing the dropping operation.
[0023]
That is, according to the cogeneration system of the fifth characteristic configuration, by preheating the remaining hot water in the bathtub by heat exchange with hot water taken out of the hot water storage tank by the bathtub water heating heat exchanger, In the subsequent dropping operation, the temperature of hot water to be supplied into the bathtub is set to be as low as possible below the temperature of hot water in the hot water storage tank, and subsequent reheating can be omitted, thereby further improving operation efficiency.
[0024]
Also, by performing the pre-heating operation before the dropping operation in this way, since the remaining hot water in the bathtub in the pre-heating operation is relatively low, the combined heat and power supply can be performed without operating the burner of the auxiliary heating means. The remaining hot water can be heated by heat generated in the device or by heat exchange with hot water in a hot water storage tank.
Further, by performing the preheating operation when the amount of hot water stored in the hot water storage tank is full, the heat generated by the combined heat and power equipment can be used more effectively.
[0025]
A sixth characteristic configuration of the cogeneration system according to the present invention for achieving the above object is as follows: a cogeneration system that generates heat and electric power; and the hot water in the hot water storage tank is heated by the heat generated by the cogeneration system. Exhaust heat type heating means, a bath water supply means for supplying hot water taken out of the hot water storage tank into the bath, and a mixing ratio adjustment of water supply to hot water supplied into the bath by the bath hot water supply means. A supply hot water temperature setting means for setting a supply hot water temperature of hot water supplied into the bathtub, and setting the supply hot water temperature to a predetermined set supply hot water temperature by the supply hot water temperature setting means. Until the water level reaches a predetermined set water level, the bathtub hot water supply means executes a dropping operation of supplying hot water into the bathtub and fills the bathtub with hot water. A cogeneration system equipped with a stage,
Remaining hot water determining means for determining the presence or absence of remaining hot water in the bathtub based on an input signal of the input unit,
Operation planning means for performing an operation plan of the cogeneration system based on the predicted heat load data,
Heat load predicting means for deriving the predicted heat load data from past heat load data according to the determination result of the remaining hot water determining means.
[0026]
That is, according to the cogeneration system having the sixth characteristic configuration, the heat load predicting means allows the user to use the past heat load data regarding the past heat load sequentially stored in a state where the remaining hot water exists in the bathtub. Predicted heat load data can be derived by considering whether or not to fill the hot water based on the determination result of the remaining hot water determination means, and whether or not to perform the filling with the remaining hot water in the bathtub as described above. Based on the predicted heat load data derived according to the above, the operation plan of the combined heat and power equipment is made to operate according to the actual heat load as much as possible, and the heat generated by the combined heat and power equipment is effectively used. By doing so, the operation efficiency can be improved.
[0027]
The seventh characteristic configuration of the cogeneration system according to the present invention, in addition to the sixth characteristic configuration, further includes a bathtub state detection unit that can detect a bathtub state related to a water level and a water temperature in the bathtub,
When the heat load prediction means determines the presence of the remaining hot water in the remaining hot water determination means, from the past heat load data, from the remaining hot water state is a bathtub state detected by the bathtub state detection means, The point is to derive the predicted heat load data.
[0028]
That is, according to the cogeneration system having the seventh characteristic configuration, when the remaining hot water is determined by the remaining hot water determination means, the filling is performed by the load prediction means in a state where the remaining hot water exists in the bathtub. By deriving the predicted heat load data in consideration of the remaining heat state with respect to the actual water level and the water temperature of the remaining heat, the operation efficiency can be further improved. .
[0029]
The eighth feature configuration of the cogeneration system according to the present invention is characterized in that, in addition to the sixth feature configuration, when the heat load prediction means determines the presence of the remaining hot water by the remaining hot water determination means, Deriving the predicted heat load data from the past heat load data with remaining hot water when the presence of the remaining hot water is determined, and determining that there is no remaining hot water by the remaining hot water determining means, The point is to derive the predicted heat load data from the past heat load data without remaining hot water when it is determined that there is no remaining hot water.
[0030]
That is, according to the cogeneration system of the eighth characteristic configuration, when the past heat load data is stored, when the remaining hot water is determined to be present in the past by the remaining hot water determination means and filling is performed in a state where the remaining hot water is present. The past heat load data with remaining hot water and the past heat load data without remaining hot water when the remaining hot water determining means determines that there is no remaining hot water and fills with no remaining hot water at that time are separately stored. Then, the load prediction means can derive the predicted heat load data from the past heat load data with remaining hot water or the past heat load data without remaining hot water according to the determination result of the remaining hot water determination means at that time. That is, it is possible to operate the cogeneration system in accordance with the actual heat load as much as possible without detecting the state of the remaining hot water relating to the actual water level and the water temperature of the remaining hot water.
[0031]
The ninth characteristic configuration of the cogeneration system according to the present invention includes, in addition to the eighth characteristic configuration, a bathtub state detection unit capable of detecting a bathtub state related to a water level and a water temperature in the bathtub,
In the case where the heat load prediction means determines the presence of the remaining hot water by the remaining hot water determination means, when the presence of the remaining hot water is determined in the past, the past heat load data with the remaining hot water and the bathtub state detection The point is to derive the predicted heat load data from the remaining hot water state which is the bathtub state detected by the means.
[0032]
That is, according to the cogeneration system having the ninth characteristic configuration, when the remaining hot water determining means determines the presence of the remaining hot water, the load predicting means uses the remaining hot water present past heat load data stored separately for each of the remaining hot water. It is possible to derive more accurate predicted heat load data in consideration of the remaining hot water state relating to the actual water level and the water temperature of the remaining hot water.
[0033]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a cogeneration system according to the present invention will be described with reference to the drawings.
[0034]
As shown in FIGS. 1 and 2, the cogeneration system includes a cogeneration system 1 configured to drive a generator by a gas engine and a hot water storage system using the exhaust heat of the cogeneration system 1. It is composed of a hot water storage unit 2 for supplying hot water and heating, an operation control unit H for controlling the operation of the combined heat and power supply device 1 and the hot water storage unit 2, and the like.
[0035]
The hot water storage unit 2 includes a hot water storage tank 3 for storing hot water, a heat source circulation path 4 for circulating the hot water in the hot water storage tank 3, a heating means 5 for heating the hot water flowing through the heat source circulation path 4, and a heat source Heating heat exchanger 6 for heating the heating medium for terminal supply with hot and cold water flowing through circulation path 4, and water in bathtub 18 with hot and cold water flowing through heat source circulation path 4 (hereinafter referred to as bathtub water) ) Is heated, and a reheating heat exchanger 7 (an example of a bathtub water heating heat exchanger) is provided.
[0036]
A plurality of thermistors S for detecting the amount of hot water by detecting the temperature of the hot water are provided in the hot water storage tank 3, and the hot water storage tank 3 is supplied with water from the bottom of the hot water storage tank 3 using tap water supply pressure. A hot water supply path 8 is connected to the hot water supply path 8, and a hot water supply path 9 for supplying hot water from the upper part thereof is connected to the hot water storage tank 3.
[0037]
A mixing water supply channel 10 branched from the water supply channel 8 is connected to the hot water supply channel 9, and a mixing ratio between hot water from the hot water supply channel 9 and water from the mixing water supply channel 10 can be adjusted at the connection point. A mixing valve 11 is provided.
A water supply thermistor 12 for detecting a water supply temperature is provided at a branch point between the water supply path 8 and the mixing water supply path 10.
[0038]
A hot water storage outlet thermistor 13 for detecting the temperature of hot water supplied to the hot water supply passage 9 from above the hot water storage tank 3 is provided upstream of the mixing valve 11 in the hot water supply passage 9. Further downstream, a mixing thermistor 14 for detecting the temperature of the hot and cold water mixed by the mixing valve 7 and a flow control valve 15 are provided.
[0039]
Downstream of the location of the mixing thermistor 14 and the flow control valve 15 in the hot water supply passage 9, a general hot water supply passage 16 for supplying hot water to a hot water tap (not shown) such as a kitchen or a washroom, and hot water is supplied into a bathtub 18. And a hot-water path 17.
The hot water path 17 is connected to a bath return path 19 from inside the bathtub 18, and hot water is supplied into the bathtub 18 through both the bath return path 19 and the bath going path 20.
[0040]
The general hot water supply path 16 is provided with a hot water supply flow rate sensor 21 for detecting the flow rate of hot water flowing through the general hot water supply path 16, and the hot water path 17 is configured to detect the flow rate of hot water flowing through the hot water supply path 17. A filling flow sensor 22, a filling electromagnetic valve 23, a vacuum breaker 24, and a filling check valve 25 are provided in this order from the upstream side.
[0041]
The bathtub hot water supply means A is constituted by a hot water supply path 9, a flow control valve 15, a hot water path 17, a hot water electromagnetic valve 23, a bath return path 19, and the like, and opens the flow control valve 15 and the hot water electromagnetic valve 23. Then, hot water taken out of the hot water storage tank 3 is supplied into the bathtub 18 through the hot water supply path 9, the hot water filling path 17, and the bath return path 19.
[0042]
The supply hot water temperature setting means B comprises a hot water storage outlet thermistor 13, a water supply thermistor 12, a mixing valve 7, a mixing thermistor 14, and the like, and the water supply to the hot water supplied to the inside of the bathtub 18 or the hot water tap by the bathtub hot water supply means A or the like. Of the hot water supplied to the bathtub 18 or to the hot water tap is set.
[0043]
The heat source circulation path 4 and the hot water storage tank 3 return the hot water flowing through the heat source circulation path 4 to the hot water storage tank 3 or take out the hot water in the hot water storage tank 3 to the heat source circulation path 4. The hot water storage tank 3 is connected in communication at a total of two locations, that is, an upper portion and a bottom portion.
A hot water storage path 26 for supplying hot water from the heat source circulation path 4 into the hot water storage tank 3 is connected to an upper portion of the hot water storage tank 3, and a hot water storage opening / closing valve 27 is provided in the hot water storage path 26. I have.
At the bottom of the hot water storage tank 3, a take-out path 28 for taking out hot water from the hot water storage tank 3 to the heat source circulation path 4 is connected in communication, and a three-way connection point between the take-out path 18 and the heat source circulation path 4 is provided. A valve 29 is provided.
[0044]
Then, in the heat source circulation path 4, a circulation flow rate sensor 30 for detecting a circulation amount of the hot water in the heat source circulation path 4, a circulation pump 31, a heating unit 5, and a hot water Circulating flow regulating valve 32 for adjusting the circulation amount of water, heating temperature thermistor 33 for detecting the temperature of hot water heated by heating means 5, intermittent valve 34 for interrupting hot water flow, heat exchanger 6 for heating, A heating heat exchanger 7 is provided.
[0045]
The hot and cold water circulation means D includes a heat source circulation path 4, a circulation pump 31, a circulation flow sensor 30, a circulation flow adjustment valve 32, a heating temperature thermistor 33, a hot water storage opening / closing valve 27, an intermittent valve 34, and the like.
The hot water circulation means D heats the hot water taken out of the hot water storage tank 3 by the heating means 5, stores the heated hot water in the hot water storage tank 3, and exchanges the hot water heated by the heating means 5 for heating. The hot water supplied to the heat exchanger 6 and the heat exchanger 7 for reheating and passed through the heat exchanger 6 for heating and the heat exchanger 7 for reheating are returned to the heating means 5.
[0046]
The heating means 5 is composed of an exhaust heat type heating means 5a for heating hot and cold water with cooling water of a gas engine in the cogeneration system 1, and an auxiliary heating means 5b for heating hot and cold water by burning a burner.
[0047]
The exhaust heat type heating means 5a operates the cooling water circulation pump 35 during the operation of the cogeneration system 1 to supply the cooling water of the gas engine to the exhaust heat type heating means 5a through the cooling water circulation path 36, It is configured to heat the hot and cold water flowing through the circulation circuit 4.
[0048]
Although not shown, the auxiliary heating means 5b is provided with a gas combustion type burner, a fan for supplying combustion air to the burner, and the like, and heats the hot and cold water flowing through the heat source circulation path 4 by the combustion of the burner. It is configured as follows.
[0049]
A heating return path 37 and a heating outgoing path 38 are connected to the heating heat exchanger 6, and by operating a heating pump 39, a heat medium for terminal supply circulating through the heating returning path 37 and the heating outgoing path 38. , And the heating medium for heating the terminal supply is heated by the hot water heated by the heating unit 4.
[0050]
The heating return path 37 is provided with a heating return thermistor 40 for detecting the temperature of the heating medium in the heating return path 37, an open-air expansion tank 41, and a heating pump 39 in order from the upstream side in the circulation direction of the heating medium. The heating outflow path 38 is provided with a heating outflow thermistor 42 for detecting the temperature of the heat medium in the heating outflow path 37.
In addition, the heating return path 37 and the heating going path 38 are connected to each other through a bypass path 43.
[0051]
By activating the heating pump 39, the heating medium in the expansion tank 41 is circulated and supplied to the terminal T through the heating going path 38 and the heating returning path 37 in a state of passing through the heating heat exchanger 6. I have.
Although not described in detail, the terminal T is configured as a heating terminal that performs heating with a supplied heating medium such as a floor heating device or a bathroom drying / heating device.
[0052]
The expansion tank 41 has an upper limit sensor 44 for detecting the upper limit of the water level of the stored heat medium, a lower limit sensor 45 for detecting the lower limit, and an overflow sensor for detecting the occurrence of an overflow state in which the heat medium overflows from the expansion tank 41. 46 are provided.
The expansion tank 41 is connected to a tank water supply path 47 for branching off from the water supply path 8 and supplying water to the expansion tank 41, and the tank water supply path 47 is provided with a make-up water solenoid valve 48.
When the water level of the heat medium becomes the lower limit by the lower limit sensor 45, the supply water electromagnetic valve 48 is opened by the upper limit sensor 44 until the water level of the heat medium becomes the upper limit, and the heat medium is supplied to the expansion tank 41. It is configured as follows.
[0053]
A bath return path 19 and a bath outgoing path 20 are connected to the reheating heat exchanger 7, and the bath pump 49 is operated so that the reheating heat exchanger 7 is passed through the bath return path 19 and the bath outgoing path 20. The bathtub water is circulated between the bathtub 18 and the inside of the bathtub 18, and the bathtub water is heated by heat exchange with the hot water heated by the heating means 5.
[0054]
In the bath return path 19, a water level sensor 50 as a pressure detection type water level detection means for detecting a water level in the bath tub 18 and a temperature of the bath water in the bath return path 19 are sequentially arranged from the upstream side in the bathtub water circulation direction. A bath return thermistor 51, a two-way valve 52, a bath pump 49, and a bath water flow switch 53 to be detected are provided.
The bathtub state detecting means C capable of detecting the water level and the water temperature as the bathtub state in the bathtub includes a water level sensor 50 and a bath return thermistor 51.
[0055]
As shown in FIG. 2, the operation control unit H controls the operation of the co-generation system 1, the hot-water storage operation of the hot-water storage unit 2, the hot-water supply operation, the heating operation, and the hot-water storage unit 2 based on a command from the remote controller R or the like. By controlling the operation of various means such as bath water supply means A, supply water temperature setting means B, heating means 5 and water circulation means D, water having a target set water level and a target set water temperature in bath 18 is controlled. It is configured to execute various operation controls such as a hot water filling operation.
[0056]
Further, the remote controller R is provided with a remaining hot water use button R1 as an input unit for instructing the user to perform a hot water filling operation in a state where the hot water is present in the bathtub 18. Then, when the remaining hot water use button R1 of the remote controller R is pressed, the remaining hot water determining means H2 that the operation control unit H functions determines that there is remaining hot water in the bathtub 18 in the hot water filling operation performed on that day. On the contrary, when the remaining hot water use button R1 is not pressed before the hot water filling operation, it is determined that there is no remaining hot water in the bathtub 18 in the hot water filling operation executed on that day.
[0057]
Hereinafter, various operation controls performed by the operation control unit H will be described.
In the hot water storage operation, the circulation pump 31 is operated in a state where the intermittent valve 34 is opened and the hot water storage opening / closing valve 27 is opened, hot water is taken out from the bottom of the hot water storage tank 3 to the heat source circulation path 4 and heated. After heating to a desired temperature by the means 5, the operation is to supply the hot water to the upper portion of the hot water storage tank 3 through the hot water storage channel 26.
This hot water storage operation is performed during the operation of the combined heat and power supply device 1, and the hot and cold water heated by the waste heat type heating means 5 a is used by operating the cooling water circulation pump 35 to utilize the waste heat of the combined heat and power supply device 1. The hot water storage tank 3 is configured to store hot water.
[0058]
The hot water supply operation is started when a hot water tap is opened or a hot water filling request is instructed. Hot water stored in the hot water storage tank 3 is taken out, water is mixed with the hot water, and a desired temperature of the hot water is mixed. In this operation, hot water is supplied to the hot water tap and the bathtub 18.
When hot water is not stored in the hot water storage tank 3, the above-described hot water storage operation is performed in a state where the hot water is heated by the auxiliary heating means 5b, and the hot water is heated by the auxiliary heating means 5b. It is configured to mix and supply hot water at a desired set hot water temperature into the hot water tap or the bathtub 18.
[0059]
In the heating operation, the circulation pump 31 is operated in a state where the intermittent valve 34 is opened and the hot water storage opening / closing valve 27 is closed, and the hot water heated by the heating unit 4 is supplied to the heating heat exchanger 6. The heating pump 39 is operated, and the heating medium in the expansion tank 41 is circulated and supplied to the terminal T through the heating going path 38 and the heating returning path 37 in a state where the heating medium is passed through the heating heat exchanger 6. Have been.
In this heating operation, the opening degrees of the hot-water storage opening / closing valve 27 and the intermittent valve 34 are adjusted such that the detected temperature of the heating temperature thermistor 33 is, for example, 65 to 70 ° C.
[0060]
In the heating operation, when the combined heat and power supply device 1 is in operation, the cooling water circulation pump 35 operates to use the waste heat of the combined heat and power supply device 1 to heat the hot water with the waste heat type heating means 5a. The heated hot water is supplied to the heat exchanger 6 for heating.
When the waste heat of the combined heat and power supply device 1 is used as described above, the heating load required by the terminal T can be satisfied by heating the hot water with the waste heat utilizing heating means 5a. Then, the opening degree of the hot-water storage opening / closing valve 27 and the intermittent valve 34 is adjusted so that the detected temperature of the heating temperature thermistor 33 becomes the hot-water storage set temperature.
In addition, when the cogeneration system 1 is not operated, or when the heating load required by the terminal T cannot be covered only by heating the hot water with the exhaust heat type heating means 5a, the hot water storage opening / closing valve 27 is set. The valve is closed and the intermittent valve 34 is opened, the hot water is heated by the auxiliary heating means 5b, the heated hot water is supplied to the heating heat exchanger 6, and the heating load required by the terminal T is reduced. It is configured to cover.
[0061]
The filling operation is preset when the filling means H1 functioning as the operation control unit H presses a button for instructing the filling operation of the remote controller R or the like or in the remote controller R or the like. This operation is executed when the hot water filling start time comes. The hot water filling operation includes a dropping operation, a reheating operation, and the like.
[0062]
The dropping operation in the hot water operation is an operation executed when the water level in the bathtub 18 is lower than the hot water target water level set in advance by the remote controller R or the like. The bathtub detected by the water level sensor 50 while adjusting the mixing ratio of the hot water to the hot water supplied into the bathtub 18 and setting the hot water temperature of the hot water supplied to the bathtub 18 to a predetermined set hot water temperature. The flow rate control valve 15 and the hot water filling solenoid valve 23 are opened by the bath water / hot water supply means A until the water level in the hot water 18 reaches the hot water filling target water level, and the hot water taken out of the hot water storage tank 3 is put into the hot bath 18. Supply operation.
[0063]
The reheating operation in the hot water filling operation is an operation that is performed when the water temperature in the bathtub 18 is lower than the hot water target water temperature set in advance by the remote controller R or the like after performing the dropping operation, Specifically, the circulation pump 31 is operated to pass the hot water heated by the heating means 5 through the additional heat exchanger 7, and the bath pump 49 is operated to additionally heat the hot water in the bathtub 18. The water is circulated through the bath return path 19 and the bath outflow path 20 while passing through the heat exchanger 7, and the temperature of the bathtub water detected by the bath return thermistor 51 is set to the target set in advance in the same manner as the bathing target water level. This is an operation to heat the bathtub water until the temperature of the hot water is reached.
In this reheating operation, the opening degrees of the hot-water storage opening / closing valve 27 and the intermittent valve 34 are adjusted so that the detected temperature of the heating temperature thermistor 33 becomes, for example, 65 to 70 ° C.
[0064]
Further, in the reheating operation, as in the heating operation described above, when the cogeneration system 1 is operating, the cooling water circulation pump is adjusted while the hot water storage opening / closing valve 27 and the intermittent valve 34 are opened in the open state. By using the waste heat of the combined heat and power supply device 1 by the operation of 35, the hot and cold water heated by the waste heat type heating means 5a is supplied to the additional heat exchanger 7 so that the combined heat and power supply device 1 is not operated. Is required to close the hot-water storage opening / closing valve 27 and open the intermittent valve 34 to supply the hot water heated by the auxiliary heating means 5b to the additional heat exchanger 7, and It is designed to cover the reheating load.
[0065]
The hot water filling means H1 of the operation control unit H uses the heat generated by the cogeneration system 1 to improve the operation efficiency of the cogeneration system in order to improve the operation efficiency of the cogeneration system. The set supply hot water temperature in the dropping operation is determined based on the remaining hot water state that is the water level and the water temperature of the hot water and the hot water target state that is the hot water target water level and the hot water target water temperature. . Hereinafter, such a filling operation will be described with reference to a flowchart of the filling operation of FIG.
[0066]
In the hot water filling operation performed by the hot water filling means H1, first, the hot water filling means H1 is determined by the remaining hot water determination means H2 as to whether or not there is remaining hot water in the bathtub 18 (step 1). Only when it is determined that there is no such, the preliminary dropping operation (step 2) described later is executed.
[0067]
In the preliminary dropping operation in step 2 described above, the hot water temperature setting means B sets the hot water temperature of the hot water supplied into the bath tub 18 to a temperature as high as possible below the hot water filling target water temperature. This is an operation of supplying a relatively small amount of hot water into the bathtub 18 by the means A.
The preliminary dropping operation may be performed regardless of the presence or absence of the remaining hot water determined in step 1.
[0068]
When it is determined in step 1 that the remaining hot water is present by the remaining hot water determination means H2, or after the preliminary dropping operation is performed in step 2 above, the remaining hot water is surely contained in the bathtub 18. Therefore, the remaining water state between the water level V0 and the water temperature T0 in the bathtub 18 is detected by the water level sensor 50 and the bath return thermistor 51 as the bathtub state detecting means C (step 3). From the hot water state, the temperature Ta of the hot water to be supplied to the bath tub 18 in order to set the bath tub state with the water level and the water temperature in the bath tub 18 to the target hot water level with the hot water target water level V1 and the hot water target water temperature T1 (hereinafter, Ta) , Which will be referred to as an additional hot water temperature Ta).
[0069]
The method for deriving the additional hot water temperature Ta in step 4 will be described. The additional hot water temperature Ta is derived by the following equation (1).
[0070]
(Equation 1)
Ta = (Q1-Q0) / (V1-V0) + W0
[0071]
W0 is the temperature of the water supply detected by the water supply thermistor 12, and Q1 and Q2 are the residual heat amounts Q0 and Q0 of the remaining hot water derived from the remaining hot water states V0 and T0, which are derived from the following equation (2). The stored heat quantity Q1 of the hot water in the bathtub 18 after the hot water is derived from the hot water filling target states V1 and T1.
[0072]
(Equation 2)
Q0 = V0 × (T0−W0)
Q1 = V1 × (T1-W0)
[0073]
After the additional hot water temperature Ta is derived in step 4, the additional hot water temperature Ta is equal to or lower than the hot water temperature TT in the hot water storage tank 3 detected by the thermistor S (hereinafter, referred to as hot water storage temperature TT). It is determined whether or not (step 5).
[0074]
If it is determined in step 5 that the additional hot water temperature Ta is equal to or lower than the hot water storage temperature TT, the temperature is set to the temperature of the hot water to be supplied into the bathtub 18 in the dropping operation (step 8) executed later. The supply hot water temperature Tset is determined to be the additional hot water temperature Ta (step 6). Conversely, if it is determined that the additional hot water temperature Ta is higher than the hot water storage temperature TT, a dropping operation (step 8) executed later. ), The set supply hot water temperature Tset, which is the temperature of the hot water supplied into the bathtub 18, is determined as the hot water storage temperature TT (step 7).
[0075]
In this way, by determining the set supply hot water temperature Tset of the hot water supplied into the bathtub 18 in the dropping operation in step 7, the water temperature in the bathtub 18 after the dropping operation does not exceed the hot water target temperature T1. Within the range, the set supply hot water temperature Tset to be supplied into the bathtub 18 can be set as high as possible below the hot water storage temperature TT in the hot water storage tank 3, and the heat generated by the combined heat and power supply device 1 is positively used, The operation efficiency of the cogeneration system can be improved.
[0076]
When the set supply hot water temperature Tset is determined to be the hot water storage temperature TT in step 7 and the dropping operation in step 8 is executed, or in step 6 the set supply hot water temperature Tset is set to the additional hot water temperature Ta. If the hot water storage temperature TT falls below the additional hot water temperature Ta and the hot water at the additional hot water temperature Ta cannot be supplied into the bathtub 18 during the execution of the dropping operation in step 8 above, The water temperature in the bathtub 18 after executing the dropping operation is lower than the hot water target water temperature.
In such a case, after performing the dropping operation of the above step 7, the reheating operation (step 9) is performed to activate the auxiliary heating means 5b to fill the water temperature in the bathtub 18 with hot water. Reheating can be performed until the target water temperature is reached.
[0077]
If the remaining hot water use button R1 is pressed before the hot water filling operation is performed, and the remaining hot water determination means H2 determines that the remaining hot water already exists in the bathtub 18, the bath pump 49 May be operated to preheat the remaining hot water in the bathtub 18 by the reheating heat exchanger 7. By executing such a preheating operation, the additional hot water temperature Ta to be supplied to the bathtub 18 derived in the subsequent hot water filling operation is set to be as low as possible below the temperature of the hot water in the hot water storage tank. Omitting or shortening of the firing can further improve the operation efficiency.
[0078]
The cogeneration system described so far can be configured to perform an operation plan of the cogeneration system 1 based on past operation results, so that the operation efficiency can be further improved. Hereinafter, the configuration will be described. Add.
[0079]
The operation plan includes an operation plan unit H3 that performs an operation plan of the cogeneration system 1 based on the predicted load data in which the operation control unit H functions and a determination result of the remaining hot water determination unit H2 in which the operation control unit H also functions. The heat load predicting means H4 derives predicted heat load data from past heat load data accordingly.
[0080]
That is, the heat load predicting means H4 uses the past heat load data on the heat load in the past sequentially stored and stored in the storage means H5 provided in the operation control section H to perform the bathing operation of the user on the day. The system is configured to derive one day's predicted heat load data, taking into account whether or not filling is to be performed in a state in which remaining hot water exists in the bath 18, based on the determination result of the remaining hot water determining means H2.
[0081]
In addition, as described above, in the dropping operation in the hot water filling operation of the present embodiment, the hot water having the set supply hot water temperature as high as possible or higher than the target set water temperature is supplied from the hot water storage tank 3 into the bathtub 18. The past heat load data stored in H5 is at least a part of the heat load due to the additional cooking when the hot water of the target set water temperature is supplied into the bathtub 18 when the remaining hot water is present and the additional cooking is performed thereafter. Will be reflected.
[0082]
More specifically, the storage unit H5 is configured to update and store one day's past heat load data indicating how much heat load was applied during which time of day in a state of being associated with the day of the week. .
[0083]
Explaining the past heat load data, as shown in FIG. 4, the past heat load data for one day is configured to be stored in a state of being divided for each day of the week from Sunday to Saturday.
The past heat load data for one day is composed of 24 past heat load data per unit time, with one hour being a unit time out of 24 hours.
[0084]
A description will be given of a configuration for updating the past heat load data. A heat load per unit time is measured based on an actual use situation by a supply hot water temperature, a flow rate, and the like, and the measured heat load data is stored. The actual heat load data for the day is stored in association with the day of the week.
Then, when the actual heat load data for one day is stored for one week, new past heat load data is obtained by adding the past heat load data and the actual heat load data at a predetermined ratio for each day of the week. Then, the obtained new past heat load data is stored, and the past heat load data is updated.
[0085]
Specifically, taking Sunday as an example, as shown in FIG. 4, the past heat load data D1m corresponding to Sunday among the past heat load data, and the actual heat load data corresponding to Sunday among the actual heat load data. From A1, new past heat load data D1 (m + 1) corresponding to Sunday is obtained as shown in Expression 3 below, and the obtained past heat load data D1 (m + 1) is stored.
In the following equation 3, D1m is past heat load data corresponding to Sunday, A1 is actual heat load data corresponding to Sunday, K is a constant of 0.75, and D1 (m + 1) is And new past heat load data.
[0086]
(Equation 3)
D1 (m + 1) = (D1m × K) + {A1 × (1-K)}
[0087]
When the derivation process of the predicted heat load data is added, it is executed every time a date is changed, and one day's predicted load data of how much heat load is predicted in which time zone of the day is obtained. It is configured.
That is, of the seven past heat load data for each day of the week, the past heat load data corresponding to the day of the day and the actual heat load data of the previous day are added at a predetermined ratio, so as to determine how much heat during which time zone. It is configured to obtain temporary predicted heat load data for one day of the day as to whether the load is predicted.
[0088]
Specifically, a case where temporary predicted heat load data for one day on Monday is obtained will be specifically described. As shown in FIG. 4, seven past heat load data D1m to D7m for each day of the week and seven actual heat load data for each day of the week are provided. Since the heat load data A1 to A7 are stored, the past heat load data D2m corresponding to Monday and the actual heat load data A1 corresponding to Sunday the previous day are used to store the data of Monday as shown in the following Expression 4. The temporary predicted heat load data Q 'for one day is obtained.
Then, the provisional predicted heat load data Q 'for one day is composed of predicted heat load data for one day, as shown in FIG.
In the following Equation 4, D2m is past heat load data corresponding to Monday, A1 is actual heat load data corresponding to Sunday, K is a constant of 0.25, and Q ′ is Assume predicted load data.
[0089]
(Equation 4)
Q ′ = (D2m × K) + {A1 × (1-K)}
[0090]
Next, the heat load predicting means H4 processes the above-mentioned tentative predicted heat load data Q ', and when the remaining hot water determining means H2 determines that the hot water is to be filled in a state where the remaining hot water exists, the hot water filling is performed. When the heat load data Qa (FIG. 5 (b)) is obtained by estimating the heat load in the time period when it is considered to be performed, and conversely, it is determined that filling is to be performed in the state where there is no remaining hot water on that day. Then, the predicted heat load data Qb (FIG. 5 (c)) which largely estimates the heat load in the time period in which the filling is considered to be performed is derived.
In addition, in the temporary predicted heat load data, it is possible to recognize one hour at which the heat load is the highest and a time zone before that, as a time zone in which the filling is considered to be performed.
[0091]
More specifically, the heat load predicting means H4 derives a heat load q that is considered to have been consumed by filling with water from the temporary predicted heat load data Q '.
[0092]
The thermal load q considered to have been consumed by the hot water filling is a heat load (貯) for storing hot water of the target hot water level V1 and the hot water target temperature T1 in the empty bathtub 18 as shown in the following Expression 5. Although it can be derived as 1 ▼), in the past, the product of the heat load consumed and the frequency in the filling with the remaining hot water, and the filling with the remaining hot water in the absence of the hot water It can also be derived as the sum of the product of the consumed heat load and its frequency ((2)).
[0093]
(Equation 5)
q = Q1 ... ▲ 1 ▼
q = (Q1-Q0 ') × J + Q1 × (1-J) (2)
[0094]
In equation (5), as in equation (2), W0 represents the water supply temperature, Q1 represents the amount of heat retained in the bathtub 18 after the filling, derived from the filling target states V1 and T1, and J represents the remaining heat in the past. Shows the frequency of filling with hot water. Further, Q0 'indicates the remaining heat quantity of the remaining hot water at the time of filling, and as shown in the following equation 6, the filling of the remaining hot water quantity Q0 derived from the remaining hot water state V0, T0 at the time of heat load prediction. It can be derived by subtracting the amount of heat dissipated in the time until operation.
In Equation 6, N indicates the time until the hot water filling operation.
[0095]
(Equation 6)
Q0 '= Q0 × heat dissipation rateN
[0096]
Then, when the remaining hot water determining means H2 determines that there is remaining hot water at the time of hot water filling on that day, the thermal load predicting means H4, as shown in FIG. The difference between the heat loads (Q1-Q0 ') required for filling the hot water in the presence of hot water is subtracted from the heat load of the time period when the hot water fills the day in the provisional predicted heat load data Q', and the prediction is performed. Deriving heat load data. Conversely, when the remaining hot water determining means H2 determines that there is no remaining hot water at the time of hot water filling on that day, the heat load predicting means H4, as shown in FIG. The difference between the heat load (Q1) required for filling in a state where there is no remaining hot water with respect to the heat load q due to filling is calculated based on the tentative predicted heat load data Q 'in the heat load in the time period when filling is performed on that day. To derive predicted heat load data.
[0097]
Then, based on the predicted heat load data derived in accordance with whether or not the filling is performed in a state where the remaining hot water exists in the bathtub 18 as described above, the operation planning of the combined heat and power supply device 1 is performed by the operation planning means H3. By doing so, the cogeneration system 1 is operated according to the actual heat load as much as possible, and the heat generated by the cogeneration system 1 is effectively used, so that the operation efficiency of the cogeneration system can be further improved.
[0098]
[Another embodiment]
<1> In the above embodiment, the heat load predicting means H4 determines the remaining hot water from the past heat load data D1m to D7m and the remaining hot water states V0, T0 at the time of the heat load prediction detected by the bathtub state detecting means C. Although the predicted heat load data Qa and Qb according to the determination result of the means H2 are configured to be derived, separately, the remaining hot water states V0 and T0 at the time of the heat load prediction detected by the bathtub state detection means C are not used. Predicted heat load data Qa and Qb according to the determination result of the remaining hot water determination means H2 can also be derived, and the configuration thereof will be described below.
[0099]
That is, the storage means H5 stores the past heat load data when the remaining hot water determination means H2 determines the presence of the remaining hot water and fills the bathtub 18 with the remaining hot water. The remaining hot water absence past heat load data when the remaining hot water is determined by the remaining hot water determination means H2 and the bathtub 18 is filled is stored separately.
[0100]
When the remaining hot water determining means H2 determines that filling is to be performed in a state where the remaining hot water exists, the heat load predicting means H4 uses the remaining hot water present past heat load data stored in the storage means H5. If the remaining hot water determination means H2 determines that filling is to be performed in a state where there is no remaining hot water, the above-described embodiment is performed by using the past heat load data without remaining hot water stored in the storage means H5. In the same manner as the method of deriving the temporary predicted heat load data, the derivation of the predicted heat load data can be derived.
[0101]
By deriving the predicted heat load data in this way, when it is determined by the remaining hot water determining means H2 that filling is to be performed in a state where the remaining hot water is present, the same as when the remaining hot water exists in the past. Deriving predicted heat load data that estimates the heat load at the time of filling is small, conversely, if it is determined that filling will be performed in the state where there is no remaining hot water on that day, it will be when there is no remaining hot water in the past Similarly, it is possible to derive predicted heat load data that largely estimates the heat load during filling.
[0102]
<2> In the above embodiment, as the heating means, an exhaust heat type heating means 5a for heating hot water with the exhaust heat of the gas engine and a gas combustion type auxiliary heating means 5b are exemplified. The thermal heating means 5a may be configured to heat hot water by the exhaust heat of the fuel cell, and the auxiliary heating means 5b may be provided with a liquid fuel combustion type burner or with an electric heater. The configurations of the exhaust heat type heating means 5a and the auxiliary heating means 5b can be appropriately changed.
[0103]
<3> In the above-described embodiment, in the filling operation, the preliminary dropping operation is performed when it is determined that there is no remaining hot water. Instead of performing this, the supply water temperature may be set to the target filling temperature and the dropping operation may be performed immediately.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of a cogeneration system of the present invention.
FIG. 2 is a control block diagram of a cogeneration system.
FIG. 3 is a flowchart of hot water filling operation.
FIG. 4 is a diagram illustrating a process of updating past heat load data.
FIG. 5 is a graph showing predicted load data.
[Explanation of symbols]
1: Cogeneration system
3: Hot water storage tank
5: heating means
5a: Exhaust heat type heating means
5b: auxiliary heating means
7: Heat exchanger for reheating (heat exchanger for heating water in bathtub)
18: Bathtub
A: Bath water supply means
B: Supply hot water temperature setting means
D: Hot water circulation means
C: Bathtub state detection means
R: Remote control
R1: Button for using remaining hot water (input section)
H: Operation control unit
H1: Hot water filling means
H2: residual hot water determination means
H3: Operation planning means
H4: heat load prediction means
H5: storage means

Claims (9)

熱と電力を発生する熱電併給装置と、前記熱電併給装置が発生する熱にて貯湯タンク内の湯水を加熱する排熱式加熱手段と、前記貯湯タンク内から取り出した湯水を浴槽内に供給する浴槽湯水供給手段と、前記浴槽湯水供給手段にて前記浴槽内に供給される湯水に対する給水の混合比調整により前記浴槽内へ供給される湯水の供給湯水温度を設定する供給湯水温度設定手段とを備えると共に、前記供給湯水温度設定手段により前記供給湯水温度を所定の設定供給湯水温度に設定しながら、前記浴槽内の水位が所定の湯張り目標水位となるまで、前記浴槽湯水供給手段により前記浴槽内に湯水を供給する落し込み操作を実行して前記浴槽内の湯張りを行う湯張り手段を備えたコジェネレーションシステムであって、
前記浴槽内の水位と水温とに関する浴槽状態を検出可能な浴槽状態検出手段を備え、
前記湯張り手段が、前記浴槽状態検出手段で検出した浴槽状態である残湯状態と前記浴槽状態の目標として設定された湯張り目標状態とに基づいて前記設定供給湯水温度を決定して、前記落し込み操作を実行するように構成されているコジェネレーションシステム。
A cogeneration system that generates heat and electric power, an exhaust heat type heating unit that heats the hot water in the hot water storage tank with the heat generated by the cogeneration system, and supplies the hot water drawn out of the hot water storage tank into the bathtub. A bath water supply means, and a supply water temperature setting means for setting a supply water temperature of the water supplied into the bath by adjusting a mixing ratio of the supply water to the water supplied into the bath by the bath water supply means. The bath tub hot water supply means sets the supply hot water temperature to a predetermined set supply hot water temperature while setting the supply hot water temperature by the supply hot water temperature setting means until the water level in the bath tub reaches a predetermined hot water filling target water level. A cogeneration system comprising a filling means for performing a dropping operation of supplying hot water into the bathtub to fill the bathtub,
A bathtub state detecting means capable of detecting a bathtub state related to the water level and the water temperature in the bathtub,
The bathing means determines the set supply hot water temperature based on a remaining hot water state that is a bathtub state detected by the bathtub state detection means and a bathing target state set as a target of the bathtub state, A cogeneration system configured to perform a sinking operation.
前記湯張り手段が、前記落し込み操作を実行する前に、前記浴槽湯水供給手段により前記浴槽内へ湯水を予備供給する予備落し込み操作を実行可能に構成されている請求項1に記載のコジェネレーションシステム。2. The coke according to claim 1, wherein the hot water filling means is configured to be able to execute a preliminary dropping operation of preliminarily supplying hot water into the bathtub by the bathtub hot water supply means before executing the dropping operation. 3. Generation system. 入力部の入力信号により前記浴槽内の残湯の有無を判定する残湯判定手段を備え、
前記湯張り手段が、前記残湯判定手段で前記残湯の有りを判定した場合には、前記予備落し込み操作をスキップして前記落し込み操作を実行し、前記残湯判定手段で前記残湯の無しを判定した場合には、前記予備落し込み操作を実行した後に前記落し込み操作を実行する請求項2に記載のコジェネレーションシステム。
A remaining hot water determination unit that determines presence or absence of remaining hot water in the bathtub based on an input signal of the input unit,
When the hot water filling means determines the presence of the remaining hot water by the remaining hot water determination means, skips the preliminary dropping operation and executes the dropping operation. 3. The cogeneration system according to claim 2, wherein when it is determined that there is no drop, the drop operation is performed after the preliminary drop operation is performed. 4.
予測熱負荷データに基づいて前記熱電併給装置の運転計画を行う運転計画手段と、
前記残湯判定手段の判定結果に応じて過去熱負荷データから前記予測熱負荷データを導出する熱負荷予測手段とを備えた請求項3に記載のコジェネレーションシステム。
Operation planning means for performing an operation plan of the cogeneration system based on the predicted heat load data,
4. The cogeneration system according to claim 3, further comprising: a heat load prediction unit that derives the predicted heat load data from past heat load data according to a determination result of the remaining hot water determination unit. 5.
前記貯湯タンクから取り出した湯水との熱交換により、前記浴槽内の水を加熱する浴槽水加熱用熱交換器を備え、
前記湯張り手段が、前記落し込み操作を実行する前に、前記浴槽水加熱用熱交換器により前記浴槽内の残湯を予備加熱する予備加熱操作を実行可能に構成されている請求項1から4の何れか1項に記載のコジェネレーションシステム。
A heat exchanger for bathtub water heating that heats water in the bathtub by heat exchange with hot water taken out of the hot water storage tank,
The said filling means is comprised so that the preheating operation which preheats the remaining hot water in the said bathtub by the said bathtub water heating heat exchanger before the said dropping operation is performed can be performed. 5. The cogeneration system according to any one of 4.
熱と電力を発生する熱電併給装置と、前記熱電併給装置が発生する熱にて貯湯タンク内の湯水を加熱する排熱式加熱手段と、前記貯湯タンク内から取り出した湯水を浴槽内に供給する浴槽湯水供給手段と、前記浴槽湯水供給手段にて前記浴槽内に供給される湯水に対する給水の混合比調整により前記浴槽内へ供給される湯水の供給湯水温度を設定する供給湯水温度設定手段とを備えると共に、前記供給湯水温度設定手段により前記供給湯水温度を所定の設定供給湯水温度に設定しながら、前記浴槽内の水位が所定の設定水位となるまで、前記浴槽湯水供給手段により前記浴槽内に湯水を供給する落し込み操作を実行して前記浴槽内の湯張りを行う湯張り手段を備えたコジェネレーションシステムであって、
入力部の入力信号により前記浴槽内の残湯の有無を判定する残湯判定手段と、
予測熱負荷データに基づいて前記熱電併給装置の運転計画を行う運転計画手段と、
前記残湯判定手段の判定結果に応じて過去熱負荷データから前記予測熱負荷データを導出する熱負荷予測手段とを備えたコジェネレーションシステム。
A cogeneration system that generates heat and electric power, an exhaust heat type heating unit that heats the hot water in the hot water storage tank with the heat generated by the cogeneration system, and supplies the hot water drawn out of the hot water storage tank into the bathtub. A bath water supply means, and a supply water temperature setting means for setting a supply water temperature of the water supplied into the bath by adjusting a mixing ratio of the supply water to the water supplied into the bath by the bath water supply means. While providing, while setting the supply hot water temperature to a predetermined setting supply hot water temperature by the supply hot water temperature setting means, the bathtub hot water supply means enters the bath tub until the water level in the bath tub reaches the predetermined setting water level. A cogeneration system comprising a filling means for performing filling operation for supplying hot water to fill the bathtub with hot water,
Remaining hot water determining means for determining the presence or absence of remaining hot water in the bathtub based on an input signal of the input unit,
Operation planning means for performing an operation plan of the cogeneration system based on the predicted heat load data,
A heat load predicting unit that derives the predicted heat load data from past heat load data in accordance with the determination result of the remaining hot water determining unit.
前記浴槽内の水位と水温とに関する浴槽状態を検出可能な浴槽状態検出手段を備え、
前記熱負荷予測手段が、前記残湯判定手段で前記残湯の有りを判定した場合には、前記過去熱負荷データと、前記浴槽状態検出手段で検出した浴槽状態である残湯状態とから、前記予測熱負荷データを導出する請求項6に記載のコジェネレーションシステム。
A bathtub state detecting means capable of detecting a bathtub state related to the water level and the water temperature in the bathtub,
When the heat load prediction means determines the presence of the remaining hot water in the remaining hot water determination means, from the past heat load data, from the remaining hot water state is a bathtub state detected by the bathtub state detection means, The cogeneration system according to claim 6, wherein the predicted heat load data is derived.
前記熱負荷予測手段が、前記残湯判定手段で前記残湯の有りを判定した場合には、過去において前記残湯の有りを判定したときの残湯有り過去熱負荷データから前記予測熱負荷データを導出し、前記残湯判定手段で前記残湯の無しを判定した場合には、過去において前記残湯の無しを判定したときの残湯無し過去熱負荷データから前記予測熱負荷データを導出する請求項6に記載のコジェネレーションシステム。When the heat load predicting means determines the presence of the remaining hot water by the remaining hot water determining means, the predicted heat load data is obtained from the past heat load data with the remaining hot water when the presence of the remaining hot water is determined in the past. If the remaining hot water determination means determines the absence of the remaining hot water, the predicted heat load data is derived from the remaining hot water no past heat load data when the absence of the remaining hot water is determined in the past. The cogeneration system according to claim 6. 前記浴槽内の水位と水温とに関する浴槽状態を検出可能な浴槽状態検出手段を備え、
前記熱負荷予測手段が、前記残湯判定手段で前記残湯の有りを判定した場合には、過去において前記残湯の有りを判定したときの残湯有り過去熱負荷データと、前記浴槽状態検出手段で検出した浴槽状態である残湯状態とから、前記予測熱負荷データを導出する請求項8に記載のコジェネレーションシステム。
A bathtub state detecting means capable of detecting a bathtub state related to the water level and the water temperature in the bathtub,
In the case where the heat load prediction means determines the presence of the remaining hot water by the remaining hot water determination means, when the presence of the remaining hot water is determined in the past, the past heat load data with the remaining hot water and the bathtub state detection The cogeneration system according to claim 8, wherein the predicted heat load data is derived from a remaining hot water state that is a bathtub state detected by the means.
JP2003054800A 2003-02-28 2003-02-28 Cogeneration system Expired - Fee Related JP3970195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003054800A JP3970195B2 (en) 2003-02-28 2003-02-28 Cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003054800A JP3970195B2 (en) 2003-02-28 2003-02-28 Cogeneration system

Publications (2)

Publication Number Publication Date
JP2004263941A true JP2004263941A (en) 2004-09-24
JP3970195B2 JP3970195B2 (en) 2007-09-05

Family

ID=33119033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003054800A Expired - Fee Related JP3970195B2 (en) 2003-02-28 2003-02-28 Cogeneration system

Country Status (1)

Country Link
JP (1) JP3970195B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349283A (en) * 2005-06-17 2006-12-28 Mitsubishi Electric Corp Water heater
JP2009133554A (en) * 2007-11-30 2009-06-18 Toshiba Fuel Cell Power Systems Corp Exhaust heat utilization system, method and computer program
JP2009287849A (en) * 2008-05-29 2009-12-10 Toshiba Fuel Cell Power Systems Corp Fuel cell cogeneration system
JP2011185523A (en) * 2010-03-08 2011-09-22 Osaka Gas Co Ltd Bath facility
JP2013104582A (en) * 2011-11-10 2013-05-30 Chofu Seisakusho Co Ltd Storage type water heater
JP2014066512A (en) * 2013-12-12 2014-04-17 Osaka Gas Co Ltd Bath water filling device
JP2015094576A (en) * 2013-11-14 2015-05-18 大阪瓦斯株式会社 Cogeneration system
JP2019143863A (en) * 2018-02-20 2019-08-29 パナソニックIpマネジメント株式会社 Cogeneration system and operation method of the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101458511B1 (en) 2008-08-26 2014-11-07 엘지전자 주식회사 Co-generation system and a method of the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349283A (en) * 2005-06-17 2006-12-28 Mitsubishi Electric Corp Water heater
JP2009133554A (en) * 2007-11-30 2009-06-18 Toshiba Fuel Cell Power Systems Corp Exhaust heat utilization system, method and computer program
JP2009287849A (en) * 2008-05-29 2009-12-10 Toshiba Fuel Cell Power Systems Corp Fuel cell cogeneration system
JP2011185523A (en) * 2010-03-08 2011-09-22 Osaka Gas Co Ltd Bath facility
JP2013104582A (en) * 2011-11-10 2013-05-30 Chofu Seisakusho Co Ltd Storage type water heater
JP2015094576A (en) * 2013-11-14 2015-05-18 大阪瓦斯株式会社 Cogeneration system
JP2014066512A (en) * 2013-12-12 2014-04-17 Osaka Gas Co Ltd Bath water filling device
JP2019143863A (en) * 2018-02-20 2019-08-29 パナソニックIpマネジメント株式会社 Cogeneration system and operation method of the same

Also Published As

Publication number Publication date
JP3970195B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
JP4938385B2 (en) Hot water storage hot water supply system
JP2004263941A (en) Cogeneration system
JP2008275182A (en) Exhaust heat recovering system and auxiliary heat storage tank
JP5436933B2 (en) Hot water system
JP2004053120A (en) Cogeneration system
JP2014089011A (en) Hot water storage type hot water supply device
JP4208802B2 (en) Heat source system
JP4163977B2 (en) Heat source system
JP4064940B2 (en) Hot water system
JP4672046B2 (en) Water heater
JP4136916B2 (en) Heat source system
JP2004251591A (en) Heat medium supply equipment
JP4487140B2 (en) Hot water supply system
JP4154363B2 (en) Hot water supply system
JP4101082B2 (en) Cogeneration system
JP2003269736A (en) Cogeneration system
JP2004263620A (en) Cogeneration system
JP2004205140A (en) Reheating device for bath
JP4250571B2 (en) Heat source system
JP5122247B2 (en) Hot water storage water heater
JP2003269789A (en) Cogeneration system
JP4148885B2 (en) Water heater
JP4126282B2 (en) Water heater
JP6120752B2 (en) Cogeneration system
JP2004257711A (en) Hot water storage type hot water supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees