JP2004263916A - Refrigerating machine - Google Patents

Refrigerating machine Download PDF

Info

Publication number
JP2004263916A
JP2004263916A JP2003053425A JP2003053425A JP2004263916A JP 2004263916 A JP2004263916 A JP 2004263916A JP 2003053425 A JP2003053425 A JP 2003053425A JP 2003053425 A JP2003053425 A JP 2003053425A JP 2004263916 A JP2004263916 A JP 2004263916A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant gas
processing chamber
compressor
expander
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003053425A
Other languages
Japanese (ja)
Inventor
Seiji Yoshimura
省二 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003053425A priority Critical patent/JP2004263916A/en
Publication of JP2004263916A publication Critical patent/JP2004263916A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating machine for removing solidifying components in water and dust from recovering refrigerant gas by increasing a flow rate of the circulating refrigerant gas without increasing an occupying space. <P>SOLUTION: This refrigerating machine 1 includes a compressor 11, a cooler 12, a heat exchanger 13, an expander 14 and a refrigerating processing chamber 15, and has a circulating passage I of the refrigerant gas returning to the compressor 11 after passing through the heat exchanger 13 again via the expander 14 and also the refrigerating processing chamber 15 after passing through the heat exchanger by reaching the heat exchanger 14 after passing through the cooler 12 from the compressor 11, and is constituted by interposing a cyclone separator 16 for centrifuging a gas component and the other component in a part of the circulating passage I positioned on the secondary side of the refrigerating processing chamber 15, and positioned between this refrigerating processing chamber 15 and the heat exchanger 13. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、被処理物を冷凍処理するための冷凍機に関するものである。
【0002】
【従来の技術】
従来、低温ガスを被処理物に直接触れさせて、この被処理物を冷凍処理する冷凍機は公知である(例えば、特許文献1参照)。
【0003】
【特許文献1】
特許第3111065号公報(段落[0010]、[0015]、図1)
【0004】
上記特許文献1に記載の冷凍機では、冷凍処理室(冷熱消費設備20)での被処理物の冷凍処理の際に生じる水分固化成分が回収冷媒ガス中に混在し、そのまま熱交換器内に流入すると、この水分固化成分による上記熱交換器の閉塞が生じ、冷凍機の正常な運転ができなくなる。このため、この水分固化成分を除去する除湿手段としてフィルタが冷凍処理室の二次側に設けられている。そして、熱交換器に向かう冷媒ガスから上記水分固化成分を上記フィルタにより除去し、上記水分固化成分による上記熱交換器の閉塞が防止されるようになっている。また、このフィルタにより、回収冷媒ガス中の粉塵も捕集され、清浄な冷媒ガスが上記熱交換器を経て、圧縮機に導かれるようになっている。
【0005】
【発明が解決しようとする課題】
上述した従来の冷凍機の場合、冷凍能力の増大等のために、循環する冷媒ガスの流量を増大させようとすると、上記フィルタも上記流量の増大に対応して大きくする必要があり、冷凍機全体の占有スペースが過大になり、また圧力損失も増大するという問題がある。
本発明は、斯る従来の問題をなくすことを課題としてなされたもので、占有スペースの増大を招くことなく、循環する冷媒ガスの流量を増大させ、かつ回収冷媒ガスからの水分固化成分、粉塵の除去を可能とした冷凍機を提供しようとするものである。
【0006】
【課題を解決するための手段】
上記課題を解決するために、第1発明は、少なくとも圧縮機、冷却器、熱交換器、膨張器及び冷凍処理室を含み、上記圧縮機から上記冷却器を経た後、上記熱交換器に至り、ここを通過した後、上記膨張器、さらに上記冷凍処理室を経て、上記熱交換器を再度通過した後、上記圧縮機に戻る冷媒ガスの循環流路を備えた冷凍機において、上記冷凍処理室の二次側に位置し、かつこの冷凍処理室と上記熱交換器との間に位置する上記循環流路の部分に気体成分とその他の成分とを遠心分離するサイクロン分離器を介在させた構成とした。
【0007】
第2発明は、第1発明の構成に加えて、上記膨張器の一次側に位置し、かつ上記熱交換器と上記膨張器との間に位置する上記循環流路の部分から分岐し、上記サイクロン分離器内まで延び、このサイクロン分離器の内壁面に沿って、かつ下方に向けて冷媒ガスを流出させるノズルを先端部に有する凍結付着物除去用流路を備えた構成とした。
【0008】
第3発明は、第2発明の構成に加えて、上記凍結付着物除去用流路に開閉弁を介設した構成とした。
【0009】
【発明の実施の形態】
次に、本発明の実施形態を図面にしたがって説明する。
図1及び2は、本発明に係る冷凍機1を示し、この冷凍機1は、圧縮機11、冷却器12、熱交換器13、膨張器14、冷凍処理室15及びサイクロン分離器16を含み、圧縮機11から冷却器12を経た後、熱交換器13に至り、ここを通過した後、膨張器14、さらに冷凍処理室15を経て、熱交換器13を再度通過した後、圧縮機11に戻る冷媒ガスの循環流路Iを備えている。なお、サイクロン分離器16は、分離器本体をなす漏斗形状の上部容器16aとこの下端部に結合された漏斗形状の下部容器16bと、この下部容器16bの下端開口部を開閉する開閉弁16cとからなっている。
【0010】
また、膨張器14の一次側に位置し、かつ熱交換器13と膨張器14との間に位置する循環流路Iの部分からは、開閉弁17を介在させた凍結付着物除去用流路IIが分岐し、この凍結付着物除去用流路IIは開閉弁17の二次側においてさらに分岐して複数の上部分岐流路IIaと複数の下部分岐流路IIbとに分かれている。上部分岐流路IIaは上部容器16aの複数の箇所からその内部に突出するとともに、下部分岐流路IIbは下部容器16bの複数の箇所からその内部に突出し、上部分岐流路IIa、下部分岐流路IIbのそれぞれの先端部には、冷媒ガスを上部容器16a或いは下部容器16bの内壁面に沿って、かつ下方に向けて冷媒ガスを流出させるノズル18a、18bが設けられている。
【0011】
そして、上記構成からなる冷凍機1において、冷媒ガスは圧縮機11を出て、冷却器12、熱交換器13を経て、一部を除き、膨張器14から冷凍処理室15に至った後、この冷凍処理室15から回収され、サイクロン分離器16の上部容器16a内の上部空間に導かれる。一方、熱交換器13を得た冷媒ガスの内の上記一部は凍結付着物除去用流路IIに分流し、開閉弁17を経て、上部容器16a内及び下部容器16b内のそれぞれの下部空間に導かれる。サイクロン分離器16内では、遠心力及び重力の作用により気体成分とその他の成分とが分離され、その他の成分は下方に落下して開閉弁16cを介して分離器外に放出される一方、上記その他の成分が分離・除去された清浄な冷媒ガスはサイクロン分離器16の上部から熱交換器13へと送り出される。さらに、熱交換器13では、圧縮機11から吐出され、冷却器12を通過してきた冷媒ガスとサイクロン分離器16からの清浄な冷媒ガスとの間で熱交換が行われ、その後この清浄な冷媒ガスは圧縮機11に戻り、その吸込みガスとなり、圧縮され、上述した冷媒ガスの循環が繰返される。
【0012】
冷凍処理室15内で食品のような被処理物を冷却すると、被処理物から水蒸気が発生したり、冷凍処理室15での人の出入りの際に外部から水蒸気や粉塵が進入し、この水蒸気が冷凍処理室15内で氷結して氷の粒子が発生し、粉塵とともに冷媒ガス中に混在することになる。もしも、この氷の粒子や粉塵が熱交換器13内に流入すれば、熱交換器13の閉塞を招来し、冷凍機1の正常な運転が阻害されることになる。そこで、この冷凍機1では、サイクロン分離器16が設けられており、ここで気体成分である冷媒ガスとその他の成分である氷の粒子、粉塵とが分離され、この氷の粒子、粉塵が除去された清浄な冷媒ガスのみが熱交換器13へと送り出され、分離された氷の粒子、粉塵は、溜まって再度飛散することがないように、上部容器16aの下部の小径部を経て下方容器16bへと落下するようになっている。
【0013】
また、氷の粒子の一部は図2において符号Fで示すように、上部容器16a、下方容器16bそれぞれの下部内壁面に付着して水分固化成分となってゆくが、開閉弁17を開き、ノズル18a,18bから膨張器14の一次側の圧縮された状態にある冷媒ガスを流出させることにより、この付着した水分固化成分Fを除去する。
上記内壁面に付着した水分固化成分Fに向けて比較的高温の圧縮状態の冷媒ガスを流出させて水分固化成分Fの一部を融解させてしまうと、発生した水の表面張力により上記内壁面から水分固化成分Fが剥離し難くなるという問題が生じる。しかし、冷凍機1のノズル18a,18bからの冷媒ガスは、低温、高圧であるため、上記内壁面に付着した水分固化成分Fを溶かすことなく、剥離させることができる。
【0014】
また、このノズル18a,18bからの冷媒ガスを常時流出させておく必要はなく、経験則に基づいてこの水分固化成分Fを剥離させる時間間隔を把握しておき、この時間間隔で開閉弁17を開き、間欠的に水分固化成分Fの剥離を行えばよい。このようにして、上記内壁面から剥離させた水分固化成分Fは、下方容器16bの底部に溜まってゆくので、開閉弁17を開くタイミングに合わせて開閉弁16cを開き、下方容器16bの底部を開放して溜まった水分固化成分をサイクロン分離器16の外へ排出すればよい。
【0015】
次に、上記冷媒ガスとして空気を例にとって、循環流路Iにおける冷媒ガスの状態変化の一例を説明すると、以下の様になる。
圧縮機11は、約30℃、略大気圧の冷媒ガスを吸い込み、圧縮し、約160℃、約2atgの冷媒ガスを吐出する。
この圧縮され、温度上昇した冷媒ガスは、例えば水冷空気冷却器のような冷却器12により冷却され、ここを通過して約40℃、約2atgの状態となる。
この冷媒ガスはさらに熱交換器13における熱交換により冷却され、圧力降下し、ここを通過して、約−30℃、約2atgの状態となる。
【0016】
この冷媒ガスは、一部を除き、膨張器14により膨張させられて約−80℃、略大気圧の状態となって、大気圧状態の冷凍処理室15内に供給される。即ち、この極低温状態の冷媒ガスが例えば食品のような被処理物が収容された冷凍処理室15内に送られ、被処理物を冷凍させ、冷媒ガス自身は約−40℃、略大気圧となって、冷凍処理室15の二次側における循環流路Iの部分に回収されて、サイクロン分離器16の上部容器16a内に導かれる。
一方、熱交換器13を出て約30℃、約2atgとなった冷媒ガスの内の一部は、凍結付着物除去用流路IIに分流し、開閉弁17を介して上部分岐流路IIa、下部分岐流路IIbより上部容器16a内及び下部容器16b内に導かれる。
【0017】
サイクロン分離器16から回収された清浄な冷媒ガスは約−40℃、略大気圧の状態で熱交換器13に至り、ここで上述したように冷却器12からの冷媒ガスを冷却し、自身は加熱されて約30℃、略大気圧の状態となって、圧縮機11に戻り、圧縮機11に吸込まれ、圧縮され、上述した状態変化を繰返す。
【0018】
【発明の効果】
以上の説明より明らかなように、第1発明によれば、少なくとも圧縮機、冷却器、熱交換器、膨張器及び冷凍処理室を含み、上記圧縮機から上記冷却器を経た後、上記熱交換器に至り、ここを通過した後、上記膨張器、さらに上記冷凍処理室を経て、上記熱交換器を再度通過した後、上記圧縮機に戻る冷媒ガスの循環流路を備えた冷凍機において、上記冷凍処理室の二次側に位置し、かつこの冷凍処理室と上記熱交換器との間に位置する上記循環流路の部分に気体成分とその他の成分とを遠心分離するサイクロン分離器を介在させた構成としてある。
このようにサイクロン分離器を用いているため、占有スペースの増大、圧力損失の増大を招くことなく、循環する冷媒ガスの流量を増大させ、かつ回収冷媒ガスからの水分固化成分、粉塵の除去が可能になるという効果を奏する。
【0019】
第2発明によれば、第1発明の構成に加えて、上記膨張器の一次側に位置し、かつ上記熱交換器と上記膨張器との間に位置する上記循環流路の部分から分岐し、上記サイクロン分離器内まで延び、このサイクロン分離器の内壁面に沿って、かつ下方に向けて冷媒ガスを流出させるノズルを先端部に有する凍結付着物除去用流路を備えた構成としてある。
このため、上記第1発明による効果に加えて、サイクロン分離器の内壁面に付着した水分固化成分を溶かすことなく、内壁面から剥離させて外部に排出することができ、サイクロン分離器の正常な機能を維持し続けることが可能になるという効果を奏する。
【0020】
第3発明によれば、第2発明の構成に加えて、上記凍結付着物除去用流路に開閉弁を介設した構成としてある。
このため、上記第2発明による効果に加えて、必要なときだけ、上記水分固化成分の剥離、除去作業をすることができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る冷凍機の全体構成を示す図である。
【図2】図1に示す冷凍機におけるサイクロン分離器を拡大した概略断面図である。
【符号の説明】
1 冷凍機
11 圧縮機
12 冷却器
13 熱交換器
14 膨張器
15 冷凍処理室
16 サイクロン分離器
16a 上部容器
16b 下部容器
16c 開閉弁
17 開閉弁
18a,18b ノズル
I 循環流路
II 凍結付着物除去用流路
IIa 上部分岐流路
IIb 下部分岐流路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigerator for freezing an object to be processed.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a refrigerator that causes a low-temperature gas to directly contact an object to be processed and freeze-treats the object to be processed is known (for example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent No. 311165 (paragraphs [0010] and [0015], FIG. 1)
[0004]
In the refrigerator described in Patent Literature 1, moisture-solidified components generated during the freezing process of the object to be processed in the freezing processing chamber (the cold heat consuming equipment 20) are mixed in the recovered refrigerant gas, and are directly contained in the heat exchanger. When it flows in, the heat solidification component blocks the heat exchanger, and the refrigerator cannot operate normally. For this reason, a filter is provided on the secondary side of the freezing treatment chamber as dehumidifying means for removing the moisture solidified component. Then, the moisture solidified component is removed from the refrigerant gas toward the heat exchanger by the filter, so that the heat exchanger is prevented from being blocked by the moisture solidified component. The filter also collects dust in the recovered refrigerant gas, and clean refrigerant gas is guided to the compressor via the heat exchanger.
[0005]
[Problems to be solved by the invention]
In the case of the conventional refrigerator described above, if the flow rate of the circulating refrigerant gas is to be increased in order to increase the refrigerating capacity or the like, the filter also needs to be increased corresponding to the increase in the flow rate. There is a problem that the whole occupied space becomes excessive and the pressure loss also increases.
SUMMARY OF THE INVENTION The present invention has been made to eliminate the conventional problems, and has been made to increase the flow rate of the circulating refrigerant gas without causing an increase in occupied space, and to reduce moisture solidification components, dust, and the like from the recovered refrigerant gas. It is an object of the present invention to provide a refrigerator capable of removing water.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, a first invention includes at least a compressor, a cooler, a heat exchanger, an expander, and a refrigeration processing chamber. After the compressor passes through the cooler, it reaches the heat exchanger. After passing through the expander, further through the refrigerating processing chamber, and after passing through the heat exchanger again, the refrigerating machine provided with a refrigerant gas circulation flow path returning to the compressor. A cyclone separator for centrifuging gas components and other components was interposed in the portion of the circulation flow path located on the secondary side of the chamber and between the refrigeration processing chamber and the heat exchanger. Configuration.
[0007]
According to a second aspect of the present invention, in addition to the configuration of the first aspect, a portion of the circulation flow path located on the primary side of the expander and located between the heat exchanger and the expander branches, A configuration is provided with a flow path for freezing and adhering matter removal, which has a nozzle at the tip end which extends into the cyclone separator and flows out the refrigerant gas downward along the inner wall surface of the cyclone separator.
[0008]
According to a third aspect of the invention, in addition to the configuration of the second aspect of the invention, an on-off valve is provided in the flow path for removing the frozen deposits.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
1 and 2 show a refrigerator 1 according to the present invention. The refrigerator 1 includes a compressor 11, a cooler 12, a heat exchanger 13, an expander 14, a refrigeration processing chamber 15, and a cyclone separator 16. After passing through the cooler 12 from the compressor 11, it reaches the heat exchanger 13, passes through the heat exchanger 13, passes through the expander 14, further passes through the freezing treatment chamber 15, passes through the heat exchanger 13 again, and then passes through the compressor 11. Circulating flow path I for the refrigerant gas returning to The cyclone separator 16 includes a funnel-shaped upper container 16a forming a separator main body, a funnel-shaped lower container 16b connected to a lower end thereof, an opening / closing valve 16c for opening and closing a lower end opening of the lower container 16b. Consists of
[0010]
In addition, from a portion of the circulation flow path I located on the primary side of the expander 14 and between the heat exchanger 13 and the expander 14, a flow path for removing frozen deposits via an on-off valve 17 is provided. The branch II is branched, and the frozen adhered matter removing channel II is further branched on the secondary side of the on-off valve 17 to be divided into a plurality of upper branch channels IIa and a plurality of lower branch channels IIb. The upper branch channel IIa projects from a plurality of locations of the upper container 16a into the inside thereof, and the lower branch channel IIb projects from a plurality of locations of the lower container 16b into the inside thereof. Nozzles 18a and 18b for discharging the refrigerant gas downward along the inner wall surface of the upper container 16a or the lower container 16b are provided at the respective distal ends of IIb.
[0011]
Then, in the refrigerator 1 having the above configuration, the refrigerant gas exits the compressor 11, passes through the cooler 12, the heat exchanger 13, and, except for a part, reaches the refrigeration processing chamber 15 from the expander 14, It is collected from the freezing processing chamber 15 and guided to the upper space in the upper container 16a of the cyclone separator 16. On the other hand, the above-mentioned part of the refrigerant gas obtained from the heat exchanger 13 is diverted to the frozen and adhered matter removing channel II, and passes through the on-off valve 17 to the respective lower spaces in the upper container 16a and the lower container 16b. Is led to. In the cyclone separator 16, a gas component and other components are separated by the action of centrifugal force and gravity, and the other components fall downward and are discharged out of the separator via the on-off valve 16c. The clean refrigerant gas from which other components have been separated and removed is sent to the heat exchanger 13 from above the cyclone separator 16. Further, in the heat exchanger 13, heat exchange is performed between the refrigerant gas discharged from the compressor 11 and passing through the cooler 12 and the clean refrigerant gas from the cyclone separator 16. The gas returns to the compressor 11, becomes the suction gas, is compressed, and the circulation of the refrigerant gas is repeated.
[0012]
When an object to be processed such as food is cooled in the freezing processing chamber 15, water vapor is generated from the object to be processed, or steam or dust enters from outside when a person enters or exits the freezing processing chamber 15, and this water vapor is generated. Is frozen in the freezing processing chamber 15 to generate ice particles, which are mixed with the dust in the refrigerant gas. If the ice particles and dust flow into the heat exchanger 13, the heat exchanger 13 will be blocked, and the normal operation of the refrigerator 1 will be hindered. Therefore, in the refrigerator 1, a cyclone separator 16 is provided, in which the refrigerant gas as a gas component is separated from ice particles and dust as other components, and the ice particles and dust are removed. Only the purified refrigerant gas is sent out to the heat exchanger 13, and the separated ice particles and dust pass through the small diameter portion at the lower portion of the upper container 16a so that they do not accumulate and scatter again. 16b.
[0013]
Further, as shown by reference numeral F in FIG. 2, some of the ice particles adhere to the lower inner wall surfaces of the upper container 16a and the lower container 16b and become a moisture solidifying component. By causing the refrigerant gas in a compressed state on the primary side of the expander 14 to flow out from the nozzles 18a and 18b, the adhered moisture solidified component F is removed.
When a relatively high-temperature compressed refrigerant gas is caused to flow toward the moisture-solidifying component F adhered to the inner wall surface and a part of the moisture-solidifying component F is melted, the inner wall surface is generated by the surface tension of the generated water. There is a problem that the water-solidified component F is hardly peeled off from the water. However, since the refrigerant gas from the nozzles 18a and 18b of the refrigerator 1 has a low temperature and a high pressure, it can be separated without dissolving the water solidified component F attached to the inner wall surface.
[0014]
Further, it is not necessary to always allow the refrigerant gas to flow out from the nozzles 18a and 18b, and the time interval for separating the moisture solidified component F is grasped based on an empirical rule, and the on-off valve 17 is opened at this time interval. It is sufficient to open and intermittently peel off the moisture solidifying component F. In this manner, the moisture solidified component F separated from the inner wall surface accumulates at the bottom of the lower container 16b, so that the opening and closing valve 16c is opened at the timing when the opening and closing valve 17 is opened, and the bottom of the lower container 16b is removed. It is only necessary to discharge the moisture solidified component that has been opened and accumulated outside the cyclone separator 16.
[0015]
Next, an example of a state change of the refrigerant gas in the circulation channel I will be described as follows, taking air as an example of the refrigerant gas.
The compressor 11 draws in and compresses a refrigerant gas at approximately 30 ° C. and substantially atmospheric pressure, and discharges a refrigerant gas at approximately 160 ° C. and approximately 2 atg.
The compressed and temperature-increasing refrigerant gas is cooled by a cooler 12 such as a water-cooled air cooler, and passes therethrough to a state of about 40 ° C. and about 2 atg.
This refrigerant gas is further cooled by heat exchange in the heat exchanger 13, drops in pressure, passes through it, and reaches a state of about −30 ° C. and about 2 atg.
[0016]
Except for a part of the refrigerant gas, the refrigerant gas is expanded by the expander 14 to be in a state of approximately −80 ° C. and a substantially atmospheric pressure, and is supplied into the refrigeration processing chamber 15 at the atmospheric pressure. That is, the refrigerant gas in the extremely low temperature state is sent into the freezing processing chamber 15 in which the object to be processed such as food is accommodated, and the object to be processed is frozen. As a result, it is collected in the portion of the circulation flow path I on the secondary side of the freezing treatment chamber 15 and guided into the upper container 16a of the cyclone separator 16.
On the other hand, a part of the refrigerant gas which has exited the heat exchanger 13 and has reached about 30 ° C. and about 2 atg is diverted to the frozen / adhered matter removing flow path II, and is passed through the on-off valve 17 to the upper branch flow path IIa. , From the lower branch channel IIb into the upper container 16a and the lower container 16b.
[0017]
The clean refrigerant gas recovered from the cyclone separator 16 reaches the heat exchanger 13 at about −40 ° C. and substantially at atmospheric pressure, where it cools the refrigerant gas from the cooler 12 as described above. After being heated, it is brought to a state of about 30 ° C. and substantially atmospheric pressure, returns to the compressor 11, is sucked into the compressor 11, is compressed, and repeats the above-mentioned state change.
[0018]
【The invention's effect】
As apparent from the above description, according to the first invention, at least a compressor, a cooler, a heat exchanger, an expander, and a freezing treatment chamber are included, and after passing through the cooler from the compressor, the heat exchange After passing through here, after passing through the expander, further through the refrigeration processing chamber, after passing through the heat exchanger again, in the refrigerator provided with a circulation flow path of the refrigerant gas returned to the compressor, A cyclone separator for centrifuging a gas component and other components in a portion of the circulation flow path located on the secondary side of the freezing processing chamber and located between the freezing processing chamber and the heat exchanger. The configuration is interposed.
Since the cyclone separator is used as described above, the flow rate of the circulating refrigerant gas is increased without increasing the occupied space and the pressure loss, and it is possible to remove moisture solidified components and dust from the recovered refrigerant gas. It has the effect that it becomes possible.
[0019]
According to the second invention, in addition to the configuration of the first invention, a branch from the portion of the circulation flow path located on the primary side of the expander and located between the heat exchanger and the expander is provided. And a flow path for freezing and adhering matter removal, which has a nozzle at its distal end extending to the inside of the cyclone separator and flowing out the refrigerant gas downward along the inner wall surface of the cyclone separator.
For this reason, in addition to the effect of the first aspect, the water-solidified component attached to the inner wall surface of the cyclone separator can be separated from the inner wall surface and discharged to the outside without dissolving. This has the effect that the function can be maintained.
[0020]
According to the third aspect, in addition to the configuration of the second aspect, an on-off valve is provided in the flow path for removing the frozen deposits.
For this reason, in addition to the effect of the second invention, there is an effect that the operation of peeling and removing the water-solidifying component can be performed only when necessary.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of a refrigerator according to the present invention.
FIG. 2 is an enlarged schematic sectional view of a cyclone separator in the refrigerator shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Refrigerator 11 Compressor 12 Cooler 13 Heat exchanger 14 Expander 15 Refrigeration processing chamber 16 Cyclone separator 16a Upper vessel 16b Lower vessel 16c Open / close valve 17 Open / close valve 18a, 18b Nozzle I Circulation flow path II Flow path IIa Upper branch flow path IIb Lower branch flow path

Claims (3)

少なくとも圧縮機、冷却器、熱交換器、膨張器及び冷凍処理室を含み、上記圧縮機から上記冷却器を経た後、上記熱交換器に至り、ここを通過した後、上記膨張器、さらに上記冷凍処理室を経て、上記熱交換器を再度通過した後、上記圧縮機に戻る冷媒ガスの循環流路を備えた冷凍機において、上記冷凍処理室の二次側に位置し、かつこの冷凍処理室と上記熱交換器との間に位置する上記循環流路の部分に気体成分とその他の成分とを遠心分離するサイクロン分離器を介在させたことを特徴とする冷凍機。At least a compressor, a cooler, a heat exchanger, an expander and a refrigeration processing chamber are included. After passing through the cooler from the compressor, reach the heat exchanger, pass through the heat exchanger, and then the expander, After passing through the heat exchanger again through the refrigerating processing chamber, the refrigerating machine having a circulation flow path for the refrigerant gas returning to the compressor is located on the secondary side of the refrigerating processing chamber, and A refrigerator characterized in that a cyclone separator for centrifuging gas components and other components is interposed in a portion of the circulation flow path located between a chamber and the heat exchanger. 上記膨張器の一次側に位置し、かつ上記熱交換器と上記膨張器との間に位置する上記循環流路の部分から分岐し、上記サイクロン分離器内まで延び、このサイクロン分離器の内壁面に沿って、かつ下方に向けて冷媒ガスを流出させるノズルを先端部に有する凍結付着物除去用流路を備えたことを特徴とする請求項1に記載の冷凍機。An inner wall surface of the cyclone separator, which is branched from a portion of the circulation flow path located on the primary side of the expander and located between the heat exchanger and the expander, and extends into the cyclone separator. 2. The refrigerator according to claim 1, further comprising a flow path for freezing and adhering matter removal having a nozzle at a tip end thereof for causing the refrigerant gas to flow out along and downward. 上記凍結付着物除去用流路に開閉弁を介設したことを特徴とする請求項2に記載の冷凍機。The refrigerator according to claim 2, wherein an on-off valve is provided in the flow path for removing the frozen deposits.
JP2003053425A 2003-02-28 2003-02-28 Refrigerating machine Pending JP2004263916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003053425A JP2004263916A (en) 2003-02-28 2003-02-28 Refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003053425A JP2004263916A (en) 2003-02-28 2003-02-28 Refrigerating machine

Publications (1)

Publication Number Publication Date
JP2004263916A true JP2004263916A (en) 2004-09-24

Family

ID=33118031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003053425A Pending JP2004263916A (en) 2003-02-28 2003-02-28 Refrigerating machine

Country Status (1)

Country Link
JP (1) JP2004263916A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009140491A2 (en) 2008-05-15 2009-11-19 Concepts Eti, Inc. Semi-closed air-cycle refrigeration system and a positive-pressure snow removal cyclone separator therefor
JP2010060174A (en) * 2008-09-02 2010-03-18 Daikin Ind Ltd Air conditioning device
JP2010223507A (en) * 2009-03-24 2010-10-07 Maekawa:Kk Defrosting device and air cycle refrigerating system including the same
WO2011040286A1 (en) * 2009-09-30 2011-04-07 ダイキン工業株式会社 Gas refrigerant separator, gas refrigerant separator-cum-refrigerant flow divider, expansion valve, and refrigeration device
WO2014063443A1 (en) * 2012-10-22 2014-05-01 Zhang Yuliang Self-cooled thermal work doing method
CN106642782A (en) * 2017-01-05 2017-05-10 中国科学院合肥物质科学研究院 Closed air refrigerating machine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009140491A2 (en) 2008-05-15 2009-11-19 Concepts Eti, Inc. Semi-closed air-cycle refrigeration system and a positive-pressure snow removal cyclone separator therefor
EP2307822A4 (en) * 2008-05-15 2016-02-24 Concepts Eti Inc Semi-closed air-cycle refrigeration system and a positive-pressure snow removal cyclone separator therefor
JP2010060174A (en) * 2008-09-02 2010-03-18 Daikin Ind Ltd Air conditioning device
JP2010223507A (en) * 2009-03-24 2010-10-07 Maekawa:Kk Defrosting device and air cycle refrigerating system including the same
WO2011040286A1 (en) * 2009-09-30 2011-04-07 ダイキン工業株式会社 Gas refrigerant separator, gas refrigerant separator-cum-refrigerant flow divider, expansion valve, and refrigeration device
JP2011094946A (en) * 2009-09-30 2011-05-12 Daikin Industries Ltd Gas refrigerant separator, gas refrigerant separator-cum-refrigerant flow divider, expansion valve, and refrigeration device
WO2014063443A1 (en) * 2012-10-22 2014-05-01 Zhang Yuliang Self-cooled thermal work doing method
CN103775148A (en) * 2012-10-22 2014-05-07 张玉良 Self-cooled thermal power acting method
CN106642782A (en) * 2017-01-05 2017-05-10 中国科学院合肥物质科学研究院 Closed air refrigerating machine

Similar Documents

Publication Publication Date Title
US4506513A (en) Cold trap
JP2009544928A5 (en)
CN101493089B (en) Water-lubricated compressor
JP2004263916A (en) Refrigerating machine
US8726683B2 (en) Device for deicing and cleaning of fans
US20210301804A1 (en) Multi-cooling type cold trap
CN208635416U (en) A kind of refrigeration equipment drip tray
JP5108384B2 (en) Air refrigerant refrigeration system
JP4786591B2 (en) VOC cooling recovery equipment
JP2004317081A (en) Air refrigerator
JP3747370B2 (en) Air cycle cooling system
JP4786593B2 (en) VOC cooling recovery equipment
KR200299725Y1 (en) Compressor with Oil Separator
JP3862070B2 (en) Air cycle cooling system
JP2008279377A (en) Voc cooling/recovery device
JP2006234275A (en) Air refrigerant type refrigerating machine
JP5781723B2 (en) Air cycle refrigeration system
KR20090049262A (en) Ice maker for refrigerator
JP2006118772A (en) Air refrigerant type refrigeration device
JP2745975B2 (en) Ice making equipment
WO2024053206A1 (en) Defrosting device and defrosting method
JP2008279376A (en) Voc cooling/recovery device
RU2066430C1 (en) Food product cooling method and apparatus
JP2008279378A (en) Voc cooling/recovery device
JP2008279380A (en) Voc cooling/recovery device