WO2024053206A1 - Defrosting device and defrosting method - Google Patents

Defrosting device and defrosting method Download PDF

Info

Publication number
WO2024053206A1
WO2024053206A1 PCT/JP2023/023133 JP2023023133W WO2024053206A1 WO 2024053206 A1 WO2024053206 A1 WO 2024053206A1 JP 2023023133 W JP2023023133 W JP 2023023133W WO 2024053206 A1 WO2024053206 A1 WO 2024053206A1
Authority
WO
WIPO (PCT)
Prior art keywords
frost
air
filter
defrost device
ultra
Prior art date
Application number
PCT/JP2023/023133
Other languages
French (fr)
Japanese (ja)
Inventor
直子 仲村
英博 北山
行一 津幡
瑞生 工藤
秀幸 原
Original Assignee
株式会社前川製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社前川製作所 filed Critical 株式会社前川製作所
Publication of WO2024053206A1 publication Critical patent/WO2024053206A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost

Definitions

  • the present invention relates to a defrost device and a defrosting method.
  • the air refrigerant refrigerator uses an air cycle that sucks in air from inside the warehouse, compresses it, and returns the cooled air to the inside of the warehouse through adiabatic expansion. Therefore, the moisture contained in the air turns into frost and accumulates inside the refrigerator and the warehouse, making it necessary to periodically defrost the inside of the refrigerator and the warehouse.
  • the present invention was invented in order to solve the above problems, and an object of the present invention is to provide a defrost device and a defrosting method that can discharge frost that has formed on the defrost device as it is. .
  • a defroster according to the present invention that achieves the above object includes: a suction port through which air with frost is sucked; a filter section to which the frost is attached and which separates the frost from the air; It has a first flow path through which the air from which the frost has been separated is sent into the ultra-low temperature freezer, and a discharge section through which the frost that has fallen from the filter section is discharged to the outside.
  • the defrosting method according to the present invention that achieves the above object includes a suction step of sucking air with frost attached from a suction port, a separation step of making the frost adhere to a filter part and separating it from the air, and the above-mentioned steps.
  • the method includes a step of sending the air from which the frost has been separated in the filter section into an ultra-low temperature freezer, and a discharging step of discharging the frost that has fallen from the filter section to the outside.
  • fallen frost can be discharged outside as frost by the discharge section. Therefore, it is possible to suitably prevent frost from melting and plate-shaped ice forming on the filter portion, which would cause the defroster to become clogged and unable to defrost.
  • FIG. 1 is a system diagram showing an ultra-low temperature refrigeration system including a defrost device according to an embodiment of the present invention. It is a figure showing a defrost concerning this embodiment, and is a figure showing a state where frost is attached to a filter part. It is a figure which shows the defrost device based on this embodiment, Comprising: It is a figure which shows how the frost adhering to a filter part fell by its own weight. 7 is a diagram showing a defrost device according to modification example 1. FIG. It is a figure showing a defrost concerning modification 2.
  • FIGS. 1 to 3 Embodiments of the present invention will be described with reference to FIGS. 1 to 3.
  • the same elements are given the same reference numerals, and redundant description will be omitted.
  • Dimensional proportions in the drawings are exaggerated for illustrative purposes and may differ from actual proportions.
  • FIG. 1 is a system diagram showing an ultra-low temperature refrigeration system 1 including a defrost device 40 according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating the defrost device 40 according to the present embodiment, and is a diagram illustrating how frost is attached to the filter section 42.
  • FIG. 3 is a diagram illustrating the defrost device 40 according to the present embodiment, and is a diagram illustrating how frost attached to the filter section 42 falls under its own weight.
  • the ultra-low temperature refrigeration system 1 is used, for example, to cool a drug warehouse.
  • the object to be cooled is not limited to drug warehouses, but can also be used for cooling food warehouses and the like.
  • the ultra-low temperature refrigeration system 1 includes an ultra-low temperature freezer 10 that cools and stores objects to be cooled, a circulation path 20 that is connected to the ultra-low temperature freezer 10 and through which air circulates, and the air inside the ultra-low temperature freezer 10 as a refrigerant. , has an air refrigerant refrigerator 30 that supplies cooled air into the ultra-low temperature freezer 10, and a defroster 40 that removes frost from the air supplied from the air refrigerant refrigerator 30 into the ultra-low temperature freezer 10.
  • the ultra-low temperature freezer 10 chemicals are cooled and stored as described above.
  • an automatic transport device is used to carry in and out the medicines unattended. If frost adheres to the automatic conveyance device, it may not function properly. Therefore, when using the air refrigerant refrigerator 30, the defrost device 40 removes the frost that adheres to the cooled air that returns to the ultra-low temperature freezer 10. must be removed.
  • the internal temperature of the ultra-low temperature freezer 10 is not particularly limited, it is ⁇ 50° C. or lower. In this way, since the temperature inside the ultra-low temperature freezer 10 is ultra-low, it is possible to prevent the frost from melting in the defrost device 40, and it is possible to suitably discharge the frost as it is. Further, when the internal temperature of the ultra-low temperature freezer 10 is -50° C. or lower, a certain amount of frost adhering to the filter section 42 will fall, so by removing the frost, continuous operation is possible.
  • frost When frost is formed in the air, the temperature of the air containing moisture decreases and moisture in excess of the saturated amount precipitates.
  • the temperature inside the refrigerator is higher than the temperature inside the ultra-low temperature freezer 10 according to the present embodiment, such as between -20°C and -30°C, the time when the droplets exist as supercooled droplets is long, and the liquid droplets freeze. It is easy to form large crystals by agglomeration and bonding before crystallization.
  • the internal temperature of the ultra-low temperature freezer 10 according to the present embodiment is between -60°C and -50°C, supercooling is easily released and the ice precipitates before the mass increases, so that the particle size can be reduced. Small frost forms.
  • the absolute humidity is lower as the internal temperature of the ultra-low temperature freezer 10 is lower, the amount of moisture that precipitates decreases even with the same temperature difference, and a relatively small amount of frost is generated. Therefore, the frost adhering to the filter portion 42, which will be described later, becomes powdery and can be easily discharged from the defrost device 40 by wind pressure, as described later.
  • the air refrigerant refrigerator 30 includes a compressor 31, an expander 32, and a primary cooler 33.
  • the compressor 31 and the expander 32 are integrated and connected to the same motor M.
  • the air refrigerant refrigerator 30 constitutes a reverse Brayton cycle.
  • the air inside the ultra-low temperature freezer 10 (minus 60 degrees Celsius) that is sucked into the air refrigerant refrigerator 30 is compressed and heated in the compressor 31 to become high-temperature, high-pressure air at 90 degrees Celsius. Then, the air at 90°C is cooled down to 40°C in the primary cooler 33.
  • the 40°C air is adiabatically expanded in the expander 32 and cooled to -80°C, and this air is sent into the ultra-low temperature freezer 10.
  • the defrost device 40 is provided inside the ultra-low temperature freezer 10, as shown in FIG. 1, but the position where the defrost device 40 is placed is not limited. However, it is preferable to arrange it downstream of the expander 32 of the air refrigerant refrigerator 30.
  • one defrost device 40 is provided.
  • the defrost device 40 removes frost contained in the air when the air cooled to -80° C. is sent into the ultra-low temperature freezer 10 by the air refrigerant refrigerator 30.
  • the configuration of the defrost device 40 will be described below.
  • the defrost device 40 includes a housing 41, a filter section 42 provided in the housing 41, and a first flow path through which air from which frost has been separated flows into the ultra-low temperature freezer 10. 43, a first valve 44 provided in the first flow path 43, a second flow path 45 through which frost passes when frost is discharged from the housing 41, and a second valve provided in the second flow path 45. 46.
  • the housing 41 is formed with a suction port 41A through which air containing frost cooled in the air refrigerant refrigerator 30 is sucked.
  • the filter portion 42 is attached with frost contained in the air sucked in from the suction port 41A, and separates the frost from the air.
  • the filter section 42 is arranged to extend in the horizontal direction, as shown in FIGS. 2 and 3. According to this configuration, since the filter portion 42 can be provided over a wide range, frost can be suitably attached to the filter portion 42.
  • the filter section 42 is configured to include countless voids.
  • the frost F adheres to the filter section 42, as shown in FIG.
  • the air from which the frost has been separated passes through the filter section 42 and moves upward, and when the first valve 44 is open, it is sent into the ultra-low temperature freezer 10 via the first flow path 43 (Fig. (See arrow 2). That is, at this time, normal cooling operation is performed in the ultra-low temperature freezer 10.
  • the defrost device 40 may further include a falling part that assists the frost adhering to the filter part 42 to fall due to its own weight.
  • the falling part is not particularly limited, an ultrasonic vibrator or a blowing part that blows shot air can be used, but an ultrasonic vibrator is preferable from the viewpoint of preventing clogging in the filter part 42.
  • the air flow may be reversed (downward in FIG. 2) to cause the frost adhering to the filter part 42 to fall.
  • the frost F can be discharged from the second flow path 45. That is, the first valve 44 and the second valve 46 function as a discharge section that discharges frost to the outside as it is. That is, at this time, in the ultra-low temperature freezer 10, normal cooling operation is stopped and defrosting operation is performed.
  • the second valve 46 is located within the ultra-low temperature freezer 10.
  • the second valve 46 is placed outside the ultra-low temperature freezer 10, there is a possibility that frost will melt and freeze inside the second valve 46.
  • the second valve 46 is placed inside the ultra-low temperature freezer 10, so that the above-mentioned freezing can be prevented.
  • the frost discharged outside the defrost device 40 is received by a drain pan, for example, and is melted and drained using a heater installed in the drain pan or warm air, thereby preventing re-sublimation and removing the frost. It can be easily done.
  • the defrost device 40 Since the defrost device 40 according to the present embodiment is placed in the ultra-low temperature freezer 10, it can defrost in a low-temperature atmosphere, and can preferably discharge frost formed in the defrost device 40 as it is. .
  • a heater section may be attached to the filter section 42 of the defrost device 40. According to this configuration, even if frost adhering to the filter section 42 melts and plate-shaped ice forms on the filter section 42, the ice can be melted by the heater section, so that the defroster 40 can This prevents the defrosting from becoming impossible due to blockage.
  • the defrosting method includes a suction process in which air with frost is sucked in from the suction port 41A of the housing 41, a separation process in which the frost is attached to the filter section 42 and separated from the air, and a step in which the frost is separated in the filter section 42.
  • the method includes a step of sending the frozen air into the ultra-low temperature freezer 10, and a discharging step of discharging the frost that has fallen from the filter section 42 to the outside.
  • frost is discharged from the second flow path 45 by the wind pressure of the air sucked in from the suction port 41A.
  • the defrost device 40 includes the suction port 41A into which air with frost is sucked in, the filter section 42 to which frost is attached and which separates the frost from the air, and the filter section 42. It has a first flow path 43 through which the air from which the frost has been separated is sent into the ultra-low temperature freezer 10, and a discharge section through which the frost that has fallen from the filter section 42 is discharged to the outside. According to the defrost device 40 configured in this manner, the frost can be discharged outside as it is by the discharge section. Therefore, it is possible to suitably prevent frost from melting and plate-shaped ice forming on the filter portion 42, which would cause the defrost device 40 to become clogged and unable to defrost.
  • the defrost device 40 also includes a second flow path 45 through which frost attached to the filter section 42 is discharged, a first valve 44 provided in the first flow path 43, and a second valve 44 provided in the second flow path 45.
  • the discharge section further includes a valve 46, and the discharge section discharges frost using the wind pressure of the air sucked in from the suction port 41A with the first valve 44 closed and the second valve 46 opened. According to the defrost device 40 configured in this way, automatic defrosting is possible without an operator.
  • the filter section 42 is arranged to extend in the horizontal direction. According to the defrost device 40 configured in this way, the filter section 42 can be provided over a wide range, so that frost can be suitably attached to the filter section 42.
  • the defrost device 40 further includes a dropping part that drops frost attached to the filter part 42. According to the defrost device 40 configured in this manner, clogging in the filter section 42 can be effectively prevented.
  • the defrost device 40 further includes a heater section attached to the filter section 42. According to the defrost device 40 configured in this way, even if frost adhering to the filter section 42 melts and plate-shaped ice forms on the filter section 42, the heater section cannot melt the ice. Therefore, it is possible to prevent the defrost device 40 from being blocked and unable to defrost.
  • the filter section 42 was arranged to extend in the horizontal direction, as shown in FIGS. 2 and 3.
  • the filter section 142 may be arranged to extend in the vertical direction. According to this configuration, frost can be efficiently attached to the filter portion 142 because it is arranged perpendicularly to the direction of travel of the air.
  • the filter section 242 may be arranged so as to be inclined with respect to the horizontal direction and the vertical direction.
  • one filter section 42 was provided.
  • a plurality of filter sections 42 may be provided along the vertical direction.
  • a part of the housing 41 is configured to be openable and closable, so that the filter part 42 to which frost F has adhered can be taken out, as shown in FIG. 6B. .
  • one filter section 142 was provided.
  • a plurality of filter sections 142 may be provided along the horizontal direction.
  • a part of the housing 41 is configured to be openable and closable, so that the filter part 142 with frost F attached can be taken out, as shown in FIG. 7B. .
  • the discharge section was configured by the first valve 44 and the second valve 46.
  • the discharge section may be a conveyor or other conveyor placed on the bottom surface of the defrost device 40, and when a predetermined amount of frost accumulates on the conveyor, the conveyor discharges it out of the casing 41. It's okay.
  • Ultra-low temperature refrigeration system 10 Ultra-low temperature freezer, 20 circulation path, 30 air refrigerant refrigerator, 31 Compressor, 32 Expander, 33 Primary cooler, 40 defrost, 41A Suction port, 42, 142, 242 filter section, 43 first flow path, 44 first valve, 45 second flow path, 46 Second valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Defrosting Systems (AREA)

Abstract

[Problem] Provided are a defrosting device and a defrosting method with which it is possible to discharge frost attached to the defrosting device while the frost remains as frost. [Solution] This defrosting device includes: a suction port that suctions in air to which frost is attached; a filter unit to which the frost attaches, and that separates the frost from the air; a first flow path where the air from which the frost has been separated in the filter unit is transmitted to inside an ultra-low temperature freezer; and a discharge unit that discharges, to outside, the frost that has fallen down from the filter unit.

Description

除霜器および除霜方法Defrost device and defrosting method
 本発明は、除霜器および除霜方法に関する。 The present invention relates to a defrost device and a defrosting method.
 近年、超低温冷凍倉庫では環境対策によるフロン冷媒の削減やファン動力の低減による省エネを目的として、フロン冷媒を利用した二元冷凍機から、空気冷媒冷凍機への移行が進んでいる(例えば特許文献1)。 In recent years, in ultra-low temperature refrigerated warehouses, there has been a shift from binary refrigerators that use fluorocarbon refrigerants to air refrigerant refrigerators in order to reduce the amount of fluorocarbon refrigerants used as environmental measures and to save energy by reducing fan power (for example, in patent documents 1).
 空気冷媒冷凍機は、倉庫内の空気を吸い込み、圧縮し、断熱膨張により冷えた空気を庫内に戻すエアサイクルが採用されている。したがって、空気内に含まれた水分が霜となり、冷凍機内や倉庫内にたまるため、冷凍機内や倉庫内において定期的な除霜が必要となる。 The air refrigerant refrigerator uses an air cycle that sucks in air from inside the warehouse, compresses it, and returns the cooled air to the inside of the warehouse through adiabatic expansion. Therefore, the moisture contained in the air turns into frost and accumulates inside the refrigerator and the warehouse, making it necessary to periodically defrost the inside of the refrigerator and the warehouse.
特開2006-234275号公報Japanese Patent Application Publication No. 2006-234275
 上述した特許文献1の除霜器では、除霜器が冷凍庫外に設置されているため、周辺温度が比較的高い場合には、霜が溶融してフィルタ部に板状の氷が形成して、除霜器が目詰まりで閉塞して、除霜できなくなる虞がある。 In the defrost device of Patent Document 1 mentioned above, since the defrost device is installed outside the freezer, when the ambient temperature is relatively high, the frost melts and plate-shaped ice forms on the filter part. , there is a risk that the defrost device will become clogged and cannot be defrosted.
 本発明は、上記課題を解決するために発明されたものであり、除霜器に着霜した霜を霜のまま排出することのできる除霜器および除霜方法を提供することを目的とする。 The present invention was invented in order to solve the above problems, and an object of the present invention is to provide a defrost device and a defrosting method that can discharge frost that has formed on the defrost device as it is. .
 上記目的を達成する本発明に係る除霜器は、霜が付着した空気が吸い込まれる吸込口と、前記霜が付着して、前記霜を前記空気から分離するフィルタ部と、前記フィルタ部において前記霜が分離された前記空気が超低温冷凍庫内に送られる第1流路と、前記フィルタ部から落下した前記霜を外部に排出する排出部と、を有する。 A defroster according to the present invention that achieves the above object includes: a suction port through which air with frost is sucked; a filter section to which the frost is attached and which separates the frost from the air; It has a first flow path through which the air from which the frost has been separated is sent into the ultra-low temperature freezer, and a discharge section through which the frost that has fallen from the filter section is discharged to the outside.
 また、上記目的を達成する本発明に係る除霜方法は、吸込口から、霜が付着した空気を吸い込む吸込工程と、前記霜をフィルタ部に付着させて前記空気と分離させる分離工程と、前記フィルタ部において前記霜が分離された前記空気を超低温冷凍庫内に送る工程と、前記フィルタ部から落下した前記霜を外部に排出する排出工程と、を有する。 Further, the defrosting method according to the present invention that achieves the above object includes a suction step of sucking air with frost attached from a suction port, a separation step of making the frost adhere to a filter part and separating it from the air, and the above-mentioned steps. The method includes a step of sending the air from which the frost has been separated in the filter section into an ultra-low temperature freezer, and a discharging step of discharging the frost that has fallen from the filter section to the outside.
 上述の除霜器および除霜方法によれば、排出部によって、落下した霜を霜のまま、外部に排出することができる。したがって、霜が溶融してフィルタ部に板状の氷が形成して、除霜器が目詰まりで閉塞して除霜できなくなることを好適に防止できる。 According to the above-described defrost device and defrosting method, fallen frost can be discharged outside as frost by the discharge section. Therefore, it is possible to suitably prevent frost from melting and plate-shaped ice forming on the filter portion, which would cause the defroster to become clogged and unable to defrost.
本発明の実施形態に係る除霜器を備える超低温冷凍システムを示す系統図である。1 is a system diagram showing an ultra-low temperature refrigeration system including a defrost device according to an embodiment of the present invention. 本実施形態に係る除霜器を示す図であって、フィルタ部に霜が付着している様子を示す図である。It is a figure showing a defrost concerning this embodiment, and is a figure showing a state where frost is attached to a filter part. 本実施形態に係る除霜器を示す図であって、フィルタ部に付着した霜が自重で落下した様子を示す図である。It is a figure which shows the defrost device based on this embodiment, Comprising: It is a figure which shows how the frost adhering to a filter part fell by its own weight. 変形例1に係る除霜器を示す図である。7 is a diagram showing a defrost device according to modification example 1. FIG. 変形例2に係る除霜器を示す図である。It is a figure showing a defrost concerning modification 2. 変形例3に係る除霜器を示す図であって、フィルタ部が除霜器内に配置される様子を示す図である。It is a figure which shows the defrost concerning the modification 3, Comprising: It is a figure which shows a mode that a filter part is arrange|positioned in a defrost. 変形例3に係る除霜器を示す図であって、フィルタ部が除霜器外に配置される様子を示す図である。It is a figure which shows the defrost concerning the modification 3, Comprising: It is a figure which shows a mode that a filter part is arrange|positioned outside the defrost. 変形例4に係る除霜器を示す図であって、フィルタ部が除霜器内に配置される様子を示す図である。It is a figure which shows the defrost concerning the modification 4, Comprising: It is a figure which shows a mode that a filter part is arrange|positioned in a defrost. 変形例4に係る除霜器を示す図であって、フィルタ部が除霜器外に配置される様子を示す図である。It is a figure which shows the defrost concerning the modification 4, Comprising: It is a figure which shows a mode that a filter part is arrange|positioned outside the defrost.
 本発明の実施形態を、図1~図3を参照しつつ説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Embodiments of the present invention will be described with reference to FIGS. 1 to 3. In addition, in the description of the drawings, the same elements are given the same reference numerals, and redundant description will be omitted. Dimensional proportions in the drawings are exaggerated for illustrative purposes and may differ from actual proportions.
 図1は、本発明の実施形態に係る除霜器40を備える超低温冷凍システム1を示す系統図である。図2は、本実施形態に係る除霜器40を示す図であって、フィルタ部42に霜が付着している様子を示す図である。図3は、本実施形態に係る除霜器40を示す図であって、フィルタ部42に付着した霜が自重で落下した様子を示す図である。 FIG. 1 is a system diagram showing an ultra-low temperature refrigeration system 1 including a defrost device 40 according to an embodiment of the present invention. FIG. 2 is a diagram illustrating the defrost device 40 according to the present embodiment, and is a diagram illustrating how frost is attached to the filter section 42. As shown in FIG. FIG. 3 is a diagram illustrating the defrost device 40 according to the present embodiment, and is a diagram illustrating how frost attached to the filter section 42 falls under its own weight.
 超低温冷凍システム1は、例えば薬品倉庫の冷却に用いられる。なお、冷却対象は、薬品倉庫に限定されず、食品倉庫等の冷却にも用いられる。超低温冷凍システム1は、図1に示すように、被冷却物を冷却保管する超低温冷凍庫10と、超低温冷凍庫10に接続されて空気が循環する循環路20と、超低温冷凍庫10内の空気を冷媒として、超低温冷凍庫10内に冷却された空気を供給する空気冷媒冷凍機30と、空気冷媒冷凍機30から超低温冷凍庫10内に供給される空気の霜を除去する除霜器40と、を有する。 The ultra-low temperature refrigeration system 1 is used, for example, to cool a drug warehouse. Note that the object to be cooled is not limited to drug warehouses, but can also be used for cooling food warehouses and the like. As shown in FIG. 1, the ultra-low temperature refrigeration system 1 includes an ultra-low temperature freezer 10 that cools and stores objects to be cooled, a circulation path 20 that is connected to the ultra-low temperature freezer 10 and through which air circulates, and the air inside the ultra-low temperature freezer 10 as a refrigerant. , has an air refrigerant refrigerator 30 that supplies cooled air into the ultra-low temperature freezer 10, and a defroster 40 that removes frost from the air supplied from the air refrigerant refrigerator 30 into the ultra-low temperature freezer 10.
 超低温冷凍庫10では、上述したように薬品が冷却保管されている。薬品が冷却保管されている超低温冷凍庫10では、薬品の搬入・搬出を無人で行うため、自動搬送装置が使用される。自動搬送装置に霜が付着すると、正常に動作しなくなる虞があるため、空気冷媒冷凍機30を使用する場合、超低温冷凍庫10内に戻る冷却された空気に付着する霜を、除霜器40によって除去しなければならない。 In the ultra-low temperature freezer 10, chemicals are cooled and stored as described above. In the ultra-low temperature freezer 10 where medicines are kept cooled, an automatic transport device is used to carry in and out the medicines unattended. If frost adheres to the automatic conveyance device, it may not function properly. Therefore, when using the air refrigerant refrigerator 30, the defrost device 40 removes the frost that adheres to the cooled air that returns to the ultra-low temperature freezer 10. must be removed.
 超低温冷凍庫10の内部には、循環路20を循環する空気の吸込口(不図示)、および空気冷媒冷凍機30において冷却された空気が吹き出る吹出口(不図示)が配置されている。超低温冷凍庫10の庫内温度は、特に限定されないが、マイナス50℃以下である。このように、超低温冷凍庫10内の温度が超低温であるため、除霜器40において、霜の溶融を防止でき、好適に霜を霜のままで排出することができる。また、超低温冷凍庫10の庫内温度がマイナス50℃以下であるとき、フィルタ部42に付着する霜がある程度の量になると落下するため、霜を除去することで、連続的に運転できる。 Inside the ultra-low temperature freezer 10, an inlet (not shown) for air circulating through the circulation path 20 and an outlet (not shown) from which air cooled in the air refrigerant refrigerator 30 blows out are arranged. Although the internal temperature of the ultra-low temperature freezer 10 is not particularly limited, it is −50° C. or lower. In this way, since the temperature inside the ultra-low temperature freezer 10 is ultra-low, it is possible to prevent the frost from melting in the defrost device 40, and it is possible to suitably discharge the frost as it is. Further, when the internal temperature of the ultra-low temperature freezer 10 is -50° C. or lower, a certain amount of frost adhering to the filter section 42 will fall, so by removing the frost, continuous operation is possible.
 空気中で霜が生成される場合、水分を含んだ空気の温度が下がり、飽和量を超える水分が析出する。ここで、例えば、庫内温度がマイナス20℃~マイナス30℃のように、本実施形態に係る超低温冷凍庫10内の温度より高い場合は、過冷却液滴で存在している時間が長く、凍結する前に凝集や結合により大きな結晶を作りやすい。これに対して、本実施形態に係る超低温冷凍庫10の庫内温度はマイナス60℃~マイナス50℃であることによって、過冷却解除しやすく、質量が増える前に氷として析出するため、粒径の小さい霜ができる。さらに、超低温冷凍庫10の庫内温度が低いほど絶対湿度が低いため、同じ温度差でも析出する水分量は少なくなり、相対的に小さい霜が生成される。したがって、後述のフィルタ部42に付着する霜はパウダー状となり、後述するように、風圧で容易に除霜器40内から排出することができる。 When frost is formed in the air, the temperature of the air containing moisture decreases and moisture in excess of the saturated amount precipitates. Here, for example, when the temperature inside the refrigerator is higher than the temperature inside the ultra-low temperature freezer 10 according to the present embodiment, such as between -20°C and -30°C, the time when the droplets exist as supercooled droplets is long, and the liquid droplets freeze. It is easy to form large crystals by agglomeration and bonding before crystallization. On the other hand, since the internal temperature of the ultra-low temperature freezer 10 according to the present embodiment is between -60°C and -50°C, supercooling is easily released and the ice precipitates before the mass increases, so that the particle size can be reduced. Small frost forms. Furthermore, since the absolute humidity is lower as the internal temperature of the ultra-low temperature freezer 10 is lower, the amount of moisture that precipitates decreases even with the same temperature difference, and a relatively small amount of frost is generated. Therefore, the frost adhering to the filter portion 42, which will be described later, becomes powdery and can be easily discharged from the defrost device 40 by wind pressure, as described later.
 空気冷媒冷凍機30は、図1に示すように、圧縮機31と、膨張機32と、一次冷却器33と、を有する。圧縮機31および膨張機32は一体型であって、同一のモーターMに接続されている。空気冷媒冷凍機30は、逆ブレイトンサイクルを構成する。 As shown in FIG. 1, the air refrigerant refrigerator 30 includes a compressor 31, an expander 32, and a primary cooler 33. The compressor 31 and the expander 32 are integrated and connected to the same motor M. The air refrigerant refrigerator 30 constitutes a reverse Brayton cycle.
 以下、空気冷媒冷凍機30におけるサイクルについて説明する。なお、以下において説明する温度は一例であって、特に限定されるものではない。 Hereinafter, the cycle in the air refrigerant refrigerator 30 will be explained. Note that the temperature described below is an example and is not particularly limited.
 まず、空気冷媒冷凍機30に吸い込まれる超低温冷凍庫10内(マイナス60℃)の空気は、圧縮機31において圧縮・加熱されることによって、90℃の高温高圧の空気となる。そして、90℃の空気は、一次冷却器33において、40℃まで冷却される。 First, the air inside the ultra-low temperature freezer 10 (minus 60 degrees Celsius) that is sucked into the air refrigerant refrigerator 30 is compressed and heated in the compressor 31 to become high-temperature, high-pressure air at 90 degrees Celsius. Then, the air at 90°C is cooled down to 40°C in the primary cooler 33.
 次に、40℃の空気は、膨張機32において断熱膨張され、マイナス80℃まで冷却され、この空気が超低温冷凍庫10内へ送られる。 Next, the 40°C air is adiabatically expanded in the expander 32 and cooled to -80°C, and this air is sent into the ultra-low temperature freezer 10.
 本実施形態では、除霜器40は、図1に示すように、超低温冷凍庫10内に設けられるが、除霜器40が配置される位置は限定さない。ただし、空気冷媒冷凍機30の膨張機32の下流に配置されることが好ましい。 In this embodiment, the defrost device 40 is provided inside the ultra-low temperature freezer 10, as shown in FIG. 1, but the position where the defrost device 40 is placed is not limited. However, it is preferable to arrange it downstream of the expander 32 of the air refrigerant refrigerator 30.
 本実施形態において、除霜器40は1つ設けられる。除霜器40は、空気冷媒冷凍機30によって、マイナス80℃まで冷却された空気が超低温冷凍庫10内に送られるときに、空気に含まれる霜を除去する。以下、除霜器40の構成について説明する。 In this embodiment, one defrost device 40 is provided. The defrost device 40 removes frost contained in the air when the air cooled to -80° C. is sent into the ultra-low temperature freezer 10 by the air refrigerant refrigerator 30. The configuration of the defrost device 40 will be described below.
 除霜器40は、図2、3に示すように、筐体41と、筐体41内に設けられるフィルタ部42と、霜が分離された空気が超低温冷凍庫10内に流通する第1流路43と、第1流路43に設けられる第1バルブ44と、筐体41から霜が排出される際に霜が通過する第2流路45と、第2流路45に設けられる第2バルブ46と、を有する。 As shown in FIGS. 2 and 3, the defrost device 40 includes a housing 41, a filter section 42 provided in the housing 41, and a first flow path through which air from which frost has been separated flows into the ultra-low temperature freezer 10. 43, a first valve 44 provided in the first flow path 43, a second flow path 45 through which frost passes when frost is discharged from the housing 41, and a second valve provided in the second flow path 45. 46.
 筐体41には、空気冷媒冷凍機30において冷却された霜を含む空気が吸い込まれる吸込口41Aが形成される。 The housing 41 is formed with a suction port 41A through which air containing frost cooled in the air refrigerant refrigerator 30 is sucked.
 フィルタ部42は、吸込口41Aから吸い込まれた空気に含まれる霜が付着して、霜を空気から分離する。本実施形態において、フィルタ部42は、図2、図3に示すように、水平方向に延在するように配置される。この構成によれば、広範囲に亘って、フィルタ部42を設けることができるため、フィルタ部42に対して好適に霜を付着させることができる。 The filter portion 42 is attached with frost contained in the air sucked in from the suction port 41A, and separates the frost from the air. In this embodiment, the filter section 42 is arranged to extend in the horizontal direction, as shown in FIGS. 2 and 3. According to this configuration, since the filter portion 42 can be provided over a wide range, frost can be suitably attached to the filter portion 42.
 フィルタ部42は無数の空隙を備えるように構成されている。霜が含まれる空気がフィルタ部42を通過する際に、図2に示すように、霜Fはフィルタ部42に付着する。一方、霜が分離された空気はフィルタ部42を通過して上方に移動し、第1バルブ44が開いている際に、第1流路43を介して、超低温冷凍庫10内に送られる(図2の矢印参照)。すなわち、このときは超低温冷凍庫10内では、通常の冷却運転が行われる。 The filter section 42 is configured to include countless voids. When the air containing frost passes through the filter section 42, the frost F adheres to the filter section 42, as shown in FIG. On the other hand, the air from which the frost has been separated passes through the filter section 42 and moves upward, and when the first valve 44 is open, it is sent into the ultra-low temperature freezer 10 via the first flow path 43 (Fig. (See arrow 2). That is, at this time, normal cooling operation is performed in the ultra-low temperature freezer 10.
 通常の冷却運転を続けていると、フィルタ部42に付着する霜Fの量が所定以上になったとき、図3に示すように、自重で筐体41の下面に落下する。落下した霜Fは、いわゆるパウダー状態で下面に蓄積される。なお、除霜器40は、フィルタ部42に付着した霜の自重による落下を補助する落下部をさらに有してもよい。落下部としては、特に限定されないが、超音波振動機、またはショットエアを吹き付ける吹付部を用いることができるが、フィルタ部42における目詰まりを防止する観点から、超音波振動機が好ましい。 If normal cooling operation is continued, when the amount of frost F adhering to the filter section 42 exceeds a predetermined value, it falls to the lower surface of the casing 41 due to its own weight, as shown in FIG. The fallen frost F is accumulated on the lower surface in a so-called powder state. Note that the defrost device 40 may further include a falling part that assists the frost adhering to the filter part 42 to fall due to its own weight. Although the falling part is not particularly limited, an ultrasonic vibrator or a blowing part that blows shot air can be used, but an ultrasonic vibrator is preferable from the viewpoint of preventing clogging in the filter part 42.
 さらに、フィルタ部42に付着した霜の自重による落下を補助するために、空気の流れを逆にして(図2において下向き)、フィルタ部42に付着した霜を落下させてもよい。 Furthermore, in order to assist the frost adhering to the filter part 42 to fall due to its own weight, the air flow may be reversed (downward in FIG. 2) to cause the frost adhering to the filter part 42 to fall.
 筐体41の下面に所定量の霜Fが蓄積されたら、図3に示すように、第1バルブ44を閉じて、第2バルブ46を開いた状態で、吸込口41Aから吸い込まれる空気の風圧で霜Fを第2流路45から排出することができる。すなわち、第1バルブ44および第2バルブ46は、霜を霜のまま外部に排出する排出部として機能する。すなわち、このときは超低温冷凍庫10内では、通常の冷却運転が止まって、除霜運転が行われる。第2バルブ46は、超低温冷凍庫10内に配置されることが好ましい。ここで、例えば第2バルブ46が超低温冷凍庫10外に配置される場合、第2バルブ46内で霜が融けて結氷する可能性がある。本実施形態では、第2バルブ46は、超低温冷凍庫10内に配置されるため、上記の結氷を防止できる。 When a predetermined amount of frost F has accumulated on the lower surface of the casing 41, as shown in FIG. The frost F can be discharged from the second flow path 45. That is, the first valve 44 and the second valve 46 function as a discharge section that discharges frost to the outside as it is. That is, at this time, in the ultra-low temperature freezer 10, normal cooling operation is stopped and defrosting operation is performed. Preferably, the second valve 46 is located within the ultra-low temperature freezer 10. Here, for example, if the second valve 46 is placed outside the ultra-low temperature freezer 10, there is a possibility that frost will melt and freeze inside the second valve 46. In this embodiment, the second valve 46 is placed inside the ultra-low temperature freezer 10, so that the above-mentioned freezing can be prevented.
 除霜器40外に放出された霜は、例えばドレンパンで受けて、ドレンパンに設置されたヒーターまたは温風等により霜を融解して排水することによって、再昇華を防止するとともに、霜除去作業を容易にすることができる。 The frost discharged outside the defrost device 40 is received by a drain pan, for example, and is melted and drained using a heater installed in the drain pan or warm air, thereby preventing re-sublimation and removing the frost. It can be easily done.
 本実施形態に係る除霜器40は、超低温冷凍庫10内に配置されるため、低温雰囲気内で除霜でき、好適に除霜器40で着霜した霜を霜のままで排出することができる。 Since the defrost device 40 according to the present embodiment is placed in the ultra-low temperature freezer 10, it can defrost in a low-temperature atmosphere, and can preferably discharge frost formed in the defrost device 40 as it is. .
 なお、除霜器40のフィルタ部42には、ヒーター部が取り付けられてもよい。この構成によれば、仮にフィルタ部42に付着した霜が溶融して、フィルタ部42に板状の氷が形成したとしても、ヒーター部で氷を溶融することができるため、除霜器40が閉塞して除霜できなくなることを防止できる。 Note that a heater section may be attached to the filter section 42 of the defrost device 40. According to this configuration, even if frost adhering to the filter section 42 melts and plate-shaped ice forms on the filter section 42, the ice can be melted by the heater section, so that the defroster 40 can This prevents the defrosting from becoming impossible due to blockage.
 以下、本実施形態に係る超低温冷凍システム1の除霜器40の除霜方法について説明する。除霜方法は、筐体41の吸込口41Aから、霜が付着した空気を吸い込む吸込工程と、霜をフィルタ部42に付着させて空気と分離させる分離工程と、フィルタ部42において霜が分離された空気を超低温冷凍庫10内に送る工程と、フィルタ部42から落下した霜を外部に排出する排出工程と、を有する。排出工程では、第1バルブ44を閉じるとともに第2バルブ46を開いた状態で、吸込口41Aから吸い込まれる空気の風圧で霜を第2流路45から排出する。 Hereinafter, a defrosting method of the defrost device 40 of the ultra-low temperature refrigeration system 1 according to the present embodiment will be described. The defrosting method includes a suction process in which air with frost is sucked in from the suction port 41A of the housing 41, a separation process in which the frost is attached to the filter section 42 and separated from the air, and a step in which the frost is separated in the filter section 42. The method includes a step of sending the frozen air into the ultra-low temperature freezer 10, and a discharging step of discharging the frost that has fallen from the filter section 42 to the outside. In the discharge step, with the first valve 44 closed and the second valve 46 opened, frost is discharged from the second flow path 45 by the wind pressure of the air sucked in from the suction port 41A.
 以上説明したように、本実施形態に係る除霜器40は、霜が付着した空気が吸い込まれる吸込口41Aと、霜が付着して、霜を空気から分離するフィルタ部42と、フィルタ部42において霜が分離された空気が超低温冷凍庫10内に送られる第1流路43と、フィルタ部42から落下した霜を外部に排出する排出部と、を有する。このように構成された除霜器40によれば、排出部によって、霜を霜のまま、外部に排出することができる。したがって、霜が溶融してフィルタ部42に板状の氷が形成して、除霜器40が目詰まりで閉塞して除霜できなくなることを好適に防止できる。 As described above, the defrost device 40 according to the present embodiment includes the suction port 41A into which air with frost is sucked in, the filter section 42 to which frost is attached and which separates the frost from the air, and the filter section 42. It has a first flow path 43 through which the air from which the frost has been separated is sent into the ultra-low temperature freezer 10, and a discharge section through which the frost that has fallen from the filter section 42 is discharged to the outside. According to the defrost device 40 configured in this manner, the frost can be discharged outside as it is by the discharge section. Therefore, it is possible to suitably prevent frost from melting and plate-shaped ice forming on the filter portion 42, which would cause the defrost device 40 to become clogged and unable to defrost.
 また、除霜器40は、フィルタ部42に付着した霜が排出される第2流路45と、第1流路43に設けられる第1バルブ44と、第2流路45に設けられる第2バルブ46と、をさらに有し、排出部は、第1バルブ44を閉じて第2バルブ46を開いた状態で吸込口41Aから吸い込まれる空気の風圧で霜を排出する。このように構成された除霜器40によれば、無人で自動の除霜が可能となる。 The defrost device 40 also includes a second flow path 45 through which frost attached to the filter section 42 is discharged, a first valve 44 provided in the first flow path 43, and a second valve 44 provided in the second flow path 45. The discharge section further includes a valve 46, and the discharge section discharges frost using the wind pressure of the air sucked in from the suction port 41A with the first valve 44 closed and the second valve 46 opened. According to the defrost device 40 configured in this way, automatic defrosting is possible without an operator.
 また、フィルタ部42は、水平方向に延在するように配置される。このように構成された除霜器40によれば、広範囲に亘って、フィルタ部42を設けることができるため、フィルタ部42に対して好適に霜を付着させることができる。 Furthermore, the filter section 42 is arranged to extend in the horizontal direction. According to the defrost device 40 configured in this way, the filter section 42 can be provided over a wide range, so that frost can be suitably attached to the filter section 42.
 また、除霜器40は、フィルタ部42に付着した霜を落下させる落下部をさらに有する。このように構成された除霜器40によれば、フィルタ部42における目詰まりをよく好適に防止できる。 Furthermore, the defrost device 40 further includes a dropping part that drops frost attached to the filter part 42. According to the defrost device 40 configured in this manner, clogging in the filter section 42 can be effectively prevented.
 また、除霜器40は、フィルタ部42に取り付けられるヒーター部をさらに有する。このように構成された除霜器40によれば、仮にフィルタ部42に付着した霜が溶融して、フィルタ部42に板状の氷が形成したとしても、ヒーター部で氷を溶融することができるため、除霜器40が閉塞して除霜できなくなることを防止できる。 Furthermore, the defrost device 40 further includes a heater section attached to the filter section 42. According to the defrost device 40 configured in this way, even if frost adhering to the filter section 42 melts and plate-shaped ice forms on the filter section 42, the heater section cannot melt the ice. Therefore, it is possible to prevent the defrost device 40 from being blocked and unable to defrost.
 以上、実施形態を通して本発明について説明したが、本発明は上述した実施形態および変形例に限定されるものではなく、特許請求の範囲内で種々改変することができる。 Although the present invention has been described above through the embodiments, the present invention is not limited to the above-described embodiments and modifications, and can be variously modified within the scope of the claims.
 例えば上述した実施形態では、フィルタ部42は、図2、図3に示すように、水平方向に延在するように配置された。しかしながら、フィルタ部142は、図4に示すように、鉛直方向に延在するように配置されてもよい。この構成によれば、空気の進行方向に対して直交するように配置されるため、効率よく霜をフィルタ部142に付着させることができる。また、フィルタ部242は、図5に示すように、水平方向および鉛直方向に対して傾斜するように配置されてもよい。 For example, in the embodiment described above, the filter section 42 was arranged to extend in the horizontal direction, as shown in FIGS. 2 and 3. However, as shown in FIG. 4, the filter section 142 may be arranged to extend in the vertical direction. According to this configuration, frost can be efficiently attached to the filter portion 142 because it is arranged perpendicularly to the direction of travel of the air. Furthermore, as shown in FIG. 5, the filter section 242 may be arranged so as to be inclined with respect to the horizontal direction and the vertical direction.
 また、上述した実施形態では、フィルタ部42は1つ設けられた。しかしながら、フィルタ部42は、図6A、図6Bに示すように、鉛直方向に沿って複数(図6Aでは3つ)設けられてもよい。フィルタ部42が鉛直方向に沿って複数設けられる場合、筐体41の一部が開閉自在に構成されて、図6Bに示すように、霜Fが付着したフィルタ部42を取り出し可能に構成される。 Furthermore, in the embodiment described above, one filter section 42 was provided. However, as shown in FIGS. 6A and 6B, a plurality of filter sections 42 (three in FIG. 6A) may be provided along the vertical direction. When a plurality of filter parts 42 are provided along the vertical direction, a part of the housing 41 is configured to be openable and closable, so that the filter part 42 to which frost F has adhered can be taken out, as shown in FIG. 6B. .
 また、上述した実施形態では、フィルタ部142は1つ設けられた。しかしながら、フィルタ部142は、図7A、図7Bに示すように、水平方向に沿って複数(図7Aでは9つ)設けられてもよい。フィルタ部142が水平方向に沿って複数設けられる場合、筐体41の一部が開閉自在に構成されて、図7Bに示すように、霜Fが付着したフィルタ部142を取り出し可能に構成される。 Furthermore, in the embodiment described above, one filter section 142 was provided. However, as shown in FIGS. 7A and 7B, a plurality of filter sections 142 (nine in FIG. 7A) may be provided along the horizontal direction. When a plurality of filter parts 142 are provided along the horizontal direction, a part of the housing 41 is configured to be openable and closable, so that the filter part 142 with frost F attached can be taken out, as shown in FIG. 7B. .
 また、上述した実施形態では、排出部は、第1バルブ44および第2バルブ46によって構成された。しかしながら、排出部としては、除霜器40の下面に配置されたコンベア等の搬送装置であってもよく、搬送装置上に所定量の霜が溜まったら、搬送装置で筐体41外に排出してもよい。 Furthermore, in the embodiment described above, the discharge section was configured by the first valve 44 and the second valve 46. However, the discharge section may be a conveyor or other conveyor placed on the bottom surface of the defrost device 40, and when a predetermined amount of frost accumulates on the conveyor, the conveyor discharges it out of the casing 41. It's okay.
 本出願は、2022年9月5日に出願された日本国特許出願第2022-140646号に基づいており、その開示内容は、参照により全体として引用されている。 This application is based on Japanese Patent Application No. 2022-140646 filed on September 5, 2022, the disclosure content of which is incorporated by reference in its entirety.
  1  超低温冷凍システム、
  10 超低温冷凍庫、
  20 循環路、
  30 空気冷媒冷凍機、
  31 圧縮機、
  32 膨張機、
  33 一次冷却器、
  40 除霜器、
  41A 吸込口、
  42、142、242 フィルタ部、
  43 第1流路、
  44 第1バルブ、
  45 第2流路、
  46 第2バルブ。
1 Ultra-low temperature refrigeration system,
10 Ultra-low temperature freezer,
20 circulation path,
30 air refrigerant refrigerator,
31 Compressor,
32 Expander,
33 Primary cooler,
40 defrost,
41A Suction port,
42, 142, 242 filter section,
43 first flow path,
44 first valve,
45 second flow path,
46 Second valve.

Claims (10)

  1.  霜が付着した空気が吸い込まれる吸込口と、
     前記霜が付着して、前記霜を前記空気から分離するフィルタ部と、
     前記フィルタ部において前記霜が分離された前記空気が超低温冷凍庫内に送られる第1流路と、
     前記フィルタ部から落下した前記霜を外部に排出する排出部と、を有する除霜器。
    A suction port through which frost-covered air is sucked,
    a filter portion to which the frost adheres and separates the frost from the air;
    a first flow path through which the air from which the frost has been separated in the filter section is sent into an ultra-low temperature freezer;
    A defrost device comprising: a discharge section that discharges the frost falling from the filter section to the outside.
  2.  前記フィルタ部に付着した霜が排出される第2流路と、
     前記第1流路に設けられる第1バルブと、
     前記第2流路に設けられる第2バルブと、をさらに有し、
     前記排出部は、前記第1バルブを閉じて前記第2バルブを開いた状態で前記吸込口から吸い込まれる前記空気の風圧で前記霜を排出する、請求項1に記載の除霜器。
    a second flow path through which frost attached to the filter portion is discharged;
    a first valve provided in the first flow path;
    further comprising a second valve provided in the second flow path,
    The defrost device according to claim 1, wherein the discharge section discharges the frost using wind pressure of the air sucked in from the suction port with the first valve closed and the second valve opened.
  3.  前記フィルタ部は、水平方向に延在するように配置される、請求項1または2に記載の除霜器。 The defrost device according to claim 1 or 2, wherein the filter section is arranged to extend in a horizontal direction.
  4.  前記フィルタ部は、鉛直方向に延在するように配置される、請求項1または2に記載の除霜器。 The defrost device according to claim 1 or 2, wherein the filter section is arranged to extend in the vertical direction.
  5.  前記フィルタ部に付着した前記霜を落下させる落下部をさらに有する、請求項1または2に記載の除霜器。 The defrost device according to claim 1 or 2, further comprising a dropping part that drops the frost attached to the filter part.
  6.  前記落下部は、超音波振動機である、請求項5に記載の除霜器。 The defrost device according to claim 5, wherein the falling part is an ultrasonic vibrator.
  7.  前記落下部は、ショットエアを吹き付ける吹き付け部である、請求項5に記載の除霜器。 The defrost device according to claim 5, wherein the falling part is a blowing part that blows shot air.
  8.  前記フィルタ部に取り付けられるヒーター部をさらに有する、請求項1または2に記載の除霜器。 The defrost device according to claim 1 or 2, further comprising a heater section attached to the filter section.
  9.  前記超低温冷凍庫の庫内温度は、マイナス50℃以下である、請求項1または2に記載の除霜器。 The defrost device according to claim 1 or 2, wherein the internal temperature of the ultra-low temperature freezer is -50°C or less.
  10.  吸込口から、霜が付着した空気を吸い込む吸込工程と、
     前記霜をフィルタ部に付着させて前記空気と分離させる分離工程と、
     前記フィルタ部において前記霜が分離された前記空気を超低温冷凍庫内に送る工程と、
     前記フィルタ部から落下した前記霜を外部に排出する排出工程と、を有する除霜方法。
    a suction process in which air with frost is sucked in from the suction port;
    a separation step of attaching the frost to a filter part and separating it from the air;
    sending the air from which the frost has been separated in the filter section into an ultra-low temperature freezer;
    A defrosting method comprising: a discharge step of discharging the frost that has fallen from the filter portion to the outside.
PCT/JP2023/023133 2022-09-05 2023-06-22 Defrosting device and defrosting method WO2024053206A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022140646 2022-09-05
JP2022-140646 2022-09-05

Publications (1)

Publication Number Publication Date
WO2024053206A1 true WO2024053206A1 (en) 2024-03-14

Family

ID=90192315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023133 WO2024053206A1 (en) 2022-09-05 2023-06-22 Defrosting device and defrosting method

Country Status (1)

Country Link
WO (1) WO2024053206A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60126567A (en) * 1983-12-14 1985-07-06 味の素冷凍食品株式会社 Method of defrosting refrigerator
WO2008129599A1 (en) * 2007-04-05 2008-10-30 Earthship K.K. Air cooling system with automatic defrosting function
EP3674616A1 (en) * 2018-12-27 2020-07-01 Mirai Intex Sagl Air dehumidifier, especially for air cooling or air conditioning machines
JP2020153532A (en) * 2019-03-18 2020-09-24 富士電機株式会社 Cooling apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60126567A (en) * 1983-12-14 1985-07-06 味の素冷凍食品株式会社 Method of defrosting refrigerator
WO2008129599A1 (en) * 2007-04-05 2008-10-30 Earthship K.K. Air cooling system with automatic defrosting function
EP3674616A1 (en) * 2018-12-27 2020-07-01 Mirai Intex Sagl Air dehumidifier, especially for air cooling or air conditioning machines
JP2020153532A (en) * 2019-03-18 2020-09-24 富士電機株式会社 Cooling apparatus

Similar Documents

Publication Publication Date Title
CN102116569B (en) Control method of refrigerator
US6775993B2 (en) High-speed defrost refrigeration system
US20080184715A1 (en) Bottle Cooler Defroster And Methods
EP2116798B1 (en) Refrigeration system
US8225619B2 (en) Air-refrigerant cooling apparatus with a warm gas defrost bypass pipe
WO2008112572A1 (en) Refrigeration system
KR20080022579A (en) Refrigeration apparatus
JP2006317077A (en) Freezer-refrigerator
CN101652613B (en) Refrigerator
KR20180126188A (en) Refrigerator and controlling method thereof
WO2024053206A1 (en) Defrosting device and defrosting method
JP2009109110A (en) Refrigeration system
WO2024053205A1 (en) Ultra low temperature refrigeration system
NL9001429A (en) METHODS AND APPARATUS FOR PREPARING ICE
EP1762793B1 (en) Closed type air cycle refrigerator and cooling method using the same
JP2006317079A (en) Freezer-refrigerator
US5031409A (en) Method and apparatus for improving the efficiency of ice production
JPH0534049A (en) Defrosting operation control device for freezing device for container
JP6875825B2 (en) Ice machine
JPH09318205A (en) Refrigerating device
JP2004317081A (en) Air refrigerator
JPH05141792A (en) High-humidity refrigerator
JP2008014560A (en) Refrigeration system
JP5260684B2 (en) Refrigeration circuit
JPH10160298A (en) Defrosting control device for freezer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862751

Country of ref document: EP

Kind code of ref document: A1