JP2004263026A - Conductive polyarylene sulfide resin composition and separator for fuel battery - Google Patents

Conductive polyarylene sulfide resin composition and separator for fuel battery Download PDF

Info

Publication number
JP2004263026A
JP2004263026A JP2003053206A JP2003053206A JP2004263026A JP 2004263026 A JP2004263026 A JP 2004263026A JP 2003053206 A JP2003053206 A JP 2003053206A JP 2003053206 A JP2003053206 A JP 2003053206A JP 2004263026 A JP2004263026 A JP 2004263026A
Authority
JP
Japan
Prior art keywords
polyarylene sulfide
sulfide resin
resin composition
conductive
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003053206A
Other languages
Japanese (ja)
Inventor
Hiroaki Negishi
浩明 根岸
Mamoru Kameda
守 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2003053206A priority Critical patent/JP2004263026A/en
Publication of JP2004263026A publication Critical patent/JP2004263026A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyarylene sulfide resin composition which improves an important defect, flowability, has excellent moldability, and can be subjected to an injection molding process or an injection compression molding process, without deteriorating conductivity, and to provide a separator for a fuel battery. <P>SOLUTION: This conductive polyarylene sulfide resin composition is characterized by comprising (A) a polyarylene sulfide resin having a melt viscosity of ≤10 Pa s at 316°C, (B) graphite particles, and (C) fibrous carbon. The separator for the fuel battery is obtained by molding the conductive polyarylene sulfide resin composition. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、優れた機械的特性に加え、成形加工性、耐酸性、導電性が要求される燃料電池用セパレータ用部品等に好適な導電性ポリアリ−レンスルフィド樹脂組成物、およびこれを用いた燃料電池用セパレータに関するものである。
【0002】
【従来の技術】
近年地球的規模での環境問題への取り組みから、炭酸ガス排出の少ない次世代エネルギーとして、燃料電池が注目されている。なかでも、固体高分子電解質型燃料電池は、80℃前後の温度で運転可能なことから家庭用コジェネレーション(熱電併給)システムや、自動車用動力源として有望である。これら燃料電池には、ガス流路が形成された平板状のセパレータが用いられ、燃料電池の重要な構成要素となっている。
【0003】
セパレータは、従来、膨張黒鉛をプレス成形した後に加工する方法、或いは、熱硬化性樹脂又は熱可塑性樹脂と、カーボンブラックや黒鉛粉末との混合物を加熱溶融し、プレス成形等により平板に成形した後、その後加工する方法やさらに導電性を付与するために成形板を黒鉛化する方法等が提案されている。焼成や切削加工等の後加工により、生産効率が悪く、非常にコスト高になり実用レベルに至っていない。
【0004】
そこで、射出成形で成形することにより、短時間で大量の成形を行うことが出来、後加工する必要が無くなるため、大幅な加工コストを低減させることが可能である方法として、熱可塑性樹脂にカーボンブラックや黒鉛粉末などを加え、溶融混合した後に、射出成形、圧縮成形する方法が提案されている(例えば、特許文献1参照)。しかしながら、導電性を確保するために、大量の導電性フィラーを充填する必要があり、そのため、流動性が極端に悪くなり、非常に高速高圧の射出成形機を用いる必要があるが、汎用性がなく、実用化は非常に困難である。また、そのような高速高圧で成形を行うと、金型内に樹脂を注入する時、大きな剪断力がかかり、樹脂の分解による物性の低下や、導電性フィラーの破壊による導電性の低下を招いていたり、また、射出成形可能な流動性を確保するためには、導電性フィラーの充填量を減らしたりしなければならず、射出成形によってセパレータ形状が得られたとしても、導電性の著しく劣ったものしか得られなかった。
【0005】
【特許文献1】
特開2001−122677号公報(第3〜5頁)
【0006】
【発明が解決しようとする課題】
従って、本発明が解決しようとする課題は、導電性を低下させることなく、これまでの重大な欠点である流動性を改善し優れた成形性を付与することにより、射出成形や射出圧縮成形可能な高導電性の燃料電池セパレータ用ポリアリーレンスルフィド樹脂組成物及び燃料電池用セパレータを提供するものである。
【0007】
【課題を解決するための手段】
本発明者は、上記の課題を解決すべく鋭意試験研究を重ねた結果、以下の知見を得た。
▲1▼ポリアリーレンスルフィド樹脂の粘度を制御することで、著しく流動性が改善され、射出成形機や射出圧縮機で十分成形することができる。
▲2▼黒鉛粒子と繊維状炭素をポリアリーレンスルフィド樹脂に加えることにより、優れた導電性を確保できる。本発明は、このような知見に基づくものである。
【0008】
即ち、本発明は、316℃での溶融粘度が10Pa・s以下のポリアリーレンスルフィド樹脂(A)と黒鉛粒子(B)と繊維状炭素(C)とを含有することを特徴とする導電性ポリアリーレンスルフィド樹脂組成物を提供する。
【0009】
また本発明は、前記燃料電池セパレータ用ポリアリーレンスルフィド樹脂組成物を、成形してなる燃料電池用セパレータをも提供する。
【0010】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
本発明に使用するポリアリーレンスルフィド樹脂(A)は、316℃での溶融粘度が10Pa・s以下のポリアリーレンスルフィド樹脂である。
【0011】
前記ポリアリーレンスルフィド(以下、PASと略記する。)樹脂(A)は、芳香族環と硫黄原子とが結合した構造の繰り返し単位を含む重合体である。前記PAS樹脂(A)としては、例えばポリフェニレンスルフィド(以下、PPSと略記する。)、ポリフェニレンスルフィドケトン、ポリフェニレンスルフィドスルホン、ポリフェニレンスルフィドケトンスルホンなどが挙げられる。前記PAS樹脂の繰り返し単位は、芳香族環に関してパラ位で結合している構造が耐熱性や結晶性の面で好ましい。また、繰り返し単位として後述する構成単位を持つ共重合体であってもよい。これらの構成単位中の芳香族環は置換基を有していてもよく、共重合体の形態としては、ランダム共重合体、ブロック共重合体、およびそれらの混合物であり、あるいは単独重合体との混合物であってもよい。
【0012】
特に、下記一般式(1)で示される構成単位(芳香族環に置換基を含まない)を70モル%以上含むPPS樹脂が物性面及び経済性の面で好ましい。
【0013】
【化1】

Figure 2004263026
【0014】
前記PPS樹脂の製造方法としては、例えば(1)p−ジクロルベンゼンと、更に必要に応じてその他の共重合成分とを、硫黄と炭酸ソーダの存在下で重合させる方法、(2)p−ジクロルベンゼンと、更に必要に応じてその他の共重合成分とを、極性溶媒中で硫化ナトリウム若しくは水硫化ナトリウムと水酸化ナトリウムの存在下又は硫化水素と水酸化ナトリウムの存在下で重合させる方法、(3)p−クロルチオフェノールと、更に必要に応じてその他の共重合成分とを自己縮合させる方法、(4)N−メチルピロリドン、ジメチルアセトアミドなどのアミド系溶媒やスルホラン等のスルホン系溶媒中で、硫化ナトリウムとp−ジクロルベンゼンと、更に必要に応じてその他の共重合成分とを反応させる方法等が挙げられる。本発明に用いられるPAS樹脂は、いずれの方法に製造方法を限定しないが、なかでも(2)の方法が溶融粘度の調整や、収率、製造コストの点で好ましい。重合の途中または、終わりに重合度(溶融粘度)を調節する目的でカルボン酸やスルホン酸のアルカリ金属塩を添加したり、水酸化アルカリを添加したりしてもよい。
【0015】
ここで、PPS樹脂中に含有する前記一般式(1)で示される構成単位以外の共重合成分の構成単位としては、例えば下記の構造式(2)で示されるメタ結合、構造式(3)で示されるエーテル結合、構造式(4)で示されるスルホン結合、構造式(5)で示されるスルフィドケトン結合、構造式(6)で示されるビフェニル結合、一般式(7)で示される置換フェニルスルフィド結合、構造式(8)で示される3官能フェニルスルフィド結合、構造式(9)で示されるナフチル結合等が挙げられる。
【0016】
【化2】
Figure 2004263026
(式中、Rはアルキル基、ニトロ基、フェニル基またはアルコキシ基を示す。)
【0017】
これらの前記一般式(1)で示される構成単位以外の共重合成分の構成単位の含有率は、樹脂の結晶化を阻害しないという点で30モル%未満であることが好ましい。ただし、3官能性以上の結合単位を含有させる場合の含有率は、樹脂の増粘を防ぐ点で5モル%以下であることが好ましく、特に好ましくは3モル%以下である。
【0018】
本発明に用いられるPAS樹脂の316℃での溶融粘度は10Pa・s以下であり、好ましくは0.1〜6Pa・s、特に好ましくは1〜4Pa・sである。316℃での溶融粘度が10Pa・s以下であれば、優れた導電性を確保したまま、流動性を改善することができる。ここでいう溶融粘度とは、ASTMD1238に基づき、測定した値(μ)を以下の式により、Pa・sに換算したものである。
μ(Pa・s)=500/μ (500は換算係数)
【0019】
本発明に使用する黒鉛粒子(B)としては、例えば、天然黒鉛粒子、人造黒鉛粒子を挙げられる。前記人造黒鉛粒子は、石油コークスなどを成形、焼成し、2000℃以上の高温で黒鉛化することにより得られるものである。また黒鉛粒子の形状は、球状、楕円球状、方形状、鱗片又は薄片状、不定形状などが挙げられるが、これらのうち、流動性や、導電性を向上させるという点で球状のものが好ましい。この理由は、はっきりとはしないが、発明者は、球状という形態が、溶融樹脂の流体抵抗の増加を比較的小さくすることができ、流動性を阻害させにくいということや、また、樹脂中への充填率を他形態の黒鉛粉末より高くすることができることで黒鉛粉末間の接触点が増えて導電性を高めているものと考えている。球状の黒鉛粒子としては、ピッチ系黒鉛を粉砕したものや、ピッチ系黒鉛を結晶化させ、球晶を分離精製した球状黒鉛、又、メソフェーズピッチによる球状黒鉛等が挙げられる。本発明に使用する黒鉛粒子(B)は、上記の黒鉛粒子を単独もしくは、二種以上組み合わせて用いても良い。
【0020】
また黒鉛粒子(B)は、流動性、充填率、導電性を向上させる点から、平均粒子径が10μm以下であることが好ましく、中でも、0.01〜5μmであることが特に好ましい。ここで、この平均粒子径は、レーザー回折・散乱法により測定したものであり、平均粒径は、体積平均径で表したものである。
【0021】
本発明で使用する繊維状炭素(C)は、原料繊維の種類により、ピッチ系炭素繊維、PAN(ポリアクリルニトリル)系炭素繊維、レーヨン系炭素繊維、フェノール系炭素繊維などが挙げられる。これらの炭素繊維のうち、導電性の点でピッチ系炭素繊維が好ましく、特にメソフェーズピッチ系炭素繊維が好ましい。これらの中でも、繊維状炭素(C)の比重が、1.7以上が好ましく、1.7〜2.3であることが、繊維自体の導電性が高く、組成物の導電性を向上させる点で好ましい。
【0022】
また、繊維状炭素(C)の平均繊維長は、成形加工後の組成物中の繊維状炭素の平均繊維長が、180μm以上になるように、本発明の導電性ポリアリーレンスルフィド樹脂組成物に配合することが好ましい。成形加工物中の繊維状炭素の繊維長は、長いほど好ましいが、180〜900μmの範囲であれば、成形加工物である燃料電池セパレータに、十分な導電性と強度をもたせることができる。
【0023】
本発明の樹脂組成物の成型時の流動性は、実施例に記載したスパイラル状キャビティ金型を用い射出成型し、成形品の流動長を測定して流動性の指標とした(流動長が長いほど流動性が良い)。実用的な燃料電池セパレーターを得るためには、10cm以上の流動長が必要であり、15cm以上がより望ましい。流動長の上限は必要上特に設定しないが、本発明の処方では100cmが限界と思われる。
【0024】
本発明に使用するポリアリーレンスルフィド樹脂(A)と黒鉛粒子(B)と繊維状炭素(C)との割合は、特に制限されるものではないが、重量比で(A)/(B)/(C)=(10〜50)/(5〜70)/(10〜70)であることが好ましい。上記範囲のうち、重量比で(A)/(B)/(C)=(10〜35)/(20〜60)/(20〜60)であることが特に好ましい。(A)/(B)/(C)が(10〜50)/(5〜70)/(10〜70)の範囲にあれば流動性と導電性のバランスのとれた燃料電池セパレーターとなる。
【0025】
本発明の導電性ポリアリーレンスルフィド樹脂組成物は、本発明の目的を損なわない範囲で、酸化防止剤、熱安定剤、紫外線吸収剤、離型剤、防錆剤、滑剤、結晶核剤、着色剤、シランカップリング剤等を添加することができる。
【0026】
さらに本発明の導電性ポリアリーレンスルフィド樹脂組成物には、本発明の目的を損なわない範囲で、熱硬化性樹脂、PAS樹脂以外の熱可塑性樹脂を1種類以上の樹脂を添加することができる。これらの樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、石油樹脂、ポリイミド、ポリエチレン、ポリプロピレン、ポリスチレン、スチレンブタジエン共重合体、ポリアミド、ポリカーボネート、ポリサルフォン、ポリエーテルサルフォン、ポリアリレート、ポリアセタール、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリブチレンテレフタレート、ポリエチレンテレフタレート、液晶ポリマー、ポリアミドイミド、ポリエーテルイミド等が挙げられる。
【0027】
本発明の導電性ポリアリーレンスルフィド樹脂組成物は、成形性や充填材の取り扱い性を向上させるため、シート状又はブロック状に形状を整えてもよいし、又は造粒し、ペレット化してもよい。ペレット化するには、例えば、PAS樹脂および充填材をあらかじめヘンシェルミキサー又はタンブラー等で混合の後、1軸又は2軸押出混練機などに供給して280℃〜360℃で混練することにより、ペレットを得ることができる。
【0028】
混合に際し必要に応じて他の強化材、充填剤や各種添加剤を添加してもよい。また、ペレット化後に、必要に応じて、アニーリング処理や、UV照射、プラズマ照射等の加工処理を施しても良い。
【0029】
本発明の導電性ポリアリーレンスルフィド樹脂組成物は、機械的特性に加え、成形加工性、耐酸性、導電性等に優れるので、燃料電池用セパレータに好ましく用いられる。その他導電性が必要な各種機械部品、電気部品、電極材料、金属代替部品等の用途にも使用することができる。
【0030】
本発明の燃料電池用セパレータは、前記導電性ポリアリーレンスルフィド樹脂組成物を種々の成形方法で、成形して得ることができる。前記成形方法としては、例えば、圧縮成形、トランスファー成形、射出成形、射出圧縮成形等が挙げられる。これらの方法としては、前記導電性ポリアリーレンスルフィド樹脂組成物を、所望のセパレータ形状の金型等を用いて圧縮成形、トランスファー成形、射出成形、射出圧縮成形等を行うことにより簡便に燃料電池用セパレータの形状に成形する。これらの成形方法のうち、後加工の必要がなく、生産性の高い点で、射出成形又は射出圧縮成形が好ましい。この際の成形機シリンダー温度は280℃〜360℃の間で適宜選択出来るが、生産性や、樹脂の特性等を考慮すると、通常、280〜340℃の範囲が好ましい。また、金型の温度は、成形加工品に高い結晶化度をもたせ、十分な耐熱性を得るためには、120℃〜200℃に設定することがより好ましいが、特に限定するものではない。また成形の際に、必要に応じて他の強化材、充填剤や各種添加剤を添加することができる。
【0031】
また、本発明の燃料電池セパレータ中の繊維状炭素(C)の平均繊維長は、長いほど好ましいが、十分な導電性と強度を持つことから、180〜900μmの範囲が好ましい。
【0032】
【実施例】
【0033】
以下に実施例を挙げて本発明を更に説明する。例中の部は、重量部を示す。尚、本発明はこれらの実施例の範囲に限定されるものではない。
【0034】
実施例および比較例中に用いた、他の成分は次の通りである。尚、PPSの溶融粘度は316℃において、以下の通りである。
PPS―1: 溶融粘度1Pa・s
PPS−2: 溶融粘度2Pa・s
PPS−3: 溶融粘度15Pa・s
PPS−4: 溶融粘度30Pa・s
【0035】
実施例1、2および比較例1〜4
(組成物の製造と試験片の作製)
各種原料及びその他の原料を、下表に示す割合で均一に混合した後、35mmφの2軸押出機にて350℃で混練しペレットを得た。このペレットを用い、下記手法▲1▼〜▲3▼に示される手法で得た試験片を用いて、厚み方向の体積抵抗率、平均繊維長、曲げ強さ(3点曲げ試験)、流動長を測定した。この結果を表1〜4に示す。
【0036】
▲1▼インラインスクリュー式射出成形機(住友重機機械工業製S165/75)によりシリンダー温度320℃、金型温度150℃、射出圧力80〜100MPa、射出スピード中速にて、厚さ2mm、幅50mm、長さ50mm、の試験片を成形した。
▲2▼前記インラインスクリュウ式射出成形機により、シリンダー温度320℃、金型温度150℃、射出圧力80〜100MPa、射出スピード中速にて厚み3mm、幅12.5mm、長さ125mmの試験片を成形した。
▲3▼前記インラインスクリュウ式射出成形機により、シリンダー温度320℃、金型温度150℃、射出圧力60MPa、射出スピード中速にて幅6mm、厚み1.6mmのスパイラル状キャビティ金型にて成形した。
【0037】
(組成物の特性評価)
上記手法▲1▼により得た試験片を用いて、厚み方向の体積抵抗率を測定した。
測定は、試験片と同サイズの厚さ1mmの銅板2枚で試験片を上下に挟み込み、1MPaで押さえたのち、抵抗値測定装置(横河電気製 3468A)を用い抵抗値(Ω)を測定した。その後、以下の式を用い体積抵抗率に換算した。
体積抵抗率Ω・cm=Ω×A/B
A:試験片面積(10×5cm)、B: 試験片厚み(0.2cm)
【0038】
手法▲1▼により得られた試験片を、500℃に設定した電気炉中に1時間放置し、得られた灰分の平均繊維長を測定した。平均繊維長の測定は、キーエンス製マイクロビデオスコープにより、灰分の拡大写真を得、それをグラフテック社製画像解析装置を用いて平均繊維長を測定した。
【0039】
手法▲2▼により得られた試験片を、島津製オートグラフAG−5000Cを用い、ヘッドスピード5mm/sec、スパン間50mmにて、3点曲げ試験を実施した。
【0040】
又、手法▲3▼により得られたスパイラル状成形品の流動長を測定して、実用的な燃料電池セパレーターを得るための成形性の評価をした。
【0041】
(球状黒鉛の調製)コールタールから得られたメソカーボンマイクロビーズを2800℃で焼成し黒鉛化後、粉砕分級して平均粒子径3μmの球状黒鉛(球状黒鉛―1)を得た。
【表1】
Figure 2004263026
【0042】
上記表1の結果から明らかなように、本発明の導電性ポリアリーレンスルフィド樹脂組成物から得られた燃料電池用セパレータは流動性、導電性に優れている。
【0043】
【発明の効果】
本発明によれば、従来の熱可塑性樹脂組成物では得られなかった良好な成形加工性と導電性を兼ね備えた導電性ポリアリーレンスルフィド樹脂組成物、および燃料電池セパレータを提供できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a conductive polyarylene sulfide resin composition suitable for a fuel cell separator component or the like in which excellent processability, acid resistance, and conductivity are required in addition to excellent mechanical properties, and using the same. The present invention relates to a fuel cell separator.
[0002]
[Prior art]
2. Description of the Related Art In recent years, fuel cells have been attracting attention as next-generation energy with low carbon dioxide emission due to environmental issues on a global scale. Above all, a solid polymer electrolyte fuel cell is promising as a domestic cogeneration system (combined heat and power supply) and an automobile power source because it can be operated at a temperature of about 80 ° C. In these fuel cells, a plate-shaped separator having a gas flow path formed therein is used, and is an important component of the fuel cell.
[0003]
The separator is conventionally processed by press-molding expanded graphite, or a thermosetting resin or a thermoplastic resin, and a mixture of carbon black and graphite powder is heated and melted, and then formed into a flat plate by press molding or the like. Then, a method of processing thereafter, and a method of graphitizing a molded plate for imparting further conductivity have been proposed. Post-processing such as baking and cutting, the production efficiency is poor, the cost is very high and has not reached the practical level.
[0004]
Therefore, by molding by injection molding, a large amount of molding can be performed in a short time, and there is no need for post-processing. A method has been proposed in which black or graphite powder is added and melt-mixed, followed by injection molding and compression molding (for example, see Patent Document 1). However, in order to ensure conductivity, it is necessary to fill a large amount of conductive filler, and therefore, the fluidity becomes extremely poor, and it is necessary to use a very high-speed and high-pressure injection molding machine. Therefore, practical application is very difficult. In addition, when molding is performed at such high speed and high pressure, a large shearing force is applied when the resin is injected into the mold, which causes a decrease in physical properties due to decomposition of the resin and a decrease in conductivity due to breakage of the conductive filler. In order to ensure fluidity that can be injection-molded, the amount of conductive filler must be reduced, and even if a separator shape is obtained by injection molding, the conductivity is extremely poor. Could only be obtained.
[0005]
[Patent Document 1]
JP 2001-122677 A (pages 3 to 5)
[0006]
[Problems to be solved by the invention]
Therefore, the problem to be solved by the present invention is to improve the fluidity, which is a serious drawback so far, and to impart excellent moldability without reducing the conductivity, so that injection molding and injection compression molding are possible. It is intended to provide a highly conductive polyarylene sulfide resin composition for a fuel cell separator and a fuel cell separator.
[0007]
[Means for Solving the Problems]
The inventor of the present invention has earnestly conducted research for solving the above-mentioned problems, and as a result, has obtained the following knowledge.
{Circle around (1)} By controlling the viscosity of the polyarylene sulfide resin, the fluidity is remarkably improved, and the resin can be sufficiently molded by an injection molding machine or an injection compression machine.
(2) By adding graphite particles and fibrous carbon to the polyarylene sulfide resin, excellent conductivity can be ensured. The present invention is based on such findings.
[0008]
That is, the present invention provides a conductive polymer comprising a polyarylene sulfide resin (A) having a melt viscosity at 316 ° C. of 10 Pa · s or less, graphite particles (B), and fibrous carbon (C). An arylene sulfide resin composition is provided.
[0009]
Further, the present invention also provides a fuel cell separator obtained by molding the polyarylene sulfide resin composition for a fuel cell separator.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
The polyarylene sulfide resin (A) used in the present invention is a polyarylene sulfide resin having a melt viscosity at 316 ° C. of 10 Pa · s or less.
[0011]
The polyarylene sulfide (hereinafter abbreviated as PAS) resin (A) is a polymer containing a repeating unit having a structure in which an aromatic ring and a sulfur atom are bonded. Examples of the PAS resin (A) include polyphenylene sulfide (hereinafter abbreviated as PPS), polyphenylene sulfide ketone, polyphenylene sulfide sulfone, polyphenylene sulfide ketone sulfone, and the like. The repeating unit of the PAS resin preferably has a structure in which the repeating unit is bonded at the para-position with respect to the aromatic ring in terms of heat resistance and crystallinity. Further, a copolymer having a structural unit described below as a repeating unit may be used. The aromatic ring in these structural units may have a substituent, and the form of the copolymer is a random copolymer, a block copolymer, and a mixture thereof, or a homopolymer and May be used.
[0012]
In particular, a PPS resin containing the structural unit represented by the following general formula (1) (having no substituent in the aromatic ring) in an amount of 70 mol% or more is preferable in terms of physical properties and economy.
[0013]
Embedded image
Figure 2004263026
[0014]
Examples of the method for producing the PPS resin include: (1) a method of polymerizing p-dichlorobenzene and, if necessary, other copolymerization components in the presence of sulfur and sodium carbonate; A method of polymerizing dichlorobenzene and, if necessary, other copolymerization components in the presence of sodium sulfide or sodium hydrosulfide and sodium hydroxide or in the presence of hydrogen sulfide and sodium hydroxide in a polar solvent, (3) a method of self-condensing p-chlorothiophenol and, if necessary, other copolymerization components, (4) an amide solvent such as N-methylpyrrolidone and dimethylacetamide and a sulfone solvent such as sulfolane. And a method of reacting sodium sulfide with p-dichlorobenzene and, if necessary, other copolymerization components. The production method of the PAS resin used in the present invention is not limited to any method, but the method (2) is particularly preferred in terms of melt viscosity adjustment, yield, and production cost. In order to adjust the degree of polymerization (melt viscosity) during or at the end of the polymerization, an alkali metal salt of a carboxylic acid or a sulfonic acid may be added, or an alkali hydroxide may be added.
[0015]
Here, as the structural unit of the copolymer component other than the structural unit represented by the general formula (1) contained in the PPS resin, for example, a meta bond represented by the following structural formula (2) and a structural formula (3) , A sulfone bond represented by the structural formula (4), a sulfide ketone bond represented by the structural formula (5), a biphenyl bond represented by the structural formula (6), and a substituted phenyl represented by the general formula (7) Examples include a sulfide bond, a trifunctional phenyl sulfide bond represented by the structural formula (8), and a naphthyl bond represented by the structural formula (9).
[0016]
Embedded image
Figure 2004263026
(In the formula, R represents an alkyl group, a nitro group, a phenyl group, or an alkoxy group.)
[0017]
The content of the constituent unit of the copolymer component other than the constituent unit represented by the general formula (1) is preferably less than 30 mol% from the viewpoint that the crystallization of the resin is not inhibited. However, in the case where a binding unit having three or more functionalities is contained, the content is preferably 5 mol% or less, particularly preferably 3 mol% or less, in order to prevent the resin from being thickened.
[0018]
The melt viscosity at 316 ° C. of the PAS resin used in the present invention is 10 Pa · s or less, preferably 0.1 to 6 Pa · s, particularly preferably 1 to 4 Pa · s. When the melt viscosity at 316 ° C. is 10 Pa · s or less, the fluidity can be improved while maintaining excellent conductivity. The melt viscosity is a value obtained by converting a measured value (μ 0 ) into Pa · s by the following equation based on ASTM D1238.
μ (Pa · s) = 500 / μ 0 (500 is a conversion coefficient)
[0019]
Examples of the graphite particles (B) used in the present invention include natural graphite particles and artificial graphite particles. The artificial graphite particles are obtained by molding and firing petroleum coke or the like and graphitizing at a high temperature of 2000 ° C. or higher. Examples of the shape of the graphite particles include a sphere, an oval sphere, a square, a scale or a flake, and an irregular shape. Of these, a sphere is preferable in terms of improving fluidity and conductivity. The reason for this is not clear, but the inventor has stated that the spherical shape can make the increase in the fluid resistance of the molten resin relatively small, and that it is difficult to inhibit the fluidity. It is believed that the higher the filling rate of the graphite powder than other forms of graphite powder, the more contact points between the graphite powders increase the conductivity. Examples of the spherical graphite particles include crushed pitch-based graphite, spheroidal graphite obtained by crystallizing pitch-based graphite and separating and refining spherulites, and spherical graphite by mesophase pitch. As the graphite particles (B) used in the present invention, the above graphite particles may be used alone or in combination of two or more.
[0020]
In addition, the graphite particles (B) preferably have an average particle diameter of 10 μm or less, and particularly preferably 0.01 to 5 μm, from the viewpoint of improving fluidity, filling rate, and conductivity. Here, the average particle diameter is measured by a laser diffraction / scattering method, and the average particle diameter is represented by a volume average diameter.
[0021]
The fibrous carbon (C) used in the present invention includes pitch-based carbon fiber, PAN (polyacrylonitrile) -based carbon fiber, rayon-based carbon fiber, phenol-based carbon fiber, and the like, depending on the type of raw material fiber. Among these carbon fibers, pitch-based carbon fibers are preferable in terms of conductivity, and particularly, mesophase pitch-based carbon fibers are preferable. Among these, the specific gravity of the fibrous carbon (C) is preferably 1.7 or more, and preferably 1.7 to 2.3, in which the conductivity of the fiber itself is high and the conductivity of the composition is improved. Is preferred.
[0022]
Further, the average fiber length of the fibrous carbon (C) is set to the conductive polyarylene sulfide resin composition of the present invention so that the average fiber length of the fibrous carbon in the composition after molding becomes 180 μm or more. It is preferable to mix them. The fiber length of the fibrous carbon in the molded product is preferably as long as possible, but within the range of 180 to 900 μm, the fuel cell separator as the molded product can have sufficient conductivity and strength.
[0023]
The flowability of the resin composition of the present invention at the time of molding was determined by injection molding using the spiral cavity mold described in the examples, and measuring the flow length of the molded product as an index of flowability (the flow length was long). The better the fluidity). In order to obtain a practical fuel cell separator, a flow length of 10 cm or more is required, and 15 cm or more is more desirable. Although the upper limit of the flow length is not particularly set as required, 100 cm seems to be the limit in the formulation of the present invention.
[0024]
Although the ratio of the polyarylene sulfide resin (A), the graphite particles (B) and the fibrous carbon (C) used in the present invention is not particularly limited, the weight ratio is (A) / (B) / (C) = (10-50) / (5-70) / (10-70) is preferred. In the above range, it is particularly preferable that (A) / (B) / (C) = (10 to 35) / (20 to 60) / (20 to 60) by weight ratio. When (A) / (B) / (C) is in the range of (10-50) / (5-70) / (10-70), a fuel cell separator having a good balance between fluidity and conductivity is obtained.
[0025]
The conductive polyarylene sulfide resin composition of the present invention is an antioxidant, a heat stabilizer, an ultraviolet absorber, a release agent, a rust inhibitor, a lubricant, a crystal nucleating agent, and a coloring agent, as long as the object of the present invention is not impaired. Agents, silane coupling agents and the like can be added.
[0026]
Further, to the conductive polyarylene sulfide resin composition of the present invention, one or more kinds of thermoplastic resins other than the thermosetting resin and the PAS resin can be added as long as the object of the present invention is not impaired. Examples of these resins include epoxy resin, silicone resin, petroleum resin, polyimide, polyethylene, polypropylene, polystyrene, styrene butadiene copolymer, polyamide, polycarbonate, polysulfone, polyethersulfone, polyarylate, polyacetal, and polyetherketone. , Polyether ether ketone, polybutylene terephthalate, polyethylene terephthalate, liquid crystal polymer, polyamide imide, polyether imide and the like.
[0027]
The conductive polyarylene sulfide resin composition of the present invention may be shaped into a sheet or a block, or may be granulated or pelletized in order to improve moldability and handleability of a filler. . For pelletization, for example, the PAS resin and the filler are mixed in advance with a Henschel mixer or a tumbler, and then supplied to a single-screw or twin-screw extruder and kneaded at 280 ° C. to 360 ° C. Can be obtained.
[0028]
At the time of mixing, other reinforcing materials, fillers and various additives may be added as necessary. After the pelletization, if necessary, an annealing treatment, a processing treatment such as UV irradiation, plasma irradiation, or the like may be performed.
[0029]
The conductive polyarylene sulfide resin composition of the present invention is preferably used as a fuel cell separator because it has excellent moldability, acid resistance, conductivity and the like in addition to mechanical properties. In addition, it can also be used for various mechanical parts, electrical parts, electrode materials, metal replacement parts and the like that require conductivity.
[0030]
The fuel cell separator of the present invention can be obtained by molding the conductive polyarylene sulfide resin composition by various molding methods. Examples of the molding method include compression molding, transfer molding, injection molding, and injection compression molding. As these methods, the conductive polyarylene sulfide resin composition is easily subjected to compression molding, transfer molding, injection molding, injection compression molding, or the like using a mold having a desired separator shape or the like. Mold into the shape of a separator. Of these molding methods, injection molding or injection compression molding is preferred because there is no need for post-processing and the productivity is high. The cylinder temperature of the molding machine at this time can be appropriately selected from 280 ° C. to 360 ° C. However, in consideration of productivity, resin characteristics, and the like, usually, the range of 280 to 340 ° C. is preferable. The temperature of the mold is more preferably set to 120 ° C. to 200 ° C. in order to give the molded product a high crystallinity and obtain sufficient heat resistance, but is not particularly limited. At the time of molding, other reinforcing materials, fillers and various additives can be added as necessary.
[0031]
The average fiber length of the fibrous carbon (C) in the fuel cell separator of the present invention is preferably as long as possible, but is preferably in the range of 180 to 900 μm because it has sufficient conductivity and strength.
[0032]
【Example】
[0033]
Hereinafter, the present invention will be further described with reference to examples. Parts in the examples indicate parts by weight. Note that the present invention is not limited to the scope of these embodiments.
[0034]
Other components used in Examples and Comparative Examples are as follows. The melt viscosity of PPS at 316 ° C. is as follows.
PPS-1: Melt viscosity 1Pa · s
PPS-2: Melt viscosity 2 Pa · s
PPS-3: melt viscosity 15 Pa · s
PPS-4: Melt viscosity 30 Pa · s
[0035]
Examples 1 and 2 and Comparative Examples 1-4
(Production of composition and preparation of test piece)
Various raw materials and other raw materials were uniformly mixed at the ratios shown in the following table, and then kneaded at 350 ° C. with a 35 mmφ twin screw extruder to obtain pellets. Using the pellets and the test pieces obtained by the following methods (1) to (3), volume resistivity in the thickness direction, average fiber length, bending strength (three-point bending test), flow length Was measured. The results are shown in Tables 1 to 4.
[0036]
{Circle around (1)} A cylinder temperature of 320 ° C., a mold temperature of 150 ° C., an injection pressure of 80 to 100 MPa, an injection speed of medium speed, a thickness of 2 mm and a width of 50 mm by an in-line screw injection molding machine (S165 / 75 manufactured by Sumitomo Heavy Industries, Ltd.) A test piece having a length of 50 mm was formed.
{Circle around (2)} A test piece having a thickness of 3 mm, a width of 12.5 mm, and a length of 125 mm at a cylinder temperature of 320 ° C., a mold temperature of 150 ° C., an injection pressure of 80 to 100 MPa, and a medium injection speed is measured by the inline screw injection molding machine. Molded.
{Circle around (3)} The above-mentioned in-line screw type injection molding machine was used to mold at a cylinder temperature of 320 ° C., a mold temperature of 150 ° C., an injection pressure of 60 MPa, and a medium injection speed of 6 mm in width and 1.6 mm in thickness in a spiral cavity mold. .
[0037]
(Characteristic evaluation of composition)
Using the test piece obtained by the above method (1), the volume resistivity in the thickness direction was measured.
The measurement was performed by sandwiching the test piece vertically with two 1 mm-thick copper plates of the same size as the test piece, pressing the test piece at 1 MPa, and then measuring the resistance value (Ω 0 ) using a resistance value measuring device (3468A manufactured by Yokogawa Electric Corporation). It was measured. Then, it converted into volume resistivity using the following formula.
Volume resistivity Ω · cm = Ω 0 × A / B
A: Specimen area (10 × 5 cm), B: Specimen thickness (0.2 cm)
[0038]
The test piece obtained by the method (1) was left for 1 hour in an electric furnace set at 500 ° C., and the average fiber length of the obtained ash was measured. For the measurement of the average fiber length, an enlarged photograph of ash was obtained with a Microencescope manufactured by KEYENCE, and the average fiber length was measured using an image analyzer manufactured by Graphtec.
[0039]
The test piece obtained by the method (2) was subjected to a three-point bending test at a head speed of 5 mm / sec and a span of 50 mm using Autograph AG-5000C manufactured by Shimadzu.
[0040]
Further, the flow length of the spiral shaped article obtained by the method (3) was measured, and the moldability for obtaining a practical fuel cell separator was evaluated.
[0041]
(Preparation of Spherical Graphite) Mesocarbon microbeads obtained from coal tar were calcined at 2800 ° C., graphitized, and pulverized and classified to obtain spherical graphite (spherical graphite-1) having an average particle diameter of 3 μm.
[Table 1]
Figure 2004263026
[0042]
As is clear from the results in Table 1, the fuel cell separator obtained from the conductive polyarylene sulfide resin composition of the present invention has excellent fluidity and conductivity.
[0043]
【The invention's effect】
According to the present invention, it is possible to provide a conductive polyarylene sulfide resin composition having both good moldability and conductivity, which has not been obtained with a conventional thermoplastic resin composition, and a fuel cell separator.

Claims (8)

316℃での溶融粘度が10Pa・s以下のポリアリーレンスルフィド樹脂(A)と黒鉛粒子(B)と繊維状炭素(C)とを含有することを特徴とする導電性ポリアリーレンスルフィド樹脂組成物。A conductive polyarylene sulfide resin composition comprising a polyarylene sulfide resin (A) having a melt viscosity at 316 ° C. of 10 Pa · s or less, graphite particles (B), and fibrous carbon (C). 前記黒鉛粒子(B)の平均粒子径が10μm以下である請求項1記載の導電性ポリアリーレンスルフィド樹脂組成物。The conductive polyarylene sulfide resin composition according to claim 1, wherein the graphite particles (B) have an average particle diameter of 10 µm or less. 前記繊維状炭素(C)が、比重1.7以上の炭素繊維である請求項1又は2記載の導電性ポリアリーレンスルフィド樹脂組成物。The conductive polyarylene sulfide resin composition according to claim 1 or 2, wherein the fibrous carbon (C) is a carbon fiber having a specific gravity of 1.7 or more. 前記繊維状炭素(C)が、メソフェーズピッチ系炭素繊維である請求項3に記載の導電性ポリアリーレンスルフィド樹脂組成物。The conductive polyarylene sulfide resin composition according to claim 3, wherein the fibrous carbon (C) is a mesophase pitch-based carbon fiber. 前記ポリアリーレンスルフィド樹脂(A)と前記黒鉛粒子(B)と前記繊維状炭素(C)との割合が、重量比で(A)/(B)/(C)=(10〜50)/(5〜70)/(10〜70)である請求項1〜4のいずれか1項に記載の導電性ポリアリーレンスルフィド樹脂組成物。The weight ratio of the polyarylene sulfide resin (A), the graphite particles (B) and the fibrous carbon (C) is (A) / (B) / (C) = (10-50) / ( The conductive polyarylene sulfide resin composition according to any one of claims 1 to 4, wherein the ratio is 5 to 70) / (10 to 70). ポリアリーレンスルフィド樹脂(A)の316℃での溶融粘度が0.1〜6Pa・s、である請求項1記載の導電性ポリアリーレンスルフィド樹脂組成物。The conductive polyarylene sulfide resin composition according to claim 1, wherein the melt viscosity at 316 ° C of the polyarylene sulfide resin (A) is 0.1 to 6 Pa · s. 請求項1〜6のいずれか1項に記載の導電性ポリアリーレンスルフィド樹脂組成物を成形して得られることを特徴とする燃料電池用セパレータ。A fuel cell separator obtained by molding the conductive polyarylene sulfide resin composition according to any one of claims 1 to 6. 前記燃料電池用セパレータ中の前記繊維状炭素(C)の平均繊維長が、180μm以上である請求項7項に記載の燃料電池用セパレータ。The fuel cell separator according to claim 7, wherein an average fiber length of the fibrous carbon (C) in the fuel cell separator is 180 µm or more.
JP2003053206A 2003-02-28 2003-02-28 Conductive polyarylene sulfide resin composition and separator for fuel battery Pending JP2004263026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003053206A JP2004263026A (en) 2003-02-28 2003-02-28 Conductive polyarylene sulfide resin composition and separator for fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003053206A JP2004263026A (en) 2003-02-28 2003-02-28 Conductive polyarylene sulfide resin composition and separator for fuel battery

Publications (1)

Publication Number Publication Date
JP2004263026A true JP2004263026A (en) 2004-09-24

Family

ID=33117881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003053206A Pending JP2004263026A (en) 2003-02-28 2003-02-28 Conductive polyarylene sulfide resin composition and separator for fuel battery

Country Status (1)

Country Link
JP (1) JP2004263026A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005297486A (en) * 2004-04-15 2005-10-27 Idemitsu Kosan Co Ltd Injection/compression molding method for conductive thermoplastic resin composition
WO2007010917A1 (en) * 2005-07-19 2007-01-25 Asahi Kasei Chemicals Corporation Gear
JP2007137961A (en) * 2005-11-16 2007-06-07 Sumitomo Bakelite Co Ltd Thermoplastic resin composition and molded article obtained by molding the same
JP2009217986A (en) * 2008-03-07 2009-09-24 Lonseal Corp Conductive sheet
JP2010151214A (en) * 2008-12-25 2010-07-08 Ntn Corp Conductive rolling bearing
KR101089412B1 (en) * 2006-12-06 2011-12-07 신에츠 폴리머 가부시키가이샤 Manufacturing method of a separator for a fuel cell and separator for a fuel cell
KR20180106311A (en) * 2017-03-20 2018-10-01 이니츠 주식회사 Polyarylene sulfide resin composition and molded product thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126744A (en) * 1999-10-28 2001-05-11 Osaka Gas Co Ltd Separator for fuel cell and fabricating method therefor
WO2002001660A1 (en) * 2000-06-29 2002-01-03 Osaka Gas Company Limited Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator
JP2002097375A (en) * 2000-09-22 2002-04-02 Toray Ind Inc Thermoplastic resin composition and molding
JP2002105329A (en) * 2000-09-29 2002-04-10 Toray Ind Inc Thermoplastic resin composition and molded article
JP2002290094A (en) * 2001-03-27 2002-10-04 Toray Ind Inc Electromagnetic wave shielding material and its molding
JP2003100313A (en) * 2001-05-24 2003-04-04 Toray Ind Inc Separator for fuel cell and its manufacturing method
JP2004265854A (en) * 2003-01-09 2004-09-24 Honda Motor Co Ltd Separator for fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126744A (en) * 1999-10-28 2001-05-11 Osaka Gas Co Ltd Separator for fuel cell and fabricating method therefor
WO2002001660A1 (en) * 2000-06-29 2002-01-03 Osaka Gas Company Limited Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator
JP2002097375A (en) * 2000-09-22 2002-04-02 Toray Ind Inc Thermoplastic resin composition and molding
JP2002105329A (en) * 2000-09-29 2002-04-10 Toray Ind Inc Thermoplastic resin composition and molded article
JP2002290094A (en) * 2001-03-27 2002-10-04 Toray Ind Inc Electromagnetic wave shielding material and its molding
JP2003100313A (en) * 2001-05-24 2003-04-04 Toray Ind Inc Separator for fuel cell and its manufacturing method
JP2004265854A (en) * 2003-01-09 2004-09-24 Honda Motor Co Ltd Separator for fuel cell

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4580676B2 (en) * 2004-04-15 2010-11-17 出光興産株式会社 Method for injection compression molding of conductive thermoplastic resin composition
WO2005099994A1 (en) * 2004-04-15 2005-10-27 Idemitsu Kosan Co., Ltd. Method for injection compression molding of conductive thermoplastic resin composition
JP2005297486A (en) * 2004-04-15 2005-10-27 Idemitsu Kosan Co Ltd Injection/compression molding method for conductive thermoplastic resin composition
JP4621253B2 (en) * 2005-07-19 2011-01-26 旭化成ケミカルズ株式会社 gear
JPWO2007010917A1 (en) * 2005-07-19 2009-01-29 旭化成ケミカルズ株式会社 gear
US7638569B2 (en) 2005-07-19 2009-12-29 Asahi Kasei Chemicals Corporation Gear
WO2007010917A1 (en) * 2005-07-19 2007-01-25 Asahi Kasei Chemicals Corporation Gear
JP2007137961A (en) * 2005-11-16 2007-06-07 Sumitomo Bakelite Co Ltd Thermoplastic resin composition and molded article obtained by molding the same
KR101089412B1 (en) * 2006-12-06 2011-12-07 신에츠 폴리머 가부시키가이샤 Manufacturing method of a separator for a fuel cell and separator for a fuel cell
JP2009217986A (en) * 2008-03-07 2009-09-24 Lonseal Corp Conductive sheet
JP2010151214A (en) * 2008-12-25 2010-07-08 Ntn Corp Conductive rolling bearing
KR20180106311A (en) * 2017-03-20 2018-10-01 이니츠 주식회사 Polyarylene sulfide resin composition and molded product thereof
KR102277011B1 (en) * 2017-03-20 2021-07-13 에스케이케미칼 주식회사 Polyarylene sulfide resin composition and molded product thereof

Similar Documents

Publication Publication Date Title
US7049021B2 (en) Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator
Boyaci San et al. A review of thermoplastic composites for bipolar plate applications
CN102652153B (en) Polyarylene sulfide resin composition and insert-molded article
JP5314430B2 (en) Composition for fuel cell bipolar plate
JP4388278B2 (en) Separator for polymer electrolyte fuel cell and method for producing the same
WO2003035760A2 (en) Polyphenylene sulfide resin composition
CA2424701A1 (en) Fuel cell separator and method of manufacture
KR20120077995A (en) High thermal conductive resin composition including a milled pitch based carbon fiber
JP5655547B2 (en) Polyarylene sulfide resin composition and sealing member for secondary battery sealing plate comprising the same
JP2004263026A (en) Conductive polyarylene sulfide resin composition and separator for fuel battery
CN105111693A (en) Carbon nano composite fiber material and preparation method thereof
JP4917211B2 (en) Polyphenylene sulfide resin composition
KR101733461B1 (en) Fuel cell separator
CN104774443A (en) Storage battery separator
JP2006019227A (en) Polyphenylene sulfide (pps) resin composition, fuel cell separator, fuel cell, and manufacturing method for fuel cell separator
JP2010269572A (en) Manufacturing process for molding, mold and molding
CN105209547A (en) Polyamide resin composition
KR100660144B1 (en) Thermoplastic material for injection molding a fuel cell separator
JP5465091B2 (en) Manufacturing method of fuel cell separator and fuel cell separator
KR100864681B1 (en) Material for preparing fuel cell separator
Hui et al. Characteristics and preparation of polymer/graphite composite bipolar plate for PEM fuel cells
Zarmehri et al. Construction of composite polymer bipolar plate for Pem fuel cell
Mahyoedin et al. Effect of carbon black addition on the rheology properties of electrically conductive pp-graphite composite
JP2004119346A (en) Molding material for solid polymer type fuel cell separator, its manufacturing method and solid polymer type fuel cell separator
JP2006310021A (en) Conductive material and separator for fuel cell

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081007