JP2004261737A - Air filter medium - Google Patents

Air filter medium Download PDF

Info

Publication number
JP2004261737A
JP2004261737A JP2003055864A JP2003055864A JP2004261737A JP 2004261737 A JP2004261737 A JP 2004261737A JP 2003055864 A JP2003055864 A JP 2003055864A JP 2003055864 A JP2003055864 A JP 2003055864A JP 2004261737 A JP2004261737 A JP 2004261737A
Authority
JP
Japan
Prior art keywords
filter medium
fiber material
air filter
air
ptfe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003055864A
Other languages
Japanese (ja)
Inventor
Eizo Kawano
栄三 川野
Takuya Maeoka
拓也 前岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2003055864A priority Critical patent/JP2004261737A/en
Publication of JP2004261737A publication Critical patent/JP2004261737A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air filter medium the upstream side and the down stream side of which can be easily discriminated from each other and which is free from a sense of bad hygiene due to collected dust. <P>SOLUTION: The air filter medium comprises at least one porous membrane layer of polytetrafluoroethylene and at least one gas-permeable fiber material layer 2a, 2b and 3, and at least one of the two layers disposed as the outermost layer is colored. A face of the filtering material to be disposed to the upstream side (downstream side) can be easily discriminated even if the structure in the cross-sectional direction is asymmetric. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、エアフィルタ濾材およびこれを用いたフィルタユニットに関するものである。
【0002】
【従来の技術】
タービンの吸気側には、ガラス繊維にバインダーを加えて抄紙したフィルタ濾材が多く用いられている。しかし、この濾材には、微細な小繊維が付着しており、折り曲げの際には自己発塵する。このため、濾材が脱落した微細な繊維がタービンに付着する。これに対し、ポリテトラフルオロエチレン(以下、「PTFE」を略す)は、クリーンな材料であり、耐薬品性にも優れている。PTFE多孔質膜と、これを補強する通気性支持材との積層体であるエアフィルタ濾材は、例えば、半導体産業におけるクリーンルームなどで使用されている。通気性支持材は、PTFE多孔質膜を挟持するように配置される。特許文献1に記載されているエアフィルタ濾材は、その一例である。
【0003】
PTFE多孔質膜を含むフィルタ濾材の用途は、掃除機のファイナルフィルタなど民生機器にも広がりつつある。
【0004】
【特許文献1】特開2000−61280号公報
【0005】
【発明が解決しようとする課題】
PTFE多孔質膜を含むフィルタ濾材は、ガラス繊維製の濾材に比べ、同じ圧力損失で比較する限りにおいて、捕集効率が高い。したがって、タービンの吸気側などに用いると、運転中の圧力損失が大きくなるという問題がある。この問題を解決する方法の一つは、上流側に配置される通気性支持材の捕集効率をある程度高めてプレフィルタとして作用させることである。通気性支持材が不織布などの通気性繊維材料である場合、一般に、繊維を細くすれば捕集効率は高くなる。この場合、下流側に配置する通気性支持材は、補強材としての役割を十分に果たせるように、上流側よりも繊維径が大きい通気性繊維材料から構成される。
【0006】
上下流側で径が異なる繊維材料を通気性支持材として用いた場合のように、断面方向について構造が非対称となっているエアフィルタ濾材は、気流の上下流側に沿って適切に配置する必要がある。しかし、エアフィルタ濾材では、表裏面を判別しがたい、あるいは間違えやすいことがあった。また、掃除機のファイナルフィルタなど民生用のエアフィルタ濾材では、捕集された粉塵が人の目に不衛生に映る場合がある。
【0007】
【課題を解決するための手段】
そこで、本発明は、少なくとも1層のPTFE多孔質膜と、少なくとも1層の通気性繊維材料とを含み、最外層に配置される2層の少なくとも一方が着色処理され、最外層の色が互いに相違するエアフィルタ濾材を提供する。
【0008】
【発明の実施の形態】
本発明のエアフィルタ濾材は、少なくとも1層の通気性繊維材料として、着色処理された2層の通気性繊維材料を含み、この2層の通気性繊維材料がそれぞれ最外層に配置されていてもよい。ともに着色処理された最外層を用いると、粉塵による不衛生感を低減できる。
【0009】
本発明のエアフィルタ濾材は、断面方向について構造が非対称であり、最外層に配置される2層の色が互いに相違していてもよい。色が異なる最外層により、容易に上流側または下流側に配置すべき面を判別できる。
【0010】
この場合、エアフィルタ濾材は、少なくとも1層の通気性繊維材料として、繊維径が互いに相違する2以上の通気性繊維材料を含み、この2以上の通気性繊維材料に由来して断面方向について構造が非対称となっていてもよい。これにより、例えばプレフィルタとすべき通気性繊維材料が含まれていても、この通気性繊維材料を上流側に配置することが容易となる。
【0011】
図1は、本発明の濾材の一例を示す断面図である。図1に示した形態では、PTFE多孔質膜1を挟持するように、2層の通気性繊維材料2,2が配置されている。通気性繊維材料2,2の少なくとも一方、好ましくは両方には、着色処理が施されている。量産されている通気性繊維材料は、一般には白色であるが、最外層を着色処理しておくと、捕集した塵埃による濾材の変色が目立たなくなる。最外層の着色処理は、掃除機のファイナルフィルタや一般空調用のエアフィルタにおける変色による不衛生感を軽減できる。この濾材(断面方向について構成が対称である濾材)における着色処理は、変色防止を主目的としているため、通気性繊維材料2,2は、同色に着色してもよい。
【0012】
図2は、本発明の濾材の別の一例を示す断面図である。図2に示した形態では、PTFE多孔質膜1の一方の面に2層の通気性繊維材料2a,3が、他方の面に通気性繊維材料2bがそれぞれ配置されている。通気性繊維材料3は、通気性繊維材料2a,2bよりも相対的に繊維径が小さく、捕集効率も高い。この繊維材料3は、プレフィルタとしての役割を果たすために上流側に配置される。この濾材では、最外層に配置される通気性繊維材料2b,3のいずれか一方、または双方が着色処理され、これら繊維材料2b,3の外観が相違している。この濾材における着色処理は、表裏の判別を主目的としているため、通気性繊維材料2b,3のいずれか一方は、着色処理することなく、白色のままとしてもよい。
【0013】
本発明のエアフィルタ濾材は、図1および図2に例示した構成に限らず、多種多様な膜構成をとることができる。エアフィルタ濾材は、例えば、複数のPTFE多孔質膜を含んでいてもよく、また例えば、PTFE多孔質膜が最外層の一方に配置され、最外層の他方に着色処理された通気性繊維材料が配置されていてもよい。エアフィルタ濾材は、後述する方法に基づき、粒径を0.3〜0.4μmとして測定した捕集効率が99.97%以上であることが好ましく、HEPAフィルタとして用いることができる。また、後述する方法に基づき、粒径を0.1〜0.2μmとして測定した捕集効率が99.995%以上であることが好ましく、ULPAフィルタとして用いることができる。
【0014】
通気性繊維材料は、PTFE多孔質膜よりも通気性が高ければよく、不織布、織布、メッシュ(網目状シート)、フェルトなど、その構造や形態に制限はない。ただし、強度、捕集性、柔軟性、作業性などの観点から、不織布が好適である。繊維としては、セルロース、ビスコースなどの半合成繊維、ポリエステル(ポリエチレンテレフタレート(PET)など)、ポリオレフィン(ポリエチレン(PE)、ポリプロピレン(PP)など)、ポリアミド、アクリル、ポリスルフォン、ポリアミドイミド、ポリイミド、ポリフェニレンサルファイド、ポリ弗化ビニリデンなどの合成繊維を用いればよい。
【0015】
通気性繊維材料の繊維径についても特に制限はない。プレフィルタとするための通気性繊維材料3の繊維径は0.2μm〜15μmが好ましい。
【0016】
PTFE多孔質膜は、従来から知られている製法により得たものを用いればよい。PTFE多孔質膜は、PTFEシートを一軸延伸または二軸延伸して製造される。PTFEシートは、一般に、PTFEファインパウダーに液状潤滑剤を加えたペースト状の混和物を予備成形し、予備成形体をペースト押し出し、圧延によりシート状に成形して作製される。なお、液状潤滑剤は、PTFEファインパウダーの表面を濡らすことができて抽出や加熱により除去できるものであれば特に制限されず、流動パラフィン、ナフサ、ホワイトオイルなどの炭化水素を用いればよい。液状潤滑剤の添加量は、PTFEファインパウダー100重量部に対して5〜50重量部が適当である。予備成形は、液状潤滑剤が絞り出されない程度の圧力で行えばよい。液状潤滑剤は、延伸するPTFEシートから予め除去しておくとよいが、延伸後に除去しても構わない。
【0017】
PTFE多孔質膜は、特に制限されないが、平均孔径0.01〜5μm、平均繊維径0.02〜0.3μm、圧力損失50〜1000Paの特性を有することが好ましい。圧力損失は、5.3cm/秒の流速で空気を透過させて測定して得た値に基づく。
【0018】
PTFE多孔質膜は多孔質であるため、通常、白色に映る。通気性繊維材料の一般的なグレードも白色である。着色処理は、特に制限されないが、例えば、顔料を練り込むことにより、あるいは染料による染色により、行うことができる。
【0019】
通気性繊維材料に顔料を練り込む場合は、原料である樹脂原料を溶融して混練するとよい。PTFE多孔質膜に顔料を練り込む場合は、PTFEファインパウダーに液状潤滑剤とともに顔料を加えるとよい。導電性など他の機能を発現させるために複数種類の顔料を練り込んでも構わない。染料を用いる場合は、着色処理の対象とする通気性繊維材料またはPTFE多孔質膜を染料に浸漬するとよい。ただし、積層してフィルタ濾材としてから染料に浸漬しても構わない。
【0020】
PTFE多孔質膜と通気性繊維材料とは、単に重ね合わせるだけとしてもよいし、熱ラミネート、接着剤ラミネートなどの方法により複合化してもよい。具体的には、例えば、通気性繊維材料の原料繊維の融点およびPTFEの融点よりも低い融点を有するパウダーやウェブをPTFE多孔質膜と繊維材料との間に介在させて加熱する方法が挙げられる。通気性繊維材料の融点がPTFEの融点よりも低ければ、繊維材料の一部を溶融して複合化してもよい。PTFE多孔質膜と通気性繊維材料とを接着剤を用いて複合化する方法を用いてもよい。この場合、接着剤としては、2液混合型や熱による自己架橋型の接着剤などが適している。2液混合型としてはエポキシ樹脂、熱による自己架橋型としては酢酸ビニル−エチレン共重合体やエチレン−塩化ビニル共重合体などを用いればよい。
【0021】
【実施例】
以下、実施例を用いて本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。圧力損失、捕集効率の測定は、以下に示す方法により行った。
【0022】
(圧力損失)
サンプルを有効面積100cmの円形のホルダーにセットし、上流側と下流側とに圧力差を与え、空気の透過速度を流量計で5.3cm/秒に調整したときの圧力損失を圧力計(マノメーター)で測定した。測定は1サンプルにつき10箇所行い、各測定値の平均をサンプルの圧力損失とした。
【0023】
(捕集効率)
圧力損失の測定と同一の装置を用い、空気の透過速度を5.3cm/秒に調整して、上流側に粒径0.3〜0.4μmの多分散ジオクチルフタレート(DOP)粒子が約10個/リットルになるように供給し、上流側の粒子濃度とサンプルを透過してきた下流側の粒子濃度とをパーティクルカウンターで測定し、以下の式に基づいて捕集効率を求めた。なお、粒径0.1〜0.2μmのDOP粒子については、約10個/リットルになるように供給して捕集効率を求める。
【0024】
捕集効率(%)=(1−下流側粒子濃度/上流側粒子濃度)×100
【0025】
(実施例1)
PTFEファインパウダー(旭硝子フロロポリマーズ社製アフロンCD123)100重量部に対して液状潤滑剤(ドデカン)20重量部を均一に混合し、この混合物を予備成形し、次いでこれをペースト押出により丸棒状に成形した。さらに、この丸棒状成形体を一対の金属製圧延ロール間に通して、厚さ0.2mmのシート状成形体を得た。引き続き、このシート状成形体から、ノルマルデカンを用いた抽出法により液状潤滑剤を除去した。
【0026】
このシート状成形体を2軸に延伸してPTFE多孔質膜(厚さ10μm、平均孔径1.0μm、気孔率93%、圧力損失160Pa、DOP粒径0.3〜0.4μmについての捕集効率99.999%を得た。
【0027】
こうして得たPTFE多孔質膜と、2枚の着色処理したPET/PE芯鞘不織布(灰色、目付量30g/m)とを、不織布が多孔質膜を挟持するように重ね合わせ、不織布の鞘部PEの融点よりも高い180℃に加熱した一対のロールの間を通過させることによって熱ラミネートを行った。こうして、PTFE多孔質膜と通気性繊維材とのエアフィルタ濾材を得た。このエアフィルタ濾材の捕集効率は、DOP粒径0.3〜0.4μmについて99.999%であった。
【0028】
(比較例1)
着色処理していないPET/PE芯鞘不織布(白色、目付量30g/m)を用いた以外は実施例1と同様にして、PTFE多孔質膜と通気性繊維材とのエアフィルタ濾材を得た。
【0029】
(実施例2)
実施例1と同様にしてPTFE多孔質膜を得た。一方で、第1通気性繊維材料としてPP不織布(白色、目付量30g/m、繊維径約0.5〜3μm)を、第2通気性繊維材料としてPET/PE芯鞘不織布(白色、目付量30g/m、繊維径約20μm)を、着色処理した第3通気性繊維材料としてPET/PE芯鞘不織布(灰色、目付量30g/m、繊維径約20μm)を、それぞれ準備した。
【0030】
第1通気性繊維材料と第2通気性繊維材料とを重ね合わせ、140℃に加熱した一対のロールに通過させることにより熱ラミネートを行い、通気性繊維材料の積層体を得た。他方、PTFE多孔質膜と第3通気性繊維材料とを重ね合わせ、180℃に加熱した一対のロールに通過させることにより熱ラミネートを行い、PTFE多孔質膜と通気性繊維材料との積層体を得た。次いで、この2つの積層体を、PTFE多孔質膜と第2通気性繊維材料とが接するように重ね合わせ、130℃に加熱した一対のロールに通過させることにより熱ラミネートを行った。こうして、エアフィルタ濾材を得た。
【0031】
(比較例2)
第3通気性繊維材料として着色処理していないPET/PE芯鞘不織布(白色、目付量30g/m、繊維径約20μm)を用いた以外は実施例2と同様にして、エアフィルタ濾材を得た。
【0032】
実施例1および比較例1からそれぞれ得たエアフィルタ濾材を、有効面積100cmの円形ホルダーにセットし、透過流速が5.3cm/秒となるように吸引しながら大気塵を10時間供給した。比較例1のエアフィルタ濾材は、10m離れたところからでも大気塵による汚れが確認できたが、実施例1のエアフィルタ濾材では汚れが確認できなかった。また、比較例2から得たエアフィルタ濾材では目視により表裏を判別できなかったが、実施例2から得たエアフィルタ濾材では目視により容易に表裏を区別できた。
【0033】
【発明の効果】
以上説明したとおり、本発明によれば、上(下)流側に配置すべき面の見分けが容易なエアフィルタ濾材、捕集された粉塵による見た目の不衛生感を排除できるエアフィルタ濾材を提供できる。
【図面の簡単な説明】
【図1】本発明のフィルタ濾材の一形態を示す断面図である。
【図2】本発明のフィルタ濾材の別の一形態を示す断面図である。
【符号の説明】
1 PTFE多孔質膜
2,2a,2b,3 通気性繊維材料
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air filter medium and a filter unit using the same.
[0002]
[Prior art]
On the intake side of the turbine, a filter medium made by adding a binder to glass fiber and making paper is often used. However, fine fibrils are attached to this filter medium, and generate self-dust when folded. For this reason, the fine fibers from which the filter medium has fallen adhere to the turbine. On the other hand, polytetrafluoroethylene (hereinafter abbreviated to “PTFE”) is a clean material and has excellent chemical resistance. An air filter medium, which is a laminate of a porous PTFE membrane and a permeable supporting material for reinforcing the PTFE porous membrane, is used, for example, in a clean room in the semiconductor industry. The air-permeable supporting material is arranged so as to sandwich the PTFE porous membrane. The air filter medium described in Patent Document 1 is one example.
[0003]
Applications of the filter medium including the porous PTFE membrane are expanding to consumer devices such as a vacuum cleaner final filter.
[0004]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2000-61280
[Problems to be solved by the invention]
A filter medium containing a PTFE porous membrane has a higher collection efficiency than a filter medium made of glass fiber as long as the filter medium is compared with the same pressure loss. Therefore, when used on the intake side of a turbine or the like, there is a problem that the pressure loss during operation increases. One method of solving this problem is to increase the collection efficiency of the air-permeable supporting member disposed on the upstream side to a certain extent so as to function as a pre-filter. When the gas-permeable supporting material is a gas-permeable fiber material such as a nonwoven fabric, generally, the thinner the fibers, the higher the collection efficiency. In this case, the air-permeable supporting material disposed on the downstream side is made of a gas-permeable fiber material having a larger fiber diameter than the upstream side so as to sufficiently serve as a reinforcing material.
[0006]
Air filter media that have an asymmetric structure in the cross-section direction, such as when fiber materials with different diameters are used as the air-permeable support material on the upstream and downstream sides, need to be appropriately arranged along the upstream and downstream sides of the airflow. There is. However, in the case of an air filter medium, it is sometimes difficult to distinguish between the front and back surfaces, or it is easy to make a mistake. Further, in a consumer air filter medium such as a final filter of a vacuum cleaner, collected dust may appear unsanitary to human eyes.
[0007]
[Means for Solving the Problems]
Therefore, the present invention includes at least one layer of a porous PTFE membrane and at least one layer of a breathable fiber material, wherein at least one of the two layers disposed on the outermost layer is colored, and the colors of the outermost layers are mutually different. A different air filter media is provided.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The air filter medium of the present invention includes, as at least one layer of the breathable fiber material, two layers of colored breathable fiber materials, and the two layers of breathable fiber materials are respectively arranged in the outermost layers. Good. When the outermost layer both of which are colored is used, the unsanitary feeling due to dust can be reduced.
[0009]
The structure of the air filter medium of the present invention is asymmetric in the cross-sectional direction, and the colors of the two outermost layers may be different from each other. The surface to be arranged on the upstream side or the downstream side can be easily determined by the outermost layer having a different color.
[0010]
In this case, the air filter medium includes, as at least one layer of the air-permeable fiber material, two or more air-permeable fiber materials having different fiber diameters from each other. May be asymmetric. Thereby, even if the air-permeable fiber material to be used as the pre-filter is included, it is easy to arrange the air-permeable fiber material on the upstream side.
[0011]
FIG. 1 is a sectional view showing an example of the filter medium of the present invention. In the embodiment shown in FIG. 1, two layers of breathable fiber materials 2 are arranged so as to sandwich the porous PTFE membrane 1. At least one, and preferably both, of the breathable fiber materials 2 and 2 are colored. The mass-produced breathable fiber material is generally white, but if the outermost layer is colored, the discoloration of the filter medium due to the collected dust becomes inconspicuous. The coloring treatment of the outermost layer can reduce unsanitary feeling due to discoloration in a final filter of a vacuum cleaner or an air filter for general air conditioning. Since the coloring treatment of the filter medium (filter medium having a symmetric structure in the cross-sectional direction) is mainly for preventing discoloration, the air-permeable fiber materials 2 and 2 may be colored in the same color.
[0012]
FIG. 2 is a sectional view showing another example of the filter medium of the present invention. In the embodiment shown in FIG. 2, two layers of the breathable fiber material 2a and 3 are arranged on one surface of the porous PTFE membrane 1, and the breathable fiber material 2b is arranged on the other surface. The breathable fiber material 3 has a relatively smaller fiber diameter than the breathable fiber materials 2a and 2b, and has a higher collection efficiency. This fiber material 3 is arranged on the upstream side to serve as a pre-filter. In this filter medium, one or both of the air-permeable fiber materials 2b and 3 disposed in the outermost layer are colored, and the appearance of the fiber materials 2b and 3 is different. Since the main purpose of the coloring treatment of the filter medium is to discriminate between the front and back sides, one of the breathable fiber materials 2b and 3 may be left white without being subjected to the coloring treatment.
[0013]
The air filter medium of the present invention is not limited to the configuration illustrated in FIGS. 1 and 2, and may have various membrane configurations. The air filter medium may include, for example, a plurality of PTFE porous membranes. For example, the PTFE porous membrane may be disposed on one of the outermost layers, and the other of the outermost layers may include a colored air-permeable fiber material. It may be arranged. The air filter medium preferably has a collection efficiency of 99.97% or more measured with a particle size of 0.3 to 0.4 μm based on a method described later, and can be used as a HEPA filter. Further, based on a method described later, the collection efficiency measured at a particle size of 0.1 to 0.2 μm is preferably 99.995% or more, and can be used as an ULPA filter.
[0014]
The air-permeable fiber material only needs to have higher air permeability than the porous PTFE membrane, and there is no limitation on the structure or form of the non-woven fabric, woven fabric, mesh (mesh-like sheet), felt, or the like. However, a nonwoven fabric is preferable from the viewpoints of strength, collecting property, flexibility, workability, and the like. Examples of the fibers include semi-synthetic fibers such as cellulose and viscose, polyesters (such as polyethylene terephthalate (PET)), polyolefins (such as polyethylene (PE) and polypropylene (PP)), polyamides, acrylics, polysulfones, polyamide imides, polyimides, and the like. Synthetic fibers such as polyphenylene sulfide and polyvinylidene fluoride may be used.
[0015]
There is no particular limitation on the fiber diameter of the breathable fiber material. The fiber diameter of the breathable fiber material 3 for forming a pre-filter is preferably 0.2 μm to 15 μm.
[0016]
The PTFE porous membrane may be one obtained by a conventionally known manufacturing method. The PTFE porous membrane is produced by uniaxially or biaxially stretching a PTFE sheet. In general, a PTFE sheet is prepared by preforming a paste-like admixture obtained by adding a liquid lubricant to PTFE fine powder, extruding the preform into a paste, and rolling to form a sheet. The liquid lubricant is not particularly limited as long as it can wet the surface of the PTFE fine powder and can be removed by extraction or heating, and hydrocarbons such as liquid paraffin, naphtha, and white oil may be used. The appropriate amount of the liquid lubricant to be added is 5 to 50 parts by weight based on 100 parts by weight of the PTFE fine powder. The preforming may be performed at such a pressure that the liquid lubricant is not squeezed out. The liquid lubricant may be removed in advance from the PTFE sheet to be stretched, but may be removed after stretching.
[0017]
The PTFE porous membrane is not particularly limited, but preferably has characteristics of an average pore diameter of 0.01 to 5 μm, an average fiber diameter of 0.02 to 0.3 μm, and a pressure loss of 50 to 1000 Pa. The pressure loss is based on a value obtained by measuring air permeated at a flow rate of 5.3 cm / sec.
[0018]
Since the PTFE porous membrane is porous, it usually appears white. A common grade of breathable fiber material is also white. The coloring treatment is not particularly limited, but can be performed by, for example, kneading a pigment or dyeing with a dye.
[0019]
When kneading a pigment into a breathable fiber material, it is preferable to melt and knead a resin material as a raw material. When the pigment is kneaded into the PTFE porous membrane, the pigment may be added to the PTFE fine powder together with the liquid lubricant. A plurality of types of pigments may be kneaded to exhibit other functions such as conductivity. When a dye is used, the air-permeable fiber material or the PTFE porous film to be colored may be immersed in the dye. However, they may be immersed in a dye after being laminated to form a filter medium.
[0020]
The PTFE porous membrane and the breathable fiber material may be simply overlapped, or may be composited by a method such as heat lamination or adhesive lamination. Specifically, for example, there is a method in which a powder or a web having a melting point lower than the melting point of the raw fiber of the breathable fiber material and the melting point of PTFE is interposed between the porous PTFE membrane and the fiber material and heated. . If the melting point of the breathable fiber material is lower than the melting point of PTFE, a part of the fiber material may be melted to form a composite. A method of compounding the PTFE porous membrane and the breathable fiber material using an adhesive may be used. In this case, as the adhesive, a two-component adhesive or a self-crosslinking adhesive by heat is suitable. An epoxy resin may be used as the two-liquid mixing type, and a vinyl acetate-ethylene copolymer or an ethylene-vinyl chloride copolymer may be used as the self-crosslinking type by heat.
[0021]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to the following Examples. The measurement of pressure loss and collection efficiency was performed by the following methods.
[0022]
(Pressure loss)
The sample was set in a circular holder having an effective area of 100 cm 2 , a pressure difference was applied between the upstream side and the downstream side, and the pressure loss when the air permeation speed was adjusted to 5.3 cm / sec with a flow meter was measured using a pressure gauge ( (Manometer). The measurement was performed at 10 points per sample, and the average of the measured values was defined as the pressure loss of the sample.
[0023]
(Collection efficiency)
Using the same apparatus as that for measuring the pressure loss, the air permeation velocity was adjusted to 5.3 cm / sec, and about 10 to 10 polydisperse dioctyl phthalate (DOP) particles having a particle size of 0.3 to 0.4 μm were provided on the upstream side. The particles were supplied at 7 particles / liter, and the particle concentration on the upstream side and the particle concentration on the downstream side that had passed through the sample were measured with a particle counter, and the trapping efficiency was calculated based on the following equation. Incidentally, the DOP particles having a particle diameter of 0.1 to 0.2 [mu] m, determine the collection efficiency by supplying to be about 10 8 cells / liter.
[0024]
Collection efficiency (%) = (1−downstream particle concentration / upstream particle concentration) × 100
[0025]
(Example 1)
20 parts by weight of a liquid lubricant (dodecane) is uniformly mixed with 100 parts by weight of PTFE fine powder (Aflon CD123 manufactured by Asahi Glass Fluoropolymers Co., Ltd.), and this mixture is preformed, and then molded into a round bar by paste extrusion. did. Further, the round bar-shaped formed body was passed between a pair of metal rolling rolls to obtain a sheet-shaped formed body having a thickness of 0.2 mm. Subsequently, the liquid lubricant was removed from the sheet-like molded body by an extraction method using normal decane.
[0026]
This sheet-like molded body is biaxially stretched to collect a PTFE porous membrane (thickness: 10 μm, average pore size: 1.0 μm, porosity: 93%, pressure loss: 160 Pa, DOP particle size: 0.3 to 0.4 μm). An efficiency of 99.999% was obtained.
[0027]
The porous PTFE membrane thus obtained is overlapped with two colored PET / PE core-sheath nonwoven fabrics (gray, basis weight 30 g / m 2 ) so that the nonwoven fabric sandwiches the porous membrane, and the sheath of the nonwoven fabric is obtained. Thermal lamination was performed by passing between a pair of rolls heated to 180 ° C. higher than the melting point of the part PE. Thus, an air filter medium including the PTFE porous membrane and the air-permeable fiber material was obtained. The collection efficiency of this air filter medium was 99.999% for a DOP particle size of 0.3 to 0.4 μm.
[0028]
(Comparative Example 1)
An air filter medium comprising a PTFE porous membrane and a permeable fiber material was obtained in the same manner as in Example 1 except that a non-colored PET / PE core-sheath nonwoven fabric (white, basis weight 30 g / m 2 ) was used. Was.
[0029]
(Example 2)
A porous PTFE membrane was obtained in the same manner as in Example 1. On the other hand, a PP nonwoven fabric (white, a basis weight of 30 g / m 2 , a fiber diameter of about 0.5 to 3 μm) is used as a first breathable fiber material, and a PET / PE core-sheath nonwoven fabric (white, a basis weight) is used as a second breathable fiber material. the amount 30 g / m 2, a fiber diameter of about 20 [mu] m), the third breathable fibrous materials as PET / PE core-sheath nonwoven fabric coloring treatment (gray, basis weight 30 g / m 2, a fiber diameter of about 20 [mu] m), were prepared, respectively.
[0030]
The first air-permeable fiber material and the second air-permeable fiber material were superimposed on each other, and passed through a pair of rolls heated to 140 ° C. to perform heat lamination to obtain a laminate of the air-permeable fiber material. On the other hand, the PTFE porous membrane and the third permeable fiber material are overlapped, and heat lamination is performed by passing the PTFE porous membrane through a pair of rolls heated to 180 ° C. to form a laminate of the PTFE porous membrane and the permeable fiber material. Obtained. Next, the two laminates were overlapped so that the porous PTFE membrane and the second air-permeable fiber material were in contact with each other, and passed through a pair of rolls heated to 130 ° C. to perform thermal lamination. Thus, an air filter medium was obtained.
[0031]
(Comparative Example 2)
An air filter medium was prepared in the same manner as in Example 2 except that a non-colored PET / PE sheath-core nonwoven fabric (white, weight per unit area: 30 g / m 2 , fiber diameter: about 20 μm) was used as the third breathable fiber material. Obtained.
[0032]
The air filter medium obtained from each of Example 1 and Comparative Example 1 was set in a circular holder having an effective area of 100 cm 2 , and atmospheric dust was supplied for 10 hours while sucking so that the permeation flow rate was 5.3 cm / sec. With the air filter medium of Comparative Example 1, dirt due to atmospheric dust could be confirmed even at a distance of 10 m, but no dirt was observed with the air filter medium of Example 1. The front and back of the air filter medium obtained from Comparative Example 2 could not be distinguished visually, but the front and back of the air filter medium obtained from Example 2 could be easily distinguished visually.
[0033]
【The invention's effect】
As described above, according to the present invention, an air filter medium capable of easily distinguishing a surface to be disposed on the upper (lower) flow side and an air filter medium capable of eliminating an unnatural appearance due to collected dust are provided. it can.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing one embodiment of a filter medium of the present invention.
FIG. 2 is a cross-sectional view showing another embodiment of the filter medium of the present invention.
[Explanation of symbols]
1 PTFE porous membrane 2, 2a, 2b, 3 breathable fiber material

Claims (4)

少なくとも1層のポリテトラフルオロエチレン多孔質膜と、少なくとも1層の通気性繊維材料とを含み、最外層に配置される2層の少なくとも一方が着色処理されたエアフィルタ濾材。An air filter medium comprising at least one layer of a polytetrafluoroethylene porous membrane and at least one layer of a breathable fiber material, wherein at least one of two layers disposed on the outermost layer is colored. 前記少なくとも1層の通気性繊維材料として、着色処理された2層の通気性繊維材料を含み、この2層の通気性繊維材料がそれぞれ最外層に配置された請求項1に記載のエアフィルタ濾材。2. The air filter medium according to claim 1, wherein the at least one layer of the air-permeable fiber material includes two layers of a color-treated air-permeable fiber material, and the two layers of the air-permeable fiber material are respectively disposed on the outermost layers. . 断面方向について構造が非対称であり、前記2層の色が互いに相違する請求項1に記載のエアフィルタ濾材。The air filter medium according to claim 1, wherein the structure is asymmetric in a cross-sectional direction, and the colors of the two layers are different from each other. 前記少なくとも1層の通気性繊維材料として、繊維径が互いに相違する2以上の通気性繊維材料を含み、この2以上の通気性繊維材料に由来して前記構造が非対称となっている請求項3に記載のエアフィルタ濾材。4. The at least one layer of breathable fiber material includes two or more breathable fiber materials having different fiber diameters, and the structure is asymmetric due to the two or more breathable fiber materials. 2. The air filter medium according to item 1.
JP2003055864A 2003-03-03 2003-03-03 Air filter medium Pending JP2004261737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055864A JP2004261737A (en) 2003-03-03 2003-03-03 Air filter medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055864A JP2004261737A (en) 2003-03-03 2003-03-03 Air filter medium

Publications (1)

Publication Number Publication Date
JP2004261737A true JP2004261737A (en) 2004-09-24

Family

ID=33119754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055864A Pending JP2004261737A (en) 2003-03-03 2003-03-03 Air filter medium

Country Status (1)

Country Link
JP (1) JP2004261737A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255504A (en) * 2007-03-31 2008-10-23 Towa Sangyo Kk Two-layer structure filter material made of nonwoven fabric
EP1985737A1 (en) * 2007-04-27 2008-10-29 Colbond B.V. Process to manufacture tufted backing materials
JP2012192408A (en) * 2005-05-20 2012-10-11 Aquaporin As Membrane for filtering of water
WO2013061579A1 (en) * 2011-10-28 2013-05-02 日東電工株式会社 Breathable sheet, method for adsorbing workpiece onto adsorption unit, and method for producing ceramic capacitor
JP2015509681A (en) * 2012-12-11 2015-03-30 アモグリーンテック カンパニー リミテッド Waterproof sound-permeable sheet and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192408A (en) * 2005-05-20 2012-10-11 Aquaporin As Membrane for filtering of water
JP2008255504A (en) * 2007-03-31 2008-10-23 Towa Sangyo Kk Two-layer structure filter material made of nonwoven fabric
EP1985737A1 (en) * 2007-04-27 2008-10-29 Colbond B.V. Process to manufacture tufted backing materials
WO2008131883A1 (en) * 2007-04-27 2008-11-06 Colbond B.V. Process to manufacture tufted backing materials
JP2010526215A (en) * 2007-04-27 2010-07-29 コルボント ベスローテン フェンノートシャップ Method for manufacturing tufted lining material
US8448589B2 (en) 2007-04-27 2013-05-28 Bonar B.V. Process to manufacture tufted backing materials
WO2013061579A1 (en) * 2011-10-28 2013-05-02 日東電工株式会社 Breathable sheet, method for adsorbing workpiece onto adsorption unit, and method for producing ceramic capacitor
JP2013108066A (en) * 2011-10-28 2013-06-06 Nitto Denko Corp Breathable sheet, method for adsorbing workpiece onto adsorption unit, and method for producing ceramic capacitor
CN103974807A (en) * 2011-10-28 2014-08-06 日东电工株式会社 Breathable sheet, method for adsorbing workpiece onto adsorption unit, and method for producing ceramic capacitor
JP2015509681A (en) * 2012-12-11 2015-03-30 アモグリーンテック カンパニー リミテッド Waterproof sound-permeable sheet and manufacturing method thereof
US10170097B2 (en) 2012-12-11 2019-01-01 Amogreentech Co., Ltd. Waterproof sound transmitting sheet, and method for producing same

Similar Documents

Publication Publication Date Title
EP2733163B1 (en) Porous polytetrafluoroethylene film and air filter filtration material
CA2999397C (en) Air filter medium, air filter pack, and air filter unit
WO2013125205A1 (en) Blended nonwaven fabric, filter filtration material, and filter unit
US20140196840A1 (en) Method for producing porous polytetrafluoroethylene membrane
JP2005177641A (en) Air filter unit, its manufacturing method and its assembly
EP3520874B1 (en) Air filter medium, air filter pack, and air filter unit
EP3520873B1 (en) Air filter medium, air filter pack, and air filter unit
JP2014030825A (en) Filter member, method for manufacturing the same, and filter unit
TWI750230B (en) Air filter media, air filter group and air filter unit
CN107530647B (en) Filter filtration material and filter unit
JP2000300921A (en) Air filter material and air filter unit using the same
JP2013094717A (en) Air filter medium
JP2004261737A (en) Air filter medium
JP2008137009A (en) Air filter unit and its manufacturing method, and air filter unit assembly
JP2005205305A (en) Air filter medium
JP2002346319A (en) Suction filter medium for turbine
JP2005095803A (en) Filter medium for air filter, and air filter unit using it
JP2006346174A (en) Air filter medium for cleaner and air filter unit for cleaner
JP2005246233A (en) Air filter medium for cleaner, and air filter unit for cleaner using the same
JP2008279359A (en) Filter medium and filter unit using this filter medium
JP7405837B2 (en) Filter media and filter unit
JP2006175313A (en) Filter medium for air filter and air filter unit
WO2020138010A1 (en) Filter pleat pack and air filter unit
WO2020138009A1 (en) Filter pleat pack and air filter unit
JP5094610B2 (en) Air filter medium and air filter unit using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070731

A131 Notification of reasons for refusal

Effective date: 20070821

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080122