JP2004261708A - Flocuration treatment method for silicon particulate and/or colloidal silica containing waste water - Google Patents

Flocuration treatment method for silicon particulate and/or colloidal silica containing waste water Download PDF

Info

Publication number
JP2004261708A
JP2004261708A JP2003054184A JP2003054184A JP2004261708A JP 2004261708 A JP2004261708 A JP 2004261708A JP 2003054184 A JP2003054184 A JP 2003054184A JP 2003054184 A JP2003054184 A JP 2003054184A JP 2004261708 A JP2004261708 A JP 2004261708A
Authority
JP
Japan
Prior art keywords
waste water
wastewater
colloidal silica
water
adjusted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003054184A
Other languages
Japanese (ja)
Inventor
Masatake Okumura
正剛 奥村
Hidekazu Tanaka
秀和 田中
Kozo Shimizu
浩三 志水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2003054184A priority Critical patent/JP2004261708A/en
Publication of JP2004261708A publication Critical patent/JP2004261708A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flocculation treatment method for silicon particulates and/or colloidal silica containing waste water capable of obtaining treated water having good water quality by subjecting the waste water containing the silicon particulate and/or colloidal silica generated in a semiconductor manufacturing process or the like to flocculation treatment and efficiently recovering the silicon particulates and/or the colloidal silica. <P>SOLUTION: The flocculation treatment method for adding an inorganic flocculant to the flocculation treatment to the waste water containing the silicon particulates and/or the colloidal silica comprises (a) regulating the pH of the waste water to 6.5 or below, then (b) regulating the pH to 6.5 to 7.5 and subjecting the waste water to the flocculation treatment, (b) regulating the pH of the waste water to 7.5 and over, then regulating the pH to 6 to 7.5 and subjecting the waste water to the flocculation treatment or (c) adding an oxidizing agent to the waste water to adjust the pH to 4 to 8 and subjecting the waste water to the flocculation treatment. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、シリコン微粒子及び/又はコロイドシリカ含有排水の凝集処理方法に関する。さらに詳しくは、本発明は、半導体製造プロセスなどにおいて発生するシリコン微粒子及び/又はコロイドシリカを含有する排水を凝集処理して、シリコン微粒子及び/又はコロイドシリカを効率的に回収し、水質の良好な処理水を得ることができるシリコン微粒子及び/又はコロイドシリカ含有排水の凝集処理方法に関する。
【0002】
【従来の技術】
シリコンインゴットのスライシング、シリコンウェーハのバックグラインディング、ダイシングなどの半導体製造プロセスにおいては、シリコン微粒子を多量に含有する排水が発生する。また、シリコンウェーハの研磨工程において、砥粒としてコロイドシリカを用いると、排水中にはコロイドシリカが混入する。従来より、このような排水は、直接又は限外ろ過膜により濃縮したのち、凝集沈殿法又は浮上分離法により固液分離されている。しかし、シリコン微粒子の凝集性は非常に悪く、多量の凝集剤の添加が必要であり、汚泥発生量が多くなり、排水処理コストも高くなっていた。そのために、シリコン微粒子含有排水を効果的に処理する方法がさまざまに検討されてきた。
例えば、狭い敷地面積でシリコン研磨廃水を浮上分離処理して良好な水質の処理水を得る方法として、シリコン研磨廃水に無機凝集剤を添加する工程、次いで浮上助剤と高分子凝集剤を添加する工程、その後微細気泡を含む加圧水で処理する工程を有するシリコン研磨廃水の浮上分離処理方法が提案されている(特許文献1)。また、既存の凝集沈殿分離装置などを使用して、放流可能な廃水処理を実現するシリコン切削廃液の処理方法として、シリコン切削廃液をカスケード式水槽で水素放出とシリコン切削屑の沈殿分離を行ったのち、その上澄水のpHを調整し、凝集剤を添加して凝集沈殿分離処理し、ろ過して放流するシリコン切削廃液の処理方法が提案されている(特許文献2)。さらに、金属シリコンの切削粉を含有する切削廃水から、切削粉を効率的に除去する方法として、金属シリコンの切削粉を含有する切削廃水に、塩化アルミニウム又は塩化鉄を凝集剤として添加し、pHを10以上に調整して金属シリコン凝集物を浮遊せしめ、分離する方法が提案されている(特許文献3)。
しかし、シリコン微粒子は凝集性が悪いために、処理水中にシリコン微粒子と凝集剤成分であるアルミニウムが漏洩し、処理水のろ過速度が低下する。また、半導体製造プロセスにおいて発生するシリコン微粒子含有排水は、回収されて純水装置の原水とされる場合が多く、このような場合には、シリカ微粒子とアルミニウムの漏洩は、後段の純水装置における差圧上昇や、処理水の水質不良などの悪影響を与える。
【特許文献1】
特公平3−14516号公報(第1−2頁)
【特許文献2】
特開平6−134469号公報(第2頁)
【特許文献3】
特開平10−323675号公報(第2頁)
【0003】
【発明が解決しようとする課題】
本発明は、半導体製造プロセスなどにおいて発生するシリコン微粒子及び/又はコロイドシリカを含有する排水を凝集処理して、シリコン微粒子及び/又はコロイドシリカを効率的に回収し、水質の良好な処理水を得ることができるシリコン微粒子及び/又はコロイドシリカ含有排水の凝集処理方法を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、シリコン微粒子及び/又はコロイドシリカを含有する排水にアルミニウム系無機凝集剤を添加する凝集処理方法において、排水のpHを6.5未満の酸性若しくは7.5超のアルカリ性にいったん調整したのち、pHを中性に再調整して凝集処理することにより、又は、排水に酸化剤を添加し、排水のpHを4〜8に調整して凝集処理することにより、安定した凝集フロックが形成され、水質の良好な処理水が得られることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)シリコン微粒子及び/又はコロイドシリカを含有する排水に無機凝集剤を添加する凝集処理方法において、
(a)排水のpHを6.5未満に調整したのち、pHを6.5〜7.5に調整して凝集処理する、
(b)排水のpHを7.5超に調整したのち、pHを6〜7.5に調整して凝集処理する、又は、
(c)排水に酸化剤を添加し、排水のpHを4〜8に調整して凝集処理することを特徴とするシリコン微粒子及び/又はコロイドシリカ含有排水の凝集処理方法、及び、
(2)無機凝集剤が、アルミニウム系無機凝集剤である第1項記載のシリコン微粒子及び/又はコロイドシリカ含有排水の凝集処理方法、
を提供するものである。
【0005】
【発明の実施の形態】
本発明方法は、シリコン微粒子及び/又はコロイドシリカを含有する排水に無機凝集剤を添加する凝集処理方法において、(a)排水のpHを6.5未満に調整したのち、pHを6.5〜7.5に調整して凝集処理する、(b)排水のpHを7.5超に調整したのち、pHを6〜7.5に調整して凝集処理する、又は、(c)排水に酸化剤を添加し、排水のpHを4〜8に調整して凝集処理するシリコン微粒子及び/又はコロイドシリカ含有排水の凝集処理方法である。本発明方法は、シリコンインゴットのスライシング、シリコンウェーハのバックグラインディング、ダイシングなどの半導体製造プロセスにおいて発生するシリコン微粒子を多量に含有する排水などや、砥粒としてコロイドシリカを用いるシリコンウェーハの研磨工程において発生するシリコン微粒子とコロイドシリカを含有する排水などに適用することができる。
本発明方法に使用する無機凝集剤に特に制限はなく、例えば、硫酸バンド、ポリ塩化アルミニウム、塩化第二鉄、硫酸第一鉄などを挙げることができる。これらの中で、硫酸バンド、ポリ塩化アルミニウムなどのアルミニウム系凝集剤は、腐食性や刺激性がなく、中性領域で凝集効果が発現し、良好な凝集フロックを形成し、汚泥の発生量が少ないので好適に用いることができる。本発明方法において、凝集処理の温度に特に制限はないが、5〜40℃であることが好ましく、15〜25℃であることがより好ましい。本発明方法においては、無機凝集剤に加えて高分子凝集剤を添加し、フロックの凝集性を高めることができる。
【0006】
本発明方法に使用するpH調整剤に特に制限はなく、例えば、塩酸、硫酸、リン酸、硝酸などの無機酸、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウムなどの無機アルカリなどを挙げることができる。無機凝集剤の添加により排水のpHが変化する場合は、無機凝集剤にpH調整剤の役割を兼ねさせることができる。
本発明方法に使用する酸化剤に特に制限はなく、例えば、過酸化水素、オゾン、塩素、次亜塩素酸塩、臭素酸塩などを挙げることができる。これらの中で、過酸化水素は、水溶液として取り扱いが容易であり、使用後は、酸素と水に分解して処理水中に異物を残さないので、特に好適に用いることができる。
本発明方法の第一の態様においては、シリコン微粒子及び/又はコロイドシリカを含有する排水のpHを6.5未満の酸性に調整したのち、pHを6.5〜7.5に再調整して凝集処理する。本発明方法の第二の態様においては、シリコン微粒子及び/又はコロイドシリカを含有する排水のpHを7.5超のアルカリ性に調整したのち、pHを6〜7.5に再調整して凝集処理する。シリコン微粒子及び/又はコロイドシリカを含有する排水のpHを2段階に調整することにより、フロックの凝集効果が良好となり、上澄水のろ過速度を格段に向上させることができる。その結果、ろ過水へ漏洩する物質が少なくなり、ろ過装置、イオン交換装置などの後段の装置に及ぼす悪影響を防止することができる。本発明方法の第三の態様においては、排水に酸化剤を添加し、排水のpHを4〜8に調整して凝集処理する。アルミニウム塩は、pH5〜7.5の範囲で水酸化物を形成するが、低いpHの水酸化物はOHによる中和度が低いために、より正に帯電しており、粒子の負荷電の中和力が強い。高いpHの水酸化物はOHによる中和度が高く、微かな正荷電となり、粒子の負荷電の中和力は弱いが、フロック化作用が優れている。
【0007】
本発明方法において、排水のpHを2段階に調整することにより、フロックの凝集効果が良好となる理由は明らかではないが、概略下記のように推定される。粒子の凝集は、粒子の表面電荷の中和により起こることが知られており、一般的な金属は、pHを変化させることにより、表面電荷が0となり沈殿する。井水やシリコン微粒子及び/又はコロイドシリカ含有排水に含まれるコロイド状のシリコン又はシリカは、コロイド粒子の表面電荷が中和されることにより凝集するが、pHをいったん酸側又はアルカリ側に調整することにより、粒子表面の電荷特性が変化し、容易に凝集し得るようになるものと考えられる。また、シリカは酸性側でも、アルカリ性側でも、微量ではあるが溶解することが知られており、一度pHを酸性又はアルカリ性にしたのちに中性付近にすると、コロイド粒子の表面の改質が行われ、凝集しやすくなるとも考えられる。酸化剤の添加によっても、シリコン微粒子の表面が酸化されて部分的にシリカとなり、粒子表面の電荷特性が変化して、同様な効果が得られるものと考えられる。
図1は、本発明方法の実施の3態様の工程系統図である。図1(a)に示す態様においては、第一処理槽1において、シリコン微粒子及び/又はコロイドシリカ含有排水に酸を加えてpHを6.5未満に調整し、第二処理槽2において、アルカリを加えてpHを6.5〜7.5に調整し、さらに無機凝集剤を加えてフロックを凝集させる。無機凝集剤の添加順序に特に制限はなく、例えば、第一処理槽において、酸添加前又は酸添加後に添加することもでき、あるいは、第二処理槽において、アルカリ添加前に添加することもできる。凝集フロックが形成された排水は、凝集沈殿槽3に送り、汚泥を沈降分離させて、清澄な処理水を得る。凝集沈殿槽の代わりに、浮上分離槽を用いることもできる。
【0008】
図1(b)に示す態様においては、第一処理槽1において、シリコン微粒子及び/又はコロイドシリカ含有排水にアルカリを加えてpHを7.5超に調整し、第二処理槽2において、酸を加えてpHを6〜7.5に調整し、さらに無機凝集剤を加えてフロックを凝集させる。無機凝集剤の添加順序に特に制限はなく、例えば、第一処理槽において、アルカリ添加前又はアルカリ添加後に添加することもでき、あるいは、第二処理槽において、酸添加前に添加することもできる。凝集フロックが形成された排水は、加圧浮上槽4に送り、槽底から空気を溶解した加圧水を送ってスラッジを浮上分離させ、清澄な処理水を得る。加圧浮上槽の代わりに、電解浮上槽を用いることもでき、あるいは、凝集沈殿槽を用いることもできる。
図1(c)に示す態様においては、第一処理槽1において、シリコン微粒子及び/又はコロイドシリカ含有排水に酸化剤を添加し、第二処理槽2において、pH調整剤として酸又はアルカリを加えてpHを4〜8に調整し、さらに無機凝集剤を加えてフロックを凝集させる。無機凝集剤の添加順序に特に制限はなく、例えば、第一処理槽において、酸化剤添加前又は酸化剤添加後に添加することもでき、あるいは、第二処理槽において、pH調整剤添加前に添加することもできる。凝集フロックが形成された排水は、凝集沈殿槽3に送り、汚泥を沈降分離させて、清澄な処理水を得る。凝集沈殿槽の代わりに、浮上分離槽を用いることもできる。
【0009】
本発明方法によれば、シリコン微粒子及び/又はコロイドシリカ含有排水から、フロック径が大きい安定した凝集フロックを形成させることができる。沈降分離においては、沈降速度が粒径の2乗に比例し、浮上分離においては、粒径の大きい粒子には気泡が多く付着して見かけ密度が低下し、さらに、ろ過においては、粗大な粒子はろ材に捕捉されて流出しないので、本発明方法によれば、小型の装置を用いて、微粒子の混入の少ない、清澄度の高い、良好な水質を有する処理水を得ることができる。本発明方法によれば、少量の無機凝集剤の添加により効率的に凝集フロックを形成することができるので、汚泥の発生量を低減することができる。また、無機凝集剤の添加量が少ないので、凝集沈殿槽又は浮上分離槽から流出する処理水中の無機凝集剤の残留量が少なく、残留無機凝集剤が後段の設備であるろ過器に捕捉され、ろ過抵抗の上昇を起こし、処理水量を低下させるおそれがない。
【0010】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
なお、実施例及び比較例において、ファウリングインデックスは、JIS K 3802にしたがって測定した。すなわち、細孔径0.45μmの精密ろ過膜を用いて、試料水を206kPaの加圧下でろ過したとき、最初の500mLをろ過するのに要した時間をT秒、そのまま15分間ろ過を継続したのち、500mLをろ過するのに要した時間をT15秒とし、ファウリングインデックス(FI)を次式にしたがって計算した。
FI = 100×(1−T/T15)/15
実施例1
シリコン微粒子1,000mg/Lを含有するpH7の半導体製造プロセスのダイシング排水を処理した。この排水を第一処理槽に導入し、希塩酸を添加してpH4.0に調整した。pH4.0に調整した排水を第二処理槽に移送し、水酸化ナトリウム水溶液を添加してpH6.5に調整した。次いで、ポリ塩化アルミニウム200mg/Lを添加し、5分間撹拌してフロックを凝集させた。凝集フロック径は、2〜4mmであった。
撹拌を停止して5分間静置し、凝集フロックを沈降分離させた。上澄水1,000mLを、直径150mmの5Aろ紙を載置した内径160mmの磁製ブフナーロートに注ぎ込み、重力ろ過した。上澄水1,000mLのろ過に、40秒を要した。
実施例2
実施例1と同じダイシング排水を第一処理槽に導入し、水酸化ナトリウム水溶液を添加してpH10.0に調整した。pH10.0に調整した排水を第二処理槽に移送し、撹拌しながらpH7.0になるまで硫酸バンドを添加し、5分後に撹拌を停止した。フロックが凝集し、凝集フロック径は2〜4mmであった。
撹拌を停止して5分間静置し、凝集フロックを沈降分離させた。実施例1と同様にして、上澄水1,000mLを5Aろ紙を用いて重力ろ過した。上澄水1,000mLのろ過に、35秒を要した。
比較例1
実施例1と同じダイシング排水を第二処理槽に導入し、撹拌しながらpH6.5になるまでポリ塩化アルミニウムを添加し、5分後に撹拌を停止した。フロックはほとんど凝集せず、凝集フロック径は0.1mm未満であった。
撹拌を停止して10分間静置したが、凝集フロックの沈降分離はほとんど起こらなかった。この白濁水1,000mLを、実施例1と同様にして、直径150mmの5Aろ紙を載置した内径160mmの磁製ブフナーロートに注ぎ込み、重力ろ過を試みた。30分経過後のろ液の量は、約600mLであった。
実施例1〜2及び比較例1の結果を、第1表に示す。
【0011】
【表1】

Figure 2004261708
【0012】
実施例1〜2及び比較例1の結果から、ダイシング排水のpHをいったん酸性側又はアルカリ性側に調整したのち、pH6.5〜7.0に調整することにより、ポリ塩化アルミニウム又は硫酸バンドの凝集効果が向上し、上澄水のろ過性が格段に良好になることが分かる。
実施例3
シリカ50mg/Lを含有するファウリングインデックス6以上、pH7.4の井水を処理した。この井水を第一処理槽に導入し、希塩酸を添加してpH4.0に調整した。pH4.0に調整した井水を第二処理槽に移送し、撹拌しつつ塩化第二鉄10mg/Lを添加し、さらに水酸化ナトリウム水溶液を添加してpH7.0に調整し、5分後に、撹拌を停止した。フロックが凝集し、凝集フロック径は4mmであった。
撹拌を停止して5分間静置し、凝集フロックを沈降分離させ、上澄水を砂ろ過した。ろ過水は無色透明であり、そのファウリングインデックスは1.5であった。
比較例2
実施例3と同じ井水を第二処理槽に導入し、撹拌しつつ塩化第二鉄10mg/Lを添加し、さらに水酸化ナトリウムを添加してpH7.0に調整し、5分後に、撹拌を停止した。フロックが凝集し、凝集フロック径は1〜2mmであった。
撹拌を停止して5分間静置し、凝集フロックを沈降分離させ、上澄水を砂ろ過した。ろ過水は褐色透明であり、そのファウリングインデックスは5であった。
実施例4
シリコン微粒子1,000mg/Lを含有するファウリングインデックス6以上、pH7の半導体製造プロセスのダイシング排水を処理した。この排水を第一処理槽に導入し、希塩酸を添加してpH4.0に調整した。pH4.0に調整した排水を第二処理槽に移送し、水酸化ナトリウム水溶液を添加してpH6.5に調整した。次いで、ポリ塩化アルミニウム200mg/Lを添加し、5分間撹拌してフロックを凝集させた。凝集フロック径は、2〜4mmであった。
撹拌を停止して5分間静置し、凝集フロックを沈降分離させた。上澄水は無色透明であり、そのファウリングインデックスは2.0であった。
実施例5
実施例4と同じダイシング排水を第一処理槽に導入し、水酸化ナトリウム水溶液を添加してpH10.0に調整した。pH10.0に調整した排水を第二処理槽に移送し、希塩酸を添加してpH6.5に調整した。次いで、ポリ塩化アルミニウム200mg/Lを添加し、5分間撹拌してフロックを凝集させた。凝集フロック径は2〜4mmであった。
撹拌を停止して5分間静置し、凝集フロックを沈降分離させた。上澄水は無色透明であり、そのファウリングインデックスは1.7であった。
実施例6
実施例4と同じダイシング排水を第一処理槽に導入し、過酸化水素測定用試験紙により過酸化水素の残留が確認されるまで、30重量%過酸化水素水を添加した。過酸化水素を添加した排水を第二処理槽に移送し、塩酸を添加してpH6.5に調整した。次いで、ポリ塩化アルミニウム200mg/Lを添加し、5分間撹拌してフロックを凝集させた。凝集フロック径は2〜4mmであった。
撹拌を停止して5分間静置し、凝集フロックを沈降分離させた。上澄水は無色透明であり、そのファウリングインデックスは2.2であった。
比較例3
実施例4と同じダイシング排水を第二処理槽に導入し、塩酸を添加してpH6.5に調整した。次いで、ポリ塩化アルミニウム200mg/Lを添加し、5分間撹拌したが、フロックはほとんど凝集せず、凝集フロック径は1mm以下であった。
撹拌を停止して5分間静置したが、凝集フロックは沈降分離せず、白濁したままであった。この白濁した処理水のファウリングインデックスは、6以上であった。
比較例4
実施例4と同じダイシング排水を第二処理槽に導入し、塩酸を添加してpH6.5に調整した。次いで、撹拌しながら、ポリ塩化アルミニウムを、凝集フロックが生成するまで添加した。ポリ塩化アルミニウムの添加量は、1,200mg/Lに達した。凝集フロック径は、1〜2mmであった。
撹拌を停止して5分間静置したが、凝集フロックは沈降分離せず、白濁したままであった。この白濁した処理水のファウリングインデックスは、6以上であった。
実施例3〜6及び比較例2〜4の結果を、第2表に示す。
【0013】
【表2】
Figure 2004261708
【0014】
第2表に見られるように、排水のpHを2段階に調整して塩化第二鉄又はポリ塩化アルミニウムを添加した実施例3〜5、及び、排水に過酸化水素を添加したのちpHを調整してポリ塩化アルミニウムを添加した実施例6では、良好な凝集フロックが生成し、無色透明でファウリングインデックスの小さい上澄水が得られている。これに対して、排水のpHを1段階で調整して実施例と同量の塩化第二鉄又はポリ塩化アルミニウムを添加した比較例2〜3ではフロックがほとんど凝集せず、フロックを凝集させるためには、比較例3のように多量のポリ塩化アルミニウムの添加が必要となる。
【0015】
【発明の効果】
本発明のシリコン微粒子及び/又はコロイドシリカ含有排水の凝集処理方法によれば、排水のpHを6.5未満の酸性若しくは7.5超のアルカリ性にいったん調整したのち、pHを中性に調整して凝集処理し、又は、排水に酸化剤を添加し、排水のpHを4〜8に調整して凝集処理するので、安定した凝集フロックが形成され、上澄水のろ過性が良好であり、無色透明でファウリングインデックスの小さい良好な水質を有する処理水を得ることができる。
【図面の簡単な説明】
【図1】図1は、本発明方法の実施の3態様の工程系統図である。
【符号の説明】
1 第一処理槽
2 第二処理槽
3 凝集沈殿槽
4 加圧浮上槽[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of coagulating wastewater containing silicon fine particles and / or colloidal silica. More specifically, the present invention coagulates waste water containing silicon fine particles and / or colloidal silica generated in a semiconductor manufacturing process or the like to efficiently recover silicon fine particles and / or colloidal silica and improve water quality. The present invention relates to a method of coagulating wastewater containing silicon fine particles and / or colloidal silica from which treated water can be obtained.
[0002]
[Prior art]
In a semiconductor manufacturing process such as slicing of a silicon ingot, back grinding of a silicon wafer, and dicing, waste water containing a large amount of silicon fine particles is generated. In addition, when colloidal silica is used as abrasive grains in the polishing process of a silicon wafer, the colloidal silica is mixed in the wastewater. Conventionally, such waste water is directly or concentrated by an ultrafiltration membrane, and then subjected to solid-liquid separation by a coagulation sedimentation method or a flotation separation method. However, the cohesion of silicon fine particles is very poor, and a large amount of coagulant has to be added, the amount of sludge generated has increased, and the cost of wastewater treatment has also increased. For that purpose, various methods for effectively treating wastewater containing silicon fine particles have been studied.
For example, as a method of flotation-separating silicon polishing wastewater in a small site area to obtain treated water of good quality, a step of adding an inorganic coagulant to silicon polishing wastewater, and then adding a flotation aid and a polymer coagulant A floatation / separation method for silicon polishing wastewater has been proposed which includes a process followed by a treatment with pressurized water containing microbubbles (Patent Document 1). In addition, as a method of treating silicon cutting waste liquid to achieve wastewater treatment that can be discharged using existing coagulation sedimentation separation equipment, silicon release waste liquid was subjected to hydrogen release and sedimentation separation of silicon cutting waste in a cascade type water tank. After that, a method of treating waste silicon cutting liquid in which the pH of the supernatant water is adjusted, a coagulant is added, coagulation sedimentation separation treatment is performed, and filtration and discharge are performed has been proposed (Patent Document 2). Further, as a method for efficiently removing cutting powder from cutting wastewater containing metal silicon cutting powder, aluminum chloride or iron chloride is added as a coagulant to cutting wastewater containing metal silicon cutting powder, and the pH is reduced. Is adjusted to 10 or more to float metal silicon aggregates and to separate them (Patent Document 3).
However, since the silicon fine particles have poor cohesiveness, the silicon fine particles and aluminum, which is a coagulant component, leak into the treated water, and the filtration rate of the treated water decreases. In addition, silicon fine particle-containing wastewater generated in a semiconductor manufacturing process is often collected and used as raw water for a pure water apparatus. In such a case, leakage of silica fine particles and aluminum occurs in a subsequent pure water apparatus. It has an adverse effect such as a rise in differential pressure and poor quality of treated water.
[Patent Document 1]
Japanese Patent Publication No. Hei 3-14516 (page 1-2)
[Patent Document 2]
JP-A-6-134469 (page 2)
[Patent Document 3]
JP-A-10-323675 (page 2)
[0003]
[Problems to be solved by the invention]
According to the present invention, wastewater containing silicon fine particles and / or colloidal silica generated in a semiconductor manufacturing process or the like is subjected to coagulation treatment to efficiently recover silicon fine particles and / or colloidal silica and obtain treated water having good water quality. It is an object of the present invention to provide a method for coagulating waste water containing silicon fine particles and / or colloidal silica.
[0004]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, in the coagulation treatment method in which an aluminum-based inorganic coagulant is added to waste water containing silicon fine particles and / or colloidal silica, the pH of the waste water is adjusted to 6 Once adjusted to an acidity of less than 0.5 or an alkalinity of more than 7.5, the pH is readjusted to neutral and subjected to coagulation treatment, or an oxidizing agent is added to the wastewater to adjust the pH of the wastewater to 4-8. It has been found that stable flocculation is formed by performing coagulation treatment by adjusting the water content, and that treated water having good water quality can be obtained. Based on this finding, the present invention has been completed.
That is, the present invention
(1) In a flocculation treatment method of adding an inorganic flocculant to wastewater containing silicon fine particles and / or colloidal silica,
(A) After adjusting the pH of the wastewater to less than 6.5, the pH is adjusted to 6.5 to 7.5 to perform a coagulation treatment;
(B) After adjusting the pH of the wastewater to more than 7.5, the pH is adjusted to 6 to 7.5 to perform the coagulation treatment, or
(C) a flocculation treatment method for wastewater containing silicon fine particles and / or colloidal silica, wherein an oxidizing agent is added to the wastewater and the pH of the wastewater is adjusted to 4 to 8 to carry out a flocculation treatment;
(2) The method for coagulating waste water containing silicon fine particles and / or colloidal silica according to item 1, wherein the inorganic coagulant is an aluminum-based inorganic coagulant;
Is provided.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
The method of the present invention is a coagulation treatment method in which an inorganic coagulant is added to waste water containing silicon fine particles and / or colloidal silica, wherein (a) adjusting the pH of the waste water to less than 6.5, and then adjusting the pH to 6.5 to 6.5. Coagulation treatment by adjusting to 7.5, (b) after adjusting the pH of the wastewater to more than 7.5, and then coagulation treatment by adjusting the pH to 6 to 7.5, or (c) oxidation to wastewater This is a coagulation treatment method for wastewater containing silicon fine particles and / or colloidal silica which is subjected to coagulation treatment by adding an agent and adjusting the pH of the wastewater to 4 to 8. The method of the present invention is used for slicing of silicon ingot, back grinding of silicon wafer, waste water containing a large amount of silicon fine particles generated in a semiconductor manufacturing process such as dicing, and a polishing process of a silicon wafer using colloidal silica as abrasive grains. The present invention can be applied to wastewater containing generated silicon fine particles and colloidal silica.
The inorganic flocculant used in the method of the present invention is not particularly limited, and examples thereof include a sulfate band, polyaluminum chloride, ferric chloride, and ferrous sulfate. Among these, aluminum-based flocculants such as sulfuric acid bands and polyaluminum chloride have no corrosive or irritant properties, exhibit a flocculating effect in the neutral region, form good flocculated flocs, and reduce the amount of sludge generated. Since it is small, it can be suitably used. In the method of the present invention, the temperature of the coagulation treatment is not particularly limited, but is preferably 5 to 40 ° C, more preferably 15 to 25 ° C. In the method of the present invention, a flocculant can be enhanced by adding a polymer flocculant in addition to the inorganic flocculant.
[0006]
There is no particular limitation on the pH adjusting agent used in the method of the present invention, and examples thereof include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, and nitric acid, and inorganic alkalis such as sodium hydroxide, potassium hydroxide, calcium hydroxide, and sodium carbonate. Can be mentioned. When the pH of wastewater changes due to the addition of an inorganic coagulant, the inorganic coagulant can also serve as a pH adjuster.
The oxidizing agent used in the method of the present invention is not particularly limited, and examples thereof include hydrogen peroxide, ozone, chlorine, hypochlorite, and bromate. Among them, hydrogen peroxide is particularly preferably used because it is easy to handle as an aqueous solution and decomposes into oxygen and water after use to leave no foreign substances in the treated water.
In the first embodiment of the method of the present invention, after adjusting the pH of the waste water containing silicon fine particles and / or colloidal silica to an acidity of less than 6.5, the pH is readjusted to 6.5 to 7.5. Coagulation treatment is performed. In the second embodiment of the method of the present invention, the pH of the waste water containing fine silicon particles and / or colloidal silica is adjusted to an alkalinity of more than 7.5, and then the pH is readjusted to 6 to 7.5 to perform the coagulation treatment. I do. By adjusting the pH of the waste water containing silicon fine particles and / or colloidal silica in two stages, the flocculation effect of the flocs is improved, and the filtration rate of the supernatant water can be remarkably improved. As a result, substances leaking into the filtered water are reduced, and adverse effects on downstream devices such as a filtration device and an ion exchange device can be prevented. In the third embodiment of the method of the present invention, an oxidizing agent is added to the wastewater, and the pH of the wastewater is adjusted to 4 to 8 for coagulation treatment. Aluminum salt, forms a hydroxide in the range of PH5~7.5, low pH of the hydroxide OH - due to the low degree of neutralization by, and more positively charged, negatively charged particles Strong neutralizing power. A hydroxide having a high pH has a high degree of neutralization by OH − and has a slight positive charge, and has a weak neutralizing power of negatively charged particles, but has an excellent flocculant action.
[0007]
In the method of the present invention, the reason why the floc aggregation effect is improved by adjusting the pH of the wastewater in two stages is not clear, but is roughly estimated as follows. It is known that agglomeration of particles occurs due to neutralization of the surface charge of the particles. In general, a metal changes its pH to have a surface charge of 0 and precipitates. Colloidal silicon or silica contained in well water, silicon fine particles and / or colloidal silica-containing wastewater aggregates by neutralizing the surface charge of the colloidal particles, but once adjusts the pH to the acid side or alkali side. This is considered to change the charge characteristics of the particle surface and facilitate aggregation. In addition, silica is known to dissolve in a small amount on both the acidic side and the alkaline side, and once the pH is made acidic or alkaline and then near neutral, the surface of the colloid particles is modified. It is thought that it is easy to aggregate. It is considered that the addition of the oxidizing agent also oxidizes the surface of the silicon fine particles to partially form silica, changes the charge characteristics of the particle surface, and obtains a similar effect.
FIG. 1 is a process flow chart of three embodiments of the method of the present invention. In the embodiment shown in FIG. 1 (a), in the first treatment tank 1, the pH is adjusted to less than 6.5 by adding an acid to wastewater containing silicon fine particles and / or colloidal silica. Is added to adjust the pH to 6.5 to 7.5, and an inorganic coagulant is added to coagulate the floc. There is no particular limitation on the order of addition of the inorganic flocculant. For example, in the first treatment tank, it may be added before or after acid addition, or in the second treatment tank, it may be added before alkali addition. . The wastewater in which the flocculated flocs are formed is sent to the flocculation settling tank 3, where the sludge is settled and separated to obtain clear treated water. A flotation tank can be used instead of the coagulation settling tank.
[0008]
In the embodiment shown in FIG. 1 (b), in the first treatment tank 1, the pH is adjusted to more than 7.5 by adding an alkali to waste water containing silicon fine particles and / or colloidal silica, and in the second treatment tank 2, the acid is added. Is added to adjust the pH to 6 to 7.5, and an inorganic coagulant is added to coagulate the floc. There is no particular limitation on the order of addition of the inorganic flocculant. For example, in the first treatment tank, it can be added before or after alkali addition, or in the second treatment tank, it can be added before acid addition. . The wastewater in which the flocculated flocs are formed is sent to the pressurized floating tank 4, and pressurized water in which air is dissolved is sent from the tank bottom to float and separate the sludge to obtain clear treated water. Instead of the pressurized flotation tank, an electrolytic flotation tank can be used, or a coagulation sedimentation tank can be used.
In the embodiment shown in FIG. 1 (c), an oxidizing agent is added to waste water containing silicon fine particles and / or colloidal silica in a first treatment tank 1, and an acid or alkali is added as a pH adjuster in a second treatment tank 2. The pH is adjusted to 4 to 8 by further adding an inorganic coagulant to coagulate the floc. The order of addition of the inorganic flocculant is not particularly limited. For example, in the first treatment tank, it can be added before or after the addition of the oxidizing agent, or in the second treatment tank, added before the addition of the pH adjuster. You can also. The wastewater in which the flocculated flocs are formed is sent to the flocculation settling tank 3, where the sludge is settled and separated to obtain clear treated water. A flotation tank can be used instead of the coagulation settling tank.
[0009]
According to the method of the present invention, a stable flocculated floc having a large floc diameter can be formed from waste water containing silicon fine particles and / or colloidal silica. In sedimentation separation, the sedimentation velocity is proportional to the square of the particle size. In flotation separation, many particles adhere to large particles and the apparent density decreases, and in filtration, coarse particles are used. According to the method of the present invention, treated water having a small amount of fine particles, high clarity, and good water quality can be obtained using a small-sized apparatus because the water is not captured by the filter medium. According to the method of the present invention, flocculated flocs can be efficiently formed by adding a small amount of an inorganic flocculant, so that the amount of generated sludge can be reduced. In addition, since the amount of the added inorganic coagulant is small, the residual amount of the inorganic coagulant in the treated water flowing out of the coagulation sedimentation tank or the flotation separation tank is small, and the residual inorganic coagulant is captured by a filter, which is a facility at a subsequent stage. There is no danger of raising the filtration resistance and reducing the amount of treated water.
[0010]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In the examples and the comparative examples, the fouling index was measured according to JIS K3802. That is, when the sample water was filtered using a microfiltration membrane having a pore diameter of 0.45 μm under a pressure of 206 kPa, the time required for filtering the first 500 mL was T 0 seconds, and the filtration was continued for 15 minutes as it was. Thereafter, the time required for filtering 500 mL was T 15 seconds, and the fouling index (FI) was calculated according to the following equation.
FI = 100 × (1−T 0 / T 15 ) / 15
Example 1
Dicing wastewater of a semiconductor manufacturing process having a pH of 7 and containing silicon fine particles of 1,000 mg / L was treated. This wastewater was introduced into the first treatment tank, and the pH was adjusted to 4.0 by adding dilute hydrochloric acid. The wastewater adjusted to pH 4.0 was transferred to the second treatment tank, and adjusted to pH 6.5 by adding an aqueous sodium hydroxide solution. Next, 200 mg / L of polyaluminum chloride was added, and the mixture was stirred for 5 minutes to aggregate flocs. The aggregate floc diameter was 2 to 4 mm.
The stirring was stopped and the mixture was allowed to stand for 5 minutes to settle and separate the aggregated flocs. 1,000 mL of the supernatant water was poured into a porcelain Buchner funnel having an inner diameter of 160 mm on which a 5A filter paper having a diameter of 150 mm was placed, followed by gravity filtration. It took 40 seconds to filter 1,000 mL of the supernatant water.
Example 2
The same dicing waste water as in Example 1 was introduced into the first treatment tank, and the pH was adjusted to 10.0 by adding an aqueous sodium hydroxide solution. The wastewater adjusted to pH 10.0 was transferred to the second treatment tank, and a sulfuric acid band was added with stirring until the pH reached 7.0, and the stirring was stopped after 5 minutes. The floc aggregated, and the aggregate floc diameter was 2 to 4 mm.
The stirring was stopped and the mixture was allowed to stand for 5 minutes to settle and separate the aggregated flocs. In the same manner as in Example 1, 1,000 mL of the supernatant water was subjected to gravity filtration using a 5A filter paper. It took 35 seconds to filter 1,000 mL of supernatant water.
Comparative Example 1
The same dicing wastewater as in Example 1 was introduced into the second treatment tank, and while stirring, polyaluminum chloride was added until the pH reached 6.5, and the stirring was stopped after 5 minutes. Flock hardly aggregated, and the aggregated floc diameter was less than 0.1 mm.
The stirring was stopped and the mixture was allowed to stand for 10 minutes, but sedimentation and separation of aggregated flocks hardly occurred. In the same manner as in Example 1, 1,000 mL of this cloudy water was poured into a porcelain Buchner funnel having an inner diameter of 160 mm on which a 5A filter paper having a diameter of 150 mm was placed, and gravity filtration was attempted. The amount of the filtrate after elapse of 30 minutes was about 600 mL.
Table 1 shows the results of Examples 1 and 2 and Comparative Example 1.
[0011]
[Table 1]
Figure 2004261708
[0012]
From the results of Examples 1 and 2 and Comparative Example 1, once the pH of the dicing wastewater was adjusted to the acidic side or the alkaline side, and then adjusted to pH 6.5 to 7.0, aggregation of the polyaluminum chloride or sulfate band was performed. It can be seen that the effect is improved and the filterability of the supernatant water is significantly improved.
Example 3
Well water having a fouling index of 6 or more and a pH of 7.4 containing 50 mg / L of silica was treated. This well water was introduced into the first treatment tank, and the pH was adjusted to 4.0 by adding dilute hydrochloric acid. The well water adjusted to pH 4.0 was transferred to the second treatment tank, and 10 mg / L of ferric chloride was added with stirring, and further adjusted to pH 7.0 by adding an aqueous sodium hydroxide solution, and 5 minutes later. The stirring was stopped. The flocs aggregated, and the aggregate floc diameter was 4 mm.
The stirring was stopped and the mixture was allowed to stand still for 5 minutes to settle and separate the flocculated floc, and the supernatant water was subjected to sand filtration. The filtered water was colorless and transparent, and had a fouling index of 1.5.
Comparative Example 2
The same well water as in Example 3 was introduced into the second treatment tank, and 10 mg / L of ferric chloride was added with stirring, and sodium hydroxide was added to adjust the pH to 7.0. After 5 minutes, the mixture was stirred. Stopped. The flocs aggregated, and the aggregate floc diameter was 1-2 mm.
The stirring was stopped and the mixture was allowed to stand still for 5 minutes to settle and separate the flocculated floc, and the supernatant water was subjected to sand filtration. The filtered water was brown and transparent, and had a fouling index of 5.
Example 4
Dicing wastewater of a semiconductor manufacturing process having a fouling index of 6 or more and a pH of 7 containing 1,000 mg / L of silicon fine particles was treated. This wastewater was introduced into the first treatment tank, and the pH was adjusted to 4.0 by adding dilute hydrochloric acid. The wastewater adjusted to pH 4.0 was transferred to the second treatment tank, and adjusted to pH 6.5 by adding an aqueous sodium hydroxide solution. Next, 200 mg / L of polyaluminum chloride was added, and the mixture was stirred for 5 minutes to aggregate flocs. The aggregate floc diameter was 2 to 4 mm.
The stirring was stopped and the mixture was allowed to stand for 5 minutes to settle and separate the aggregated flocs. The supernatant water was colorless and transparent, and its fouling index was 2.0.
Example 5
The same dicing waste water as in Example 4 was introduced into the first treatment tank, and the pH was adjusted to 10.0 by adding an aqueous sodium hydroxide solution. The wastewater adjusted to pH 10.0 was transferred to the second treatment tank, and adjusted to pH 6.5 by adding dilute hydrochloric acid. Next, 200 mg / L of polyaluminum chloride was added, and the mixture was stirred for 5 minutes to aggregate flocs. The aggregate floc diameter was 2 to 4 mm.
The stirring was stopped and the mixture was allowed to stand for 5 minutes to settle and separate the aggregated flocs. The supernatant water was colorless and transparent, and its fouling index was 1.7.
Example 6
The same dicing wastewater as in Example 4 was introduced into the first treatment tank, and 30% by weight of hydrogen peroxide was added until residual hydrogen peroxide was confirmed by a test paper for measuring hydrogen peroxide. The wastewater to which hydrogen peroxide was added was transferred to a second treatment tank, and hydrochloric acid was added to adjust the pH to 6.5. Next, 200 mg / L of polyaluminum chloride was added, and the mixture was stirred for 5 minutes to aggregate flocs. The aggregate floc diameter was 2 to 4 mm.
The stirring was stopped and the mixture was allowed to stand for 5 minutes to settle and separate the aggregated flocs. The supernatant water was colorless and transparent, and its fouling index was 2.2.
Comparative Example 3
The same dicing waste water as in Example 4 was introduced into the second treatment tank, and the pH was adjusted to 6.5 by adding hydrochloric acid. Subsequently, 200 mg / L of polyaluminum chloride was added and stirred for 5 minutes, but flocs hardly aggregated, and the aggregated floc diameter was 1 mm or less.
The stirring was stopped and the mixture was allowed to stand for 5 minutes, but the aggregated flocs did not settle and separate, and remained cloudy. The fouling index of the turbid treated water was 6 or more.
Comparative Example 4
The same dicing waste water as in Example 4 was introduced into the second treatment tank, and the pH was adjusted to 6.5 by adding hydrochloric acid. Then, with stirring, polyaluminum chloride was added until aggregated flocs were formed. The addition amount of polyaluminum chloride reached 1,200 mg / L. The aggregate floc diameter was 1-2 mm.
The stirring was stopped and the mixture was allowed to stand for 5 minutes, but the aggregated flocs did not settle and separate, and remained cloudy. The fouling index of the turbid treated water was 6 or more.
Table 2 shows the results of Examples 3 to 6 and Comparative Examples 2 to 4.
[0013]
[Table 2]
Figure 2004261708
[0014]
As seen in Table 2, Examples 3 to 5 in which the pH of the wastewater was adjusted in two stages and ferric chloride or polyaluminum chloride was added, and the pH was adjusted after adding hydrogen peroxide to the wastewater In Example 6 in which polyaluminum chloride was added, good coagulated flocs were formed, and clear and colorless supernatant water having a small fouling index was obtained. On the other hand, in Comparative Examples 2 to 3 in which the pH of the wastewater was adjusted in one step and the same amount of ferric chloride or polyaluminum chloride was added as in the examples, flocs hardly aggregated, and flocs were aggregated. Requires a large amount of polyaluminum chloride as in Comparative Example 3.
[0015]
【The invention's effect】
According to the method for coagulating wastewater containing silicon fine particles and / or colloidal silica of the present invention, the pH of the wastewater is once adjusted to an acidity of less than 6.5 or an alkalinity of more than 7.5, and then the pH is adjusted to neutral. Coagulation treatment, or by adding an oxidizing agent to the wastewater, and adjusting the pH of the wastewater to 4 to 8 to carry out the coagulation treatment, so that a stable coagulated floc is formed, the filtrate of the supernatant water is good, and the colorless It is possible to obtain treated water having good water quality, which is transparent and has a small fouling index.
[Brief description of the drawings]
FIG. 1 is a process flow chart of three embodiments of the method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 First treatment tank 2 Second treatment tank 3 Coagulation sedimentation tank 4 Pressurized floating tank

Claims (2)

シリコン微粒子及び/又はコロイドシリカを含有する排水に無機凝集剤を添加する凝集処理方法において、
(a)排水のpHを6.5未満に調整したのち、pHを6.5〜7.5に調整して凝集処理する、
(b)排水のpHを7.5超に調整したのち、pHを6〜7.5に調整して凝集処理する、又は、
(c)排水に酸化剤を添加し、排水のpHを4〜8に調整して凝集処理することを特徴とするシリコン微粒子及び/又はコロイドシリカ含有排水の凝集処理方法。
In a coagulation treatment method of adding an inorganic coagulant to waste water containing silicon fine particles and / or colloidal silica,
(A) After adjusting the pH of the wastewater to less than 6.5, the pH is adjusted to 6.5 to 7.5 to perform a coagulation treatment;
(B) After adjusting the pH of the wastewater to more than 7.5, the pH is adjusted to 6 to 7.5 to perform the coagulation treatment, or
(C) A method for agglomerating wastewater containing silicon fine particles and / or colloidal silica, wherein an oxidizing agent is added to the wastewater, and the pH of the wastewater is adjusted to 4 to 8 to perform agglomeration treatment.
無機凝集剤が、アルミニウム系無機凝集剤である請求項1記載のシリコン微粒子及び/又はコロイドシリカ含有排水の凝集処理方法。The method according to claim 1, wherein the inorganic coagulant is an aluminum-based inorganic coagulant.
JP2003054184A 2003-02-28 2003-02-28 Flocuration treatment method for silicon particulate and/or colloidal silica containing waste water Pending JP2004261708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003054184A JP2004261708A (en) 2003-02-28 2003-02-28 Flocuration treatment method for silicon particulate and/or colloidal silica containing waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003054184A JP2004261708A (en) 2003-02-28 2003-02-28 Flocuration treatment method for silicon particulate and/or colloidal silica containing waste water

Publications (1)

Publication Number Publication Date
JP2004261708A true JP2004261708A (en) 2004-09-24

Family

ID=33118599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003054184A Pending JP2004261708A (en) 2003-02-28 2003-02-28 Flocuration treatment method for silicon particulate and/or colloidal silica containing waste water

Country Status (1)

Country Link
JP (1) JP2004261708A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005152879A (en) * 2003-11-06 2005-06-16 Sanyo Electric Co Ltd Coagulation treatment device for fluid and coagulation treatment method employing it
WO2007023874A1 (en) * 2005-08-24 2007-03-01 Tokuyama Corporation Method for treatment of wastewater containing fumed silica
JP2007083226A (en) * 2005-08-24 2007-04-05 Tokuyama Corp Method for treatment of wastewater containing fumed silica
JP2007130561A (en) * 2005-11-09 2007-05-31 Japan Ecology Corp Method of treating waste liquid containing silicon particle, and method of collecting silicon from waste liquid containing silicon particle
JP2007185647A (en) * 2005-08-24 2007-07-26 Tokuyama Corp Method of treating silicon powder-containing drainage
JP2008238030A (en) * 2007-03-27 2008-10-09 Kurita Water Ind Ltd Flocculation treatment method
WO2009081245A1 (en) * 2007-12-19 2009-07-02 Applied Materials Switzerland Sa Method for recovering silicon from sawing waste
JP2011050815A (en) * 2009-08-31 2011-03-17 Fuji Xerox Co Ltd Water treatment apparatus and water treatment method
US20110081289A1 (en) * 2009-10-01 2011-04-07 Epworks Co., Ltd. Method for regenerating silicon from silicon waste and silicon manufactured using the same
US7988867B2 (en) 2005-08-24 2011-08-02 Tokuyama Corporation Method of treating silicon powder-containing drainage water
JP2012050948A (en) * 2010-09-02 2012-03-15 Nippon Rensui Co Ltd Device for treating waste water and method of treating the same
JP2013176721A (en) * 2012-02-28 2013-09-09 Japan Organo Co Ltd Method of treating silicon-containing wastewater
WO2014017531A1 (en) * 2012-07-25 2014-01-30 コニカミノルタ株式会社 Polishing-material reclamation method
JP2018126722A (en) * 2017-02-10 2018-08-16 株式会社クラレ Processing method and processing equipment for silica-containing water
CN110002655A (en) * 2019-05-13 2019-07-12 山东金汇膜科技股份有限公司 A kind of silica gel Wastewater zero-discharge treatment system
CN110002655B (en) * 2019-05-13 2024-04-26 山东金汇膜科技股份有限公司 Zero release processing system of silica gel waste water

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005152879A (en) * 2003-11-06 2005-06-16 Sanyo Electric Co Ltd Coagulation treatment device for fluid and coagulation treatment method employing it
US7988866B2 (en) 2005-08-24 2011-08-02 Tokuyama Corporation Method of treating fumed silica-containing drainage water
WO2007023874A1 (en) * 2005-08-24 2007-03-01 Tokuyama Corporation Method for treatment of wastewater containing fumed silica
JP2007083226A (en) * 2005-08-24 2007-04-05 Tokuyama Corp Method for treatment of wastewater containing fumed silica
JP2007185647A (en) * 2005-08-24 2007-07-26 Tokuyama Corp Method of treating silicon powder-containing drainage
JP4630240B2 (en) * 2005-08-24 2011-02-09 株式会社トクヤマ Treatment method for wastewater containing silicon powder
JP4644164B2 (en) * 2005-08-24 2011-03-02 株式会社トクヤマ Method of treating wastewater containing fumed silica
US7988867B2 (en) 2005-08-24 2011-08-02 Tokuyama Corporation Method of treating silicon powder-containing drainage water
JP2007130561A (en) * 2005-11-09 2007-05-31 Japan Ecology Corp Method of treating waste liquid containing silicon particle, and method of collecting silicon from waste liquid containing silicon particle
JP4584117B2 (en) * 2005-11-09 2010-11-17 日本エコロジー株式会社 Method for treating waste liquid containing silicon particles, and method for recovering silicon from waste liquid containing silicon particles
JP2008238030A (en) * 2007-03-27 2008-10-09 Kurita Water Ind Ltd Flocculation treatment method
WO2009081245A1 (en) * 2007-12-19 2009-07-02 Applied Materials Switzerland Sa Method for recovering silicon from sawing waste
US8381914B2 (en) 2007-12-19 2013-02-26 Ecole Polytechnique Federale De Lausanne (Epfl) Method for recovering silicon from sawing waste
JP2011050815A (en) * 2009-08-31 2011-03-17 Fuji Xerox Co Ltd Water treatment apparatus and water treatment method
US20110081289A1 (en) * 2009-10-01 2011-04-07 Epworks Co., Ltd. Method for regenerating silicon from silicon waste and silicon manufactured using the same
US8821826B2 (en) * 2009-10-01 2014-09-02 Epworks Co., Ltd. Method for regenerating silicon from silicon waste and silicon manufactured using the same
JP2012050948A (en) * 2010-09-02 2012-03-15 Nippon Rensui Co Ltd Device for treating waste water and method of treating the same
JP2013176721A (en) * 2012-02-28 2013-09-09 Japan Organo Co Ltd Method of treating silicon-containing wastewater
WO2014017531A1 (en) * 2012-07-25 2014-01-30 コニカミノルタ株式会社 Polishing-material reclamation method
CN104703759A (en) * 2012-07-25 2015-06-10 柯尼卡美能达株式会社 Polishing-material reclamation method
JPWO2014017531A1 (en) * 2012-07-25 2016-07-11 コニカミノルタ株式会社 Abrasive recycling method
JP2018126722A (en) * 2017-02-10 2018-08-16 株式会社クラレ Processing method and processing equipment for silica-containing water
CN110002655A (en) * 2019-05-13 2019-07-12 山东金汇膜科技股份有限公司 A kind of silica gel Wastewater zero-discharge treatment system
CN110002655B (en) * 2019-05-13 2024-04-26 山东金汇膜科技股份有限公司 Zero release processing system of silica gel waste water

Similar Documents

Publication Publication Date Title
JP2004261708A (en) Flocuration treatment method for silicon particulate and/or colloidal silica containing waste water
JP4168520B2 (en) Method for treating CMP drainage
JP5440199B2 (en) Silicon wafer etching wastewater treatment method and treatment apparatus
JP4806426B2 (en) Method and apparatus for detoxifying heavy metal ions simultaneously with inorganic suspended particles
JPH1133560A (en) Flocculation treatment of cmp waste solution
JP5869371B2 (en) Treatment method of wastewater containing silicon
JP3340029B2 (en) Method of treating wastewater containing SiO2
JP2007185647A (en) Method of treating silicon powder-containing drainage
JP4272122B2 (en) Coagulated water treatment method and apparatus
JP2000140861A (en) Treatment of waste water incorporating fine abrasive grains-dispersed polishing liquid
JP4000205B2 (en) Method for separating cutting powder from silicon waste liquid
WO2019208532A1 (en) Water treatment method and water treatment apparatus
JP7083274B2 (en) Water treatment method and water treatment equipment
JP2012050948A (en) Device for treating waste water and method of treating the same
JP4507267B2 (en) Water treatment method
JP2003260472A (en) Treatment method for fluorine-containing water
JP2004041900A (en) Treatment method for colloidal silica-containing water
JP3939970B2 (en) Coal storage wastewater treatment method
JPH1043770A (en) Treatment of waste water containing suspended particle
JP7117101B2 (en) Water treatment method and device
JP2000300912A5 (en)
JP2004225120A (en) Method for improving precipitation property of neutralized sediment
JP2022165279A (en) Coagulation membrane filtration treatment method
JP5874359B2 (en) Aggregation method
JP2005177600A (en) Coagulation treatment method and apparatus