JP2004257889A - Measurement gauge for optical instrumentations and its mounting method - Google Patents

Measurement gauge for optical instrumentations and its mounting method Download PDF

Info

Publication number
JP2004257889A
JP2004257889A JP2003049740A JP2003049740A JP2004257889A JP 2004257889 A JP2004257889 A JP 2004257889A JP 2003049740 A JP2003049740 A JP 2003049740A JP 2003049740 A JP2003049740 A JP 2003049740A JP 2004257889 A JP2004257889 A JP 2004257889A
Authority
JP
Japan
Prior art keywords
shaped member
band
gauge
rotating shaft
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003049740A
Other languages
Japanese (ja)
Inventor
Shuichi Umezawa
修一 梅沢
Hajime Obikawa
元 帯川
Hisashi Saito
久 齋藤
Toyoichi Inumaru
豊一 犬丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2003049740A priority Critical patent/JP2004257889A/en
Publication of JP2004257889A publication Critical patent/JP2004257889A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measurement gauge capable of sticking a reflector of the measurement gauge on a rotational shaft as an object to be measured easily and precisely, and to provide a method of mounting it. <P>SOLUTION: The measurement gauge 50 is stuck on the outer periphery of the turbine rotor 4 provided with a reflector P having a bar code area while reflecting light rays irradiating a turbine rotor 4 to light receiving part of the optical instrument. The measurement gauge 50 is provided with a long strip-shaped member 51 having a straight edge 51a extending toward longitudinal direction, and the reflector P wherein a bar code area is provided. Each bar code in the bar code area is provided perpendicular to and referring to the edge 51a of the strip-shaped member 51. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光学計測器用の測定ゲージに関し、より詳細には、計測対象たる回転軸のトルクや回転速度を、非接触且つ光学的に計測する光学計測器用の測定ゲージおよびその取付方法に関する。
【0002】
【従来の技術】
この種の光学計測器として、計測器本体と、計測対象たる回転軸に貼着される測定ゲージからなるトルク計測装置が知られている(特許文献1)。
【0003】
より詳しくは、まず、エッチングにてバーコード領域が付された反射部を有する測定ゲージを、計測対象たる回転軸の軸方向に所定間隔をあけて複数貼り付ける。続いて、回転軸を回転させると共に、測定ゲージが貼着された箇所を測定部として各測定部(反射部)にレーザ光を照射する。また、各測定部の反射光を受光部にて受光し、その反射光から得られるパルス信号に基づき各測定部の回転周期及び回転速度を求める。また、併せて測定部間のパルス信号の位相差を求め、これら回転速度及び位相差から回転軸のトルクを算出している。
【0004】
【特許文献1】特開2000−205977号公報
【0005】
ところで、この種の光学計測器では、計測器本体の性能もさることながら、いかに測定ゲージを精度良く計測対象に貼り付けるかが、計測精度を高める上で重要なポイントになる。
【0006】
なお、従来では、約2cm四方の小片からなる測定ゲージの裏面にノリを塗布し、この状態で計測対象たる回転軸の表面に測定ゲージを仮付けし、次いで、測定ゲージの位置や角度を微調整した後、測定ゲージを回転軸に本付けする。なお、測定ゲージの位置調整は、作業者の勘や経験に委ねられており、作業者は、回転軸の中心線を目安に、この中心線に対してバーコード領域の各コードが平行に保たれるように測定ゲージの位置や角度を調整していた。
【0007】
【発明が解決しようとする課題】
しかしながら、従来では、作業者の勘や経験に委ねて測定ゲージを貼着するため、時として回転軸の中心線に対して測定ゲージが曲がった状態で貼り付けられていることもあった。このため、図5に示されるように、回転軸の軸方向に作用する振動や熱膨張の発生に伴い、各コードの位置は回転軸の周方向に相対的にズレ、本来得られるべき反射状態と異なる反射状態でレーザ光が計測器本体に入力されることとなる。つまり、作業者の勘や経験に委ねて測定ゲージを貼着した場合には、時として計測値に誤差が生じる場合もある。
【0008】
とりわけ、発電プラント等に組み込まれる直径70cmを優に超える大径のロータシャフト(タービンロータ)では、計測対象たるロータシャフトに較べて測定ゲージがあまりにも小さく、また、ロータシャフトの露出部分が少ない等の理由から、熟練の技術を以てしても両者の位置関係の把握は困難であり、このため測定ゲージの貼着時には、発電プラントを分解してロータシャフトを取り外し、この状態で測定ゲージを貼り付けていた。
つまり、大径の回転軸に精度良く測定ゲージを貼り付けるには、多くの労力と熟練の技術が要求されていた。
【0009】
本発明は、このような技術的背景を考慮してなされたもので、計測対象たる回転軸に容易且つ精度良く反射部を貼着し得る技術の提供を課題とする。
【0010】
【課題を解決するための手段】
上記した技術的課題を解決するため、本発明では以下構成とした。
すなわち、本発明は、
計測対象たる回転軸の外周面に貼着されると共に、この回転軸に照射された光線を反射して光学計測器の受光部に入射するバーコード領域が設けられた反射部を有する光学計測器用の測定ゲージであって、
前記測定ゲージは、長手方向に延びる直線状の縁部を有する長尺の帯状部材と、この帯状部材に設けられた前記反射部と、を備え、
前記反射部に設けられるバーコード領域の各コードは、前記帯状部材の縁部を基準にこの縁部に対して直角に設けられていることを特徴とする。
【0011】
このように構成された本発明の測定ゲージは、長手方向に延びる直線状の縁部を有する長尺の帯状部材と、この帯状部材に設けられた反射部と、を備えて構成されている。また、反射部に設けられるバーコード領域の各コードは、帯状部材の縁部を基準にこの縁部に対して直角に設けられている。
なお、上記で「長尺」とは、バーコード領域に於ける各コードの長さに較べて、視覚上、十分に長いと認識し得る長さに相当する。また、「バーコード領域」とは、反射の有無や反射光の強度に変化を与える機能を備えた領域に相当する。
【0012】
したがって、回転軸の周方向に延びる基準線上に前記帯状部材の縁部を合わせて配置することで、貼着作業の目安となるべき基準点を測定ゲージの周囲に多数確保でき、以て、バーコード領域と回転軸の中心線とを相対的に比較して測定ゲージを貼り付ける場合に較べて、精度の高い貼り付けが可能となる。
なお、ここで「回転軸の周方向に延びる基準線」とは、その線上を通る断面が、回転軸の中心線に対して直角に交わる線に相当する。
【0013】
また、前記帯状部材は、前記回転軸の周長以上の長さを有してもよい。
【0014】
この構成では、帯状部材の全長が回転軸の周長以上に確保されていることから、回転軸の胴回り全てに貼付作業の基準を設けることができる。また、帯状部材の一端と他端に於いてその縁部を同一直線上に揃えることでもバーコード領域の平行度が得られるため、これら観点の異なる二つの基準に従い測定ゲージを貼着すれば、より精度良く測定ゲージを貼着し得る。
【0015】
また、前記反射部は、前記帯状部材の長手方向に複数且つ等間隔に設けられていてもよい。
【0016】
この構成では、帯状部材の長手方向に複数且つ等間隔に反射部が設けられている。したがって、計測対象たる回転軸の周方向に複数の反射部を等間隔に配置する際には、本測定ゲージの使用により、各反射部を一様に貼り付けることができる。
【0017】
また、前記反射部の両側には、前記反射部を残して前記帯状部材を切断するための切断部が設けられている構成としてもよい。
【0018】
この構成では、反射部の両側に切断部が設けられている。したがって、測定ゲージの貼着後には、この切断部で余分な帯状部材を切り離すことができる。
なお、ここで「切断部」とは、切断を容易にするための機能が設けられた箇所に相当する。
【0019】
また、前記切断部には、前記帯状部材の一方の縁部から他方の縁部に延びる脆弱線が設けられると共に、この脆弱線を外縁に有し且つ内部に前記回転軸の表面を臨む開口部が形成されている構成としてもよい。
【0020】
この構成では、切断部として帯状部材の一方の縁部から他方の縁部に延びる脆弱線を備えている。また、この脆弱線を外縁に有し且つ内部に回転軸の表面を臨む開口部を切断部に備えている。したがって、切断作業時には、開口部に手指を添え反射部と回転軸とを相互に押さえることができ、切断作業に伴う反射部の位置ズレ等を抑制できる。また、開口部は、脆弱線を外縁に有して形成されるため、脆弱線の一部は既に切断された状態にあり、この点に於いても切断作業の簡略化が図られる。
【0021】
また、前記帯状部材の端部には、この端部を吊し上げる治具を連結するための連結部が設けられている構成としてもよい。
【0022】
この構成では、回転軸に対する測定ゲージの巻付作業に於いて用いる治具(例えば、紐及びワイヤー)を連結するための連結部が帯状部材の端部に設けられている。したがって、測定ゲージの一端を回転軸に固定し、さらに治具を介して測定ゲージの他端を吊し上げて回転軸を回転させれば、作業者の手が届かない位置に於いても、測定ゲージを回転軸に接触させながら巻付作業を行える。
【0023】
また、前記帯状部材の一端と、前記帯状部材の他端は、相互に突き合わせた状態に於いて、且つ各端部近傍の前記縁部が同一直線上に揃っていることを条件に係合する形状を備える構成としてもよい。
【0024】
この構成では、帯状部材の端部形状の設定にあたり、帯状部材の一端と他端とを相互に突き合わせ、且つ各端部近傍の前記縁部が同一直線上に揃っていることを条件に係合する形状を採用している。つまり、帯状部材の両端が係合状態にあれば、回転軸の周方向に延びる基準線上に測定ゲージの縁部が揃っていると言え、また、換言すれば、反射部に於いてバーコード領域の平行度が出ているとも言える。
【0025】
また、本発明では、上記した課題を解決するため以下の取付方法を提供する。
すなわち、縁部が直線で形成された長尺の帯状部材に、この縁部を基準に前記バーコード領域の各コードを直角に設ける工程と、
前記直線状の縁部を、前記回転軸の周方向に延びる基準線に揃えることで前記反射部の貼着位置を決定する工程と、
を含むことを特徴とする測定ゲージの取付方法を提供する。
【0026】
また、前記帯状部材の一端に、この一端を吊し上げるための治具を連結する工程と、
前記帯状部材の他端を前記回転軸に固定する工程と、
前記治具を介して帯状部材の一端を吊し上げつつ、前記回転軸を回転させる工程と、
をさらに含むようにしてもよい。
【0027】
また、前記反射部を前記回転軸に貼着する工程と、
前記反射部を残して前記帯状部材を切断する工程と、
をさらに含むようにしてもよい
【0028】
これらの方法によれば、縁部が直線で形成された長尺の帯状部材を用意し、この縁部に対して直角にバーコード領域の各コードを付す。続いて、この帯状部材の縁部を、計測対象たる回転軸の周方向に延びる基準線に揃えて貼り付ける。したがって、上述の如くバーコード領域の各コードは、回転軸の中心線に対して平行に維持される。
【0029】
また、測定ゲージの巻付作業に於いては、測定ゲージの一端を回転軸に固定し、さらに治具を介して測定ゲージの他端を吊し上げて回転軸を回転させれば、作業者の手が届かない位置に於いても、帯状部材を回転軸に接触させながら巻付作業を行える。また、反射部を残して、余分な帯状部材を切り離すこともできる。
【0030】
なお、上記種々の内容は、本発明の課題や技術的思想を逸脱しない限りで可能な限り組み合わせることができる。また、上記各工程の処理順序も同様に、本発明の課題や技術的思想を逸脱しない限りで自由に変更できる。
【0031】
【発明の実施の形態】
続いて、本発明の光学計測器用の測定ゲージ及びその取付方法について、好適な実施形態について説明する。
また、本実施の形態では、計測対象たる回転軸として、コンバインドサイクル発電プラントの発電機に連結されたタービンロータのトルク計測作業を例に説明する。なお、勿論、本発明に係る測定ゲージの用途は、タービンロータのトルク計測に限定されるものではなく、種々の用途に適用可能である。
【0032】
まず、本発明に係る測定ゲージの説明に先立ち、コンバインドサイクル発電プラント、及びそのタービンロータのトルク計測に用いられる光学計測器の概略構成を説明する。
【0033】
コンバインドサイクル発電プラント1は、図1に示すように、ガスタービンG及び蒸気タービンTを一つのプラントユニットとして構成される一軸型の発電プラントであり、タービンロータ4は、ガスタービンG及び蒸気タービンTを同軸上で連結して発電機5に動力を伝達する動力伝達軸としてプラント内に組み込まれている。
より詳しく説明すると、タービンロータ4には、上記ガスタービンGとしてガスタービン本体2及びコンプレッサ3が組み込まれ、また、上記蒸気タービンTとして高圧蒸気タービン(HPタービン6)、及び中圧蒸気タービン(IPタービン7)、低圧蒸気タービン(LPタービン8)が組み込まれ、タービンロータ4の端部は、発電機の主軸に連結されている。
【0034】
また、この種の発電プラント1では、経年劣化に起因した熱効率の低下を抑制すべく、定期的にPIDと呼ばれる発電所計測データによって効率の管理が実施されている。また、この効率管理に基づく日々の点検作業およびメンテナンスによって高い熱効率での運転が維持されている。
【0035】
また、近年では、効率管理に有用なタービン出力を計測するにあたり、レーザ光を用いた光学式のトルク計測器が使用されている。
この種のトルク計測器10は、図2に示されるように、レーザ光の出力部たるレーザ照射装置11と、レーザ照射装置11から出力されたレーザ光を第1及び第2の光線に分光して、タービンロータ4の長手方向に距離をあけて設けられた計2カ所の測定部S(S1,S2)に照射するビーム調整装置12と、各測定部S1,S2からの反射光を受光して光電変換すると共にこの光電変換によって生成された電気信号を汎用コンピュータから成る解析装置13に出力する第1受光部14及び第2受光部15と、を備えている。
【0036】
また、各測定部S1,S2には、表面にバーコード領域Bが付された反射部Pを有する測定ゲージが貼着されており、この状態でタービンロータ4(以下、回転軸と称することもある)を回転させると、各受光部14,15には、反射部Pの反射光が入射される。したがって、解析装置13には、第1受光部14で受光した反射光に対応する第1のパルス信号と、第2受光部15で受光した反射光に対応する第2パルス信号が入力される。
【0037】
なお、ここで反射部Pについて説明すると、本実施の形態では、M系列(Maximum−Length Linear Shift Register Sequence)の信号を生成するバーコード領域Bが反射部Pに設けられている。より詳しくは、図3に示すように、レーザ光の反射率が大きいホワイト部分B1と、レーザ光の反射率が小さい溝部B2とを交互に並べて反射部P上に形成し、これらホワイト部分B1及び溝部B2からなるコードでバーコード領域Bを構成している。
【0038】
なお、「M系列の信号」とは、自己相関関数がデルタ関数に近く、また、近似的に白色雑音(ホワイトノイズ)と見なせるように人為的にある規則に基づいて作られた擬似不規則信号(Pseudo−Random Signal)であり、その優れた特性としては、レーザ光の反射再現性に富み、また、反射にあたり雑音(ホワイトノイズ)を有効的に排除できるといった特性を持っている。なお、勿論、反射部に適用すべきバーコード領域Bの形式は、上述のM系列のみならず平方剰余列(L系列)や双素数列等の適用も可能である。
【0039】
また、本実施の形態では、このM系列のバーコード領域Bを形成するにあたり、厚さ0.1mmのステンレス材に深さ0.05mmの溝をエッチング加工で形成することで、ホワイト部分B1及び溝部B2の双方を得ている。
【0040】
続いて、解析装置13では、各受光部14,15のパルス信号を個々に解析し、各測定部毎に回転周期及び回転速度を算出する。また、第1のパルス信号と第2のパルス信号とを比較してパルス信号間の位相差を求め、この位相差と回転周期並びに回転速度から第1のパルス信号に対する第2のパルス信号の遅れ時間(相関関係)を求める。そして、例えば、次式に各数値を割り当て計算することで、計測値たる軸トルクFtを算出している。
【数1】
Ft=2πKx・τ/T
K:回転軸の捩ればね定数 x:測定部S間の距離
τ:遅れ時間 T:パルス信号の周期
【0041】
ところで、軸トルクFtを精度良く計測するには、上述のトルク計測器の性能もさることながら、いかに測定ゲージを精度良く回転軸4に貼り付けるかが重要なポイントになる。
【0042】
なお、図4には、正規の貼り方を示している。この正規の貼り方では、バーコード領域Bの各コードが、計測対象たる回転軸4の中心線に対して平行になるように反射部Pの位置が調整されている。一方、図5では、バーコード領域Bの各コードが回転軸4の中心線に対して曲がって貼り付けられている。
【0043】
この両者を比較すると、まず、図4中計測点Xと図5中計測点Yでは、双方共に上から数えて2番目のホワイト部分B1でレーザ光を反射する。
一方、回転軸4の軸方向(図4中及び図5中の矢印K方向)に振動あるいは熱膨張が発生して、バーコード領域Bが本来の計測点X,Yに対して相対的にズレた場合には、正規の貼り方では、振動発生前と振動発生後に於いて相変わらず上から2段目のホワイト部分B1でレーザ光を反射するのに対し(図4中計測点X’)、図5の貼り方では、各コードが回転軸4の周方向に相対的にズレるため、上から数えて1段目のホワイト部分B1でレーザ光を反射することとなる(図5中計測点Y’)。
【0044】
つまり、回転軸4の中心線に対して各コードの平行度が確保されていない状態すなわち精度の低い貼り方では、振動あるいは熱膨張の発生前と発生後においてレーザ光の反射状態が異なり、計測精度に影響を与えてしまう。このため本実施の形態では、精度良く反射部Pを貼り付けるにあたり、以下に示す測定ゲージ50を用いて貼付作業を行っている。
【0045】
まず、図6を参照して測定ゲージ50の概略を説明すると、測定ゲージ50は、回転軸4の周長に略等しい全長を有する長尺の帯状部材51と、この帯状部材51の表面に設けられた反射部Pと、を備えて構成されている。
また、反射部Pを回転軸4の適所に配置する際には、この測定ゲージ50の長手方向に延びる縁部51aを回転軸4の周方向に延びる基準線(例えば、タービンロータ4の外周に形成されたオイル溝)に揃えて配置し、測定ゲージ50の貼付精度を維持している。
【0046】
帯状部材51は、厚さ0.1mm、幅20mmのステンレス材から構成され、その長手方向に延びる縁部51aは、精密加工によって直線に仕上げられている。なお、帯状部材51の材質並びに寸法は、各種仕様に応じて種々変更可能であるが、上記寸法に設定すれば、十分な剛性としなやかさ(柔軟性)を測定ゲージ50に与えることができる。
【0047】
反射部Pは、帯状部材51の長手方向に複数且つ等間隔に設けられている。
本実施の形態では、回転軸4の周囲(胴回り)に計8カ所の測定部Sを等間隔に設けるため、これに併せて回転軸4の周長を8等分に分割した間隔をあけて各反射部Pが測定ゲージ50に設けられている。
【0048】
また、反射部Pには、上述の如くレーザ光の反射に於いてM系列の信号を生成し得るバーコード領域Bが形成されている。また、バーコード領域Bに形成されるホワイト部分B1及び溝部B2で構成される各コードは、直線で形成された縁部51aを基準にこの縁部51aに対して直角に設けられている。
【0049】
また、反射部Pの両側には、反射部Pを残して帯状部材51を切断するための切断部53が設けられている。切断部53は、帯状部材51の一方の縁部51aから他方の縁部51bに向かって0.5mm間隔で穿孔が設けられた脆弱線53a(ミシン穴線)と、その端部に形成された三角形状をなす切り欠き53bからなる。
【0050】
また、本実施の形態では、この脆弱線53aを外縁に有すると共に内部に回転軸4の表面を臨む開口部54を、この脆弱線53aに沿って形成している。
より詳しくは、図6に示するように、帯状部材51の一方の縁部51aから他方の縁部51bに向かって延びる脆弱線53aの両端部近傍の連結状態を維持しつつ、且つこの脆弱線53aを境界に反射部Pと開口部54とが隣接するよう開口部54が形成されている。
【0051】
続いて、帯状部材51の端部形状について説明する。
帯状部材51の各端部は、図7に示すように相互に突き合わせた状態に於いて、且つ各端部近傍の縁部51aが同一直線L上に揃っていることを条件に係合する形状を備えている。なお、図7の例では、各端部が、帯状部材51の長手方向に延びる縁部51aに対して直角となるように切断されており、測定ゲージ50の巻付作業に於いて両端部を突き合わせたときには、端部全体が共通の接触線V上で線にて係合・接触することとなる。
【0052】
また、各端部には、測定ゲージ50の巻付作業に於いて、測定ゲージ50の端部(帯状部材51の端部)を作業者側に吊し上げる治具(例えば、紐)を連結するための孔55が設けられている。
【0053】
続いて、上記構成を有する測定ゲージ50の取付作業について説明する。
本実施の形態では、図8に示すように、タービンロータ4を内包する軸受けハウジング60の上半分に形成された開口窓61、より詳しくはタービンロータ4の上半分(周方向に180度)のみが臨む幅狭の隙間Cを測定部S1とし、この隙間Cから測定ゲージ50を挿入してタービンロータ4に測定ゲージ50を巻き付けている。
【0054】
また、トルク計測器10を用いてのトルク計測では、タービンロータ4の軸方向に計2カ所測定部Sを設ける必要があるため、本実施の形態では、同様の隙間Cが形成された箇所を他方の測定部S2として、測定ゲージ50を別途取り付けている。
【0055】
まず、下準備として、開口窓61に設けられたカバー61aを外し、タービンロータ4の上半分を測定部S1,S2内に露出させる。続いて、開口窓61の周方向端部に設けられたフランジ61bを基準に一方の測定部S1と他方の測定部S2に於いてタービンロータ4にマーキングを施す。
【0056】
本作業は、各測定部S1,S2間の軸方向に於ける位相を把握するための基準線64(図9中符号64参照)を設ける作業であり、以下の作業では、この基準線64に測定ゲージ50の端部を合わせて測定ゲージ50を巻き付ける。なお、詳細には、発電機5に近い測定部S2の基準線は、計測上の都合からガスタービンGに近い測定部S1の基準線に対して、回転軸4の正転方向に数ミリ進角した位置にマーキングされている。
【0057】
続いて、タービンロータ4の周方向に一致する基準線を目安に、各反射部Pの位置決めの基準となる基準点66を、この周方向に延びる基準線からタービンロータ4の軸方向に等距離且つタービンロータ4の周方向に複数マーキングする。
なお、本実施の形態では、図9に示すように隙間C(開口窓61)の内部に設けられたオイル溝65を上記周方向に延びる基準線とし、このオイル溝65の端縁65aから30mmの位置に複数マークを付している。
【0058】
続いて、測定ゲージ50の位置決め作業に移る。
本作業では、下準備でタービンロータ4に付した基準線64及び基準点66に従い測定ゲージ50をタービンロータ4の上半分に取り付ける。
より詳しくは、各測定部S1,S2の軸方向の位相を調整するためにマーキングした基準線64(以下、軸方向基準線64と称する)に測定ゲージ50の一端を合わせ、さらに、回転軸4の周方向に複数マーキングした基準点66(以下、周方向基準点66と称する)に測定ゲージ50の縁部51aを揃えた状態で、測定ゲージ50をタービンロータ4に仮止めする。
【0059】
続いて、この状態で各反射部Pの周囲にマーキングを施す。
本作業では、図10に示すように反射部Pに隣接した開口部54の縁と、測定ゲージ50の縁部51a(51b)に沿って計4カ所にマーク68を施す。
【0060】
続いて、反射部Pの貼付作業に移る。
本作業では、図11に示すように、測定ゲージ50を一旦取り外し、先の作業でマーキングした反射部Pの外形に相当するマーク68に従いマスキングテープ69を貼着し、その内部にストラクトボンド等を均一に塗布する。
【0061】
続いて、マスキングテープ69を剥ぎ取った後、再度、測定ゲージ50をタービンロータ4に取り付け、接着剤が乾ききる前に測定ゲージ50の位置を最終的に微調整する。より詳しくは、軸方向基準線64に測定ゲージ50の一端を合わせ、且つ複数の周方向基準点66に測定ゲージ50の縁部51aを合わせる。
そして、各部での微調整を終えた後、各反射部Pの表面を保護テープでマスキングすると共に押圧して余分な接着剤をふき取り、反射部Pをタービンロータ4の表面に密着させる。そして、この状態で数時間放置乾燥させる。
【0062】
続いて、タービンロータ4下半分への測定ゲージ50の取付作業に移る。
本作業では、測定ゲージ50の他端に設けられた孔55に紐70を括り付け、既にタービンロータ4に固定されている測定ゲージ50に追従して、この紐70がタービンロータ4に巻き付く方向にタービンロータ4を半回転させて、開口窓61内にタービンロータ4の下半分を臨ませる。
【0063】
なお、タービンロータ4を回転させる際には、図12に示すように、紐70を介して測定ゲージ50の他端をタービンロータ4の上方に吊り上げながら序々に測定ゲージ50をタービンロータ4に巻き付けていく。このように作業を行うと、測定ゲージ50の表面をタービンロータ4の表面に接触させた状態で測定ゲージ50をタービンロータ4に巻き付けることができるため、軸受けハウジング60等との接触に伴う測定ゲージ50の汚れや損傷を抑制できる。
【0064】
続いて、上記タービンロータ4の上半分での作業同様にして、種々のマーキングを施し、反射部Pの貼着位置たるタービンロータ4の表面に接着剤を塗布して測定ゲージ50を固定する。
そして、接着剤の乾燥時間として8〜12時間ほどの養生を得た後、反射部Pを残して測定ゲージ50の余分な箇所を切断部より切り離す作業に移る。
【0065】
測定ゲージ50の切離作業は、以下の手順で行う。
まず、切断部53たる開口部54に臨むタービンロータ4の表面と、反射部Pとの双方を指先で押さえる(図13参照)。次いで、他方の手で余分な測定ゲージ50(帯状部材51)を脆弱線53aで切り離す。
【0066】
また、この切離作業において、反射部Pの一部に接着不良等を見つけたときには、反射部Pの端に補強テープを貼着し、剥離部分に接着剤を塗布して再度押圧して、反射部Pをタービンロータ4の表面に密着させる。
続いて、タービンロータ4を半回転させ、残る箇所に於いても同様の作業を行い、反射部Pの貼着に係る一連の作業を終了する。
【0067】
このように本実施の形態では、長手方向に延びる直線状の縁部51aを有する長尺の帯状部材51と、この帯状部材51に設けられた反射部Pと、を備え、且つバーコード領域Bの各コードが帯状部材51の縁部51aを基準に直角に設けられた測定ゲージ50を用いて反射部Pを回転軸4の適所に貼着している。
【0068】
つまり、回転軸4の周方向に延びる基準線(オイル溝65)上に帯状部材51の縁部51aを合わせて配置することで、貼着作業の目安となるべき基準点66を測定ゲージの周囲に多数確保できるため、各コードと回転軸4の中心線とを比較して平行になるように貼り付ける場合に較べて、遙かに精度の高い貼り付けが可能になる。
【0069】
また、各反射部Pは、帯状部材51(測定ゲージ50)の長手方向に複数且つ等間隔に設けられているため、本測定ゲージ50の使用により、各反射部Pを回転軸4の周方向に等間隔且つ正規の角度で一様に貼り付けることができる。
【0070】
また、反射部Pの両側には、反射部Pを残して帯状部材51を切断するための切断部53を設けているため、反射部Pの接着後に於いて余分な帯状部材51を切り離すことができる。
【0071】
また、帯状部材51の一端と、帯状部材51の他端は、相互に突き合わせた状態に於いて、且つ各端部近傍の縁部51aが同一直線L上に揃っていることを条件に係合する形状を備えるため、測定ゲージ50が、正規の位置に巻き付けられているか否かを、この帯状部材51の各端部の係合状態からも把握できる。
【0072】
なお、上記した実施形態は、あくまでも本発明の好適な実施形態であり、その詳細は、適宜変更可能である。
例えば、上述では測定ゲージ50の全長を、タービンロータ4の周長に略等しい長さとしているが、必ずしもその必要はなく、周長より長い全長を有するように形成してもよい。
【0073】
なお、この場合には、帯状部材51の全長が回転軸4の周長以上に確保されていることから、図14に示すように、帯状部材51の一端と他端に於いて、その直線状の縁部51aを同一直線L1上に重ねて揃えることでも各コードの平行度が得られる。
【0074】
また、本実施の形態では、タービンロータ4の周長に略等しい長さの測定ゲージ50を使用しているが、その長さは、バーコード領域Bの各コードの長さに較べて、視覚上、十分に長いと認識し得る長さで足り、必ずしも計測対象たる回転軸4の周長に等しい長さが要求されるものではない
すなわち、回転軸4の周長に対して短い複数の測定ゲージを用意し、これら測定ゲージを回転軸4の周方向にズラして配置することでも上記種々の効果が得られる。
【0075】
また、上記では、測定ゲージ50の両端部を、縁部51aに対して直角に切断したが、例えば、図15に示されるように、各端部を斜めに切断すれば、より広い範囲で両端部の係合状態を判定でき、また、これにより、更に精度の高い貼り付けが可能になる。
【0076】
【発明の効果】
以上のように本発明によれば、計測対象たる回転軸に容易且つ精度良く測定ゲージの反射部を貼着し得る技術を提供できる。
【図面の簡単な説明】
【図1】コンバインドサイクル発電プラントの概略構成図。
【図2】本実施の形態に係るトルク計測器の概略構成図。
【図3】反射部に設けられるバーコード領域の拡大図。
【図4】計測対象たる回転軸に反射部が精度良く貼り付けられた状態を示す図。
【図5】計測対象たる回転軸に反射部が曲がって貼り付けられた状態を示す図。
【図6】本実施の形態に示す測定ゲージの要部拡大図。
【図7】本実施の形態に示す測定ゲージの各端部の係合状態を示す図。
【図8】測定ゲージの使用方法を説明するための説明図。
【図9】測定部たる隙間内での作業状態を示す図。
【図10】反射部周囲に対するマーキング作業を示す図。
【図11】タービンロータの表面に接着剤を塗布する作業を示す図。
【図12】回転軸に対する測定ゲージの巻付作業を示す図。
【図13】切断部での切断作業を示す図。
【図14】本実施の形態に係る測定ゲージの端部形状の変更例を示す図。
【図15】本実施の形態に係る測定ゲージの端部形状の変更例を示す図。
【符号の説明】
1 コンバインドサイクル発電プラント
2 ガスタービン本体
3 コンプレッサ
4 タービンロータ(回転軸)
5 発電機
6 高圧蒸気タービン(HPタービン)
7 中圧蒸気タービン(IPタービン)
8 低圧蒸気タービン(LPタービン)
10 トルク計測器(光学計測器)
11 レーザ照射装置
12 ビーム調整装置
13 解析装置
14 第1の受光部
15 第2の受光部
50 測定ゲージ
51 帯状部材
51a 縁部
51b 縁部
53 切断部
53a 脆弱線
53b 切り欠き
54 開口部
55 孔(連結部)
60 軸受けハウジング
61 開口窓
61a カバー
61b フランジ
64 軸方向基準線
65 オイル溝
65a オイル溝の端縁
66 周方向基準点
68 マーク
69 マスキングテープ
70 紐
B バーコード領域
B1 ホワイト部分
B2 溝部
C 隙間
G ガスタービン
P 反射部
S 測定部
S1 測定部
S2 測定部
V 接触線
X 計測点
T 蒸気タービン
Y 計測点
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a measuring gauge for an optical measuring instrument, and more particularly, to a measuring gauge for an optical measuring instrument that non-contactly and optically measures a torque and a rotating speed of a rotating shaft to be measured, and a method of attaching the measuring gauge.
[0002]
[Prior art]
As this type of optical measuring device, a torque measuring device including a measuring device main body and a measuring gauge attached to a rotating shaft to be measured is known (Patent Document 1).
[0003]
More specifically, first, a plurality of measurement gauges each having a reflection portion provided with a barcode region by etching are attached at predetermined intervals in the axial direction of the rotation axis to be measured. Subsequently, the rotating shaft is rotated, and a laser beam is applied to each measuring unit (reflecting unit) using the portion where the measuring gauge is attached as a measuring unit. In addition, the reflected light of each measuring unit is received by the light receiving unit, and the rotation cycle and the rotating speed of each measuring unit are obtained based on the pulse signal obtained from the reflected light. In addition, the phase difference between the pulse signals between the measurement units is determined, and the torque of the rotating shaft is calculated from the rotation speed and the phase difference.
[0004]
[Patent Document 1] JP-A-2000-205977
[0005]
In this type of optical measuring instrument, how to accurately attach the measuring gauge to the object to be measured is an important point in improving the measuring accuracy, in addition to the performance of the measuring instrument body.
[0006]
Conventionally, glue is applied to the back surface of a measuring gauge consisting of a small piece of about 2 cm square, and in this state, the measuring gauge is temporarily attached to the surface of the rotating shaft to be measured, and then the position and angle of the measuring gauge are finely adjusted. After the adjustment, the measuring gauge is permanently attached to the rotating shaft. Adjustment of the position of the measurement gauge is left to the intuition and experience of the operator, and the operator should keep the center line of the rotation axis as a guide and keep each code in the barcode area parallel to this center line. The position and angle of the measuring gauge were adjusted so that it could fall.
[0007]
[Problems to be solved by the invention]
However, in the related art, the measurement gauge is stuck depending on the intuition and experience of the operator, so that the measurement gauge may be sometimes stuck in a bent state with respect to the center line of the rotating shaft. For this reason, as shown in FIG. 5, the position of each cord is relatively shifted in the circumferential direction of the rotating shaft due to the occurrence of vibration or thermal expansion acting in the axial direction of the rotating shaft, resulting in a reflection state that should be obtained. The laser light is input to the measuring instrument main body in a different reflection state. In other words, when the measurement gauge is attached depending on the intuition or experience of the worker, an error may sometimes occur in the measured value.
[0008]
In particular, in the case of a large-diameter rotor shaft (turbine rotor) that is much larger than 70 cm in diameter incorporated in a power plant or the like, the measurement gauge is too small compared to the rotor shaft to be measured, and the exposed portion of the rotor shaft is small. For this reason, it is difficult to grasp the positional relationship between the two even with the use of skilled technology.Therefore, when attaching the measurement gauges, disassemble the power plant, remove the rotor shaft, and attach the measurement gauges in this state. I was
That is, in order to attach the measuring gauge to the large-diameter rotary shaft with high accuracy, much labor and skill were required.
[0009]
The present invention has been made in view of such a technical background, and an object of the present invention is to provide a technology that can easily and accurately attach a reflecting portion to a rotating shaft to be measured.
[0010]
[Means for Solving the Problems]
In order to solve the above technical problem, the present invention has the following configuration.
That is, the present invention
For optical measuring instruments having a barcode area that is attached to the outer peripheral surface of the rotating shaft to be measured and that has a barcode area that reflects the light beam applied to the rotating shaft and enters the light receiving section of the optical measuring instrument. Measurement gauge,
The measurement gauge includes a long band-shaped member having a linear edge extending in the longitudinal direction, and the reflection unit provided on the band-shaped member.
Each of the codes in the bar code area provided in the reflection section is provided at right angles to the edge of the strip-shaped member with reference to the edge.
[0011]
The measuring gauge of the present invention configured as described above includes a long band-shaped member having a linear edge extending in the longitudinal direction, and a reflecting portion provided on the band-shaped member. Further, each code in the bar code area provided in the reflection portion is provided at right angles to the edge of the band-shaped member with reference to the edge.
Note that the “long” is equivalent to a length that can be visually recognized to be sufficiently longer than the length of each code in the barcode area. The “barcode area” corresponds to an area having a function of changing the presence or absence of reflection and the intensity of reflected light.
[0012]
Therefore, by arranging the edge of the band-shaped member on the reference line extending in the circumferential direction of the rotation axis, a large number of reference points to be used as a guide for the sticking operation can be secured around the measurement gauge. As compared with the case where the measurement gauge is attached by relatively comparing the code area and the center line of the rotation axis, the attachment can be performed with higher accuracy.
Here, the “reference line extending in the circumferential direction of the rotation axis” corresponds to a line whose cross section passing through the line intersects at right angles to the center line of the rotation axis.
[0013]
Further, the band-shaped member may have a length equal to or longer than a circumferential length of the rotation shaft.
[0014]
In this configuration, since the entire length of the belt-shaped member is ensured to be equal to or greater than the circumferential length of the rotating shaft, it is possible to set a standard for the sticking operation around the entire circumference of the rotating shaft. Also, since the parallelism of the bar code area can be obtained by aligning the edges of the band-shaped member at one end and the other end on the same straight line, if a measurement gauge is adhered according to two different standards from these viewpoints, The measurement gauge can be attached with higher accuracy.
[0015]
Further, a plurality of the reflection portions may be provided at equal intervals in a longitudinal direction of the band-shaped member.
[0016]
In this configuration, a plurality of reflectors are provided at equal intervals in the longitudinal direction of the belt-shaped member. Therefore, when arranging a plurality of reflection portions at equal intervals in the circumferential direction of the rotation axis to be measured, the use of the present measurement gauge makes it possible to uniformly attach the reflection portions.
[0017]
Further, a configuration may be provided in which cutting portions for cutting the band-shaped member while leaving the reflecting portion are provided on both sides of the reflecting portion.
[0018]
In this configuration, cut portions are provided on both sides of the reflection portion. Therefore, after the measurement gauge is attached, the excess band-shaped member can be cut off at the cut portion.
Here, the "cutting portion" corresponds to a portion provided with a function for facilitating cutting.
[0019]
Further, the cutting portion is provided with a weak line extending from one edge to the other edge of the band-shaped member, and an opening having the weak line on the outer edge and facing the surface of the rotating shaft inside. May be formed.
[0020]
In this configuration, a weak line extending from one edge of the band-shaped member to the other edge is provided as the cut portion. The cutting portion has an opening having the line of weakness at the outer edge and facing the surface of the rotating shaft inside. Therefore, at the time of the cutting operation, the finger can be attached to the opening and the reflecting portion and the rotating shaft can be mutually pressed, so that the positional deviation of the reflecting portion due to the cutting operation can be suppressed. Further, since the opening is formed with the weak line at the outer edge, a part of the weak line is already cut, and in this regard, the cutting operation can be simplified.
[0021]
Further, a configuration may be adopted in which a connecting portion for connecting a jig for lifting the end portion is provided at an end portion of the band-shaped member.
[0022]
In this configuration, a connecting portion for connecting a jig (for example, a string and a wire) used in the work of winding the measurement gauge around the rotating shaft is provided at an end of the band-shaped member. Therefore, if one end of the measuring gauge is fixed to the rotating shaft, and the other end of the measuring gauge is lifted via a jig and the rotating shaft is rotated, the measuring gauge can be used even in a position where the operator cannot reach. Can be wound while contacting the rotating shaft.
[0023]
In addition, one end of the band-shaped member and the other end of the band-shaped member are engaged with each other in a state where they abut against each other, and that the edges near each end are aligned on the same straight line. It may be configured to have a shape.
[0024]
With this configuration, in setting the end shape of the band-shaped member, one end and the other end of the band-shaped member are abutted with each other, and the engagement is performed on condition that the edges near each end are aligned on the same straight line. The shape is adopted. In other words, if both ends of the belt-shaped member are in the engaged state, it can be said that the edges of the measurement gauge are aligned on the reference line extending in the circumferential direction of the rotation axis. In other words, the bar code area in the reflection section It can be said that the degree of parallelism has appeared.
[0025]
In addition, the present invention provides the following mounting method in order to solve the above-mentioned problems.
That is, a step of providing each code of the barcode region at a right angle with respect to the edge on a long strip-shaped member having an edge formed by a straight line,
A step of determining the sticking position of the reflector by aligning the linear edge with a reference line extending in the circumferential direction of the rotation axis,
And a method for mounting a measurement gauge.
[0026]
A step of connecting a jig for lifting the one end to one end of the band-shaped member;
Fixing the other end of the band-shaped member to the rotating shaft;
A step of rotating the rotating shaft while lifting one end of the band-shaped member through the jig,
May be further included.
[0027]
Further, a step of attaching the reflective portion to the rotating shaft,
Cutting the band-shaped member while leaving the reflection portion;
May be further included.
[0028]
According to these methods, a long strip-shaped member having an edge portion formed in a straight line is prepared, and each code in a barcode area is attached to the edge portion at right angles. Then, the edge of the band-shaped member is aligned with a reference line extending in the circumferential direction of the rotation axis to be measured and is attached. Therefore, as described above, each code in the barcode area is maintained parallel to the center line of the rotation axis.
[0029]
Also, in the work of winding the measuring gauge, one end of the measuring gauge is fixed to the rotating shaft, and the other end of the measuring gauge is lifted through a jig to rotate the rotating shaft. The winding operation can be performed while the belt-shaped member is in contact with the rotating shaft even at a position where the belt cannot reach. In addition, the surplus band-shaped member can be cut off while leaving the reflection portion.
[0030]
The various contents described above can be combined as much as possible without departing from the subject and the technical idea of the present invention. Similarly, the processing order of each of the above steps can be freely changed without departing from the problem and the technical idea of the present invention.
[0031]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, a preferred embodiment of a measurement gauge for an optical measuring instrument and a method of mounting the same according to the present invention will be described.
In the present embodiment, a torque measurement operation of a turbine rotor connected to a generator of a combined cycle power plant as a rotation axis to be measured will be described as an example. Note that, of course, the use of the measurement gauge according to the present invention is not limited to torque measurement of a turbine rotor, but can be applied to various uses.
[0032]
First, prior to the description of a measurement gauge according to the present invention, a schematic configuration of a combined cycle power plant and an optical measuring instrument used for measuring torque of a turbine rotor thereof will be described.
[0033]
As shown in FIG. 1, the combined cycle power plant 1 is a single-shaft power plant including a gas turbine G and a steam turbine T as one plant unit, and the turbine rotor 4 includes a gas turbine G and a steam turbine T. Are coaxially connected and incorporated in the plant as a power transmission shaft for transmitting power to the generator 5.
More specifically, the gas turbine body 2 and the compressor 3 are incorporated in the turbine rotor 4 as the gas turbine G, and the high-pressure steam turbine (HP turbine 6) and the medium-pressure steam turbine (IP) are used as the steam turbine T. A turbine 7) and a low-pressure steam turbine (LP turbine 8) are incorporated, and an end of the turbine rotor 4 is connected to a main shaft of a generator.
[0034]
In addition, in this type of power plant 1, in order to suppress a decrease in thermal efficiency due to aging, efficiency is periodically managed based on power plant measurement data called PID. In addition, the operation with high thermal efficiency is maintained by daily inspection work and maintenance based on the efficiency management.
[0035]
In recent years, an optical torque measuring device using laser light has been used for measuring a turbine output useful for efficiency management.
As shown in FIG. 2, this type of torque measuring device 10 divides a laser beam emitted from the laser beam irradiating device 11 into first and second light beams. And a beam adjusting device 12 that irradiates a total of two measuring units S (S1, S2) provided at a distance in the longitudinal direction of the turbine rotor 4, and receives reflected light from each of the measuring units S1, S2. A first light receiving unit 14 and a second light receiving unit 15 for performing photoelectric conversion and outputting an electric signal generated by the photoelectric conversion to an analyzing device 13 comprising a general-purpose computer.
[0036]
Further, a measurement gauge having a reflection portion P having a barcode area B attached to the surface thereof is attached to each of the measurement portions S1 and S2, and in this state, the turbine rotor 4 (hereinafter, also referred to as a rotation shaft). Is rotated, the light reflected by the reflecting portion P is incident on each of the light receiving portions 14 and 15. Therefore, a first pulse signal corresponding to the reflected light received by the first light receiving unit 14 and a second pulse signal corresponding to the reflected light received by the second light receiving unit 15 are input to the analyzer 13.
[0037]
Here, the reflecting section P will be described. In the present embodiment, a bar code area B for generating an M-sequence (Maximum-Length Linear Shift Register Sequence) signal is provided in the reflecting section P. More specifically, as shown in FIG. 3, a white portion B1 having a high laser light reflectance and a groove portion B2 having a low laser light reflectance are alternately arranged and formed on a reflecting portion P, and these white portions B1 and The bar code area B is constituted by a code including the groove B2.
[0038]
The “M-sequence signal” is a pseudo-random signal that is generated based on a rule artificially such that the autocorrelation function is close to a delta function and can be approximately regarded as white noise (white noise). (Pseudo-Random Signal), which has excellent characteristics such as high reproducibility of reflection of laser light and effective removal of noise (white noise) upon reflection. Of course, the form of the barcode area B to be applied to the reflection unit is not limited to the above-described M sequence, but can be applied to a quadratic residue sequence (L sequence), a biprime sequence, or the like.
[0039]
Further, in the present embodiment, when forming the M-series barcode region B, a groove having a depth of 0.05 mm is formed in a stainless material having a thickness of 0.1 mm by etching, so that the white portions B1 and B1 are formed. Both grooves B2 are obtained.
[0040]
Subsequently, the analysis device 13 individually analyzes the pulse signals of the light receiving units 14 and 15 and calculates the rotation period and the rotation speed for each measurement unit. Further, the phase difference between the pulse signals is obtained by comparing the first pulse signal and the second pulse signal, and the delay of the second pulse signal with respect to the first pulse signal is determined based on the phase difference, the rotation period, and the rotation speed. Find time (correlation). Then, for example, the shaft torque Ft, which is a measured value, is calculated by assigning each numerical value to the following expression and calculating.
(Equation 1)
Ft = 2πKx · τ / T
K: twist constant of the rotating shaft x: distance between the measuring parts S
τ: delay time T: pulse signal period
[0041]
By the way, in order to measure the shaft torque Ft with high accuracy, it is important to attach the measuring gauge to the rotating shaft 4 with high accuracy, in addition to the performance of the torque measuring device described above.
[0042]
Note that FIG. 4 shows a normal method of sticking. In this normal application method, the position of the reflection part P is adjusted so that each code in the barcode area B is parallel to the center line of the rotation axis 4 to be measured. On the other hand, in FIG. 5, each code in the barcode area B is pasted so as to bend with respect to the center line of the rotating shaft 4.
[0043]
Comparing the two, first, at the measurement point X in FIG. 4 and the measurement point Y in FIG. 5, both reflect the laser light at the second white portion B1 counted from the top.
On the other hand, vibration or thermal expansion occurs in the axial direction of the rotating shaft 4 (the direction of arrow K in FIGS. 4 and 5), and the bar code area B is relatively displaced from the original measurement points X and Y. In the normal case, the laser beam is reflected by the white portion B1 at the second stage from the top before and after the vibration occurs (measurement point X 'in FIG. 4). In the method of attaching 5, each cord is relatively displaced in the circumferential direction of the rotating shaft 4, so that the laser light is reflected at the first-stage white portion B1 counted from above (measurement point Y ′ in FIG. 5). ).
[0044]
In other words, in a state where the parallelism of each cord is not ensured with respect to the center line of the rotating shaft 4, that is, in a method of attaching with low accuracy, the reflection state of the laser light before and after the occurrence of vibration or thermal expansion is different, and the It will affect accuracy. For this reason, in the present embodiment, in attaching the reflecting portion P with high accuracy, the attaching operation is performed using the measuring gauge 50 described below.
[0045]
First, the outline of the measuring gauge 50 will be described with reference to FIG. 6. The measuring gauge 50 has a long band-shaped member 51 having a total length substantially equal to the circumference of the rotating shaft 4, and is provided on the surface of the band-shaped member 51. And a reflecting portion P provided.
When the reflecting portion P is arranged at an appropriate position on the rotating shaft 4, the edge 51 a extending in the longitudinal direction of the measurement gauge 50 is connected to a reference line extending in the circumferential direction of the rotating shaft 4 (for example, on the outer periphery of the turbine rotor 4). (The formed oil groove) to maintain the sticking accuracy of the measuring gauge 50.
[0046]
The belt-shaped member 51 is made of a stainless steel material having a thickness of 0.1 mm and a width of 20 mm, and an edge portion 51a extending in the longitudinal direction is straightened by precision processing. The material and dimensions of the belt-shaped member 51 can be variously changed according to various specifications. However, if the dimensions are set to the above-described dimensions, the measurement gauge 50 can have sufficient rigidity and flexibility (flexibility).
[0047]
The plurality of reflection portions P are provided at equal intervals in the longitudinal direction of the belt-shaped member 51.
In the present embodiment, a total of eight measuring parts S are provided at equal intervals around the rotating shaft 4 (waist circumference), and accordingly, the circumferential length of the rotating shaft 4 is divided into eight equally spaced intervals. Each reflection part P is provided on the measurement gauge 50.
[0048]
Further, in the reflecting portion P, the barcode area B capable of generating an M-sequence signal in the reflection of the laser light as described above is formed. Further, each code formed of the white portion B1 and the groove B2 formed in the barcode area B is provided at right angles to the edge 51a formed with a straight line as a reference.
[0049]
Further, on both sides of the reflecting portion P, cutting portions 53 for cutting the belt-shaped member 51 while leaving the reflecting portion P are provided. The cut portion 53 is formed at a weak line 53 a (perforated line) having perforations provided at intervals of 0.5 mm from one edge 51 a to the other edge 51 b of the belt-shaped member 51, and an end thereof. The cutout 53b has a triangular shape.
[0050]
Further, in the present embodiment, an opening 54 having the weak line 53a at the outer edge and facing the surface of the rotating shaft 4 therein is formed along the weak line 53a.
More specifically, as shown in FIG. 6, while maintaining a connected state near both ends of a weak line 53 a extending from one edge 51 a to the other edge 51 b of the band-shaped member 51, The opening 54 is formed such that the reflecting portion P and the opening 54 are adjacent to each other with the boundary 53a.
[0051]
Subsequently, the end shape of the band-shaped member 51 will be described.
As shown in FIG. 7, the ends of the band-shaped member 51 are engaged with each other in a state where they abut against each other and on the condition that the edges 51a near each end are aligned on the same straight line L. It has. In the example of FIG. 7, each end is cut so as to be perpendicular to an edge 51 a extending in the longitudinal direction of the belt-shaped member 51. When abutted, the entire ends are engaged and contacted by a line on the common contact line V.
[0052]
In addition, a jig (for example, a string) for suspending the end of the measurement gauge 50 (the end of the band-shaped member 51) to the worker side in the work of winding the measurement gauge 50 is connected to each end. Hole 55 is provided.
[0053]
Next, an operation of attaching the measurement gauge 50 having the above configuration will be described.
In the present embodiment, as shown in FIG. 8, an opening window 61 formed in an upper half of a bearing housing 60 containing the turbine rotor 4, more specifically, only an upper half (180 degrees in a circumferential direction) of the turbine rotor 4. Is defined as a measuring portion S1, a measuring gauge 50 is inserted from the gap C, and the measuring gauge 50 is wound around the turbine rotor 4.
[0054]
Further, in the torque measurement using the torque measuring device 10, since it is necessary to provide a total of two measurement units S in the axial direction of the turbine rotor 4, in the present embodiment, the same gap C is formed As the other measuring section S2, a measuring gauge 50 is separately attached.
[0055]
First, as preparation, the cover 61a provided on the opening window 61 is removed, and the upper half of the turbine rotor 4 is exposed in the measuring sections S1 and S2. Subsequently, marking is performed on the turbine rotor 4 at one of the measuring sections S1 and the other measuring section S2 with reference to the flange 61b provided at the circumferential end of the opening window 61.
[0056]
This work is to provide a reference line 64 (see reference numeral 64 in FIG. 9) for grasping the phase in the axial direction between the measurement units S1 and S2. The measuring gauge 50 is wound around the end of the measuring gauge 50. In detail, the reference line of the measuring unit S2 near the generator 5 is advanced by several millimeters in the normal rotation direction of the rotating shaft 4 with respect to the reference line of the measuring unit S1 near the gas turbine G for measurement convenience. It is marked at the corner.
[0057]
Subsequently, using a reference line that coincides with the circumferential direction of the turbine rotor 4 as a guide, a reference point 66, which is a reference for positioning each reflecting portion P, is equidistant from the reference line extending in the circumferential direction by an equal distance in the axial direction of the turbine rotor 4. In addition, a plurality of markings are made in the circumferential direction of the turbine rotor 4.
In the present embodiment, as shown in FIG. 9, the oil groove 65 provided inside the gap C (opening window 61) is a reference line extending in the circumferential direction, and is 30 mm from the edge 65a of the oil groove 65. Are marked with multiple marks.
[0058]
Subsequently, the operation moves to the positioning of the measurement gauge 50.
In this work, the measurement gauge 50 is attached to the upper half of the turbine rotor 4 according to the reference line 64 and the reference point 66 attached to the turbine rotor 4 in the preparation.
More specifically, one end of the measurement gauge 50 is aligned with a reference line 64 (hereinafter, referred to as an axial reference line 64) marked for adjusting the phase in the axial direction of each of the measuring units S1 and S2. The measurement gauge 50 is temporarily fixed to the turbine rotor 4 with the edge 51a of the measurement gauge 50 aligned with a reference point 66 (hereinafter referred to as a circumferential reference point 66) marked in the circumferential direction.
[0059]
Subsequently, in this state, marking is performed around each of the reflection portions P.
In this work, as shown in FIG. 10, marks 68 are formed at a total of four places along the edge of the opening 54 adjacent to the reflection part P and the edge 51a (51b) of the measurement gauge 50.
[0060]
Subsequently, the operation proceeds to the attaching operation of the reflection portion P.
In this work, as shown in FIG. 11, the measuring gauge 50 is once removed, a masking tape 69 is adhered according to the mark 68 corresponding to the outer shape of the reflection part P marked in the previous work, and a structuring bond or the like is placed inside the masking tape 69. Apply evenly.
[0061]
Subsequently, after the masking tape 69 is peeled off, the measurement gauge 50 is attached to the turbine rotor 4 again, and the position of the measurement gauge 50 is finally finely adjusted before the adhesive dries. More specifically, one end of the measurement gauge 50 is aligned with the axial reference line 64, and the edge 51 a of the measurement gauge 50 is aligned with a plurality of circumferential reference points 66.
Then, after finishing the fine adjustment in each part, the surface of each reflection part P is masked with a protective tape and pressed to wipe off excess adhesive, and the reflection part P is brought into close contact with the surface of the turbine rotor 4. Then, it is left to dry for several hours in this state.
[0062]
Subsequently, the operation proceeds to the work of attaching the measurement gauge 50 to the lower half of the turbine rotor 4.
In this work, the string 70 is tied to the hole 55 provided at the other end of the measurement gauge 50, and the string 70 is wound around the turbine rotor 4 following the measurement gauge 50 already fixed to the turbine rotor 4. The turbine rotor 4 is rotated half a direction in the direction, so that the lower half of the turbine rotor 4 faces the opening window 61.
[0063]
When rotating the turbine rotor 4, as shown in FIG. 12, the measurement gauge 50 is gradually wound around the turbine rotor 4 while the other end of the measurement gauge 50 is suspended above the turbine rotor 4 via the string 70. To go. By performing such an operation, the measurement gauge 50 can be wound around the turbine rotor 4 in a state where the surface of the measurement gauge 50 is in contact with the surface of the turbine rotor 4. 50 can be prevented from being stained or damaged.
[0064]
Subsequently, various markings are made in the same manner as in the operation of the upper half of the turbine rotor 4, and an adhesive is applied to the surface of the turbine rotor 4 where the reflection portion P is to be attached, to fix the measurement gauge 50.
Then, after the curing time of about 8 to 12 hours is obtained as the drying time of the adhesive, the operation is shifted to an operation of cutting off an unnecessary portion of the measurement gauge 50 from the cut portion while leaving the reflective portion P.
[0065]
The work of separating the measurement gauge 50 is performed in the following procedure.
First, both the surface of the turbine rotor 4 facing the opening portion 54 serving as the cutting portion 53 and the reflecting portion P are pressed with a fingertip (see FIG. 13). Next, the extra measuring gauge 50 (band-shaped member 51) is cut off with the other hand at the weak line 53a.
[0066]
In addition, in this separation work, when a defective bonding or the like is found in a part of the reflection part P, a reinforcing tape is attached to an end of the reflection part P, an adhesive is applied to a peeled part, and pressed again, The reflection part P is brought into close contact with the surface of the turbine rotor 4.
Subsequently, the turbine rotor 4 is rotated half a turn, and the same operation is performed in the remaining portion, thereby completing a series of operations related to the attachment of the reflection portion P.
[0067]
As described above, in the present embodiment, the bar code area B includes the long band-shaped member 51 having the linear edge portion 51a extending in the longitudinal direction, and the reflection portion P provided on the band-shaped member 51. The reflecting portion P is stuck to an appropriate position of the rotating shaft 4 by using a measuring gauge 50 provided at a right angle with respect to the edge 51a of the belt-shaped member 51.
[0068]
In other words, by arranging the edge 51a of the band-shaped member 51 on the reference line (oil groove 65) extending in the circumferential direction of the rotating shaft 4, the reference point 66, which is a reference for the sticking operation, is placed around the measurement gauge. Can be secured with much higher accuracy than when attaching each cord and the center line of the rotating shaft 4 so as to be parallel to each other.
[0069]
In addition, since the plurality of reflecting portions P are provided at equal intervals in the longitudinal direction of the belt-shaped member 51 (measurement gauge 50), the use of the measurement gauge 50 causes the respective reflection portions P to extend in the circumferential direction of the rotating shaft 4. At regular intervals and at regular angles.
[0070]
Further, on both sides of the reflecting portion P, there is provided a cutting portion 53 for cutting the band-shaped member 51 while leaving the reflecting portion P, so that the extra band-shaped member 51 can be cut off after the reflecting portion P is bonded. it can.
[0071]
In addition, one end of the band-shaped member 51 and the other end of the band-shaped member 51 are engaged under the condition that they abut against each other and that the edges 51a near each end are aligned on the same straight line L. Since the measurement gauge 50 is wound around a regular position, it can be grasped from the engagement state of each end of the band-shaped member 51 as well.
[0072]
The above-described embodiment is merely a preferred embodiment of the present invention, and details thereof can be changed as appropriate.
For example, in the above description, the entire length of the measurement gauge 50 is set to be substantially equal to the peripheral length of the turbine rotor 4, but it is not always necessary, and the measuring gauge 50 may be formed to have an overall length longer than the peripheral length.
[0073]
In this case, since the entire length of the belt-shaped member 51 is ensured to be equal to or greater than the circumference of the rotating shaft 4, as shown in FIG. The parallelism of each cord can also be obtained by overlapping and aligning the edges 51a on the same straight line L1.
[0074]
Further, in the present embodiment, the measurement gauge 50 having a length substantially equal to the circumference of the turbine rotor 4 is used, but the length is larger than the length of each cord in the barcode area B. In addition, a length that can be recognized as being sufficiently long is sufficient, and a length equal to the circumference of the rotating shaft 4 to be measured is not necessarily required.
In other words, the above-described various effects can be obtained by preparing a plurality of measurement gauges that are shorter than the circumference of the rotating shaft 4 and disposing these measurement gauges in the circumferential direction of the rotating shaft 4.
[0075]
Further, in the above description, both ends of the measurement gauge 50 are cut at a right angle to the edge 51a. For example, as shown in FIG. It is possible to determine the engagement state of the portions, and this allows more accurate bonding.
[0076]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a technique capable of easily and accurately attaching the reflecting portion of the measurement gauge to the rotation axis to be measured.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a combined cycle power plant.
FIG. 2 is a schematic configuration diagram of a torque measuring device according to the present embodiment.
FIG. 3 is an enlarged view of a barcode area provided in a reflection unit.
FIG. 4 is a diagram showing a state in which a reflection unit is accurately attached to a rotation axis to be measured.
FIG. 5 is a diagram showing a state in which a reflecting portion is bent and attached to a rotation axis to be measured.
FIG. 6 is an enlarged view of a main part of the measurement gauge shown in the present embodiment.
FIG. 7 is a diagram showing an engagement state of each end of the measurement gauge shown in the present embodiment.
FIG. 8 is an explanatory diagram for explaining how to use the measurement gauge.
FIG. 9 is a diagram showing a working state in a gap serving as a measuring unit.
FIG. 10 is a diagram illustrating a marking operation on the periphery of the reflection unit.
FIG. 11 is a diagram showing an operation of applying an adhesive to the surface of the turbine rotor.
FIG. 12 is a diagram showing an operation of winding a measurement gauge around a rotation axis.
FIG. 13 is a diagram showing a cutting operation in a cutting unit.
FIG. 14 is a diagram showing a modified example of the end shape of the measurement gauge according to the present embodiment.
FIG. 15 is a diagram showing a modified example of the end shape of the measurement gauge according to the present embodiment.
[Explanation of symbols]
1 Combined cycle power plant
2 Gas turbine body
3 Compressor
4 Turbine rotor (rotary shaft)
5 Generator
6 High-pressure steam turbine (HP turbine)
7 Medium-pressure steam turbine (IP turbine)
8 Low-pressure steam turbine (LP turbine)
10 Torque measuring device (optical measuring device)
11 Laser irradiation device
12 Beam adjustment device
13 Analysis device
14 First light receiving unit
15 Second light receiving unit
50 measuring gauge
51 belt-shaped member
51a edge
51b edge
53 Cutting part
53a Weak line
53b notch
54 opening
55 holes (connection part)
60 bearing housing
61 Open window
61a cover
61b flange
64 axial reference line
65 oil groove
65a Edge of oil groove
66 Circumferential reference point
68 mark
69 masking tape
70 string
B Barcode area
B1 white part
B2 groove
C gap
G gas turbine
P Reflector
S measuring unit
S1 measuring unit
S2 measuring unit
V contact line
X measurement point
T steam turbine
Y measurement point

Claims (10)

計測対象たる回転軸の外周面に貼着されると共に、この回転軸に照射された光線を反射して光学計測器の受光部に入射するバーコード領域が設けられた反射部を有する光学計測器用の測定ゲージであって、
前記測定ゲージは、長手方向に延びる直線状の縁部を有する長尺の帯状部材と、この帯状部材に設けられた前記反射部と、を備え、
前記反射部に設けられるバーコード領域の各コードは、前記帯状部材の縁部を基準にこの縁部に対して直角に設けられていることを特徴とする光学計測器用の測定ゲージ。
For optical measuring instruments having a barcode area that is attached to the outer peripheral surface of the rotating shaft to be measured and that has a barcode area that reflects the light beam applied to the rotating shaft and enters the light receiving section of the optical measuring instrument. Measurement gauge,
The measurement gauge includes a long band-shaped member having a linear edge extending in the longitudinal direction, and the reflection unit provided on the band-shaped member.
Each bar code area bar code area provided in the reflection part is provided at right angles to the edge of the band-shaped member with respect to the edge of the bar-shaped member.
前記帯状部材は、前記回転軸の周長以上の長さを有することを特徴とする請求項1に記載の光学計測器用の測定ゲージ。The measuring gauge for an optical measuring instrument according to claim 1, wherein the belt-shaped member has a length equal to or greater than a circumference of the rotation shaft. 前記反射部は、前記帯状部材の長手方向に複数且つ等間隔に設けられていることを特徴とする請求項1又は2に記載の光学計測器用の測定ゲージ。The measuring gauge for an optical measuring instrument according to claim 1, wherein a plurality of the reflecting portions are provided at equal intervals in a longitudinal direction of the band-shaped member. 前記反射部の両側には、前記反射部を残して前記帯状部材を切断するための切断部が設けられていることを特徴とする請求項1から3の何れかに記載の光学計測器用の測定ゲージ。The measurement for an optical measuring instrument according to any one of claims 1 to 3, wherein a cutting portion for cutting the band-shaped member while leaving the reflection portion is provided on both sides of the reflection portion. gauge. 前記切断部には、前記帯状部材の一方の縁部から他方の縁部に延びる脆弱線が設けられると共に、この脆弱線を外縁に有し且つ内部に前記回転軸の表面を臨む開口部が形成されていることを特徴とする請求項4に記載の光学計測器用の測定ゲージ。The cut portion is provided with a weak line extending from one edge to the other edge of the band-shaped member, and an opening having the weak line on the outer edge and facing the surface of the rotating shaft is formed inside. The measuring gauge for an optical measuring instrument according to claim 4, wherein the measuring gauge is used. 前記帯状部材の端部には、この端部を吊し上げる治具を連結するための連結部が設けられていることを特徴とする請求項1から5の何れかに記載の光学計測器用の測定ゲージ。The measurement for an optical measuring instrument according to any one of claims 1 to 5, wherein a connection portion for connecting a jig for lifting the end portion is provided at an end of the band-shaped member. gauge. 前記帯状部材の一端と、前記帯状部材の他端は、相互に突き合わせた状態に於いて、且つ各端部近傍の前記縁部が同一直線上に揃っていることを条件に係合する形状を備えていることを特徴とする請求項1から6の何れかに記載の光学計測器用の測定ゲージ。One end of the band-shaped member and the other end of the band-shaped member are engaged with each other in a state where they abut each other, and have a shape that engages on condition that the edges near each end are aligned on the same straight line. The measuring gauge for an optical measuring instrument according to claim 1, wherein the measuring gauge is provided. 計測対象たる回転軸の外周面に貼着されると共に、この回転軸に照射された光線を反射して光学計測器の受光部に入射するバーコード領域が設けられた反射部を有する光学計測器用の測定ゲージを前記回転軸に取り付けるための方法であって、
縁部が直線で形成された長尺の帯状部材に、この縁部を基準に前記バーコード領域の各コードを直角に設ける工程と、
前記直線状の縁部を前記回転軸の周方向に延びる基準線に揃えて前記反射部の貼着位置を決定する工程と、
を含むことを特徴とする測定ゲージの取付方法。
For optical measuring instruments having a barcode area that is attached to the outer peripheral surface of the rotating shaft to be measured and that has a barcode area that reflects the light beam applied to the rotating shaft and enters the light receiving section of the optical measuring instrument. A method for attaching a measurement gauge of the above to the rotating shaft,
A step of providing each code of the barcode region at a right angle on the basis of this edge on a long strip-shaped member having an edge formed by a straight line,
A step of aligning the linear edge with a reference line extending in a circumferential direction of the rotation axis and determining an attachment position of the reflection unit,
A method for mounting a measuring gauge, comprising:
前記帯状部材の一端に、この一端を吊し上げるための治具を連結する工程と、
前記帯状部材の他端を前記回転軸に固定する工程と、
前記治具を介して帯状部材の一端を吊し上げつつ、前記回転軸を回転させる工程と、
をさらに含むことを特徴とする請求項8に記載の測定ゲージの取付方法。
A step of connecting a jig for lifting the one end to one end of the band-shaped member,
Fixing the other end of the band-shaped member to the rotating shaft;
A step of rotating the rotating shaft while lifting one end of the band-shaped member through the jig,
The method according to claim 8, further comprising:
前記反射部を前記回転軸に貼着する工程と、
前記反射部を残して前記帯状部材を切断する工程と、
をさらに含むことを特徴とする請求項8又は9に記載の測定ゲージの取付方法。
Affixing the reflecting portion to the rotating shaft,
Cutting the band-shaped member while leaving the reflection portion;
The method according to claim 8, further comprising:
JP2003049740A 2003-02-26 2003-02-26 Measurement gauge for optical instrumentations and its mounting method Pending JP2004257889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049740A JP2004257889A (en) 2003-02-26 2003-02-26 Measurement gauge for optical instrumentations and its mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049740A JP2004257889A (en) 2003-02-26 2003-02-26 Measurement gauge for optical instrumentations and its mounting method

Publications (1)

Publication Number Publication Date
JP2004257889A true JP2004257889A (en) 2004-09-16

Family

ID=33115370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049740A Pending JP2004257889A (en) 2003-02-26 2003-02-26 Measurement gauge for optical instrumentations and its mounting method

Country Status (1)

Country Link
JP (1) JP2004257889A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007193332A (en) * 2006-01-17 2007-08-02 Leica Camera Ag Interchangeable lens with optically readable marking
RU2809393C1 (en) * 2023-03-09 2023-12-11 Владимир Васильевич Чернявец Railroad engine speed detection system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007193332A (en) * 2006-01-17 2007-08-02 Leica Camera Ag Interchangeable lens with optically readable marking
RU2809393C1 (en) * 2023-03-09 2023-12-11 Владимир Васильевич Чернявец Railroad engine speed detection system

Similar Documents

Publication Publication Date Title
CA2818726C (en) A method for measuring geometry deformations of a turbine component
US8042412B2 (en) Turbomachinery system fiberoptic multi-parameter sensing system and method
CN1955720B (en) Methods and apparatus for inspecting an object
Gander et al. Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications
WO2017159770A1 (en) Optical measurement device, optical measurement method, and rotating machine
JP4922730B2 (en) Method and system for inspecting an object
US10495449B2 (en) Optical measurement device, optical measurement method, and rotary machine
JP2004257889A (en) Measurement gauge for optical instrumentations and its mounting method
Oberholster et al. Eulerian laser Doppler vibrometry: Online blade damage identification on a multi-blade test rotor
EP1489394B1 (en) Torsional vibration measuring instrument
JP2009109363A (en) Method and device for measuring water stress of plant
WO2004063730A1 (en) Fluorescence measuring equipment
CN106289090A (en) A kind of measurement apparatus of dental resin planted agent&#39;s variable field
JP2007240421A (en) Torsional rigidity arithmetic unit for rotor, prime mover output arithmetic unit, and methods therefor
CN110546453B (en) Gap measuring device, gap measuring sensor, and gap measuring method
RU2152590C1 (en) Method determining deformation of blades of rotating wheel of turbo-machine and gear for its implementation
Tay et al. Measurements of surface coordinates and slopes by shearography
Crossley et al. Smart Patches: Self-monitoring composite patches for the repair of aircraft
US10760897B2 (en) Optical sensor
US11280642B2 (en) Reflective long period grating
RU2222777C1 (en) Goniometer
JP2010223847A (en) Apparatus and program for measuring torque
JPS6230905A (en) Measuring device for between-gauge-mark distance deviation of test piece
Gander et al. Embedded micromachined fibre optic Fabry-Perot pressure sensors in aerodynamics applications
Amorebieta Herrero Advanced photonic sensors for industrial applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050707

A977 Report on retrieval

Effective date: 20071130

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080916

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127