JP2007240421A - Torsional rigidity arithmetic unit for rotor, prime mover output arithmetic unit, and methods therefor - Google Patents

Torsional rigidity arithmetic unit for rotor, prime mover output arithmetic unit, and methods therefor Download PDF

Info

Publication number
JP2007240421A
JP2007240421A JP2006065614A JP2006065614A JP2007240421A JP 2007240421 A JP2007240421 A JP 2007240421A JP 2006065614 A JP2006065614 A JP 2006065614A JP 2006065614 A JP2006065614 A JP 2006065614A JP 2007240421 A JP2007240421 A JP 2007240421A
Authority
JP
Japan
Prior art keywords
rotating body
load
torsional rigidity
calculated
torsion angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006065614A
Other languages
Japanese (ja)
Inventor
Shuichi Umezawa
修一 梅沢
Atsushi Adachi
淳 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2006065614A priority Critical patent/JP2007240421A/en
Publication of JP2007240421A publication Critical patent/JP2007240421A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To precisely calculate torsional rigidity, and to precisely find a prime mover output, based on torsional rigidity calculated precisely. <P>SOLUTION: A torsional angle of a rotor in a position in the vicinity of a load is measured in a plant for driving the load connected to an end part of the rotor driven by a plurality of prime movers, by a torsional angle measuring instrument 22, the first torsional rigidity calculating means 24 calculates the torsional rigidity of the rotor in the position in the vicinity of the load, based on the torsional angle of the rotor in the position in the vicinity of the load, a transverse elasticity modulus calculating means 25 calculates a transverse elasticity modulus, based on the torsional rigidity of the rotor in the position in the vicinity of the load. The second torsional rigidity calculating means 26 calculates the torsional rigidity of the rotor in a position between the prime movers, using the transverse elasticity modulus of the rotor calculated by the transverse elasticity modulus calculating means 25. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数台の原動機で回転力が与えられ負荷を駆動する回転体のねじり剛性を求める回転体のねじり剛性演算装置、回転体のねじり剛性演算装置で演算されたねじり剛性に基づいて原動機出力を求める原動機出力演算装置及びこれらの方法に関する。   The present invention relates to a torsional rigidity calculating device for a rotating body that obtains torsional rigidity of a rotating body that is given a rotational force by a plurality of prime movers to drive a load, and based on the torsional rigidity calculated by the torsional rigidity calculating device for the rotating body The present invention relates to a prime mover output calculation device for obtaining an output and a method thereof.

火力発電プラントや原子力発電プラントにおいて、原動機であるタービンの出力を個別に計測する場合、タービンを駆動する駆動軸(回転体)のねじり計測によってタービン出力(負荷出力)を計算している。例えば、回転体のねじり計測によってタービン出力を計算するものとしては、回転体の軸方向の異なる位置に1対の反射体を設け、両反射体にレーザ光を照射して両反射体からの反射光を検出し、反射光の周期的な強弱に基づいて回転体の回転周期を求め、両反射体からの反射光の遅れ時間(回転体のねじり)に基づいて回転体のトルクを検出するようにしたものがある(例えば、特許文献1参照)。   In a thermal power plant or a nuclear power plant, when individually measuring the output of a turbine that is a prime mover, the turbine output (load output) is calculated by measuring the torsion of a drive shaft (rotating body) that drives the turbine. For example, in order to calculate the turbine output by measuring the torsion of the rotating body, a pair of reflectors are provided at different positions in the axial direction of the rotating body, and both reflectors are irradiated with laser light and reflected from both reflectors. The light is detected, the rotation period of the rotating body is obtained based on the periodic strength of the reflected light, and the torque of the rotating body is detected based on the delay time of the reflected light from both reflectors (torsion of the rotating body). (For example, refer to Patent Document 1).

図4は、回転体のねじり計測によってタービン出力を計算するタービン出力装置の一例のブロック構成図である。レーザ光出力装置11から出力されたレーザ光は、光送受信装置12を介して回転体13の表面に照射される。回転体13の表面には軸方向に間隔を保って一対の反射体14a、14bが設けられ、光送受信装置12から照射されたレーザ光を所定の反射パターンで反射する。反射体14a、14bには、例えば、レーザ光を反射する部分とレーザ光を吸収する部分とがバーコード状に形成された反射パターンを有し、レーザ光が照射されたときその反射パターンに従った反射光が発生する。反射板14a、14bを含む回転体13の表面で反射した反射光は光送受信装置12で受信され、その反射光強度は光検知装置15a、15bで検出されてねじれ角算出部16に入力される。   FIG. 4 is a block configuration diagram of an example of a turbine output device that calculates the turbine output by measuring the torsion of the rotating body. The laser beam output from the laser beam output device 11 is applied to the surface of the rotating body 13 via the optical transceiver 12. A pair of reflectors 14a and 14b are provided on the surface of the rotator 13 at intervals in the axial direction, and the laser light emitted from the optical transceiver 12 is reflected by a predetermined reflection pattern. The reflectors 14a and 14b have, for example, a reflection pattern in which a portion that reflects laser light and a portion that absorbs laser light are formed in a bar code shape, and follows the reflection pattern when irradiated with laser light. Reflected light is generated. The reflected light reflected by the surface of the rotating body 13 including the reflecting plates 14a and 14b is received by the optical transmission / reception device 12, and the reflected light intensity is detected by the light detection devices 15a and 15b and input to the twist angle calculation unit 16. .

ねじれ角算出部16は両反射体からの反射光の遅れ時間tdに基づいて(1)式によりねじれ角θを算出する。(1)式中のTは回転体の回転周期である。

Figure 2007240421
The torsion angle calculation unit 16 calculates the torsion angle θ by the equation (1) based on the delay time t d of the reflected light from both reflectors. T in the equation (1) is the rotation period of the rotating body.
Figure 2007240421

そして、トルク算出部17は、(1)式で求めたねじれ角θと、回転体のねじり剛性Kとから(2)式によりトルクτを計算する。

Figure 2007240421
And the torque calculation part 17 calculates torque (tau) by (2) Formula from the torsion angle (theta) calculated | required by (1) Formula, and the torsional rigidity K of a rotary body.
Figure 2007240421

さらに、出力算出部18は、(2)式で求めたトルクτと回転体13の回転数Nとから(3)式によりタービン出力WTを算出する。

Figure 2007240421
Further, the output calculation unit 18 calculates the turbine output W T by the equation (3) from the torque τ obtained by the equation (2) and the rotational speed N of the rotating body 13.
Figure 2007240421

このように、回転体のねじり計測によってタービン出力Wを求めるには、(3)式に示すように、回転体のねじり剛性Kが必要となる。この回転体のねじり剛性Kは回転体(タービン駆動軸)を発電プラントから持ち出して検定するか、もしくはコンピュータ解析で求めるようにしている。コンピュータ解析では、例えば回転体のねじり剛性KをFEM解析(有限要素法)で求めている。
特開2002−22564号公報
Thus, to obtain the turbine output W by measuring the torsion of the rotating body, the torsional rigidity K of the rotating body is required as shown in Equation (3). The torsional rigidity K of the rotating body is obtained by examining the rotating body (turbine drive shaft) by taking it out of the power plant or by computer analysis. In the computer analysis, for example, the torsional rigidity K of the rotating body is obtained by FEM analysis (finite element method).
JP 2002-22564 A

ところが、回転体のねじり剛性Kは、回転体(タービン駆動軸)を持ち出して検定する場合は、タービンを分解して行うことになるので時間がかかり、またコストがかかる。一方、コンピュータ解析によって求める場合は精度の点で問題がある。   However, when examining the torsional rigidity K of the rotating body by taking out the rotating body (turbine drive shaft), it takes time and costs because the turbine is disassembled. On the other hand, when it is obtained by computer analysis, there is a problem in terms of accuracy.

回転体のねじり剛性Kは回転体が円筒の場合には(4)式で示される。(4)式中のGは回転体の材料の横弾性係数、ZPは回転体の断面二次モーメント、Lはねじり計測区間長(両反射体の距離)、dは回転体の直径である。

Figure 2007240421
The torsional rigidity K of the rotating body is expressed by the equation (4) when the rotating body is a cylinder. (4) modulus of transverse elasticity, Z P is the second moment of the rotary body, L is a torsion measurement section length of G is the rotation materials in the formula (distance between both reflector), d is the diameter of the rotary body .
Figure 2007240421

すなわち、ねじり剛性Kを算出するには、回転体(タービン駆動軸)の材料固有の横弾性係数Gが必要となるが、この横弾性係数Gを精度良く把握することは困難である。これは、横弾性係数Gは、例えば同じステンレスであっても構成成分比の微小な相違や焼き入れ時間の相違等により異なってくるからである。   That is, in order to calculate the torsional rigidity K, the transverse elastic coefficient G specific to the material of the rotating body (turbine drive shaft) is required, but it is difficult to accurately grasp the transverse elastic coefficient G. This is because the transverse elastic modulus G varies depending on, for example, a minute difference in the component ratio, a difference in quenching time, and the like even if the same stainless steel is used.

図5は、コンピュータ解析で求めたねじり剛性Kによって算出した発電プラント出力Wcと、発電機出力検出器で計測した発電プラント出力Wgとのグラフである。図5では、時点t1から負荷を取り始め、時点t2で定格出力PRとなった場合を示している。図5から分かるように、コンピュータ解析で求めたねじり剛性Kによって算出した発電プラント出力Wcと、発電機出力検出器で計測した発電プラント出力Wgとは誤差が生じている。この誤差は横弾性係数Gの誤差によるねじり剛性Kの誤差であると考えられる。 FIG. 5 is a graph of the power plant output W c calculated by the torsional rigidity K obtained by computer analysis and the power plant output W g measured by the generator output detector. In Figure 5, start taking the load from time t1, shows a case where a rated output P R at time t2. As can be seen from FIG. 5, there is an error between the power plant output W c calculated by the torsional stiffness K obtained by computer analysis and the power plant output W g measured by the generator output detector. This error is considered to be an error of torsional rigidity K due to an error of the lateral elastic modulus G.

本発明の目的は、ねじり剛性を精度良く算出することができる回転体のねじり剛性演算装置、その回転体のねじり剛性演算装置で演算されたねじり剛性に基づいて原動機出力を精度良く求めることができる原動機出力演算装置及びこれらの方法を提供することである。   An object of the present invention is to obtain a motor output with high accuracy based on a torsional rigidity computing device capable of calculating torsional rigidity with high accuracy and a torsional stiffness calculated by the torsional stiffness computing device of the rotating body. A prime mover output computing device and methods thereof are provided.

請求項1の発明に係わる回転体のねじり剛性演算装置は、複数台の原動機で回転体に回転力を与え前記回転体の端部に連結された負荷を駆動するプラントの前記負荷近傍位置の回転体のねじれ角を計測するねじれ角計測器と、前記ねじれ角計測器で計測された負荷近傍位置の回転体のねじれ角に基づいて負荷近傍位置における回転体のねじり剛性を算出する第1のねじり剛性算出手段と、前記第1のねじり剛性算出手段で算出された負荷近傍位置における回転体のねじり剛性に基づいて負荷近傍位置における回転体の横弾性係数を算出する横弾性係数算出手段と、前記横弾性係数算出手段で算出された負荷近傍位置における回転体の横弾性係数を用いて原動機間位置における回転体のねじり剛性を算出する第2のねじり剛性算出手段とを備えたことを特徴とする。   The torsional rigidity calculating device for a rotating body according to the invention of claim 1 is the rotation of a position in the vicinity of the load of a plant that applies a rotational force to the rotating body by a plurality of prime movers and drives a load connected to an end of the rotating body. A torsion angle measuring instrument for measuring a torsion angle of the body, and a first torsional rigidity for calculating the torsional rigidity of the rotating body at the position near the load based on the torsion angle of the rotating body at the position near the load measured by the torsion angle measuring instrument. Rigidity calculation means; lateral elastic coefficient calculation means for calculating a transverse elastic coefficient of the rotating body near the load based on the torsional rigidity of the rotating body near the load calculated by the first torsional rigidity calculating means; and Second torsional rigidity calculating means for calculating the torsional rigidity of the rotating body at the position between the prime movers using the transverse elastic coefficient of the rotating body at the position near the load calculated by the lateral elastic modulus calculating means. It is characterized in.

請求項2の発明に係わる原動機出力演算装置は、回転体のねじり剛性演算装置は、複数台の原動機で回転体に回転力を与え前記回転体の端部に連結された負荷を駆動するプラントの前記負荷近傍位置の回転体のねじれ角を計測する第1のねじれ角計測器と、複数台の原動機のいずれかの原動機間位置の回転体のねじれ角を計測する第2のねじれ角計測器と、前記第1のねじれ角計測器で計測された負荷近傍位置の回転体のねじれ角に基づいて負荷近傍位置における回転体のねじり剛性を算出する第1のねじり剛性算出手段と、前記第1のねじり剛性算出手段で算出された負荷近傍位置における回転体のねじり剛性に基づいて負荷近傍位置における回転体の横弾性係数を算出する横弾性係数算出手段と、前記横弾性係数算出手段で算出された負荷近傍位置における回転体の横弾性係数を用いて原動機間位置における回転体のねじり剛性を算出する第2のねじり剛性算出手段と、前記第2のねじれ角計測器で計測された原動機間位置の回転体のねじれ角及び前記第2のねじり剛性算出手段で算出された原動機間位置における回転体のねじり剛性に基づいて原動機間位置の前段の原動機の出力を算出する原動機出力算出手段とを備えたことを特徴とする。   According to a second aspect of the present invention, there is provided a prime mover output computing device comprising: a rotating body torsional stiffness computing device, wherein a plurality of prime movers apply a rotational force to a rotating body to drive a load connected to an end of the rotating body. A first torsion angle measuring instrument for measuring a torsion angle of a rotating body in the vicinity of the load; a second torsion angle measuring instrument for measuring a torsion angle of a rotating body at a position between any of the plurality of prime movers; First torsional rigidity calculating means for calculating the torsional rigidity of the rotating body at the position near the load based on the torsional angle of the rotating body at the position near the load measured by the first torsion angle measuring instrument; Based on the torsional rigidity of the rotating body at the position near the load calculated by the torsional rigidity calculating means, the lateral elastic coefficient calculating means for calculating the transverse elastic coefficient of the rotating body at the position near the load, and calculated by the transverse elastic coefficient calculating means negative A second torsional rigidity calculating means for calculating the torsional rigidity of the rotating body at the position between the prime movers using the transverse elastic coefficient of the rotating body at a nearby position; and the rotation of the position between the prime movers measured by the second torsion angle measuring instrument. A prime mover output calculating means for calculating the output of the former prime mover at the position between the prime movers based on the torsional angle of the body and the torsional rigidity of the rotating body at the prime mover position calculated by the second torsional stiffness calculation means; It is characterized by.

請求項3の発明に係わる回転体のねじり剛性演算方法は、複数台の原動機で回転体に回転力を与え前記回転体の端部に連結された負荷を駆動するプラントの前記負荷近傍位置の回転体のねじれ角を計測し、計測した負荷近傍位置の回転体のねじれ角に基づいて負荷近傍位置における回転体のねじり剛性を算出し、算出した負荷近傍位置における回転体のねじり剛性に基づいて負荷近傍位置における回転体の横弾性係数を算出し、算出した負荷近傍位置における回転体の横弾性係数を用いて原動機間位置における回転体のねじり剛性を算出することを特徴とする。   According to a third aspect of the present invention, there is provided a method for calculating torsional rigidity of a rotating body, wherein a plurality of prime movers apply rotational force to the rotating body to drive a load connected to an end of the rotating body at a position near the load. Measure the torsional angle of the body, calculate the torsional rigidity of the rotating body near the load based on the measured torsional angle of the rotating body near the load, and load based on the calculated torsional rigidity of the rotating body near the load The transverse elastic coefficient of the rotating body at the vicinity position is calculated, and the torsional rigidity of the rotating body at the position between the prime movers is calculated using the calculated lateral elasticity coefficient of the rotating body at the load vicinity position.

請求項4の発明に係わる原動機出力演算方法は、複数台の原動機で回転体に回転力を与え前記回転体の端部に連結された負荷を駆動するプラントの前記負荷近傍位置の回転体のねじれ角を計測するとともに複数台の原動機のいずれかの原動機間位置の回転体のねじれ角を計測し、計測した負荷近傍位置の回転体のねじれ角に基づいて負荷近傍位置における回転体のねじり剛性を算出し、算出した負荷近傍位置における回転体のねじり剛性に基づいて負荷近傍位置における回転体の横弾性係数を算出し、算出した負荷近傍位置における回転体の横弾性係数を用いて原動機間位置における回転体のねじり剛性を算出し、計測した原動機間位置の回転体のねじれ角及び算出した原動機間位置における回転体のねじり剛性に基づいて原動機間位置の前段の原動機の出力を算出することを特徴とする。   According to a fourth aspect of the present invention, there is provided a prime mover output calculation method in which a rotational force is applied to a rotating body by a plurality of prime movers to drive a load connected to an end of the rotating body. The torsional rigidity of the rotating body at the position near the load is measured based on the measured twist angle of the rotating body at the position near the load. Calculate the transverse elastic coefficient of the rotating body at the position near the load based on the torsional rigidity of the rotating body at the calculated position near the load, and use the calculated lateral elasticity coefficient of the rotating body at the position near the load at the position between the prime movers. Calculate the torsional rigidity of the rotating body, and determine the position before the prime mover based on the measured torsional angle of the rotating body at the position between the prime movers and the calculated torsional rigidity of the rotational body at the position between the prime movers. And calculates the output of the prime mover.

本発明によれば、精度良く計測されるプラントの負荷出力及び負荷近傍位置の回転体のねじれ角に基づいて負荷近傍位置における回転体のねじり剛性を精度良く算出し、その精度の良い負荷近傍位置における回転体のねじり剛性に基づいて負荷近傍位置における回転体の横弾性係数を算出するので、精度の良い横弾性係数を得ることができる。そして、その精度の良い負荷近傍位置における回転体の横弾性係数を用いて原動機間位置における回転体のねじり剛性を算出するので、算出された原動機間位置における回転体のねじり剛性も精度が向上する。また、精度の良い回転体のねじり剛性を用いて原動機間位置の前段の原動機の出力を算出するので、算出された原動機出力も精度が向上する。   According to the present invention, the torsional rigidity of the rotating body at the position near the load is accurately calculated based on the load output of the plant measured accurately and the torsion angle of the rotating body at the position near the load. Since the transverse elastic modulus of the rotating body at the position near the load is calculated based on the torsional rigidity of the rotating body, a highly accurate lateral elastic coefficient can be obtained. And since the torsional rigidity of the rotating body at the position between the prime movers is calculated using the lateral elastic modulus of the rotating body at the position near the load with good accuracy, the torsional rigidity of the rotating body at the calculated position between the prime movers also improves the accuracy. . Further, since the output of the prime mover at the preceding stage of the position between the prime movers is calculated using the torsional rigidity of the rotating body with high accuracy, the accuracy of the calculated prime mover output is also improved.

これにより、プラントの性能管理の精度が向上し的確なメンテナンスが可能となり、さらには効率向上による燃料の削減が可能となる。   As a result, the accuracy of performance management of the plant is improved and accurate maintenance is possible, and furthermore, fuel can be reduced by improving efficiency.

(第1の実施の形態)
図1は本発明の第1の実施の形態に係わる回転体のねじり剛性演算装置のブロック構成図である。図1では、原動機は蒸気タービンであり負荷は発電機である発電プラントを示している。蒸気タービンは、1台の高圧タービン19と3台の低圧タービン20a、20b、20cとからなり、これらで発電機21を駆動するように構成されている。
(First embodiment)
FIG. 1 is a block diagram of a torsional rigidity calculating device for a rotating body according to the first embodiment of the present invention. FIG. 1 shows a power plant in which the prime mover is a steam turbine and the load is a generator. The steam turbine includes one high-pressure turbine 19 and three low-pressure turbines 20a, 20b, and 20c, and is configured to drive the generator 21 with these.

高圧タービン19の左端の駆動軸を1軸、右端の駆動軸を2軸、以下同様に、低圧タービン20aの左端の駆動軸を3軸、右端の駆動軸を4軸…と称呼することにすると、低圧タービン20cの右端の駆動軸は8軸となる。この8軸は負荷である発電機21に最も近接した軸であり、この8軸にねじれ角計測器22が設けられている。ねじれ角計測器22は、発電機を駆動する8軸のねじれ角θ8を計測するものであり、前述したように、回転体(駆動軸)13の表面の軸方向に間隔を保って配置された一対の反射体からの反射光の遅れ時間tdに基づいて(1)式により8軸のねじれ角θ8を算出する。 The left end drive shaft of the high-pressure turbine 19 is referred to as one axis, the right end drive shaft is referred to as two axes, and similarly, the left end drive shaft of the low pressure turbine 20a is referred to as three axes, the right end drive shaft is referred to as four axes, and so on. The drive shaft at the right end of the low-pressure turbine 20c has eight axes. The eight axes are the axes closest to the generator 21 that is a load, and a torsion angle measuring device 22 is provided on the eight axes. The torsion angle measuring instrument 22 measures the eight-axis torsion angle θ 8 that drives the generator, and is arranged with an interval in the axial direction of the surface of the rotating body (drive shaft) 13 as described above. Based on the delay time t d of the reflected light from the pair of reflectors, the eight-axis torsion angle θ 8 is calculated by the equation (1).

ねじれ角計測器22で得られた8軸のねじれ角θ8は、演算処理装置23の第1のねじり剛性算出手段24に入力され、8軸におけるねじり剛性K8が求められる。第1のねじり剛性算出手段24は、ねじれ角計測器22で得られた8軸のねじれ角θ8、駆動軸の回転数(タービン回転数)N、発電機出力Wを入力し、(3)式のθに8軸のねじれ角θ8を、(3)式のWTに8軸の出力である発電機出力Wを代入して、8軸のねじり剛性K8を算出する。なお、駆動軸の回転数(タービン回転数)Nは各軸(1軸〜8軸)の位置に関係なくNで一定である。第1のねじり剛性算出手段24で算出される8軸のねじり剛性K8は(5)式で示される。

Figure 2007240421
8 torsional angle theta 8 of obtained in twist angle meter 22 is input to the first torsional rigidity calculation means 24 of the processor 23, the rigidity K 8 is required twisting in 8 shaft. The first torsional rigidity calculating means 24 inputs the eight-axis torsion angle θ 8 obtained by the torsion angle measuring device 22, the rotational speed (turbine rotational speed) N of the drive shaft, and the generator output W, (3) the twist angle theta 8 of 8 axes formula theta, (3) by substituting the power generator output W as the output of the 8 axis W T of the equation to calculate the torsional rigidity K 8 of 8 axes. The rotational speed (turbine rotational speed) N of the drive shaft is constant at N regardless of the position of each axis (1 to 8 axes). The eight-axis torsional rigidity K 8 calculated by the first torsional rigidity calculating means 24 is expressed by equation (5).
Figure 2007240421

第1のねじり剛性算出手段24で算出される8軸のねじり剛性K8は精度の良いものである。これは、発電機出力Wは出力検出器で精度良く計測されるものであり、8軸のねじれ角θ8は発電機21の近傍で測定したものであるから誤差が少なく、8軸のねじり剛性K8は、これら誤差の少ない発電機出力W及び8軸のねじれ角θ8を用いて算出されたものであるからである。 Torsional rigidity K 8 of 8 axes calculated by the first torsional rigidity calculation means 24 to have good accuracy. This is because the generator output W is accurately measured by the output detector, and the 8-axis torsion angle θ 8 is measured in the vicinity of the generator 21, so there is little error, and the 8-axis torsional rigidity. This is because K 8 is calculated by using the generator output W and the eight-axis torsion angle θ 8 with less error.

次に、第1のねじり剛性算出手段24で算出された8軸のねじり剛性K8は、横弾性係数算出手段25に入力され、8軸における横弾性係数G8が算出される。横弾性係数算出手段25は、第1のねじり剛性算出手段24で算出された8軸のねじり剛性K8、及び8軸における駆動軸の断面二次モーメントZP8、8軸におけるねじり計測区間長(両反射体の距離)L8、8軸における駆動軸の直径d8をそれぞれ(4)式に代入して、8軸における横弾性係数G8を算出する。横弾性係数算出手段25で算出される8軸の横弾性係数G8は、(6)式で示される。

Figure 2007240421
Next, torsional rigidity K 8 of 8 axes calculated by the first torsional rigidity calculation means 24 is inputted to the transverse elasticity coefficient calculation means 25, a modulus of transverse elasticity G 8 is calculated in the eight axes. The lateral elastic modulus calculating means 25 is configured to calculate the eight-axis torsional rigidity K 8 calculated by the first torsional rigidity calculating means 24, the drive shaft sectional secondary moment Z P8 at the eight axes, and the eight-axis torsion measurement section length ( The transverse elastic modulus G 8 for the eight axes is calculated by substituting the distance d L 8 between both reflectors and the diameter d 8 of the drive shaft for the eight axes into the equation (4). The eight-axis lateral elastic modulus G 8 calculated by the lateral elastic coefficient calculating means 25 is expressed by equation (6).
Figure 2007240421

この横弾性係数算出手段25で算出された8軸の横弾性係数G8は、精度の良いものである。これは、第1のねじり剛性算出手段24で算出される精度の良い8軸のねじり剛性K8を用いて算出したものであるからである。 The eight-axis lateral elastic modulus G 8 calculated by the lateral elastic coefficient calculating means 25 is highly accurate. This is because the calculation is performed using the 8-axis torsional rigidity K 8 with high accuracy calculated by the first torsional rigidity calculating means 24.

横弾性係数算出手段25で算出された8軸の横弾性係数G8は、第2のねじり剛性算出手段26に入力される。第2のねじり剛性算出手段26は、タービン間位置における駆動軸のねじり剛性をもとめるものであり、例えば高圧タービン19と低圧タービン12aとの間の3軸のねじり剛性K3を求める。 The eight-axis lateral elastic modulus G 8 calculated by the lateral elastic modulus calculating means 25 is input to the second torsional rigidity calculating means 26. Second torsional rigidity calculation means 26, which determine the torsional rigidity of the drive shaft in the turbine between a position, for example, determine the torsional rigidity K 3 of 3 axes between the high pressure turbine 19 and the low-pressure turbine 12a.

3軸のねじり剛性K3は、軸の横弾性係数をG3、3軸における駆動軸の断面二次モーメントをZP3、3軸におけるねじり計測区間長(両反射体の距離)をL3、3軸における駆動軸の直径をd3とし、これらを(4)式に代入すると、(7)式で示される。

Figure 2007240421
3-axis torsional rigidity K 3 of the shear modulus of the shaft G 3, 3 a second moment of the drive shaft in the axis Z P3, 3 twist in the axial measurement interval length (distance between both reflector) L 3, When the diameter of the drive shaft in the three axes is d 3 and these are substituted into the equation (4), the equation (7) is obtained.
Figure 2007240421

ここで、タービン駆動軸(1軸〜8軸)は同じ材質で製造されているので、1軸〜8軸のいずれの位置でも横弾性係数Gはほぼ同じである。つまり、8軸の横弾性係数G8と3軸の横弾性係数G3とはほぼ同じであるので、(7)式のG3にG8を代入し、さらにG8に(4)式を代入すると、3軸のねじり剛性K3は(8)式で示される。

Figure 2007240421
Here, since the turbine drive shafts (1 to 8 shafts) are manufactured from the same material, the transverse elastic modulus G is substantially the same at any position of the 1 to 8 shafts. That is, since the 8-axis lateral elastic modulus G 8 and the 3-axis lateral elastic modulus G 3 are substantially the same, substitute G 8 for G 3 in the equation (7), and further change the equation (4) to G 8. When substituted, the triaxial torsional stiffness K 3 is expressed by equation (8).
Figure 2007240421

3軸のねじり剛性K3は、(8)式から分かるように、3軸における駆動軸の断面二次モーメントZP3、3軸におけるねじり計測区間長(両反射体の距離)L3、3軸における駆動軸の直径d3、8軸における駆動軸の断面二次モーメントZP8、8軸におけるねじり計測区間長(両反射体の距離)L8、8軸における駆動軸の直径d8、発電機出力W、駆動軸の回転数N、8軸のねじれ角θ8から計算で求められる。これらの諸量は、いずれも精度よく計測でき、また計算できるものであるので、3軸のねじり剛性K3も精度良く計算できる。そして、第2のねじり剛性算出手段26で算出された3軸のねじり剛性K3は、例えば、表示装置やプリンタ等の出力装置27に出力される。 The triaxial torsional stiffness K 3 is obtained by calculating the sectional moment of inertia Z P3 of the drive shaft in the three axes, the torsion measurement section length in the three axes (distance between both reflectors) L 3 , as shown in the equation (8). Diameter d 3 of the drive shaft at 8, sectional moment of inertia Z P8 of drive shaft at 8 axes, torsion measurement section length (distance between both reflectors) L 8 at 8 axes, drive shaft diameter d 8 at 8 axes, generator It is obtained by calculation from the output W, the rotational speed N of the drive shaft, and the twist angle θ 8 of the eight axes. Since these various quantities can be measured and calculated with high accuracy, the torsional rigidity K3 of the three axes can also be calculated with high accuracy. The triaxial torsional stiffness K 3 calculated by the second torsional stiffness calculating means 26 is output to an output device 27 such as a display device or a printer.

第1の実施の形態によれば、精度良く計測される発電機出力及び発電機近傍位置のタービン駆動軸(8軸)のねじり剛性K8を精度良く算出し、その精度の良い8軸のねじり剛性K8に基づいてタービン駆動軸の横弾性係数Gを算出するので、精度の良い横弾性係数Gを得ることができる。そして、その精度の良い横弾性係数Gを用いて、タービン駆動軸上の他の位置(例えば3軸)における駆動軸のねじり剛性K3を算出するので、算出された3軸のねじり剛性K3も精度よく算出できる。 According to the first embodiment, accurately measured the generator output and the generator vicinity of the turbine drive shaft torsional rigidity K 8 (8 axes) to accurately calculate, twisting of 8 axial good accuracy Since the transverse elastic modulus G of the turbine drive shaft is calculated based on the rigidity K 8 , it is possible to obtain an accurate lateral elastic modulus G. Then, using a good shear modulus G of accuracy, since the calculated torsional stiffness K 3 of the drive shaft at the other positions on the turbine drive shaft (e.g., three axes) of three axes calculated torsional rigidity K 3 Can also be calculated accurately.

(第2の実施の形態)
図2は本発明の第2の実施の形態に係わる原動機出力演算装置のブロック構成図である。図1に示した第1の実施の形態の回転体のねじり剛性演算装置に対し、第2のねじれ角計測器28を追加して設け、また、演算処理装置23に原動機出力算出手段29を追加して設け、原動機出力演算装置を構成したものである。図1と同一要素には、同一符号を付し重複する説明は省略する。
(Second Embodiment)
FIG. 2 is a block diagram of a prime mover output arithmetic apparatus according to the second embodiment of the present invention. A second torsional angle measuring device 28 is added to the rotating body torsional rigidity calculating device of the first embodiment shown in FIG. 1, and a prime mover output calculating means 29 is added to the arithmetic processing device 23. And providing a prime mover output arithmetic unit. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

演算処理装置23の原動機出力算出手段29は、第2のねじれ角計測器28で計測された3軸のねじれ角θ3、第2のねじり剛性算出手段26で算出された3軸におけるねじり剛性K3、タービン駆動軸の回転数Nを入力し、3軸の前段のタービンである高圧タービン11の出力WHPを(9)式により算出する。

Figure 2007240421
The prime mover output calculating means 29 of the arithmetic processing unit 23 includes a triaxial torsion angle θ 3 measured by the second torsion angle measuring instrument 28, and a triaxial torsional rigidity K calculated by the second torsional rigidity calculating means 26. 3 , the rotational speed N of the turbine drive shaft is input, and the output W HP of the high-pressure turbine 11, which is the preceding turbine of the three shafts, is calculated by equation (9)
Figure 2007240421

高圧タービン11の出力WHPは、(9)式から分かるように、3軸における駆動軸の断面二次モーメントZP3、3軸におけるねじり計測区間長(両反射体の距離)L3、3軸における駆動軸の直径d3、8軸における駆動軸の断面二次モーメントZP8、8軸におけるねじり計測区間長(両反射体の距離)L8、8軸における駆動軸の直径d8、発電機出力W、駆動軸の回転数N、8軸のねじれ角θ8、3軸のねじれ角θ3から計算で求められる。 Output W HP of the high pressure turbine 11, (9) As can be seen from the equation, the second moment Z P3 of the drive shaft in the three axes, 3 twist in the axial measurement section length (distance between both reflector) L 3, triaxial Diameter d 3 of the drive shaft at 8, sectional moment of inertia Z P8 of drive shaft at 8 axes, torsion measurement section length (distance between both reflectors) L 8 at 8 axes, drive shaft diameter d 8 at 8 axes, generator It is obtained by calculation from the output W, the rotational speed N of the drive shaft, the twist angle θ 8 of the eight axes, and the twist angle θ 3 of the three axes.

これらの諸量は、いずれも精度よく計測でき、また計算できるものであるので、高圧タービン11の出力WHPも精度良く計算できる。そして、原動機出力算出手段29で算出された高圧タービン11の出力WHPは、例えば、表示装置やプリンタ等の出力装置27に出力される。 Since these various quantities can be measured and calculated with high accuracy, the output W HP of the high-pressure turbine 11 can also be calculated with high accuracy. Then, the output W HP of the high pressure turbine 11 calculated by the prime mover output calculation means 29 is output to an output device 27 such as a display device or a printer.

図3は、本発明の第2の実施の形態で求めた発電プラント出力Wcと、発電機出力検出器で計測した発電プラント出力Wgとのグラフである。図3では、時点t1から負荷を取り始め、時点t2で定格出力PRとなった場合を示している。図3から分かるように、第2の実施の形態で求めた発電プラント出力Wcと、発電機出力検出器で計測した発電プラント出力Wgとは特性がほとんど一致し、横弾性係数Gの誤差によるねじり剛性Kの誤差の影響を大幅に抑制できている。 FIG. 3 is a graph of the power plant output W c obtained in the second embodiment of the present invention and the power plant output W g measured by the generator output detector. In Figure 3, start taking the load from time t1, shows a case where a rated output P R at time t2. As can be seen from FIG. 3, the power plant output W c obtained in the second embodiment and the power plant output W g measured by the generator output detector have almost the same characteristics, and the error of the lateral elastic modulus G The influence of the error of torsional rigidity K due to can be greatly suppressed.

第2の実施の形態によれば、また、精度の良い回転体のねじり剛性K3を用いて3軸の前段の高圧タービン11の出力WHPを算出するので、算出された高圧タービン11の出力WHPも精度が向上する。これにより、プラントの性能管理の精度が向上し的確なメンテナンスが可能となり、さらには効率向上による燃料の削減が可能となる。 According to the second embodiment, since the output W HP of the three-stage upstream high-pressure turbine 11 is calculated using the torsional rigidity K 3 of the rotating body with high accuracy, the calculated output of the high-pressure turbine 11 is calculated. W HP also improves accuracy. As a result, the accuracy of performance management of the plant is improved and accurate maintenance is possible, and further, fuel can be reduced by improving efficiency.

本発明の第1の実施の形態に係わる回転体のねじり剛性演算装置のブロック構成図。The block block diagram of the torsional rigidity calculation apparatus of the rotary body concerning the 1st Embodiment of this invention. 本発明の第2の実施の形態に係わる原動機出力演算装置のブロック構成図。The block block diagram of the motor | power_engine output calculating apparatus concerning the 2nd Embodiment of this invention. 本発明の第2の実施の形態で求めた発電プラント出力Wcと発電機出力検出器で計測した発電プラント出力Wとのグラフ。Graph of the power plant output W g measured by the second and the power plant output W c obtained in Embodiment generator output detector of the present invention. 回転体のねじり計測によってタービン出力を計算するタービン出力装置の一例のブロック構成図。The block block diagram of an example of the turbine output device which calculates a turbine output by torsion measurement of a rotary body. 従来のコンピュータ解析で求めたねじり剛性Kによって算出した発電プラント出力Wcと発電機出力検出器で計測した発電プラント出力Wとのグラフ。Graph of the power plant output W g measured by the power plant output W c calculated by the torsional rigidity K determined by conventional computer analysis generator output detector.

符号の説明Explanation of symbols

11…レーザ光出力装置、12…光送受信装置、13…回転体、14…反射体、15…光検知装置、16…ねじれ角算出部、17…トルク算出部、18…出力算出部、19…高圧タービン、20…低圧タービン、21…発電機、22…ねじれ角計測器、23…演算処理装置、24…第1のねじり剛性算出手段、25…横弾性係数算出手段、26…第2のねじり剛性算出手段、27…出力装置 DESCRIPTION OF SYMBOLS 11 ... Laser beam output apparatus, 12 ... Optical transmission / reception apparatus, 13 ... Rotating body, 14 ... Reflector, 15 ... Optical detection apparatus, 16 ... Torsion angle calculation part, 17 ... Torque calculation part, 18 ... Output calculation part, 19 ... High pressure turbine, 20 ... Low pressure turbine, 21 ... Generator, 22 ... Torsion angle measuring device, 23 ... Arithmetic processing device, 24 ... First torsional rigidity calculating means, 25 ... Lateral elastic modulus calculating means, 26 ... Second torsion Rigidity calculation means, 27 ... output device

Claims (4)

複数台の原動機で回転体に回転力を与え前記回転体の端部に連結された負荷を駆動するプラントの前記負荷近傍位置の回転体のねじれ角を計測するねじれ角計測器と、前記ねじれ角計測器で計測された負荷近傍位置の回転体のねじれ角及び前記プラントの負荷出力に基づいて負荷近傍位置における回転体のねじり剛性を算出する第1のねじり剛性算出手段と、前記第1のねじり剛性算出手段で算出された負荷近傍位置における回転体のねじり剛性に基づいて負荷近傍位置における回転体の横弾性係数を算出する横弾性係数算出手段と、前記横弾性係数算出手段で算出された負荷近傍位置における回転体の横弾性係数を用いて原動機間位置における回転体のねじり剛性を算出する第2のねじり剛性算出手段とを備えたことを特徴とする回転体のねじり剛性演算装置。   A torsion angle measuring instrument for measuring a torsion angle of a rotating body at a position near the load of a plant that applies a rotational force to a rotating body by a plurality of prime movers and drives a load connected to an end of the rotating body; and the torsion angle A first torsional rigidity calculating means for calculating a torsional rigidity of the rotating body in the vicinity of the load based on a torsion angle of the rotating body in the vicinity of the load measured by the measuring instrument and a load output of the plant; A lateral elastic coefficient calculating means for calculating a transverse elastic coefficient of the rotating body at the position near the load based on the torsional rigidity of the rotating body at the position near the load calculated by the rigidity calculating means; and a load calculated by the transverse elastic coefficient calculating means. And a second torsional rigidity calculating means for calculating the torsional rigidity of the rotating body at the position between the prime movers using the transverse elastic coefficient of the rotating body at a nearby position. Jiri rigidity calculation device. 複数台の原動機で回転体に回転力を与え前記回転体の端部に連結された負荷を駆動するプラントの前記負荷近傍位置の回転体のねじれ角を計測する第1のねじれ角計測器と、複数台の原動機のいずれかの原動機間位置の回転体のねじれ角を計測する第2のねじれ角計測器と、前記第1のねじれ角計測器で計測された負荷近傍位置の回転体のねじれ角及び前記プラントの負荷出力に基づいて負荷近傍位置における回転体のねじり剛性を算出する第1のねじり剛性算出手段と、前記第1のねじり剛性算出手段で算出された負荷近傍位置における回転体のねじり剛性に基づいて負荷近傍位置における回転体の横弾性係数を算出する横弾性係数算出手段と、前記横弾性係数算出手段で算出された負荷近傍位置における回転体の横弾性係数を用いて原動機間位置における回転体のねじり剛性を算出する第2のねじり剛性算出手段と、前記第2のねじれ角計測器で計測された原動機間位置の回転体のねじれ角及び前記第2のねじり剛性算出手段で算出された原動機間位置における回転体のねじり剛性に基づいて原動機間位置の前段の原動機の出力を算出する原動機出力算出手段とを備えたことを特徴とする原動機出力演算装置。   A first torsion angle measuring device for measuring a torsion angle of a rotating body at a position in the vicinity of the load of a plant that applies a rotational force to the rotating body by a plurality of prime movers and drives a load connected to an end of the rotating body; A second torsion angle measuring device for measuring a torsion angle of a rotating body at a position between any of the plurality of prime movers, and a torsion angle of a rotating body at a position in the vicinity of a load measured by the first torsion angle measuring instrument; And a first torsional rigidity calculating means for calculating the torsional rigidity of the rotating body at a position near the load based on the load output of the plant, and a torsion of the rotating body at the position near the load calculated by the first torsional rigidity calculating means. A lateral elastic coefficient calculating means for calculating a lateral elastic coefficient of the rotating body at a position near the load based on the rigidity, and a driving force using the lateral elastic coefficient of the rotating body at the position near the load calculated by the lateral elastic coefficient calculating means. Second torsional rigidity calculating means for calculating the torsional rigidity of the rotating body at the intermediate position; and the torsional angle of the rotating body at the position between the prime movers measured by the second torsion angle measuring instrument and the second torsional rigidity calculating means A prime mover output calculation device comprising: a prime mover output calculation means for calculating an output of a prime mover at a preceding stage of the position between the prime movers based on the torsional rigidity of the rotating body at the prime mover position calculated in (1). 複数台の原動機で回転体に回転力を与え前記回転体の端部に連結された負荷を駆動するプラントの前記負荷近傍位置の回転体のねじれ角を計測し、計測した負荷近傍位置の回転体のねじれ角及び前記プラントの負荷出力に基づいて負荷近傍位置における回転体のねじり剛性を算出し、算出した負荷近傍位置における回転体のねじり剛性に基づいて負荷近傍位置における回転体の横弾性係数を算出し、算出した負荷近傍位置における回転体の横弾性係数を用いて原動機間位置における回転体のねじり剛性を算出することを特徴とする回転体のねじり剛性演算方法。   A rotating body at a position near the load is measured by measuring a torsion angle of the rotating body at a position near the load of the plant that applies a rotational force to the rotating body by a plurality of prime movers and drives a load connected to an end of the rotating body. The torsional rigidity of the rotating body at the position near the load is calculated based on the torsion angle of the plant and the load output of the plant, and the lateral elastic modulus of the rotating body at the position near the load is calculated based on the torsional rigidity of the rotating body at the calculated position near the load. A method for calculating torsional rigidity of a rotating body, wherein the torsional rigidity of the rotating body at a position between prime movers is calculated using the calculated lateral elastic modulus of the rotating body at a position near the load. 複数台の原動機で回転体に回転力を与え前記回転体の端部に連結された負荷を駆動するプラントの前記負荷近傍位置の回転体のねじれ角を計測するとともに複数台の原動機のいずれかの原動機間位置の回転体のねじれ角を計測し、計測した負荷近傍位置の回転体のねじれ角及び前記プラントの負荷出力に基づいて負荷近傍位置における回転体のねじり剛性を算出し、算出した負荷近傍位置における回転体のねじり剛性に基づいて負荷近傍位置における回転体の横弾性係数を算出し、算出した負荷近傍位置における回転体の横弾性係数を用いて原動機間位置における回転体のねじり剛性を算出し、計測した原動機間位置の回転体のねじれ角及び算出した原動機間位置における回転体のねじり剛性に基づいて原動機間位置の前段の原動機の出力を算出することを特徴とする原動機出力演算方法。
Measure the torsion angle of the rotating body in the vicinity of the load of the plant driving the load connected to the end of the rotating body by applying rotational force to the rotating body with a plurality of prime movers, and one of the plurality of prime movers Measure the torsion angle of the rotating body at the position between the prime movers, calculate the torsional rigidity of the rotating body at the position near the load based on the measured torsion angle of the rotating body at the position near the load and the load output of the plant, and calculate the vicinity of the load Calculate the lateral elastic modulus of the rotating body at the position near the load based on the torsional rigidity of the rotating body at the position, and calculate the torsional rigidity of the rotating body at the position between the prime movers using the calculated lateral elastic modulus of the rotating body at the position near the load. The output of the prime mover before the prime mover position is calculated based on the measured torsion angle of the rotary body at the prime mover position and the calculated torsional rigidity of the rotary body at the prime mover position. Motor output calculation method which is characterized in that output.
JP2006065614A 2006-03-10 2006-03-10 Torsional rigidity arithmetic unit for rotor, prime mover output arithmetic unit, and methods therefor Pending JP2007240421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006065614A JP2007240421A (en) 2006-03-10 2006-03-10 Torsional rigidity arithmetic unit for rotor, prime mover output arithmetic unit, and methods therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006065614A JP2007240421A (en) 2006-03-10 2006-03-10 Torsional rigidity arithmetic unit for rotor, prime mover output arithmetic unit, and methods therefor

Publications (1)

Publication Number Publication Date
JP2007240421A true JP2007240421A (en) 2007-09-20

Family

ID=38586098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006065614A Pending JP2007240421A (en) 2006-03-10 2006-03-10 Torsional rigidity arithmetic unit for rotor, prime mover output arithmetic unit, and methods therefor

Country Status (1)

Country Link
JP (1) JP2007240421A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018024A (en) * 2012-12-03 2013-04-03 奇瑞汽车股份有限公司 Method for evaluating torsional rigidity
CN106769537A (en) * 2016-12-13 2017-05-31 哈尔滨工程大学 A kind of flexible body torsional rigidity testboard
JP2020109384A (en) * 2019-01-07 2020-07-16 株式会社Ihi検査計測 Torsion gauge, shaft horsepower meter, torque meter, and elastic modulus measuring device
JP2021076380A (en) * 2019-11-05 2021-05-20 株式会社Ihi検査計測 Torsion meter, slit ring, shaft horsepower meter, torque meter, elastic modulus measurement device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018024A (en) * 2012-12-03 2013-04-03 奇瑞汽车股份有限公司 Method for evaluating torsional rigidity
CN106769537A (en) * 2016-12-13 2017-05-31 哈尔滨工程大学 A kind of flexible body torsional rigidity testboard
CN106769537B (en) * 2016-12-13 2018-04-10 哈尔滨工程大学 A kind of flexible body torsional rigidity testboard
JP2020109384A (en) * 2019-01-07 2020-07-16 株式会社Ihi検査計測 Torsion gauge, shaft horsepower meter, torque meter, and elastic modulus measuring device
JP2021076380A (en) * 2019-11-05 2021-05-20 株式会社Ihi検査計測 Torsion meter, slit ring, shaft horsepower meter, torque meter, elastic modulus measurement device
JP7466290B2 (en) 2019-11-05 2024-04-12 株式会社Ihi検査計測 Torsion gauge, slit ring, shaft horsepower meter, torque meter

Similar Documents

Publication Publication Date Title
US8042412B2 (en) Turbomachinery system fiberoptic multi-parameter sensing system and method
US8464598B2 (en) Device for measuring the torque transmitted by a power shaft
US8047078B2 (en) Flaw detection testing method
US7398701B2 (en) Device and method for determining torques on a turbine shaft
JP6659491B2 (en) Engine test equipment
US8910531B1 (en) System for determining target misalignment in turbine shaft and related method
US6795779B2 (en) High resolution torque measurement on a rotating shaft
EP1696216A1 (en) Method and device for measuring torque in a robot
JP2007240421A (en) Torsional rigidity arithmetic unit for rotor, prime mover output arithmetic unit, and methods therefor
EP2936096B1 (en) Traversing time of arrival probe
JP4788543B2 (en) Parameter estimation device for engine bench system
US7415363B2 (en) High resolution torque measurement on a rotating shaft with movement compensation
JP2008082879A (en) Device and method for measuring torsional vibration
JP2022542551A (en) Method and drive train test bench for detecting imbalance and/or mismatch
JP2009036544A (en) Gear noise evaluation method of gear transmission, and device therefor
JP2006084331A (en) Eccentricity measuring device of polygon mirror motor
JP2010230347A (en) Torque measuring device
RU2214345C1 (en) Method of determination of power parameters of propeller of outboard motor
Jiang et al. A Rotating Cantilever Beam for Dynamic Strain Measurement and Vibration Analysis Based on FBG Sensor
JPWO2008007430A1 (en) Torque measuring device and program
RU2239803C2 (en) Method of diagnostics of shafts for rotor machines transmitting torque loading
KR20200056204A (en) Efficiency Measuring Device and Method for Gear Box
JP2020109384A (en) Torsion gauge, shaft horsepower meter, torque meter, and elastic modulus measuring device
JPH11326083A (en) Rotational torque measuring method and measuring device
Chen et al. Installation error analysis and mechanical correction of code disc in Troque Angle based photoelectric shaft power acquisition device