JP2004257645A - Hot water heating apparatus and its control method - Google Patents

Hot water heating apparatus and its control method Download PDF

Info

Publication number
JP2004257645A
JP2004257645A JP2003048736A JP2003048736A JP2004257645A JP 2004257645 A JP2004257645 A JP 2004257645A JP 2003048736 A JP2003048736 A JP 2003048736A JP 2003048736 A JP2003048736 A JP 2003048736A JP 2004257645 A JP2004257645 A JP 2004257645A
Authority
JP
Japan
Prior art keywords
hot water
heat source
thermal
thermal valve
valves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003048736A
Other languages
Japanese (ja)
Inventor
Tadashi Yamaguchi
正 山口
Takashi Ando
隆史 安藤
Fumiaki Sato
文明 佐藤
Yoshio Muto
好夫 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Electric Air Conditioning Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003048736A priority Critical patent/JP2004257645A/en
Publication of JP2004257645A publication Critical patent/JP2004257645A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot water heating apparatus with a heat source machine having reduced starting and stopping frequency and reduced load, and its control method. <P>SOLUTION: The hot water heating apparatus 100 comprises the heat source machine for supplying hot water, a plurality of terminals 6-8 to which the hot water is supplied from the heat source machine, and a plurality of heat valves 11-13 for limiting the supply of the hot water to the terminals 6-8, wherein, one of the heat valves 11-13 is opened to start the operation of the heat source machine and all heat valves 11-13 are closed to stop the operation of the heat source machine. It has a means 50 for calculating the operating time of the heat valves 11-13 in given cycles and a control means 50 for continuing the operating time of the heat valves 11-13 by opening the heat valves 11-13 to be next opened during a time from opening the heat valves 11-13 first opened to closing them in one cycle. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、熱動弁の動作制御技術に関する。
【0002】
【従来の技術】
一般に、給湯用の熱源機と、この熱源機から温水が供給される複数の端末と、各端末への温水の供給を制限する複数の熱動弁とを備え、この熱動弁の一つが開くと熱源機が運転され、すべての熱動弁が閉じると熱源機が運転停止される温水暖房装置が知られている(例えば、特許文献1参照)。
【0003】
この種のものでは、暖房開始時に、熱動弁が開かれるが、この熱動弁は、各系統の熱動弁毎に個別に開閉制御される。
【0004】
図7A〜Cは、従来のタイムチャートを示す。例えば、A系統の熱動弁が開かれ、それからTA時間遅れてB系統の熱動弁が開かれ、B系統の熱動弁が開いてからTB時間遅れてC系統の熱動弁が開かれたとすると、それ以後、それぞれの熱動弁は、最初に開かれた時間から所定時間(例えば、30分毎)周期毎に、次の周期の動作時間を計算して、個別に開閉制御される。
【0005】
【特許文献1】
特開平6−88628号公報
【0006】
【発明が解決しようとする課題】
しかし、従来の構成では、各熱動弁の動作時間を全体としてみたとき、図7Dに示すように、時間間隔(ΔTA,ΔTB)が存在し、これが存在すると、図7Eに示すように、熱源機が頻繁に発停を繰り返す。この熱源機が圧縮機で駆動される場合、圧縮機の機能上、例えば3分間再起動できない状態となり、温水暖房が円滑に行われなくなる等の問題がある。
【0007】
そこで、本発明の目的は、上述した従来の技術が有する課題を解消し、熱源機の発停回数を低減させ、熱源機にかかる負荷を軽減できる温水暖房装置およびその制御方法を提供することにある。
【0008】
【課題を解決するための手段】
請求項1記載の発明は、給湯用の熱源機と、この熱源機から温水が供給される複数の端末と、各端末への温水の供給を制限する複数の熱動弁とを備え、この熱動弁の一つが開くと熱源機が運転され、すべての熱動弁が閉じると熱源機が運転停止される温水暖房装置において、各熱動弁の動作時間を所定周期で算出する手段と、一の周期内で、先に開いた熱動弁が開いてから閉じるまでの間に、次に開く熱動弁を開くことにより、各熱動弁の動作時間を連続させる制御手段とを備えたことを特徴とする。
【0009】
請求項2記載の発明は、給湯用の熱源機と、この熱源機から温水が供給される複数の端末と、各端末への温水の供給を制限する複数の熱動弁とを備え、この熱動弁の一つが開くと熱源機が運転され、すべての熱動弁が閉じると熱源機が運転停止される温水暖房装置において、各熱動弁の動作時間を所定周期で算出する手段と、一の周期内で、先に開いた熱動弁が閉じると同時に、次に開く熱動弁を開くことにより、各熱動弁の動作時間を連続させる制御手段とを備えたことを特徴とする。
【0010】
請求項3記載の発明は、給湯用の熱源機と、この熱源機から温水が供給される複数の端末と、各端末への温水の供給を制限する複数の熱動弁とを備え、この熱動弁の一つが開くと熱源機が運転され、すべての熱動弁が閉じると熱源機が運転停止される温水暖房装置において、各熱動弁の動作時間を所定周期で算出する手段と、一の周期内で、すべての熱動弁を同時に開き、熱動弁の動作時間が終了したものから順次、熱動弁を閉じることにより、各熱動弁の動作時間を連続させる制御手段とを備えたことを特徴とする。
【0011】
請求項4記載の発明は、給湯用の熱源機と、この熱源機から温水が供給される複数の端末と、各端末への温水の供給を制限する複数の熱動弁とを備え、この熱動弁の一つが開くと熱源機が運転され、すべての熱動弁が閉じると熱源機が運転停止される温水暖房装置において、先に開く熱動弁の動作時間を所定周期で算出して当該熱動弁を開く手段と、一の周期内で、先に開いた熱動弁が閉じると同時に、次に開く熱動弁の動作時間を算出してこの熱動弁を開くことにより、各熱動弁の動作時間を連続させる制御手段とを備えたことを特徴とする。
【0012】
請求項5記載の発明は、請求項1乃至4のいずれか一項記載のものにおいて、前記熱源機が、圧縮機を含むヒートポンプユニットと、冷媒対水熱交換器とを備え、前記冷媒対水熱交換器を循環する暖房循環水が、前記熱動弁を介して、各端末に供給されることを特徴とする。
【0013】
請求項6記載の発明は、給湯用の熱源機と、この熱源機から温水が供給される複数の端末と、各端末への温水の供給を制限する複数の熱動弁とを備え、この熱動弁の一つが開くと熱源機が運転され、すべての熱動弁が閉じると熱源機が運転停止される温水暖房装置の制御方法において、各熱動弁の動作時間を所定周期で算出する過程と、一の周期内で、先に開いた熱動弁が開いてから閉じるまでの間に、次に開く熱動弁を開くことにより、各熱動弁の動作時間を連続させる制御過程とを備えたことを特徴とする。
【0014】
請求項7記載の発明は、給湯用の熱源機と、この熱源機から温水が供給される複数の端末と、各端末への温水の供給を制限する複数の熱動弁とを備え、この熱動弁の一つが開くと熱源機が運転され、すべての熱動弁が閉じると熱源機が運転停止される温水暖房装置の制御方法において、各熱動弁の動作時間を所定周期で算出する過程と、一の周期内で、先に開いた熱動弁が閉じると同時に、次に開く熱動弁を開くことにより、各熱動弁の動作時間を連続させる制御過程とを備えたことを特徴とする。
【0015】
請求項8記載の発明は、給湯用の熱源機と、この熱源機から温水が供給される複数の端末と、各端末への温水の供給を制限する複数の熱動弁とを備え、この熱動弁の一つが開くと熱源機が運転され、すべての熱動弁が閉じると熱源機が運転停止される温水暖房装置の制御方法において、各熱動弁の動作時間を所定周期で算出する過程と、一の周期内で、すべての熱動弁を同時に開き、熱動弁の動作時間が終了したものから順次、熱動弁を閉じることにより、各熱動弁の動作時間を連続させる制御過程とを備えたことを特徴とする。
【0016】
請求項9記載の発明は、給湯用の熱源機と、この熱源機から温水が供給される複数の端末と、各端末への温水の供給を制限する複数の熱動弁とを備え、この熱動弁の一つが開くと熱源機が運転され、すべての熱動弁が閉じると熱源機が運転停止される温水暖房装置の制御方法において、先に開く熱動弁の動作時間を所定周期で算出して当該熱動弁を開く過程と、一の周期内で、先に開いた熱動弁が閉じると同時に、次に開く熱動弁の動作時間を算出してこの熱動弁を開くことにより、各熱動弁の動作時間を連続させる制御過程とを備えたことを特徴とする。
【0017】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態について説明する。
【0018】
図1は、本実施形態にかかる暖房装置を用いた温水暖房装置100の全体構成を示す系統図である。温水暖房装置100は、図1に示すように、大別して、ヒートポンプユニット1と温水ユニット3とを備えている。これらが熱源機を構成する。ヒートポンプユニット1は、主に屋外に設置され、外気から熱を汲み取り、あるいは外気に熱を放出するものであり、HFC、COなどの冷媒を高温、高圧に圧縮する圧縮機、四方弁、室外側熱交換器、減圧装置などが順次配管接続された冷媒回路、或いは、室外側送風機等(何れも図示せず)を内蔵している。
【0019】
温水ユニット3は、ヒートポンプユニット1を熱源とするユニットであり、ヒートポンプユニット1から供給される冷媒と暖房循環水との熱交換を行う。具体的には、この温水ユニット3には、ヒートポンプユニット1の冷媒回路の配管接続部T1およびT2に冷媒配管にて接続された冷媒側コイル4Aと温水側コイル4Bとを備える冷媒対水熱交換器4と、温水側コイル4Bの暖房循環水を床暖房パネル6〜8の各々に強制的に循環させるための循環ポンプ9と、その循環路中に設けたタンク10とが内蔵されている。
【0020】
また、暖房循環水の往き側には、熱動弁11,12,13を介して床暖房パネル6,7,8が並列接続されている。また、温水ユニット3は、3つのサーミスタ14,15,16を備えている。サーミスタ14は、冷媒対水熱交換器4の温水側コイル4Bにて高温に昇温された暖房循環水の往き温度を検出するものであり、サーミスタ15は、暖房循環水の戻り温度を検出するものである。また、サーミスタ16は、冷媒温度を検出するものである。
【0021】
温水暖房装置100は、当該温水暖房装置の操作を行う、ボイラリモートコントローラ(以下、ボイラリモコンとする)17を備えている。ボイラリモコン17は、台所等に設置され、サーミスタ14で検出する暖房循環水の制御温度を設定する摘み17a、運転スイッチ17b、運転ランプ17c等が設けられている。また、床暖房を行う各部屋には、床暖房リモートコントローラ(以下、床暖房リモコンとする)18,19,20が設置され、これら床暖房リモコン18,19,20は運転スイッチ18a,19a,20aと室温センサ18b,19b,20b等が設けられている。
【0022】
床暖房パネル6,7,8が設置された、A室,B室,C室のいずれかについて暖房を行う場合には、はじめにボイラリモコン17の運転スイッチ17bを入れる。その運転信号は、温水ユニット3内のコントローラ50に入力され、タンク10内に設けた水位センサ(図示省略)によって循環水の有無が検出される。タンク10に循環水が有ると確認されると、循環ポンプ9を運転して循環水を循環させるとともに、ヒートポンプユニット1に運転信号を指示して運転させる。
【0023】
ヒートポンプユニット1が運転されると、このヒートポンプユニット1から高温、高圧の冷媒が冷媒対水熱交換器4の冷媒側コイル4Aに供給され、温水側コイル4Bを流れる暖房循環水が加熱される。そして、サーミスタ14で検出される暖房循環水の温度がボイラリモコン17の摘み17aで設定された温度になるように、コントローラ50によってヒートポンプユニット1の運転が制御され、暖房循環水の温度は適度に調整される。従って、暖房循環水の温度は、ボイラリモコン17によって、適宜変更が可能である。
【0024】
暖房したい部屋(例えばA室)に設置している床暖房リモコン18の運転スイッチ18aを入れると、対応している熱動弁11が開いて、冷媒対水熱交換器4によって暖められた暖房循環水(以下、温水という)が床暖房パネル6に供給され、A室の暖房が行われることとなる。
【0025】
床暖房リモコン18の室温センサ18bにより室温上昇が検出され、温度偏差(室温−設定温度)に応じて熱動弁11の開閉時間は制御され、温水の供給を断続的に行い、A室の室温を設定温度に維持する。
【0026】
同様に、B室,C室においても、床暖房リモコン19,20の運転スイッチ19a,20aを入れると、それぞれの室温と設定温度との温度偏差に応じて、熱動弁12,13の開閉時間が各々制御され、温水の供給を断続的に行い、室温は設定温度に維持される。
【0027】
このように、各A、B、C室に配置した床暖房リモコン18、19、20が出力する室温と設定温度との温度偏差に応じて、熱動弁11、12、13の開閉時間は別個独立に制御されるため、各部屋が異なった設定温度とすることも可能である。
【0028】
次に、本実施形態による、各熱動弁11〜13の開閉制御の動作について、図2を参照して説明する。本実施形態では、先に開いた熱動弁が開いて(開くと同時を含む)から閉じる(閉じると同時を含む)までの間に、次に開く熱動弁を開くことにより、各熱動弁の動作時間を連続させる。
【0029】
図2は、すべての熱動弁11〜13が動作を開始してから、少なくともその動作周期W(後述する。)が、一周期以上経過した後のタイムチャートを示している。この動作周期Wは、コントローラ50側が設定する周期であり、本実施形態では、暖房運転開始時に、最初に開いた熱動弁11の開始タイミングを始点L1として開始し、始点L1から終点L2までの周期を、例えば30分に設定されている。ここで、図2A〜Cは、熱動弁11〜13の開閉動作を個別に示したものであり、図2Dは、すべての熱動弁の開閉動作をまとめて示したものである。
【0030】
なお、コントローラ50は、各熱動弁の動作時間を算出する手段及び各熱動弁の動作時間を連続させる制御手段を構成する。
【0031】
図3は、本実施形態による、各熱動弁11〜13の開閉制御の動作を示すフローチャートである。
【0032】
コントローラ50は、前の動作周期Wが、タイマオーバーしたかを判定する(ステップS1)。タイマオーバーしなければ、前の周期における熱動弁の開閉制御が実行される。タイマオーバーした場合、図2の始点L1で、次の周期における各熱動弁11,12,13の動作時間Ta,Tb,Tcが算出される(ステップS2)。
【0033】
この動作時間Ta〜Tcの算出は、各熱動弁11〜13に対応する床暖房パネル6〜8が配置されたA室〜C室の室温と、各設定温度との温度偏差に基づいて行われる。図4は、温水が所定温度(例えば、60℃)の場合において、温度偏差と熱動弁の動作時間との関係を示す。
【0034】
例えば、A室の床暖房リモコン18に備えられた室温センサ18bにより、室温が検出され、この室温とA室の設定温度とから求められた温度偏差(室温−設定温度)が、1.5℃から2.0℃までの場合には、図4に示すように、対応する熱動弁11の動作時間Taは5分と算出される。この例では、動作周期Wは30分であるから、この熱動弁11を5分間開き、25分間閉じるデューティー制御が行われる。
【0035】
同様に、B室での温度偏差が1.0℃から1.5℃までの場合には、熱動弁12の動作時間Tbは7分と算出され、この熱動弁12を7分間開き、23分間閉じるデューティー制御が行われる。C室での温度偏差が−1.0℃から−0.5℃までの場合には、熱動弁13の動作時間Tcは17分と算出され、この熱動弁13を17分間開き、13分間閉じるデューティー制御が行われる。
【0036】
続いて、コントローラ50は、ステップS2で求めた各系統の熱動弁11〜13の動作時間Ta〜Tcが連続するように、すなわち、各系統の熱動弁11〜13を順次開閉していくように、各熱動弁の動作開始時間(以下、開始時間という)及び動作終了時間(以下、終了時間という)を算出する(ステップS3)。
【0037】
例えば、図2Aに示すように、A系統では、動作周期Wの始点L1(T=0)で熱動弁11を開き、動作時間Taが経過した時(時間T1)に熱動弁11を閉じる。次に、B系統は、図2Bに示すように、時間T1に熱動弁12を開き、動作時間Tbが経過した時(時間T2)に熱動弁12を閉じる。次に、C系統は、図2Cに示すように、時間T2に熱動弁13を開き、動作時間Tcが経過した時(時間T3)に熱動弁13を閉じる。このように、各系統の熱動弁11〜13が連続して動作するように、各熱動弁の開始時間及び終了時間が算出される。
【0038】
すると、図2Dに示すように、動作周期Wの始点L1(T=0)から時間T3までの時間にわたり各系統に連続して温水が供給され、図2Eに示すように、ヒートポンプユニット1も連続して運転される。その結果、ヒートポンプユニット1内の圧縮機(図示省略)の過剰な発停は防止されることとなる。
【0039】
続いて、コントローラ50は、すべての系統について、熱動弁の開始時間及び終了時間の計算が終了したかを判定する(ステップS4)。当該計算が終了していない場合には、計算が終了するまで繰り返し、当該計算が終了した場合には、この計算結果に基づいて、対応する熱動弁を開閉させるとともに、ヒートポンプユニット1を発停させる処理を行う(ステップS5)。
【0040】
具体的には、図2に示すように、ステップS2,S3にて算出した結果に基づいて、動作周期Wの始点L1(T=0)にて、熱動弁11を開けるとともに、ヒートポンプユニット1を運転する。その後、時間T1に至ったら、熱動弁11を閉じ、熱動弁12を開ける。その後、時間T2に至ったら、熱動弁12を閉じ、熱動弁13を開ける。その後、時間T3に至ったら、熱動弁13を閉じるとともに、全系統の熱動弁が動作したので、ヒートポンプユニット1を停止する。
【0041】
コントローラ50は、動作周期Wの終点L2に至るまで、本周期における熱動弁の開閉制御を実施し、この終点L2(すなわち、次の周期の始点L1)に至ると、再び、次の周期における熱動弁の動作時間Ta〜Tc等を算出し、これらに基づいて、熱動弁の開閉制御を実施する(ステップS2〜S5)。
【0042】
上記実施形態では、各熱動弁の動作時間Ta〜Tcの総和が、動作周期W(例えば30分)以内の場合を説明したが、この動作周期Wよりも各熱動弁の動作時間Ta〜Tcの総和が長くなり、各熱動弁を順次動作させると動作周期W内に収まらない場合には、それぞれ一定の比率で短縮して動作周期W内に収まるように新たに計算して、各熱動弁を順次動作させるという構成とすることもできる。
【0043】
上記実施形態において、最初の熱動弁11の動作開始から一周期内に、他の熱動弁12,13の動作開始があれば、次の周期から図3の処理が開始される。ただし、最初の熱動弁11の動作開始から一周期内に、熱動弁12の動作開始があるが、熱動弁13の動作開始がない場合には、熱動弁11,12については、次の周期から図3の処理を開始する。そして、その後、熱動弁13の動作開始があった場合には、熱動弁13の動作開始がされた次の周期から、熱動弁11〜13について、図3の処理を開始する。
【0044】
本実施形態によれば、複数の床暖房パネル6〜8に温水を供給する場合であっても、各系統の熱動弁11〜13を順次開閉するように、各熱動弁の開閉を制御するため、ヒートポンプユニット1が発停する回数を低減することができ、ヒートポンプユニット1にかかる負荷を軽減することができる。また、ヒートポンプユニット1がこのような制御のもと、運転されるので、ヒートポンプユニット1の成績係数(COP)を向上させることができる。
【0045】
また、上記実施形態のように、動作周期Wの始点L1において、各系統の熱動弁の動作時間、各系統の熱動弁の開始時間及び終了時間を算出するのではなく、先に開いた熱動弁を閉じた時に、次の熱動弁の動作時間を算出して、動作させるという構成とすることもできる。すなわち、図2に示すように、A系統では、動作周期Wの始点L1(T=0)において、熱動弁11の動作時間Taを算出して、熱動弁11を開き、動作時間Taが経過した時(時間T1)に熱動弁11を閉じ、B系統では、熱動弁11を閉じると同時(時間T1)に、熱動弁12の動作時間Tbを算出して、熱動弁12を開き、動作時間Tbが経過した時(時間T2)に熱動弁12を閉じ、C系統では、熱動弁12を閉じると同時(時間T2)に、熱動弁13の動作時間Tcを算出して、熱動弁13を開き、動作時間Tcが経過した時(時間T3)に熱動弁13を閉じるという構成とすることもできる。このように、先に開かれた熱動弁が閉じると同時に、次の熱動弁の動作時間を算出して当該熱動弁を動作させる処理によっても、各系統の熱動弁が連続して動作させることができ、同様な効果を発揮することができる。
【0046】
次に、別の実施形態による、各熱動弁11〜13の開閉制御の動作について、図5を参照して説明する。図5は、上記で説明した図2と同様に、すべての熱動弁11〜13が動作を開始してから、少なくともその動作周期Wが、一周期以上経過した後のタイムチャートを示している。
【0047】
図6はフローチャートであるが、上記に説明した、図3のものと共通するため、相違する処理(ステップS63,S65)について説明し、重複する処理については説明を省略する。
【0048】
コントローラ50は、各系統の熱動弁の動作時間Ta〜Tcを算出(ステップS2)した後、各系統の熱動弁11〜13を同時に開き、それぞれの熱動弁の動作時間Ta〜Tcが経過した場合には、対応する熱動弁を順次、閉じるように、各熱動弁の開始時間及び終了時間を算出する(ステップS63)。
【0049】
例えば、図5A〜Cに示すように、A,B,Cのすべての系統において、動作周期Wの始点L1(T=0)で熱動弁11〜13を開き、A系統は、動作時間Taが経過した時(時間T1)に熱動弁11を閉じる。次に、B系統は、動作時間Tbが経過した時(時間T4)に熱動弁12を閉じる。最後に、C系統は、動作時間Tcが経過した時(時間T5)に熱動弁13を閉じる。このように、各熱動弁を同時に開き、各熱動弁の動作時間Ta〜Tcが経過したものから順次、対応する熱動弁を閉じるように、各熱動弁の開始時間及び終了時間が算出される。
【0050】
すると、図5Dに示すように、動作周期Wの始点L1(T=0)から時間T5までの時間にわたり各系統に連続して温水が供給され、図5Eに示すように、ヒートポンプユニット1も連続して運転される。その結果、ヒートポンプユニット1内の圧縮機(図示省略)の過剰な発停は防止されることとなる。
【0051】
上記計算の終了後(ステップS4)、この計算結果に基づいて、対応する熱動弁を開閉させるとともに、ヒートポンプユニット1を発停させる処理を行う(ステップS65)。
【0052】
具体的には、図6に示すように、ステップS2,S63にて算出した結果に基づいて、動作周期Wの始点L1(T=0)にて、熱動弁11〜13を、同時に開けるとともに、ヒートポンプユニット1を運転する。その後、時間T1に至ったら、熱動弁11を閉じる。その後、時間T4に至ったら、熱動弁12を閉じる。その後、時間T5に至ったら、熱動弁13を閉じるとともに、全系統の熱動弁が動作したので、ヒートポンプユニット1を停止する。
【0053】
コントローラ50は、動作周期Wの終点L2に至るまで、本周期における熱動弁の開閉制御を実施し、この終点L2に至ると、再び、次の周期における熱動弁の動作時間Ta〜Tc等を算出し、これらに基づいて、対応する熱動弁の開閉制御を実施する(ステップS2〜S65)。
【0054】
上記構成において、最初の熱動弁11の動作開始から一周期内に、他の熱動弁12,13の動作開始があれば、次の周期から図6の処理が開始される。ただし、最初の熱動弁11の動作開始から一周期内に、熱動弁12の動作開始があるが、熱動弁13の動作開始がない場合には、熱動弁11,12については、次の周期から図6の処理を開始する。そして、その後、熱動弁13の動作開始があった場合には、熱動弁13の動作開始がされた次の周期から、熱動弁11〜13について、図6の処理を開始する。
【0055】
本実施形態によれば、複数の床暖房パネル6〜8に温水を供給する場合であっても、各系統の熱動弁11〜13を同時に開き、各熱動弁の動作時間Ta〜Tcが経過したものから順次閉じるように、各熱動弁11〜13の開閉を制御するため、ヒートポンプユニット1が発停する回数を低減することができ、ヒートポンプユニット1にかかる負荷を軽減することができる。更に、複数の床暖房パネル6〜8に同時に温水を供給することができるため、ヒートポンプユニット1の運転時間を短縮することができる。また、ヒートポンプユニット1がこのような制御のもと、運転されるので、ヒートポンプユニット1の成績係数(COP)を向上させることができる。
【0056】
以上、一実施形態に基づいて本発明を説明したが、本発明は、これに限定されるものではなく、種々変更が可能である。
【0057】
【発明の効果】
本発明では、各系統の熱動弁を連続動作させる構成としたため、熱源機の発停回数を低減させ、熱源機にかかる負荷を軽減できる。
【図面の簡単な説明】
【図1】温水暖房装置の全体系統図である。
【図2】一実施形態にかかる熱動弁の開閉状態を示したタイムチャートである。
【図3】熱動弁の開閉処理の動作を示すフローチャートである。
【図4】温度偏差と熱動弁の開放時間との関係を示す表である。
【図5】別の実施形態にかかる熱動弁の開閉状態を示したタイムチャートである。
【図6】熱動弁の開閉処理の動作を示すフローチャートである。
【図7】従来の熱動弁の開閉状態を示したタイムチャートである。
【符号の説明】
1 ヒートポンプユニット
3 温水ユニット
4 冷媒対水熱交換器
6,7,8 床暖房パネル(端末)
11,12,13 熱動弁
17 ボイラリモコン
18,19,20 床暖房リモコン
50 コントローラ(動作時間算出手段、制御手段)
100 温水暖房装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermal valve operation control technology.
[0002]
[Prior art]
Generally, a heat source device for hot water supply, a plurality of terminals to which hot water is supplied from the heat source device, and a plurality of thermal valves for restricting supply of hot water to each terminal are provided, and one of the thermal valves is opened. There is known a hot water heating apparatus in which a heat source device is operated and when all the heat operated valves are closed, the operation of the heat source device is stopped (for example, see Patent Document 1).
[0003]
In this type, at the start of heating, the thermal valve is opened, and this thermal valve is individually controlled to open and close for each thermal valve of each system.
[0004]
7A to 7C show conventional time charts. For example, the thermal valve of the system A is opened, the thermal valve of the system B is opened after a delay of TA time, and the thermal valve of the system C is opened after a delay of TB time after the thermal valve of the system B is opened. Then, after that, each thermal valve is operated for each predetermined time (for example, every 30 minutes) cycle from the time when it is first opened, and calculates the operating time of the next cycle, and is individually controlled to open and close. .
[0005]
[Patent Document 1]
JP-A-6-88628
[Problems to be solved by the invention]
However, in the conventional configuration, when the operating time of each thermal valve is viewed as a whole, there is a time interval (ΔTA, ΔTB) as shown in FIG. 7D, and if this exists, as shown in FIG. The machine repeatedly starts and stops. When this heat source unit is driven by a compressor, there is a problem that the compressor cannot be restarted, for example, for 3 minutes due to the function of the compressor, and the hot water heating is not smoothly performed.
[0007]
Therefore, an object of the present invention is to provide a hot-water heating apparatus and a control method thereof that solve the problems of the above-described conventional technology, reduce the number of times of starting and stopping the heat source device, and reduce the load on the heat source device. is there.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 includes a heat source device for hot water supply, a plurality of terminals to which hot water is supplied from the heat source device, and a plurality of thermal valves for restricting supply of hot water to each terminal. A means for calculating an operation time of each heat valve in a predetermined cycle in a hot water heating apparatus in which the heat source device is operated when one of the valve valves is opened and the heat source device is stopped when all the heat valves are closed; Control means for continuing the operation time of each thermal valve by opening the thermal valve that opens next between the opening and closing of the previously opened thermal valve in the cycle of It is characterized.
[0009]
The invention according to claim 2 includes a heat source unit for supplying hot water, a plurality of terminals to which hot water is supplied from the heat source unit, and a plurality of thermal valves for restricting supply of hot water to each terminal. A means for calculating an operation time of each heat valve in a predetermined cycle in a hot water heating apparatus in which the heat source device is operated when one of the valve valves is opened and the heat source device is stopped when all the heat valves are closed; In the above-mentioned cycle, a control means for closing the previously opened thermal valve and simultaneously opening the next thermal valve to make the operating time of each thermal valve continuous is provided.
[0010]
The invention according to claim 3 is provided with a heat source device for hot water supply, a plurality of terminals to which hot water is supplied from the heat source device, and a plurality of thermal valves for restricting the supply of hot water to each terminal. A means for calculating an operation time of each heat valve in a predetermined cycle in a hot water heating apparatus in which the heat source device is operated when one of the valve valves is opened and the heat source device is stopped when all the heat valves are closed; Control means for simultaneously opening the thermal valves and sequentially closing the thermal valves in order from the end of the thermal valve operating time within the cycle of It is characterized by having.
[0011]
The invention according to claim 4 includes a heat source device for hot water supply, a plurality of terminals to which hot water is supplied from the heat source device, and a plurality of thermal valves for restricting supply of hot water to each terminal. When one of the valves is opened, the heat source device is operated, and when all the heat valves are closed, the heat source device is shut down. Means for opening the thermal valve, and within one cycle, simultaneously with closing the previously opened thermal valve, calculate the operation time of the next thermal valve to be opened and open this thermal valve to open each thermal valve. Control means for making the valve operating time continuous.
[0012]
According to a fifth aspect of the present invention, in the device according to any one of the first to fourth aspects, the heat source unit includes a heat pump unit including a compressor, a refrigerant-to-water heat exchanger, and the refrigerant-to-water converter. The heating circulating water circulating in the heat exchanger is supplied to each terminal via the heat valve.
[0013]
The invention according to claim 6 includes a heat source device for hot water supply, a plurality of terminals to which hot water is supplied from the heat source device, and a plurality of thermal valves for restricting supply of hot water to each terminal. A step of calculating the operation time of each heat valve in a predetermined cycle in a method of controlling a hot water heating apparatus in which a heat source device is operated when one of the valves is opened and the heat source device is stopped when all the heat valves are closed. And in one cycle, between the opening and closing of the previously opened thermal valve, by opening the next thermal valve to open, the control process to continue the operating time of each thermal valve, It is characterized by having.
[0014]
The invention according to claim 7 includes a heat source unit for hot water supply, a plurality of terminals to which hot water is supplied from the heat source unit, and a plurality of thermal valves for restricting the supply of hot water to each terminal. A step of calculating the operation time of each heat valve in a predetermined cycle in a method of controlling a hot water heating apparatus in which a heat source device is operated when one of the valves is opened and the heat source device is stopped when all the heat valves are closed. And a control step of, during one cycle, opening the previously opened thermal valve and opening the next thermal valve to make the operating time of each thermal valve continuous. And
[0015]
The invention according to claim 8 includes a heat source device for hot water supply, a plurality of terminals to which hot water is supplied from the heat source device, and a plurality of thermal valves for restricting the supply of hot water to each terminal. A step of calculating the operation time of each heat valve in a predetermined cycle in a method of controlling a hot water heating apparatus in which a heat source device is operated when one of the valves is opened and the heat source device is stopped when all the heat valves are closed. In one cycle, all the thermal valves are simultaneously opened, and the thermal valve is sequentially closed from the one where the thermal valve operation time has ended, so that the thermal valve is sequentially closed, thereby controlling the thermal valve operating time to be continuous. And characterized in that:
[0016]
According to a ninth aspect of the present invention, there is provided a heat source device for hot water supply, a plurality of terminals to which hot water is supplied from the heat source device, and a plurality of thermal valves for restricting the supply of hot water to each terminal. When one of the valves is opened, the heat source device is operated, and when all the heat valves are closed, the heat source device is stopped.In the control method of the hot water heating system, the operation time of the previously opened heat valve is calculated at a predetermined cycle. In the process of opening the thermal valve, and in one cycle, at the same time as the previously opened thermal valve is closed, the operating time of the next thermal valve to be opened is calculated and this thermal valve is opened. And a control step for making the operation time of each thermal valve continuous.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018]
FIG. 1 is a system diagram showing an overall configuration of a hot water heating device 100 using the heating device according to the present embodiment. As shown in FIG. 1, the hot water heating device 100 roughly includes a heat pump unit 1 and a hot water unit 3. These constitute a heat source unit. The heat pump unit 1 is mainly installed outdoors and draws heat from the outside air or releases heat to the outside air. A compressor, a four-way valve, and a chamber for compressing a refrigerant such as HFC and CO 2 to a high temperature and a high pressure A refrigerant circuit in which an outside heat exchanger, a decompression device, and the like are sequentially connected with a pipe, an outdoor blower, and the like (neither is shown) are incorporated.
[0019]
The hot water unit 3 is a unit using the heat pump unit 1 as a heat source, and performs heat exchange between the refrigerant supplied from the heat pump unit 1 and the heating circulating water. Specifically, the hot water unit 3 includes a refrigerant side coil 4A and a hot water side coil 4B, which are connected by refrigerant piping to the piping connections T1 and T2 of the refrigerant circuit of the heat pump unit 1, and a refrigerant-water heat exchange. The vessel 4, a circulation pump 9 for forcibly circulating the heating circulating water of the hot water side coil 4 </ b> B to each of the floor heating panels 6 to 8, and a tank 10 provided in the circulation path are built in.
[0020]
Further, floor heating panels 6, 7, 8 are connected in parallel to the circulation side of the heating circulating water via thermal valves 11, 12, 13. Further, the hot water unit 3 includes three thermistors 14, 15, and 16. The thermistor 14 detects the outgoing temperature of the heating circulating water heated to a high temperature by the hot water side coil 4B of the refrigerant-to-water heat exchanger 4, and the thermistor 15 detects the return temperature of the heating circulating water. Things. The thermistor 16 detects the temperature of the refrigerant.
[0021]
The hot water heating device 100 includes a boiler remote controller (hereinafter, referred to as a boiler remote control) 17 for operating the hot water heating device. The boiler remote controller 17 is installed in a kitchen or the like, and is provided with a knob 17a for setting a control temperature of the heating circulating water detected by the thermistor 14, an operation switch 17b, an operation lamp 17c, and the like. In each room for floor heating, floor heating remote controllers (hereinafter, floor heating remote controllers) 18, 19, and 20 are installed, and these floor heating remote controllers 18, 19, and 20 operate switches 18a, 19a, and 20a. And room temperature sensors 18b, 19b, 20b and the like.
[0022]
When heating the room A, the room B, or the room C in which the floor heating panels 6, 7, and 8 are installed, the operation switch 17b of the boiler remote controller 17 is first turned on. The operation signal is input to the controller 50 in the hot water unit 3, and the presence or absence of circulating water is detected by a water level sensor (not shown) provided in the tank 10. When it is confirmed that there is circulating water in the tank 10, the circulating pump 9 is operated to circulate the circulating water, and the heat pump unit 1 is operated by instructing an operation signal.
[0023]
When the heat pump unit 1 is operated, a high-temperature, high-pressure refrigerant is supplied from the heat pump unit 1 to the refrigerant coil 4A of the refrigerant-to-water heat exchanger 4, and the heating circulating water flowing through the hot water coil 4B is heated. The operation of the heat pump unit 1 is controlled by the controller 50 so that the temperature of the heating circulating water detected by the thermistor 14 becomes the temperature set by the knob 17a of the boiler remote controller 17, and the temperature of the heating circulating water is appropriately adjusted. Adjusted. Therefore, the temperature of the heating circulating water can be appropriately changed by the boiler remote controller 17.
[0024]
When the operation switch 18a of the floor heating remote controller 18 installed in the room to be heated (for example, the room A) is turned on, the corresponding thermal valve 11 is opened, and the heating circulation heated by the refrigerant-to-water heat exchanger 4 is performed. Water (hereinafter, referred to as hot water) is supplied to the floor heating panel 6 to heat the room A.
[0025]
The room temperature rise is detected by the room temperature sensor 18b of the floor heating remote controller 18, the opening and closing time of the thermal valve 11 is controlled according to the temperature deviation (room temperature-set temperature), the supply of hot water is performed intermittently, and the room Is maintained at the set temperature.
[0026]
Similarly, in the rooms B and C, when the operation switches 19a and 20a of the floor heating remote controllers 19 and 20 are turned on, the opening and closing times of the thermal valves 12 and 13 depend on the temperature deviation between the room temperature and the set temperature. Are controlled to supply hot water intermittently, and the room temperature is maintained at the set temperature.
[0027]
As described above, the opening and closing times of the thermal valves 11, 12, and 13 are different depending on the temperature deviation between the room temperature output from the floor heating remote controllers 18, 19, and 20 arranged in the rooms A, B, and C and the set temperature. Since they are controlled independently, each room can be set to a different set temperature.
[0028]
Next, an operation of opening and closing control of each of the thermal valves 11 to 13 according to the present embodiment will be described with reference to FIG. In the present embodiment, each thermal valve is opened by opening the next thermal valve between the time when the previously opened thermal valve is opened (including simultaneous with opening) and the time when it is closed (including simultaneously with closing). Make the valve operating time continuous.
[0029]
FIG. 2 shows a time chart after at least one operation cycle W (described later) of the thermal valves 11 to 13 has started to operate after at least one cycle has elapsed. This operation cycle W is a cycle set by the controller 50 side. In the present embodiment, at the start of the heating operation, the start timing of the heat valve 11 that is first opened is started as a start point L1, and the operation from the start point L1 to the end point L2 is started. The cycle is set to, for example, 30 minutes. Here, FIGS. 2A to 2C individually show the opening and closing operations of the thermal valves 11 to 13, and FIG. 2D collectively shows the opening and closing operations of all the thermal valves.
[0030]
The controller 50 constitutes means for calculating the operating time of each thermal valve and control means for making the operating time of each thermal valve continuous.
[0031]
FIG. 3 is a flowchart illustrating the operation of opening and closing control of each of the thermal valves 11 to 13 according to the present embodiment.
[0032]
The controller 50 determines whether the previous operation cycle W has exceeded the timer (step S1). If the timer does not expire, the opening and closing control of the thermal valve in the previous cycle is executed. When the timer is over, the operation time Ta, Tb, Tc of each of the thermal valves 11, 12, 13 in the next cycle is calculated at the starting point L1 in FIG. 2 (step S2).
[0033]
The calculation of the operation times Ta to Tc is performed based on the temperature deviation between the room temperature of the A room to the C room in which the floor heating panels 6 to 8 corresponding to the respective thermal valves 11 to 13 are arranged and each set temperature. Be done. FIG. 4 shows the relationship between the temperature deviation and the operation time of the thermal valve when the temperature of the hot water is a predetermined temperature (for example, 60 ° C.).
[0034]
For example, the room temperature is detected by the room temperature sensor 18b provided in the floor heating remote controller 18 of the room A, and the temperature deviation (room temperature-set temperature) obtained from the room temperature and the set temperature of the room A is 1.5 ° C. 4 to 2.0 ° C., as shown in FIG. 4, the operation time Ta of the corresponding thermal valve 11 is calculated to be 5 minutes. In this example, since the operation cycle W is 30 minutes, the duty control in which the thermal valve 11 is opened for 5 minutes and closed for 25 minutes is performed.
[0035]
Similarly, when the temperature deviation in the room B is from 1.0 ° C. to 1.5 ° C., the operating time Tb of the thermal valve 12 is calculated as 7 minutes, and the thermal valve 12 is opened for 7 minutes. Duty control for closing for 23 minutes is performed. When the temperature deviation in the C room is from −1.0 ° C. to −0.5 ° C., the operation time Tc of the heat operated valve 13 is calculated as 17 minutes, and the heat operated valve 13 is opened for 17 minutes. Duty control that closes for a minute is performed.
[0036]
Subsequently, the controller 50 sequentially opens and closes the thermal valves 11 to 13 of each system so that the operation times Ta to Tc of the thermal valves 11 to 13 of each system obtained in step S2 are continuous. In this way, the operation start time (hereinafter, referred to as start time) and the operation end time (hereinafter, referred to as end time) of each thermal valve are calculated (step S3).
[0037]
For example, as shown in FIG. 2A, in the system A, the thermal valve 11 is opened at the start point L1 (T = 0) of the operating cycle W, and the thermal valve 11 is closed when the operating time Ta has elapsed (time T1). . Next, as shown in FIG. 2B, the system B opens the thermal valve 12 at time T1, and closes the thermal valve 12 when the operating time Tb has elapsed (time T2). Next, as shown in FIG. 2C, the C system opens the thermal valve 13 at time T2 and closes the thermal valve 13 when the operating time Tc has elapsed (time T3). Thus, the start time and the end time of each thermal valve are calculated so that the thermal valves 11 to 13 of each system operate continuously.
[0038]
Then, as shown in FIG. 2D, hot water is continuously supplied to each system over a period from the start point L1 (T = 0) of the operation cycle W to time T3, and as shown in FIG. 2E, the heat pump unit 1 is also continuously supplied. Driving. As a result, excessive start / stop of the compressor (not shown) in the heat pump unit 1 is prevented.
[0039]
Subsequently, the controller 50 determines whether the calculation of the start time and the end time of the thermal valve has been completed for all the systems (step S4). If the calculation is not completed, the calculation is repeated until the calculation is completed. If the calculation is completed, the corresponding thermal valve is opened and closed and the heat pump unit 1 is started and stopped based on the calculation result. A process is performed (step S5).
[0040]
Specifically, as shown in FIG. 2, based on the results calculated in steps S2 and S3, the thermal valve 11 is opened at the start point L1 (T = 0) of the operation cycle W, and the heat pump unit 1 is opened. To drive. Thereafter, when the time T1 has been reached, the thermal valve 11 is closed and the thermal valve 12 is opened. Thereafter, when the time T2 is reached, the thermal valve 12 is closed and the thermal valve 13 is opened. Thereafter, when the time T3 has been reached, the heat valve 13 is closed, and the heat pump unit 1 is stopped because the heat valves of all the systems have operated.
[0041]
The controller 50 controls the opening and closing of the thermal valve in this cycle until the end point L2 of the operation cycle W. When the end point L2 (that is, the start point L1 of the next cycle) is reached, the controller 50 returns to the next cycle. The operation times Ta to Tc of the thermal valve are calculated, and the opening and closing control of the thermal valve is performed based on these (steps S2 to S5).
[0042]
In the above-described embodiment, the case where the sum of the operation times Ta to Tc of each thermal valve is within the operation cycle W (for example, 30 minutes) has been described. If the sum of Tc becomes longer and does not fit within the operation cycle W when each thermal valve is sequentially operated, a new calculation is performed so that each is shortened by a fixed ratio and fit within the operation cycle W, and A configuration in which the thermal valves are sequentially operated may be adopted.
[0043]
In the above embodiment, if the operation of the other heat operated valves 12 and 13 starts within one cycle from the start of operation of the first heat operated valve 11, the processing of FIG. 3 is started from the next cycle. However, when the operation of the thermal valve 12 is started within one cycle from the initial operation of the thermal valve 11 but the operation of the thermal valve 13 is not started, the thermal valves 11 and 12 are: The processing in FIG. 3 is started from the next cycle. After that, when the operation of the thermal valve 13 is started, the processing of FIG. 3 is started for the thermal valves 11 to 13 from the next cycle after the operation of the thermal valve 13 is started.
[0044]
According to the present embodiment, even when hot water is supplied to the plurality of floor heating panels 6 to 8, the opening and closing of each thermal valve is controlled so as to sequentially open and close the thermal valves 11 to 13 of each system. Therefore, the number of times the heat pump unit 1 starts and stops can be reduced, and the load on the heat pump unit 1 can be reduced. Further, since the heat pump unit 1 is operated under such control, the coefficient of performance (COP) of the heat pump unit 1 can be improved.
[0045]
Further, as in the above embodiment, at the start point L1 of the operation cycle W, the operation time of the thermal valve of each system, the start time and the end time of the thermal valve of each system are not calculated, but are opened first. When the thermal valve is closed, the operation time of the next thermal valve may be calculated and operated. That is, as shown in FIG. 2, in the system A, at the start point L1 (T = 0) of the operation cycle W, the operation time Ta of the thermal valve 11 is calculated, and the thermal valve 11 is opened. When the elapsed time (time T1), the thermal valve 11 is closed, and in the system B, the operating time Tb of the thermal valve 12 is calculated at the same time as the thermal valve 11 is closed (time T1). And when the operating time Tb has elapsed (time T2), the thermal valve 12 is closed. In the C system, the operating time Tc of the thermal valve 13 is calculated at the same time as the thermal valve 12 is closed (time T2). Then, the thermal valve 13 may be opened, and the thermal valve 13 may be closed when the operation time Tc has elapsed (time T3). In this way, at the same time as the previously opened thermal valve is closed, the thermal valve of each system is continuously operated by the process of calculating the operation time of the next thermal valve and operating the thermal valve. It can be operated, and a similar effect can be exhibited.
[0046]
Next, an operation of opening and closing control of each of the thermal valves 11 to 13 according to another embodiment will be described with reference to FIG. FIG. 5 shows a time chart after at least one operation cycle W has elapsed after all the thermal valves 11 to 13 have started operation, similarly to FIG. 2 described above. .
[0047]
FIG. 6 is a flowchart, but since it is common to that of FIG. 3 described above, different processes (steps S63 and S65) will be described, and description of overlapping processes will be omitted.
[0048]
After calculating the operation time Ta to Tc of the thermal valve of each system (Step S2), the controller 50 simultaneously opens the thermal valves 11 to 13 of each system, and the operation time Ta to Tc of each thermal valve is If the time has elapsed, the start time and the end time of each thermal valve are calculated so that the corresponding thermal valves are sequentially closed (step S63).
[0049]
For example, as shown in FIGS. 5A to 5C, in all the systems A, B, and C, the thermal valves 11 to 13 are opened at the start point L1 (T = 0) of the operation cycle W, and the system A operates for the operation time Ta. Is elapsed (time T1), the thermal valve 11 is closed. Next, the system B closes the thermal valve 12 when the operation time Tb has elapsed (time T4). Finally, the system C closes the thermal valve 13 when the operation time Tc has elapsed (time T5). Thus, the start time and the end time of each thermal valve are simultaneously opened so that the corresponding thermal valve is closed sequentially from the time when the operating time Ta to Tc of each thermal valve has elapsed. Is calculated.
[0050]
Then, as shown in FIG. 5D, hot water is continuously supplied to each system over the time from the starting point L1 (T = 0) of the operation cycle W to time T5, and as shown in FIG. 5E, the heat pump unit 1 is also continuously supplied. Driving. As a result, excessive start / stop of the compressor (not shown) in the heat pump unit 1 is prevented.
[0051]
After the above calculation (Step S4), based on the calculation result, a process of opening and closing the corresponding thermal valve and starting and stopping the heat pump unit 1 is performed (Step S65).
[0052]
Specifically, as shown in FIG. 6, at the start point L1 (T = 0) of the operation cycle W, the thermal valves 11 to 13 are simultaneously opened based on the results calculated in steps S2 and S63. Then, the heat pump unit 1 is operated. Thereafter, when the time reaches T1, the thermal valve 11 is closed. Thereafter, when the time reaches T4, the thermal valve 12 is closed. Thereafter, when the time T5 is reached, the thermal valve 13 is closed and the thermal pumps of all the systems are operated, so that the heat pump unit 1 is stopped.
[0053]
The controller 50 controls the opening and closing of the thermal valve in this cycle until the end point L2 of the operation cycle W. When the controller 50 reaches this end point L2, the operation time Ta to Tc of the thermal valve in the next cycle is returned again. Is calculated, and based on these, opening / closing control of the corresponding thermal valve is performed (steps S2 to S65).
[0054]
In the above configuration, if the operation of the other thermal valves 12, 13 is started within one cycle from the start of the operation of the first thermal valve 11, the processing of FIG. 6 is started from the next cycle. However, when the operation of the thermal valve 12 is started within one cycle from the initial operation of the thermal valve 11 but the operation of the thermal valve 13 is not started, the thermal valves 11 and 12 are: The processing in FIG. 6 is started from the next cycle. Then, after that, when the operation of the thermal valve 13 is started, the processing of FIG. 6 is started for the thermal valves 11 to 13 from the next cycle after the operation of the thermal valve 13 is started.
[0055]
According to the present embodiment, even when hot water is supplied to the plurality of floor heating panels 6 to 8, the thermal valves 11 to 13 of each system are simultaneously opened, and the operation time Ta to Tc of each thermal valve is reduced. Since the opening and closing of each of the heat operated valves 11 to 13 is controlled so as to be sequentially closed from the elapsed time, the number of times the heat pump unit 1 starts and stops can be reduced, and the load on the heat pump unit 1 can be reduced. . Furthermore, since hot water can be supplied to the plurality of floor heating panels 6 to 8 at the same time, the operation time of the heat pump unit 1 can be reduced. Further, since the heat pump unit 1 is operated under such control, the coefficient of performance (COP) of the heat pump unit 1 can be improved.
[0056]
As described above, the present invention has been described based on one embodiment, but the present invention is not limited to this, and various changes can be made.
[0057]
【The invention's effect】
In the present invention, since the thermal valve of each system is operated continuously, the number of times of starting and stopping of the heat source device can be reduced, and the load on the heat source device can be reduced.
[Brief description of the drawings]
FIG. 1 is an overall system diagram of a hot water heating device.
FIG. 2 is a time chart showing an open / closed state of the thermal valve according to one embodiment.
FIG. 3 is a flowchart illustrating an operation of a thermal valve opening / closing process.
FIG. 4 is a table showing a relationship between a temperature deviation and an opening time of a thermal valve.
FIG. 5 is a time chart showing an open / closed state of a thermal valve according to another embodiment.
FIG. 6 is a flowchart illustrating an operation of a thermal valve opening / closing process.
FIG. 7 is a time chart showing the open / closed state of a conventional thermal valve.
[Explanation of symbols]
Reference Signs List 1 Heat pump unit 3 Hot water unit 4 Refrigerant-to-water heat exchanger 6, 7, 8 Floor heating panel (terminal)
11, 12, 13 Thermal valve 17 Boiler remote controller 18, 19, 20 Floor heating remote controller 50 Controller (operation time calculation means, control means)
100 Hot water heating system

Claims (9)

給湯用の熱源機と、この熱源機から温水が供給される複数の端末と、各端末への温水の供給を制限する複数の熱動弁とを備え、この熱動弁の一つが開くと熱源機が運転され、すべての熱動弁が閉じると熱源機が運転停止される温水暖房装置において、
各熱動弁の動作時間を所定周期で算出する手段と、
一の周期内で、先に開いた熱動弁が開いてから閉じるまでの間に、次に開く熱動弁を開くことにより、各熱動弁の動作時間を連続させる制御手段とを備えたことを特徴とする温水暖房装置。
A heat source device for hot water supply, a plurality of terminals to which hot water is supplied from the heat source device, and a plurality of thermal valves for restricting the supply of hot water to each terminal, and when one of the thermal valves opens, the heat source In a hot water heating system in which the heat source is shut down when the heater is operated and all the heat operated valves are closed,
Means for calculating the operation time of each thermal valve in a predetermined cycle,
Within one cycle, between the opening and closing of the previously opened thermal valve, by opening the next thermal valve to open, the control means to continue the operating time of each thermal valve. A hot water heating apparatus characterized by the above-mentioned.
給湯用の熱源機と、この熱源機から温水が供給される複数の端末と、各端末への温水の供給を制限する複数の熱動弁とを備え、この熱動弁の一つが開くと熱源機が運転され、すべての熱動弁が閉じると熱源機が運転停止される温水暖房装置において、
各熱動弁の動作時間を所定周期で算出する手段と、
一の周期内で、先に開いた熱動弁が閉じると同時に、次に開く熱動弁を開くことにより、各熱動弁の動作時間を連続させる制御手段とを備えたことを特徴とする温水暖房装置。
A heat source device for hot water supply, a plurality of terminals to which hot water is supplied from the heat source device, and a plurality of thermal valves for restricting the supply of hot water to each terminal, and when one of the thermal valves opens, the heat source In a hot water heating system in which the heat source is shut down when the heater is operated and all the heat operated valves are closed,
Means for calculating the operation time of each thermal valve in a predetermined cycle,
Within one cycle, simultaneously with closing the previously opened thermal valve, opening the next thermal valve to open, thereby controlling the operating time of each thermal valve continuously. Hot water heating system.
給湯用の熱源機と、この熱源機から温水が供給される複数の端末と、各端末への温水の供給を制限する複数の熱動弁とを備え、この熱動弁の一つが開くと熱源機が運転され、すべての熱動弁が閉じると熱源機が運転停止される温水暖房装置において、
各熱動弁の動作時間を所定周期で算出する手段と、
一の周期内で、すべての熱動弁を同時に開き、熱動弁の動作時間が終了したものから順次、熱動弁を閉じることにより、各熱動弁の動作時間を連続させる制御手段とを備えたことを特徴とする温水暖房装置。
A heat source device for hot water supply, a plurality of terminals to which hot water is supplied from the heat source device, and a plurality of thermal valves for restricting the supply of hot water to each terminal, and when one of the thermal valves opens, the heat source In a hot water heating system in which the heat source is shut down when the heater is operated and all the heat operated valves are closed,
Means for calculating the operation time of each thermal valve in a predetermined cycle,
Within one cycle, all the thermal valves are simultaneously opened, and the thermal valve is sequentially closed from the one after the thermal valve operation time has ended, and control means for making the thermal valve operating time continuous by sequentially closing the thermal valves. A hot water heating device comprising:
給湯用の熱源機と、この熱源機から温水が供給される複数の端末と、各端末への温水の供給を制限する複数の熱動弁とを備え、この熱動弁の一つが開くと熱源機が運転され、すべての熱動弁が閉じると熱源機が運転停止される温水暖房装置において、
先に開く熱動弁の動作時間を所定周期で算出して当該熱動弁を開く手段と、
一の周期内で、先に開いた熱動弁が閉じると同時に、次に開く熱動弁の動作時間を算出してこの熱動弁を開くことにより、各熱動弁の動作時間を連続させる制御手段とを備えたことを特徴とする温水暖房装置。
A heat source device for hot water supply, a plurality of terminals to which hot water is supplied from the heat source device, and a plurality of thermal valves for restricting the supply of hot water to each terminal, and when one of the thermal valves opens, the heat source In a hot water heating system in which the heat source is shut down when the heater is operated and all the heat operated valves are closed,
Means for calculating the operating time of the previously opened thermal valve at a predetermined cycle and opening the thermal valve,
Within one cycle, at the same time as the previously opened thermal valve closes, the operating time of the next thermal valve to be opened is calculated and this thermal valve is opened to make the thermal valve operating time continuous. A hot water heating device comprising: a control unit.
前記熱源機が、圧縮機を含むヒートポンプユニットと、冷媒対水熱交換器とを備え、前記冷媒対水熱交換器を循環する暖房循環水が、前記熱動弁を介して、各端末に供給されることを特徴とする請求項1乃至4のいずれか一項記載の温水暖房装置。The heat source unit includes a heat pump unit including a compressor, and a refrigerant-to-water heat exchanger, and heating circulating water circulating through the refrigerant-to-water heat exchanger is supplied to each terminal via the thermal valve. The hot water heating apparatus according to claim 1, wherein the heating is performed. 給湯用の熱源機と、この熱源機から温水が供給される複数の端末と、各端末への温水の供給を制限する複数の熱動弁とを備え、この熱動弁の一つが開くと熱源機が運転され、すべての熱動弁が閉じると熱源機が運転停止される温水暖房装置の制御方法において、
各熱動弁の動作時間を所定周期で算出する過程と、
一の周期内で、先に開いた熱動弁が開いてから閉じるまでの間に、次に開く熱動弁を開くことにより、各熱動弁の動作時間を連続させる制御過程とを備えたことを特徴とする温水暖房装置の制御方法。
A heat source device for hot water supply, a plurality of terminals to which hot water is supplied from the heat source device, and a plurality of thermal valves for restricting the supply of hot water to each terminal, and when one of the thermal valves opens, the heat source In the control method of the hot water heating system in which the machine is operated and the heat source machine is stopped when all the heat operated valves are closed,
Calculating the operation time of each thermal valve at a predetermined cycle;
Within one cycle, between the opening and closing of the previously opened thermal valve, by opening the next thermal valve to open, thereby controlling the operating time of each thermal valve continuously. A method for controlling a hot water heating device, comprising:
給湯用の熱源機と、この熱源機から温水が供給される複数の端末と、各端末への温水の供給を制限する複数の熱動弁とを備え、この熱動弁の一つが開くと熱源機が運転され、すべての熱動弁が閉じると熱源機が運転停止される温水暖房装置の制御方法において、
各熱動弁の動作時間を所定周期で算出する過程と、
一の周期内で、先に開いた熱動弁が閉じると同時に、次に開く熱動弁を開くことにより、各熱動弁の動作時間を連続させる制御過程とを備えたことを特徴とする温水暖房装置の制御方法。
A heat source device for hot water supply, a plurality of terminals to which hot water is supplied from the heat source device, and a plurality of thermal valves for restricting the supply of hot water to each terminal, and when one of the thermal valves opens, the heat source In the control method of the hot water heating system in which the machine is operated and the heat source machine is stopped when all the heat operated valves are closed,
Calculating the operation time of each thermal valve at a predetermined cycle;
Within one cycle, simultaneously opening the previously opened thermal valve, and opening the next thermal valve, thereby controlling the operation time of each thermal valve continuously. A method for controlling a hot water heating device.
給湯用の熱源機と、この熱源機から温水が供給される複数の端末と、各端末への温水の供給を制限する複数の熱動弁とを備え、この熱動弁の一つが開くと熱源機が運転され、すべての熱動弁が閉じると熱源機が運転停止される温水暖房装置の制御方法において、
各熱動弁の動作時間を所定周期で算出する過程と、
一の周期内で、すべての熱動弁を同時に開き、熱動弁の動作時間が終了したものから順次、熱動弁を閉じることにより、各熱動弁の動作時間を連続させる制御過程とを備えたことを特徴とする温水暖房装置の制御方法。
A heat source device for hot water supply, a plurality of terminals to which hot water is supplied from the heat source device, and a plurality of thermal valves for restricting the supply of hot water to each terminal, and when one of the thermal valves opens, the heat source In the control method of the hot water heating system in which the machine is operated and the heat source machine is stopped when all the heat operated valves are closed,
Calculating the operation time of each thermal valve at a predetermined cycle;
Within one cycle, all the heat operated valves are simultaneously opened, and the operation process of each of the heat operated valves is successively closed by sequentially closing the operation time of the heat operated valves from the end of the operation time. A method for controlling a hot water heating device, comprising:
給湯用の熱源機と、この熱源機から温水が供給される複数の端末と、各端末への温水の供給を制限する複数の熱動弁とを備え、この熱動弁の一つが開くと熱源機が運転され、すべての熱動弁が閉じると熱源機が運転停止される温水暖房装置の制御方法において、
先に開く熱動弁の動作時間を所定周期で算出して当該熱動弁を開く過程と、
一の周期内で、先に開いた熱動弁が閉じると同時に、次に開く熱動弁の動作時間を算出してこの熱動弁を開くことにより、各熱動弁の動作時間を連続させる制御過程とを備えたことを特徴とする温水暖房装置の制御方法。
A heat source device for hot water supply, a plurality of terminals to which hot water is supplied from the heat source device, and a plurality of thermal valves for restricting the supply of hot water to each terminal, and when one of the thermal valves opens, the heat source In the control method of the hot water heating system in which the machine is operated and the heat source machine is stopped when all the heat operated valves are closed,
A step of calculating the operation time of the previously opened thermal valve at a predetermined cycle and opening the thermal valve,
Within one cycle, at the same time as the previously opened thermal valve closes, the operating time of the next thermal valve to be opened is calculated and this thermal valve is opened to make the thermal valve operating time continuous. A control method for a hot water heating apparatus, comprising: a control step.
JP2003048736A 2003-02-26 2003-02-26 Hot water heating apparatus and its control method Pending JP2004257645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003048736A JP2004257645A (en) 2003-02-26 2003-02-26 Hot water heating apparatus and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003048736A JP2004257645A (en) 2003-02-26 2003-02-26 Hot water heating apparatus and its control method

Publications (1)

Publication Number Publication Date
JP2004257645A true JP2004257645A (en) 2004-09-16

Family

ID=33114614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003048736A Pending JP2004257645A (en) 2003-02-26 2003-02-26 Hot water heating apparatus and its control method

Country Status (1)

Country Link
JP (1) JP2004257645A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063407A1 (en) 2007-11-15 2009-05-22 Uponor Innovation Ab Controlling under surface heating/cooling
CN103673070A (en) * 2013-11-28 2014-03-26 济南雪山节能科技有限公司 Wireless four-in-one outdoor control device for heating valves
JP2017083108A (en) * 2015-10-30 2017-05-18 リンナイ株式会社 Heating system
KR101866799B1 (en) * 2017-05-10 2018-07-24 주식회사 한 에너지 시스템 Method for controlling heating with temperature controller for each room and ditial direct controller in machine room of each household of group heat supply facility

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063407A1 (en) 2007-11-15 2009-05-22 Uponor Innovation Ab Controlling under surface heating/cooling
EP2220439A1 (en) * 2007-11-15 2010-08-25 Uponor Innovation Ab Controlling under surface heating/cooling
EP2220439A4 (en) * 2007-11-15 2013-12-25 Uponor Innovation Ab Controlling under surface heating/cooling
US10488057B2 (en) 2007-11-15 2019-11-26 Uponor Innovation Ab Controlling under surface heating/cooling
CN103673070A (en) * 2013-11-28 2014-03-26 济南雪山节能科技有限公司 Wireless four-in-one outdoor control device for heating valves
JP2017083108A (en) * 2015-10-30 2017-05-18 リンナイ株式会社 Heating system
KR101866799B1 (en) * 2017-05-10 2018-07-24 주식회사 한 에너지 시스템 Method for controlling heating with temperature controller for each room and ditial direct controller in machine room of each household of group heat supply facility

Similar Documents

Publication Publication Date Title
JP5470810B2 (en) Floor heating system
JP2000046417A (en) Heat pump type warm water floor heating apparatus
JP2003314838A (en) Heat pump type hot water heating device
JP2004257645A (en) Hot water heating apparatus and its control method
JPWO2018142473A1 (en) Heat medium circulation system
JP3518353B2 (en) Heat pump heating system
JP2013088021A (en) Heat pump type hydronic heater
JP2004257646A (en) Hot water heating apparatus and its control method
EP2527757B1 (en) Air conditioner
EP3995752B1 (en) Hot water supply system
EP3995753B1 (en) Hot water supply system
JP5097054B2 (en) Heat pump water heater
JP6301847B2 (en) Heat pump type water heater
JP4368295B2 (en) Hot water heater
JP2003322387A (en) Air conditioning system
JP6526598B2 (en) Thermal equipment
JP4128111B2 (en) Hot water heater and control method thereof
JP5603146B2 (en) Heat pump water heater
JP3710078B2 (en) Floor heating system
JP7487805B1 (en) Heat pump type hot water heating system
JP7232746B2 (en) Heat pump hot water heating system
JP7287809B2 (en) heating system
JPH0510624A (en) Air conditioner
JP4368294B2 (en) Hot water heater
JP2003097813A (en) Floor heating system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040819

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070501