JP2004257486A - Method for manufacturing dynamic damper and dynamic damper - Google Patents

Method for manufacturing dynamic damper and dynamic damper Download PDF

Info

Publication number
JP2004257486A
JP2004257486A JP2003049386A JP2003049386A JP2004257486A JP 2004257486 A JP2004257486 A JP 2004257486A JP 2003049386 A JP2003049386 A JP 2003049386A JP 2003049386 A JP2003049386 A JP 2003049386A JP 2004257486 A JP2004257486 A JP 2004257486A
Authority
JP
Japan
Prior art keywords
rubber
dynamic damper
pair
cavity
elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003049386A
Other languages
Japanese (ja)
Inventor
Yoshitaka Ishimoto
善隆 石本
Takenori Oshita
武範 大下
Hiroshi Ono
宏 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2003049386A priority Critical patent/JP2004257486A/en
Publication of JP2004257486A publication Critical patent/JP2004257486A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamic damper and its manufacturing method capable of being precisely tuned for each predetermined resonance frequency range and fully obtaining vibration damping effect. <P>SOLUTION: A cylindrical mass member 1 is coaxially arranged with respect to a core 4. A cavity 5 between the mass member 1 and the core 4 is composed of a plurality of pairs of zones 6, 7, 8 and 9. The cavity 5 is partitioned in the circumferential direction so that each pair of zones 6 and 7, and 8 and 9 is located point-symmetrically with respect to a shaft axis O of the cavity 5. The rubber compounds corresponding to spring constants are supplied into each zone 6, 7, 8 and 9 so that the rubber-like elastic bodies with the same spring constant are vulcanized and formed in the pairs of the point symmetrical zones 6 and 7, 8 and 9 and the elastic bodies of different spring constants are vulcanized and formed in the pair of the zones 6 and 8, 7 and 9 adjoining in the circumferential direction. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、回転軸に圧入外嵌された状態で前記回転軸の振動を抑制する筒型のダイナミックダンパの製造方法及びダイナミックダンパに関する。
【0002】
【従来の技術】
自動車のドライブシャフト等の回転軸には回転のアンバランス等に起因して曲げ振動が生じ、この振動がサスペンションを介して車内に伝わって騒音が発生することがある。そこで、筒型のダイナミックダンパを回転軸に圧入外嵌して回転軸の振動を抑制している。つまり、ダイナミックダンパの固有振動数を回転軸の共振振動数にチューニングし、回転軸の振動エネルギーを共振によりダイナミックダンパの振動エネルギーとして吸収することで振動抑制効果を得ている。
【0003】
従来のダイナミックダンパは、筒状の単一の質量部材の内周面や両端部に、回転軸に圧入外嵌する筒状のゴム状弾性体を加硫成形して構成してあり、固有振動数を単一の共振振動数域にしか設定できない構造になっていた。そのために、振動数の異なる複数の振動の入力がある場合、振動抑制効果を十分に得ることができなかった。
【0004】
この問題を解消するために、特許文献1に開示されているように、質量が異なる一対の筒状の質量部材がそれらの軸芯方向に並ぶ状態に、高質量の質量部材をばね定数の大きい第1ゴム状弾性体に、低質量の質量部材をばね定数の小さい第2ゴム状弾性体に一体に設けたダイナミックダンパが提案されている。この技術では、第1ゴム状弾性体と第2ゴム状弾性体のばね定数を異ならせる手段として、両ゴム状弾性体の形状(肉厚等)を異ならせる手段を取っている。
【0005】
【特許文献1】
特開平7−208550号公報
【0006】
【発明が解決しようとする課題】
上記従来の構成によれば、第1ゴム状弾性体の形状と第2ゴム状弾性体の形状を異ならせることで、両者のばね定数を異ならせてあったために、設定できるばね定数が限られて、所望のばね定数に正確に設定することができず、振動抑制効果を十分得ることができなくなることがあった。
【0007】
本発明は上記実状に鑑みて成されたもので、その目的は、所望の各共振振動数域にそれぞれ正確にチューニングできて、振動抑制効果を十分に得ることができるダイナミックダンパ、及びその製造方法を提供する点にある。
【0008】
【課題を解決するための手段】
本発明の構成は、回転軸に圧入外嵌された状態で前記回転軸の振動を抑制する筒型のダイナミックダンパの製造方法であって、
筒状の質量部材を中型に対して同芯状に配置し、
前記質量部材と中型の間のキャビティが、複数対の区画から成り、かつ、各対の一方の区画と他方の区画が、前記キャビティの軸芯に対して点対称に位置するように、前記キャビティを周方向に区分けし、
前記各対の一方の区画と他方の区画に同じばね定数のゴム状弾性部が加硫成形され、前記周方向で隣合ういずれの一対の区画にも異なるばね定数のゴム状弾性部が加硫成形されるように、各区画に、各ばね定数にそれぞれ対応したゴム配合物を供給する点にある。
【0009】
この手段により製造することで、互いに点対称の位置関係にある一対の区画には同じばね定数のゴム状弾性部が加硫成形され、周方向で隣合ういずれの一対の区画にも、異なるばね定数のゴム状弾性部が加硫成形される。そして、これらのゴム状弾性部から成るゴム状弾性体が回転軸に圧入外嵌されて回転軸に取付けられる。
【0010】
一例としてキャビティが、二対の区画から成り、かつ、各対の区画同士が、キャビティの軸芯に対して点対称に位置するように、キャビティを周方向に区分けし、各区画にゴム配合物を供給してダイナミックダンパを製造した場合、次の作用を奏することができる。
【0011】
つまり二対の区画のうち、一対の区画に第1ゴム状弾性部と第2ゴム状弾性部が各別に加硫成形され、別の一対の区画に第3ゴム状弾性部と第4ゴム状弾性部が各別に成形されたとすると、第1ゴム状弾性部と第2ゴム状弾性部のばね定数が同一になり、第3ゴム状弾性部と第4ゴム状弾性部のばね定数も同一になる。そして、第1及び第2ゴム状弾性部と第3及び第4ゴム状弾性部のばね定数は異なっている。
【0012】
これらの第1〜第4ゴム状弾性部から成るゴム状弾性体を回転軸に取付けた状態では、第1及び第2ゴム状弾性部の中央部と交差する方向で、例えば所定の値よりも(以下、同じ)高い固有振動数で共振して回転軸の振動を吸収し、第3及び第4ゴム状弾性部の中央部と交差する方向で、低い固有振動数で共振して回転軸の振動を吸収する。そして、第1及び第2ゴム状弾性部の幅方向の端部側と交差する方向や、第3及び第4ゴム状弾性部の幅方向の端部側と交差する方向では、高低の中間の値の固有振動数で共振して回転軸の振動を吸収する。このように、ダイナミックダンパの固有振動数を回転軸の複数の共振振動数域にチューニングすることができる。
【0013】
また、ゴム状弾性部のばね定数をゴム配合物によって設定するから、形状が同一でも固有振動数が異なったダイナミックダンパをそれぞれ形成することができる。そして、ゴム状弾性体の形状によってばね定数を設定する手段よりも、選択できるばね定数の範囲が広がるとともに、所望のばね定数に正確に設定することができる。しかも、加硫成形の際にゴム配合物を、質量部材と中型の間に供給するから、加硫成形されたゴム状弾性体が筒形という単純で簡素な形状になり、ばね定数に製作誤差が出にくくなる。
【0014】
ゴム状弾性体を質量部材の全内周面に加硫成形し、前記ゴム状弾性体の全内周面を回転軸の外周面に圧接させる構造では、回転軸に強く固定することができ、締付けバンド等のクランプ部材を不要にすることができて部品点数を少なくすることができ、回転軸への取付け作業における作業工程数を少なくすることができる。そして、回転軸の軸芯方向での質量部材のふらつきや回転軸に対する質量部材の傾斜をより防止しやすくなり、質量部材が回転軸の軸芯方向で回転軸の共振点(共振が生じる回転軸部分、すなわち振幅が最も大きい回転軸部分)から位置ずれするのをより抑制することができる。
【0015】
前記キャビティを前記周方向に均等に区分けする手段では、ダイナミックダンパが高い固有振動数で共振して回転軸の振動を吸収する割合と、低い固有振動数で共振して回転軸の振動を吸収する割合とを同じにすることができる。
【0016】
その結果、回転軸が高低二つの共振振動数域で振動することがある場合において、一方の共振振動数域で振動する状態と、他方の共振振動数域で振動する状態とが同じ割合で生じやすい場合に有利になる。
【0017】
前記キャビティを、各対の区画ごとに前記周方向に不均等に区分けする手段では、ダイナミックダンパが高い固有振動数で共振して回転軸の振動を吸収する割合と、低い固有振動数で共振して回転軸の振動を吸収する割合とを異ならせることができる。
【0018】
その結果、回転軸が高低二つの共振振動数域で振動することがある場合において、一方の共振振動数域で振動する状態と、他方の共振振動数域で振動する状態とが異なる割合で生じやすい場合に有利になる。すなわち、回転軸が高い共振振動数域で振動する割合が大きい場合は、ダイナミックダンパが高い固有振動数で共振して回転軸の振動を吸収する割合が大きくなるように構成することができる。
【0019】
前記周方向で隣合う一対の区画に、カーボンの含有量を異ならせたゴム配合物をそれぞれ供給することで、互いに異なるばね定数のゴム状弾性部を加硫成形する手段では、ゴム状弾性部のばね定数を所望の値に正確に設定することができる。
【0020】
上記のいずれか一つの手段により製造したダイナミックダンパでは、上記のいずれか一つの手段による作用と同様の作用を奏することができる。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1,図2に、自動車のドライブシャフトS(回転軸に相当)に圧入外嵌された状態でドライブシャフトSの振動を抑制する筒型のダイナミックダンパを示してある。
【0022】
このダイナミックダンパは、円筒状で金属製の質量部材1と、この全内周面2側に加硫成形した円筒状のゴム状弾性体3とから成る。そして、ゴム状弾性体3の全内周面をドライブシャフトSの外周面に圧接させてある。
【0023】
上記のダイナミックダンパは次の方法で製造する(図3参照)。
[1]質量部材1を円柱状の中型4に対して同芯状に配置する。
【0024】
[2]質量部材1と中型4の間のキャビティ5を周方向に均等に4個の区画に区分けする。つまりキャビティ5が、一対の区画6,7と、別の一対の区画8,9との二対の区画から成り、かつ、前記一対の区画同士6,7が、キャビティ5の軸芯Oに対して点対称に位置するとともに、前記別の一対の区画同士8,9が、キャビティ5の軸芯Oに対して点対称に位置するように、キャビティ5を周方向に4個に区分けする。
【0025】
[3]互いに点対称な前記一対の区画6,7(つまり一方の区画と他方の区画)に同じばね定数の第1ゴム状弾性部10と第2ゴム状弾性部11が加硫成形され(図2参照)、前記別の一対の区画8,9に同じばね定数の第3ゴム状弾性部12と第4ゴム状弾性部13が加硫成形され、前記周方向で隣合ういずれの一対の区画(例えば6と8)にも異なるばね定数の第1ゴム状弾性部10と第3ゴム状弾性部12が加硫成形されるように、各区画6,7,8,9に、各ばね定数にそれぞれ対応したゴム配合物を供給する。各ばね定数にそれぞれ対応したゴム配合物は、一例として、ゴム配合物中のカーボンの含有量を調節することで生成することができる。
【0026】
[4]加硫成形の後に脱型する。
【0027】
前記ゴム状弾性体3は上記の第1〜第4ゴム状弾性部10,11,12,13から成り、第1及び第2ゴム状弾性部10,11のばね定数と、第3及び第4ゴム状弾性部12,13とのばね定数を異ならせることで、ダイナミックダンパの固有振動数をドライブシャフトSの複数の共振振動数域にチューニングすることができるようにしてある。
【0028】
[別実施形態]
[1]上記の実施形態では、前記キャビティ5を周方向に均等に区分けしたが、キャビティ5を各対の区画ごとに周方向に不均等に区分けしてダイナミックダンパを製造することもできる。この方法により製造したダイナミックダンパを図4に示してある。
【0029】
このダイナミックダンパでは、第1及び第2ゴム状弾性部10,11と第3及び第4ゴム状弾性部12,13との周方向における幅が異なっている。第1ゴム状弾性部10と第2ゴム状弾性部11の幅は同一であり、第3ゴム状弾性部12と第4ゴム状弾性部13の幅は同一である。その他の構造は、上記の第1の実施形態と同じである。
【0030】
[2]前記キャビティ5が、4対(あるいは8対,16対〜等)の区画から成り、かつ、各対の区画同士が、キャビティの軸芯Oに対して点対称に位置するように、キャビティを周方向に8個に区分けして、ダイナミックダンパを製造することもできる。この方法により製造したダイナミックダンパを図5に示してある。
【0031】
このダイナミックダンパでは、ゴム状弾性体3が第1〜第8ゴム状弾性部10〜17から成る。第1ゴム状弾性部10と第2ゴム状弾性部11と第3ゴム状弾性部12と第4ゴム状弾性部13のばね定数は同一で、第5ゴム状弾性部14と第6ゴム状弾性部15と第7ゴム状弾性部16と第8ゴム状弾性部17のばね定数は同一である。第1ゴム状弾性部10等と第5ゴム状弾性部14等とのばね定数は異なっている。
【0032】
[3]上記の[2]のダイナミックダンパを次のように構成してもよい。つまり、第1ゴム状弾性部10と第2ゴム状弾性部11のばね定数を同一に設定し、第3ゴム状弾性部12と第4ゴム状弾性部13のばね定数を同一に、第5ゴム状弾性部14と第6ゴム状弾性部15のばね定数も同一、第7ゴム状弾性部16と第8ゴム状弾性部17のばね定数も同一に設定する。そして、第1ゴム状弾性部10と第3ゴム状弾性部12と第5ゴム状弾性部14と第7ゴム状弾性部16のばね定数を異ならせる。
【0033】
前記回転軸はドライブシャフトに限られるものではなく、自動車のその他の回転軸であってもよく、自動車以外の装置に設けられた回転軸であってもよい。
【0034】
【発明の効果】
本発明によれば、所望の各共振振動数域にそれぞれ正確にチューニングできて、振動抑制効果を十分に得ることができるダイナミックダンパ及びその製造方法を提供することができた。
【0035】
そして、質量部材と中型の間のキャビティを周方向に均等に区分けする手段や、前記キャビティを、各対の区画ごとに周方向に不均等に区分けする手段では、回転軸の種々の振動の態様に対応させることができて、より振動を吸収しやすくなる。
【0036】
また、前記周方向で隣合う一対の区画に、カーボンの含有量を異ならせたゴム配合物をそれぞれ供給することで、互いに異なるばね定数のゴム状弾性部を加硫成形する手段では、ゴム状弾性部のばね定数を所望の値に正確に設定することができて、振動抑制効果をより十分に得ることができる。
【図面の簡単な説明】
【図1】ダイナミックダンパの縦断面図
【図2】図1のA−A断面図
【図3】ダイナミックダンパの製造方法を示す斜視図
【図4】別実施形態のダイナミックダンパの横断面図
【図5】別実施形態のダイナミックダンパの横断面図
【符号の説明】
1 質量部材
4 中型
5 キャビティ
6,7,8,9 区画
10,11,12,13 ゴム状弾性部
O キャビティの軸芯
S 回転軸
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a cylindrical dynamic damper and a dynamic damper that suppress vibration of the rotary shaft in a state in which the rotary shaft is press-fitted to the rotary shaft.
[0002]
[Prior art]
Bending vibration is generated on a rotating shaft such as a drive shaft of an automobile due to imbalance in rotation, and this vibration is transmitted to the interior of the vehicle via a suspension to generate noise. In view of this, a cylindrical dynamic damper is press-fitted onto the rotating shaft to suppress vibration of the rotating shaft. That is, the natural frequency of the dynamic damper is tuned to the resonance frequency of the rotating shaft, and the vibration energy of the rotating shaft is absorbed by resonance as the vibration energy of the dynamic damper to obtain a vibration suppressing effect.
[0003]
The conventional dynamic damper is formed by vulcanizing and molding a cylindrical rubber-like elastic body which is press-fitted onto a rotating shaft on the inner peripheral surface and both ends of a single cylindrical mass member. The structure was such that the number could be set only in a single resonance frequency range. Therefore, when a plurality of vibrations having different frequencies are input, the vibration suppression effect cannot be sufficiently obtained.
[0004]
In order to solve this problem, as disclosed in Patent Document 1, a mass member having a large mass has a large spring constant in a state where a pair of cylindrical mass members having different masses are arranged in the axial direction thereof. There has been proposed a dynamic damper in which a low-mass mass member is integrally provided on a first rubber-like elastic body with a second rubber-like elastic body having a small spring constant. In this technique, as means for making the spring constants of the first rubber-like elastic body and the second rubber-like elastic body different, means for making the shapes (thickness and the like) of both rubber-like elastic bodies different is employed.
[0005]
[Patent Document 1]
JP-A-7-208550 [0006]
[Problems to be solved by the invention]
According to the above-described conventional configuration, the spring constants of the first rubber-like elastic body and the second rubber-like elastic body are made different by making the shapes different from each other, so that the spring constant that can be set is limited. As a result, the desired spring constant cannot be set accurately, and the vibration suppressing effect cannot be sufficiently obtained.
[0007]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a dynamic damper that can be tuned accurately to each desired resonance frequency range and that a sufficient vibration suppression effect can be obtained, and a method of manufacturing the same The point is to provide.
[0008]
[Means for Solving the Problems]
The configuration of the present invention is a method of manufacturing a cylindrical dynamic damper that suppresses vibration of the rotary shaft in a state where the rotary shaft is press-fitted to the outside,
A cylindrical mass member is arranged concentrically to the medium size,
The cavity between the mass member and the middle mold is formed of a plurality of pairs of sections, and one section and the other section of each pair are located point-symmetrically with respect to the axis of the cavity. Is divided in the circumferential direction,
A rubber-like elastic portion having the same spring constant is vulcanized and formed in one section and the other section of each pair, and a rubber-like elastic section having a different spring constant is vulcanized in any pair of circumferentially adjacent sections. The point is to supply each section with a rubber compound corresponding to each spring constant so as to be molded.
[0009]
By manufacturing by this means, a rubber-like elastic portion having the same spring constant is vulcanized and formed in a pair of sections having a point symmetrical positional relationship with each other, and a different spring is provided in any pair of sections adjacent in the circumferential direction. A constant rubber-like elastic portion is vulcanized. Then, the rubber-like elastic body composed of these rubber-like elastic portions is press-fitted and fitted to the rotating shaft and attached to the rotating shaft.
[0010]
As an example, the cavity is made up of two pairs of sections, and the cavities are circumferentially divided so that each pair of sections is located point-symmetrically with respect to the axis of the cavity, and a rubber compound is added to each section. When the dynamic damper is manufactured by supplying the above, the following operation can be achieved.
[0011]
That is, of the two pairs of sections, the first rubber-like elastic section and the second rubber-like elastic section are separately vulcanized and formed in a pair of sections, and the third rubber-like elastic section and the fourth rubber-like section are formed in another pair of sections. Assuming that the elastic portions are separately formed, the first rubber-like elastic portion and the second rubber-like elastic portion have the same spring constant, and the third rubber-like elastic portion and the fourth rubber-like elastic portion also have the same spring constant. Become. The first and second rubber-like elastic portions have different spring constants from the third and fourth rubber-like elastic portions.
[0012]
In a state in which the rubber-like elastic body composed of the first to fourth rubber-like elastic portions is attached to the rotation shaft, the rubber-like elastic body is, for example, smaller than a predetermined value in a direction intersecting the center of the first and second rubber-like elastic portions. Resonates at a high natural frequency to absorb the vibration of the rotating shaft, and resonates at a low natural frequency in a direction intersecting the center of the third and fourth rubber-like elastic portions. Absorb vibration. In the direction intersecting the widthwise end portions of the first and second rubber-like elastic portions and the direction intersecting the widthwise end portions of the third and fourth rubber-like elastic portions, the middle of the height is used. Resonates at the natural frequency of the value and absorbs the vibration of the rotating shaft. Thus, the natural frequency of the dynamic damper can be tuned to a plurality of resonance frequency ranges of the rotating shaft.
[0013]
Further, since the spring constant of the rubber-like elastic portion is set by the rubber compound, it is possible to form dynamic dampers having the same shape but different natural frequencies. The range of selectable spring constants is wider than that of the means for setting the spring constant depending on the shape of the rubber-like elastic body, and the desired spring constant can be accurately set. In addition, since the rubber compound is supplied between the mass member and the middle mold during vulcanization molding, the vulcanized rubber-like elastic body has a simple and simple shape of a cylindrical shape, and a manufacturing error due to a spring constant. Is difficult to appear.
[0014]
In a structure in which the rubber-like elastic body is vulcanized and molded on the entire inner peripheral surface of the mass member, and the entire inner peripheral surface of the rubber-like elastic body is pressed against the outer peripheral surface of the rotating shaft, it can be strongly fixed to the rotating shaft, Clamp members such as tightening bands can be dispensed with, the number of parts can be reduced, and the number of work steps in the work of attaching to the rotating shaft can be reduced. In addition, it is easier to prevent the mass member from wobbling in the direction of the axis of the rotating shaft and the inclination of the mass member with respect to the rotating shaft. (I.e., a portion of the rotating shaft having the largest amplitude).
[0015]
In the means for equally dividing the cavity in the circumferential direction, the ratio at which the dynamic damper resonates at a high natural frequency to absorb the vibration of the rotating shaft and the ratio at which the dynamic damper resonates at a low natural frequency to absorb the vibration of the rotating shaft The ratio can be the same.
[0016]
As a result, when the rotating shaft may vibrate in two high and low resonance frequency ranges, a state of vibrating in one resonance frequency range and a state of vibrating in the other resonance frequency range occur at the same ratio. It is advantageous when it is easy.
[0017]
In the means for partitioning the cavity unequally in the circumferential direction for each pair of sections, the ratio at which the dynamic damper resonates at a high natural frequency to absorb the vibration of the rotating shaft, and resonates at a low natural frequency. Thus, the rate of absorbing the vibration of the rotating shaft can be made different.
[0018]
As a result, when the rotating shaft may vibrate in two high and low resonance frequency ranges, the state of vibrating in one resonance frequency range and the state of vibrating in the other resonance frequency range occur at different rates. It is advantageous when it is easy. That is, when the ratio of the rotation axis vibrating in the high resonance frequency range is large, the dynamic damper can be configured to resonate at the high natural frequency and absorb the vibration of the rotation shaft in a large ratio.
[0019]
In the means for vulcanizing and forming rubber-like elastic portions having different spring constants by supplying a rubber compound having a different carbon content to a pair of circumferentially adjacent sections, respectively, Can be accurately set to a desired value.
[0020]
The dynamic damper manufactured by any one of the above means can exhibit the same operation as the operation of any one of the above means.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 show a cylindrical dynamic damper that suppresses vibration of the drive shaft S in a state where the drive shaft S is press-fitted and externally fitted to a drive shaft S (corresponding to a rotating shaft) of an automobile.
[0022]
The dynamic damper includes a cylindrical metal mass member 1 and a cylindrical rubber-like elastic body 3 vulcanized and formed on the entire inner peripheral surface 2 side. The entire inner peripheral surface of the rubber-like elastic body 3 is pressed against the outer peripheral surface of the drive shaft S.
[0023]
The above dynamic damper is manufactured by the following method (see FIG. 3).
[1] The mass member 1 is arranged concentrically with respect to the cylindrical middle mold 4.
[0024]
[2] The cavity 5 between the mass member 1 and the middle die 4 is equally divided into four sections in the circumferential direction. That is, the cavity 5 is composed of two pairs of a pair of sections 6 and 7 and another pair of sections 8 and 9, and the pair of sections 6 and 7 are positioned with respect to the axis O of the cavity 5. The cavity 5 is divided into four parts in the circumferential direction such that the other pair of sections 8 and 9 are located point-symmetrically with respect to the axis O of the cavity 5.
[0025]
[3] A first rubber-like elastic portion 10 and a second rubber-like elastic portion 11 having the same spring constant are vulcanized and formed in the pair of sections 6 and 7 symmetrical with respect to each other (that is, one section and the other section) ( 2), a third rubber-like elastic portion 12 and a fourth rubber-like elastic portion 13 having the same spring constant are vulcanized and formed in the other pair of sections 8 and 9, and any one pair of the circumferentially adjacent ones is adjoined in the circumferential direction. Each of the sections 6, 7, 8, 9 is provided with a respective spring so that the first rubber-like elastic section 10 and the third rubber-like elastic section 12 having different spring constants are also vulcanized in the sections (for example, 6 and 8). A rubber compound corresponding to each constant is supplied. The rubber compound corresponding to each spring constant can be produced, for example, by adjusting the content of carbon in the rubber compound.
[0026]
[4] Demold after vulcanization molding.
[0027]
The rubber-like elastic body 3 is composed of the first to fourth rubber-like elastic portions 10, 11, 12, and 13, and the spring constants of the first and second rubber-like elastic portions 10, 11 and the third and fourth rubber-like elastic portions 10, 11, 12, and 13. The natural frequency of the dynamic damper can be tuned to a plurality of resonance frequency ranges of the drive shaft S by making the spring constants of the rubber-like elastic portions 12 and 13 different.
[0028]
[Another embodiment]
[1] In the above embodiment, the cavities 5 are equally divided in the circumferential direction. However, it is also possible to manufacture the dynamic damper by unequally dividing the cavities 5 in the circumferential direction for each pair of sections. FIG. 4 shows a dynamic damper manufactured by this method.
[0029]
In this dynamic damper, the widths in the circumferential direction of the first and second rubber-like elastic portions 10 and 11 and the third and fourth rubber-like elastic portions 12 and 13 are different. The widths of the first rubber-like elastic portion 10 and the second rubber-like elastic portion 11 are the same, and the widths of the third rubber-like elastic portion 12 and the fourth rubber-like elastic portion 13 are the same. Other structures are the same as those of the first embodiment.
[0030]
[2] The cavity 5 is composed of 4 pairs (or 8 pairs, 16 pairs or the like) of sections, and the sections of each pair are located point-symmetrically with respect to the axis O of the cavity. The dynamic damper can be manufactured by dividing the cavity into eight in the circumferential direction. FIG. 5 shows a dynamic damper manufactured by this method.
[0031]
In this dynamic damper, the rubber-like elastic body 3 includes first to eighth rubber-like elastic portions 10 to 17. The spring constants of the first rubber-like elastic part 10, the second rubber-like elastic part 11, the third rubber-like elastic part 12, and the fourth rubber-like elastic part 13 are the same, and the fifth rubber-like elastic part 14 and the sixth rubber-like The elastic constants of the elastic portion 15, the seventh rubber-like elastic portion 16, and the eighth rubber-like elastic portion 17 are the same. The spring constants of the first rubber-like elastic portion 10 and the like and the fifth rubber-like elastic portion 14 and the like are different.
[0032]
[3] The dynamic damper of the above [2] may be configured as follows. That is, the spring constants of the first rubber-like elastic portion 10 and the second rubber-like elastic portion 11 are set to be the same, the spring constants of the third rubber-like elastic portion 12 and the fourth rubber-like elastic portion 13 are made the same, and the fifth The spring constants of the rubber elastic portion 14 and the sixth rubber elastic portion 15 are set to be the same, and the spring constants of the seventh rubber elastic portion 16 and the eighth rubber elastic portion 17 are set to be the same. Then, the spring constants of the first rubber-like elastic part 10, the third rubber-like elastic part 12, the fifth rubber-like elastic part 14, and the seventh rubber-like elastic part 16 are made different.
[0033]
The rotating shaft is not limited to a drive shaft, but may be another rotating shaft of an automobile or a rotating shaft provided in a device other than an automobile.
[0034]
【The invention's effect】
According to the present invention, it has been possible to provide a dynamic damper that can be tuned accurately to each desired resonance frequency range and that a sufficient vibration suppression effect can be obtained, and a method of manufacturing the same.
[0035]
Means for uniformly dividing the cavity between the mass member and the middle die in the circumferential direction, and means for unequally dividing the cavity in the circumferential direction for each pair of sections include various modes of vibration of the rotating shaft. And vibration can be more easily absorbed.
[0036]
In the means for vulcanizing and molding rubber-like elastic portions having different spring constants by supplying a rubber compound having a different carbon content to a pair of circumferentially adjacent sections, respectively, The spring constant of the elastic portion can be accurately set to a desired value, and the vibration suppressing effect can be more sufficiently obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a dynamic damper. FIG. 2 is a sectional view taken along line AA of FIG. 1. FIG. 3 is a perspective view showing a method of manufacturing a dynamic damper. FIG. 4 is a transverse sectional view of a dynamic damper of another embodiment. FIG. 5 is a cross-sectional view of a dynamic damper according to another embodiment.
Reference Signs List 1 Mass member 4 Middle die 5 Cavity 6, 7, 8, 9 Section 10, 11, 12, 13 Rubber-like elastic portion O Cavity axis S Rotation axis

Claims (5)

回転軸に圧入外嵌された状態で前記回転軸の振動を抑制する筒型のダイナミックダンパの製造方法であって、
筒状の質量部材を中型に対して同芯状に配置し、
前記質量部材と中型の間のキャビティが、複数対の区画から成り、かつ、各対の一方の区画と他方の区画が、前記キャビティの軸芯に対して点対称に位置するように、前記キャビティを周方向に区分けし、
前記各対の一方の区画と他方の区画に同じばね定数のゴム状弾性部が加硫成形され、前記周方向で隣合ういずれの一対の区画にも異なるばね定数のゴム状弾性部が加硫成形されるように、各区画に、各ばね定数にそれぞれ対応したゴム配合物を供給するダイナミックダンパの製造方法。
A method of manufacturing a cylindrical dynamic damper that suppresses vibration of the rotating shaft while being press-fitted to the rotating shaft,
A cylindrical mass member is arranged concentrically to the medium size,
The cavity between the mass member and the middle mold is formed of a plurality of pairs of sections, and one section and the other section of each pair are located point-symmetrically with respect to the axis of the cavity. Is divided in the circumferential direction,
A rubber-like elastic portion having the same spring constant is vulcanized and formed in one section and the other section of each pair, and a rubber-like elastic section having a different spring constant is vulcanized in any pair of circumferentially adjacent sections. A method of manufacturing a dynamic damper for supplying a rubber compound corresponding to each spring constant to each section so as to be molded.
前記キャビティを前記周方向に均等に区分けする請求項1記載のダイナミックダンパの製造方法。The method for manufacturing a dynamic damper according to claim 1, wherein the cavity is equally divided in the circumferential direction. 前記キャビティを、各対の区画ごとに前記周方向に不均等に区分けする請求項1記載のダイナミックダンパの製造方法。The method according to claim 1, wherein the cavity is unequally divided in the circumferential direction for each pair of sections. 前記周方向で隣合う一対の区画に、カーボンの含有量を異ならせたゴム配合物をそれぞれ供給することで、互いに異なるばね定数のゴム状弾性部を加硫成形する請求項1,2,3のいずれか一つに記載のダイナミックダンパの製造方法。4. A rubber-like elastic portion having a different spring constant is vulcanized by supplying a rubber compound having a different carbon content to a pair of circumferentially adjacent sections. The method for manufacturing a dynamic damper according to any one of the above. 請求項1,2,3,4のいずれか一つに記載の製造方法で製造したダイナミックダンパ。A dynamic damper manufactured by the manufacturing method according to claim 1.
JP2003049386A 2003-02-26 2003-02-26 Method for manufacturing dynamic damper and dynamic damper Withdrawn JP2004257486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049386A JP2004257486A (en) 2003-02-26 2003-02-26 Method for manufacturing dynamic damper and dynamic damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049386A JP2004257486A (en) 2003-02-26 2003-02-26 Method for manufacturing dynamic damper and dynamic damper

Publications (1)

Publication Number Publication Date
JP2004257486A true JP2004257486A (en) 2004-09-16

Family

ID=33115117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049386A Withdrawn JP2004257486A (en) 2003-02-26 2003-02-26 Method for manufacturing dynamic damper and dynamic damper

Country Status (1)

Country Link
JP (1) JP2004257486A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148007A1 (en) * 2010-05-25 2011-12-01 Arteca Caucho Metal, S.A. Vibration attenuator for motor vehicles
JP2014157153A (en) * 2013-02-18 2014-08-28 Dr Johannes Heidenhain Gmbh Angle measurement device
DE102008021207B4 (en) 2007-04-28 2019-04-11 WEGU GmbH Schwingungsdämpfung Vibration damper with an elastomer spring

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008021207B4 (en) 2007-04-28 2019-04-11 WEGU GmbH Schwingungsdämpfung Vibration damper with an elastomer spring
WO2011148007A1 (en) * 2010-05-25 2011-12-01 Arteca Caucho Metal, S.A. Vibration attenuator for motor vehicles
JP2014157153A (en) * 2013-02-18 2014-08-28 Dr Johannes Heidenhain Gmbh Angle measurement device

Similar Documents

Publication Publication Date Title
US7357379B2 (en) Vibration isolating bushing
WO2005087515A1 (en) Pneumatic tire
JP2003226104A (en) Pneumatic tire and tire cavity resonance restricting device
EP1191252B1 (en) Cylindrical dynamic damper whose size is compact and whose mass member has large mass
JP2004262271A (en) Tire/wheel assembly and insert for noise reduction
JP2004257486A (en) Method for manufacturing dynamic damper and dynamic damper
JP3502108B2 (en) bush
JP2007092934A (en) Dynamic damper, its manufacturing method, and propeller shaft
JP2016070462A (en) Dynamic damper
JP2004257474A (en) Method for manufacturing dynamic damper and dynamic damper
JP2004239329A (en) Dynamic damper manufacturing method, and dynamic damper
JP2005030466A (en) Dynamic damper
JP2004340170A (en) Damper
JP2004150596A (en) Flexible mounting device
JP4669329B2 (en) Dynamic damper
JP3392202B2 (en) Dynamic damper
JP2005024011A (en) Dynamic damper
WO2022113947A1 (en) Dynamic damper
JPH10274285A (en) Dynamic damper for rotary shaft
JP2006329394A (en) Vibration control device
JP2004108426A (en) Cylindrical dynamic damper
JP2003314615A (en) Dynamic damper
JP2008002552A (en) Dynamic damper
JP2018091467A (en) Dynamic damper
JP2004092674A (en) Dynamic damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070330