JP2004092674A - Dynamic damper - Google Patents

Dynamic damper Download PDF

Info

Publication number
JP2004092674A
JP2004092674A JP2002250779A JP2002250779A JP2004092674A JP 2004092674 A JP2004092674 A JP 2004092674A JP 2002250779 A JP2002250779 A JP 2002250779A JP 2002250779 A JP2002250779 A JP 2002250779A JP 2004092674 A JP2004092674 A JP 2004092674A
Authority
JP
Japan
Prior art keywords
mass member
dynamic damper
end surface
elastic support
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002250779A
Other languages
Japanese (ja)
Other versions
JP3888581B2 (en
Inventor
Naohito Kuwayama
桑山 直仁
Takashi Hayashi
林 貴志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2002250779A priority Critical patent/JP3888581B2/en
Publication of JP2004092674A publication Critical patent/JP2004092674A/en
Application granted granted Critical
Publication of JP3888581B2 publication Critical patent/JP3888581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Motor Power Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamic damper in which a spring ratio of a high spring part and a low spring part of an elastic support member can be tuned in a wider range. <P>SOLUTION: On both of shaft end parts of a mass member 2 positioned between a pair of fixed members 1 and coaxially arranged outside a rotary shaft at a distance, a recessed end face 23 recessed inward in an axial direction and a convex end face 24 positioned outer than the recessed end face 23 in the axial direction are alternately provided in the circumferential direction. A pair of ring-shaped elastic support members 3 which are respectively connected with each shaft end part of the mass member 2 and each fixed member 1 and elastically support the both of the shaft end parts in the direction of shearing are constituted so that the high spring part 31 one end of which is connected to the convex end face 24, having a spring constant in the shearing direction set higher than an objective specific value and the low spring part 32 the one end of which is connected to the recessed end face 23, having the spring constant in the shearing direction set lower than the specific value are alternately arranged in the circumferential direction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、自動車のドライブシャフト等の回転軸に取付けられて、その回転軸に生じる有害振動を抑制するダイナミックダンパに関する。
【0002】
【従来の技術】
従来より、自動車のドライブシャフトやプロペラシャフト等の回転軸には、その回転に伴って生じる回転アンバランスによる曲げ振動や捩じり振動等、本来発生しないのが望ましい有害振動を抑制するために、ダイナミックダンパが用いられている。このダイナミックダンパは、その固有振動数を励起される有害振動の卓越振動数に合わせることにより、回転軸の振動エネルギを共振によりダイナミックダンパの振動エネルギとして変換して吸収することでその機能を果すものである。
【0003】
このようなダイナミックダンパとして、回転軸の外側に距離を隔てて同軸的に配置される筒状の金属製質量部材と、その質量部材の両軸端の外側に位置し回転軸の外周面に取付けられる一対のリング状のゴム製固定部材と、各固定部材と質量部材の各軸端部とにそれぞれ連結されて質量部材の両軸端部を剪断方向に弾性支持する一対のリング状のゴム製弾性支持部材とからなるものが知られている。このダイナミックダンパの固有振動数は、質量部材の質量と弾性支持部材の剪断方向のばね定数とによって基本的に決まる。
【0004】
ところで、上記のようなダイナミックダンパの振動抑制効果は、ダイナミックダンパが取付けられる回転軸の共振周波数(固有振動数)とダイナミックダンパの共振周波数(固有振動数)とが一致した状態で最も大きくなり、それぞれの共振周波数がある小さい範囲を越えてずれてしまうと急激に小さくなる。
【0005】
しかし、回転軸の共振周波数は、シャフト径やシャフト長さ等のばらつきによるばらつきがあるとともに、ダイナミックダンパの共振周波数は、ゴム弾性体のゴム硬度のばらつきや温度等の環境変化に伴う特性の変化によるばらつきがあるため、両者の共振周波数が完全に一致する状態に調整することは極めて困難であるばかりでなく、それらのばらつき全てを満足し得る範囲内で調整することも困難である。
【0006】
そこで、本出願人は、図6及び図7に示すように、剪断方向におけるばね定数が目標とする特定値よりも高く設定された高ばね部分31a、31aと前記特定値よりも低く設定された低ばね部分32a、32aとが周方向において交互に配置されている一対の弾性支持部材3a、3aを備えたダイナミックダンパを提案した(特開平9−89047号公報)。このダイナミックダンパによれば、図8に示すように、回転軸の目標となる一つの共振周波数を跨ぐようにして複数の共振周波数が広範囲に設定されることから、回転軸やダイナミックダンパの共振周波数のばらつきによって生じる振動抑制効果の低減を最小限に抑制することができる。
【0007】
【発明が解決しようとする課題】
ところで、上記公報に開示されたようなダイナミックダンパの場合、弾性支持部材3a、3aの高ばね部分31a、31a及び低ばね部分32a、32aのばね定数は、それぞれの剪断自由長L3、L4により定められられることから、高ばね部分31a、31aと低ばね部分32a、32aのばね比のチューニングが可能である。しかし、そのばね比をより高くしようとすると、高ばね部分31a、31aと低ばね部分32a、32aの剪断自由長はどんどんと長くなり、それに伴って弾性支持部材3a、3a全体のばね定数は低下してしまう。そのため、目標のばね比は得られても、ダイナミックダンパの目標の共振周波数となるばね定数は得られなくなる。
【0008】
本発明は上記実状に鑑みてなされたものであり、弾性支持部材の高ばね部分と低ばね部分のばね比をより広い範囲でチューニングすることが可能なダイナミックダンパを提供することを解決すべき課題とするものである。
【0009】
【課題を解決するための手段、発明の作用及び効果】
上記課題を解決する請求項1記載の発明は、軸方向に距離を隔てて回転軸の外周面に取付けられる一対のリング状の固定部材と、一対の該固定部材の間に位置し前記回転軸の外側に距離を隔てて同軸的に配置される筒状の質量部材と、該質量部材の各軸端部と各前記固定部材とにそれぞれ連結されて前記質量部材の両軸端部を剪断方向に弾性支持する一対のリング状の弾性支持部材とを備えたダイナミックダンパにおいて、前記質量部材の両軸端部には、軸方向内方へ凹んだ凹端面と該凹端面よりも軸方向外方に位置する凸端面が周方向において交互に設けられ、前記弾性支持部材は、前記凸端面に一端が連結されて剪断方向におけるばね定数が目標とする特定値よりも高く設定された高ばね部分と、前記凹端面に一端が連結されて剪断方向におけるばね定数が前記特定値よりも低く設定された低ばね部分とを有するという構成を採用している。
【0010】
なお、ここでの目標とする特定値とは、回転軸の目標となる共振周波数に対応して、質量部材の質量とゴム弾性部材のばね定数とによって決まるダイナミックダンパの共振周波数を設定する際のばね定数の値のことをいう。
【0011】
本発明のダイナミックダンパでは、弾性支持部材の高ばね部分の一端が質量部材の凸端面に連結され、弾性支持部材の低ばね部分の一端が質量部材の凹端面に連結されていることから、低ばね部分の剪断自由長を高ばね部分の剪断自由長よりも十分に長くすることが可能となり、高ばね部分の剪断自由長をより短くすることも可能となる。これにより、弾性支持部材全体のばね定数が低下することなく、高ばね部分と低ばね部分のばね比をチューニングすることが可能となり、ばね比のチューニング範囲が拡大される。また、ダイナミックダンパの目標の共振周波数となる弾性支持部材全体のばね定数(目標とする特定値)のチューニング範囲も拡大される。
【0012】
したがって、本発明のダイナミックダンパによれば、弾性支持部材の高ばね部分と低ばね部分のばね比をより広い範囲でチューニングすることができる。
【0013】
請求項2記載の発明は、請求項1記載の発明における前記質量部材の前記凹端面及び前記凸端面が、それぞれ軸対称位置に配置されているという構成を採用している。
【0014】
この手段によれば、弾性支持部材の高ばね部分と低ばね部分が周方向においてバランス良く配置されるため、それらのばね比のチューニングが容易になり、より良好な振動抑制効果を得ることが可能となる。
【0015】
請求項3記載の発明は、請求項1又は2記載の発明における前記質量部材が、プレス成形で所定形状に形成した金属板を筒状に巻き、対向する両端部どうしを接合させて形成されているという構成を採用している。
【0016】
この手段によれば、その両軸端部に凹部と凸部を有する質量部材を、コストの上昇を抑制しつつ簡単に作製することができる。
【0017】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づき説明する。
【0018】
図1は本実施形態に係るダイナミックダンパの軸方向に沿う断面図であって図2のI−I線矢視断面図であり、図2はそのダイナミックダンパの軸方向から見た正面図である。
【0019】
本実施形態のダイナミックダンパは、図1及び図2に示すように、回転軸の外周面に取付けられる一対のリング状の固定部材1、1と、円筒状に形成されてその両軸端部に凹端面23、23と凸端面24、24が周方向において交互に設けられた質量部材2と、質量部材2の各軸端部と各固定部材1、1とにそれぞれ連結され、高ばね部分31、31と低ばね部分32、32が周方向において交互に設けられた一対のリング状の弾性支持部材3、3とから構成されている。
【0020】
固定部材1、1は、天然ゴム等のゴム材料でリング状に形成されている。この固定部材1、1は、、一対のものが使用され、ドライブシャフト等の回転軸の外周面に嵌挿されて軸方向に距離を隔てた状態に取付けられる。この固定部材1、1は、回転軸の外径よりも少し小さい内径をもち、回転軸に取付けられたときに回転軸の外周面に圧着するようにされている。なお、一方の固定部材1の外周面には、固定バンド(図示せず)が装着されるリング状の係止溝11が形成されている。
【0021】
質量部材2は、鉄系金属により円筒状に形成された質量体21と、質量体21の内周面及び外周面を被覆する被覆ゴム22とからなる。この質量部材2は、回転軸の外径よりも所定寸法大きい内径をもち、一対の固定部材1、1の間に位置して回転軸の外側に距離を隔てた状態で同軸的に配置される。これにより、質量部材2は、径方向において回転軸との相対変位が可能とされている。質量部材2の両軸端部には、軸方向内方へ凹んだ2個の凹端面23、23と、凹端面23、23よりも軸方向外方に位置する2個の凸端面24、24が周方向において交互に設けられている。これら凹端面23、23及び凸端面24、24は、それぞれ軸対称となる位置に配置されている。
【0022】
なお、ここで用いられる質量体21は、プレス成形で所定形状に形成した金属板を筒状に巻き、対向する両端部どうしを接合させることにより形成されている。即ち、先ず、金属板材をプレス成形することにより、図3に示すような長方形の金属板21aを形成する。この金属板21aの長辺側の両端部には、内方へ凹んだ凹端面23と、凹端面23よりも軸方向外方に位置する凸端面24が交互に設けられている。また、金属板21aの幅方向の中央部には、厚さ方向に貫通する複数の貫通孔25、…が長手方向に沿って設けられている。
【0023】
次に、その金属板21aの短辺側の両端面どうしが対向するように金属板21aを筒状に巻き、対向する両端部どうしを接合させる。なお、その際接合部に溶接等を用い強固に接合させてもよい。これにより、図4及び図5に示すような質量体21が形成される。なお、このようにして作製された質量体21の内周面及び外周面には、天然ゴム等のゴム材料を質量体21と一体加硫成形することにより被覆ゴム22が形成される。
【0024】
弾性支持部材3、3は、図1及び図2に示すように、天然ゴム等のゴム材料で略中空円錐台形状のリング状に形成されており、その小径側が一方の固定部材1に連結されているとともに、その大径側が質量部材2の一方の軸端部に連結されている。この弾性支持部材3、3は、質量体21と一体加硫成形することにより形成されており、その加硫成形時に、一対の固定部材1、1及び被覆ゴム22も弾性支持部材3、3と一体に連結された状態で同時に形成される。
【0025】
この弾性支持部材3、3は、質量部材2の凸端面24、24に一端が連結されて剪断方向におけるばね定数が目標とする特定値(ダイナミックダンパの目標の共振周波数となる弾性支持部材3、3全体のばね定数)よりも高く設定された2個の高ばね部分31、31と、質量部材2の凹端面23、23に一端が連結されて剪断方向におけるばね定数が前記特定値よりも低く設定された2個の低ばね部分32、32とを有する。これら高ばね部分31、31及び低ばね部分32、32は、周方向において交互に配置されている。
【0026】
高ばね部分31、31は、質量部材2の凸端面24、24に一端が連結されてその剪断自由長L1が短くされていることにより、前記特定値よりも高い所定のばね定数に設定されている。また、低ばね部分32、32は、質量部材2の凹端面23、23に一端が連結されてその剪断自由長L2が長くされていることにより、前記特定値よりも低い所定のばね定数に設定されている。
【0027】
以上のように構成された本実施形態のダイナミックダンパは、次のように使用される。まず、ダイナミックダンパを自動車のドライブシャフトに取付ける場合には、ドライブシャフトが車体に取付けられる前に、固定部材1、1の内孔を拡開してドライブシャフトの軸端からダイナミックダンパを嵌挿し、所定の位置にダイナミックダンパを配置する。そして、固定部材1の係止溝11内に固定バンドが装着されることによりダイナミックダンパのドライブシャフトへの取付けが完了する。
【0028】
そして、ドライブシャフトの回転に伴って有害な振動が励起されると、その有害振動の振動数に固有振動数を適合させたダイナミックダンパの質量部材2が弾性支持部材3、3の剪断変形を介して共振することにより、ドライブシャフトの振動エネルギが吸収され、励起された有害振動は抑制される。この場合、ダイナミックダンパの共振周波数は、ドライブシャフトの目標となる一つの共振周波数を跨ぐようにして複数の共振周波数を有するように広範囲に設定されているため、ドライブシャフト及びダイナミックダンパの共振周波数に多少のばらつきが生じていても、ドライブシャフトの共振周波数とダイナミックダンパの共振周波数とがばらつき等によって大きくずれてしまう可能性は少ない。したがって、ドライブシャフトの共振周波数とダイナミックダンパの共振周波数とが一致した状態となり、ダイナミックダンパの最大限の振動抑制効果を発揮できる状態が確保される。
【0029】
以上のように、本実施形態のダイナミックダンパは、回転軸の目標となる一つの共振周波数を跨ぐようにして複数の共振周波数が広範囲に設定されているため、回転軸やダイナミックダンパの共振周波数のばらつきによって生じる振動抑制効果の低減を最小限にすることができる。
【0030】
そして、本実施形態のダイナミックダンパは、弾性支持部材3、3の高ばね部分31、31の一端が質量部材2の凸端面24、24に連結され、弾性支持部材3、3の低ばね部分32、32の一端が質量部材2の凹端面23、23に連結されていることから、低ばね部分32、32の剪断自由長L2を高ばね部分31、31の剪断自由長L1よりも十分に長くすることが可能となり、高ばね部分31、31の剪断自由長L1をより短くすることも可能となる。これにより、弾性支持部材3、3全体のばね定数が低下することなく、高ばね部分31、31と低ばね部分32、32のばね比をチューニングすることが可能となり、ばね比のチューニング範囲が拡大される。また、ダイナミックダンパの目標の共振周波数となる弾性支持部材3、3全体のばね定数(目標とする特定値)のチューニング範囲も拡大される。したがって、本実施形態のダイナミックダンパによれば、弾性支持部材3、3の高ばね部分31、31と低ばね部分32、32のばね比をより広い範囲でチューニングすることができる。
【0031】
また、本実施形態における質量部材2の凹端面23、23及び凸端面24、24は、それぞれ軸対称位置に配置されていることから、弾性支持部材3、3の高ばね部分31、31と低ばね部分32、32が周方向においてバランス良く配置されるため、それらのばね比のチューニングが容易になり、より良好な振動抑制効果を得ることが可能となる。
【0032】
さらに、本実施形態における質量部材2の質量体21は、プレス成形で所定形状に形成した金属板21aを筒状に巻き、対向する両端部どうしを接合させて形成されていることから、その両軸端部に凹部23、23と凸部24、24を有する質量体21を、コストの上昇を抑制しつつ簡単に作製することができる。なお、この質量体21は、例えば鍛造等の従来より採用されている他の方法で作製することも可能である。
【図面の簡単な説明】
【図1】本発明の実施形態に係るダイナミックダンパの軸方向に沿う断面図であって図2のI−I線矢視断面図である。
【図2】本発明の実施形態に係るダイナミックダンパの軸方向から見た正面図である。
【図3】本発明の実施形態に係る質量部材の展開図である。
【図4】本発明の実施形態に係る質量部材の軸方向から見た正面図である。
【図5】本発明の実施形態に係る質量部材の図4において矢印a方向から見た側面図である。
【図6】従来のダイナミックダンパの軸方向に沿う断面図であって図7のVI−VI線矢視断面図である。
【図7】従来のダイナミックダンパの軸方向から見た正面図である。
【図8】従来のダイナミックダンパの質量部材の加速度レベルと周波数との関係を示すグラフである。
【符号の説明】
1…固定部材   2…質量部材      3、3a…弾性支持部材
11…係止溝      21…質量体      21a…金属板
22…ゴム被覆部      23…凹端面   24…凸端面
25…貫通孔      31、31a…高ばね部分
32、32a…低ばね部分   L1、L2、L3、L4…剪断自由
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dynamic damper that is attached to a rotating shaft such as a drive shaft of an automobile and suppresses harmful vibration generated on the rotating shaft.
[0002]
[Prior art]
Conventionally, on a rotating shaft such as a drive shaft or a propeller shaft of an automobile, bending vibration and torsional vibration due to rotational imbalance caused by the rotation, etc. A dynamic damper is used. This dynamic damper achieves its function by converting its natural frequency to the predominant frequency of the harmful vibration to be excited, and converting and absorbing the vibration energy of the rotating shaft as the vibration energy of the dynamic damper by resonance. It is.
[0003]
As such a dynamic damper, a cylindrical metal mass member coaxially arranged at a distance outside the rotation shaft, and attached to the outer peripheral surface of the rotation shaft located outside both shaft ends of the mass member A pair of ring-shaped rubber fixing members, and a pair of ring-shaped rubber members respectively connected to each fixing member and each shaft end of the mass member to elastically support both shaft ends of the mass member in the shearing direction. What consists of an elastic support member is known. The natural frequency of the dynamic damper is basically determined by the mass of the mass member and the spring constant of the elastic support member in the shear direction.
[0004]
By the way, the above-described vibration damping effect of the dynamic damper is maximized when the resonance frequency (natural frequency) of the rotating shaft to which the dynamic damper is attached matches the resonance frequency (natural frequency) of the dynamic damper, When the respective resonance frequencies deviate beyond a certain small range, the values suddenly decrease.
[0005]
However, the resonance frequency of the rotating shaft varies due to variations in the shaft diameter and the shaft length, and the resonance frequency of the dynamic damper changes in characteristics due to variations in rubber hardness of the rubber elastic body and environmental changes such as temperature. Therefore, it is extremely difficult to adjust not only a state in which both resonance frequencies are completely coincident with each other, but also an adjustment within a range that can satisfy all of the fluctuations.
[0006]
Therefore, as shown in FIGS. 6 and 7, the applicant has set the high spring portions 31a, 31a in which the spring constant in the shearing direction is set higher than the target specific value, and set the spring constant lower than the specific value. There has been proposed a dynamic damper including a pair of elastic support members 3a, 3a in which low spring portions 32a, 32a are alternately arranged in the circumferential direction (Japanese Patent Application Laid-Open No. 9-89047). According to this dynamic damper, as shown in FIG. 8, a plurality of resonance frequencies are set over a wide range so as to straddle one resonance frequency which is a target of the rotation axis. The reduction of the vibration suppression effect caused by the variation in the distance can be minimized.
[0007]
[Problems to be solved by the invention]
By the way, in the case of the dynamic damper disclosed in the above publication, the spring constants of the high spring portions 31a, 31a and the low spring portions 32a, 32a of the elastic support members 3a, 3a are determined by the respective free shear lengths L3, L4. Therefore, the spring ratio of the high spring portions 31a, 31a and the low spring portions 32a, 32a can be tuned. However, if the spring ratio is to be further increased, the free spring length of the high spring portions 31a, 31a and the low spring portions 32a, 32a increases steadily, and the spring constant of the entire elastic support members 3a, 3a decreases accordingly. Resulting in. Therefore, even if the target spring ratio is obtained, the spring constant that becomes the target resonance frequency of the dynamic damper cannot be obtained.
[0008]
The present invention has been made in view of the above circumstances, and a problem to be solved is to provide a dynamic damper capable of tuning a spring ratio of a high spring portion and a low spring portion of an elastic support member in a wider range. It is assumed that.
[0009]
Means for Solving the Problems, Functions and Effects of the Invention
The invention according to claim 1, which solves the above-mentioned problem, comprises a pair of ring-shaped fixing members attached to the outer peripheral surface of the rotating shaft at a distance in the axial direction, and the rotating shaft positioned between the pair of fixing members. A cylindrical mass member coaxially arranged at a distance outside of the mass member, and connected to the respective shaft ends of the mass member and the respective fixing members so that both shaft ends of the mass member are sheared in the shear direction. A dynamic damper comprising a pair of ring-shaped elastic support members for elastically supporting the mass member, wherein both axial ends of the mass member have axially inwardly concave concave end surfaces and axially outwardly more than the concave end surfaces. Are provided alternately in the circumferential direction, and the elastic support member has a high spring portion in which one end is connected to the convex end surface and a spring constant in a shear direction is set to be higher than a target specific value. One end is connected to the concave end face in the shearing direction. Definitive spring constant is adopted a structure that has a lower spring portion is set lower than the specified value.
[0010]
Note that the target specific value here corresponds to the target resonance frequency of the rotating shaft, when setting the resonance frequency of the dynamic damper determined by the mass of the mass member and the spring constant of the rubber elastic member. The value of the spring constant.
[0011]
In the dynamic damper of the present invention, one end of the high spring portion of the elastic support member is connected to the convex end surface of the mass member, and one end of the low spring portion of the elastic support member is connected to the concave end surface of the mass member. The free shear length of the spring portion can be made sufficiently longer than the free shear length of the high spring portion, and the free shear length of the high spring portion can be made shorter. Thus, the spring ratio of the high spring portion and the low spring portion can be tuned without lowering the spring constant of the entire elastic support member, and the tuning range of the spring ratio is expanded. In addition, the tuning range of the spring constant (target specific value) of the entire elastic support member at the target resonance frequency of the dynamic damper is expanded.
[0012]
Therefore, according to the dynamic damper of the present invention, the spring ratio of the high spring portion and the low spring portion of the elastic support member can be tuned in a wider range.
[0013]
The invention according to claim 2 adopts a configuration in which the concave end face and the convex end face of the mass member according to the invention according to claim 1 are arranged at axially symmetric positions.
[0014]
According to this means, since the high spring portion and the low spring portion of the elastic support member are arranged in a well-balanced manner in the circumferential direction, tuning of their spring ratio becomes easy, and a better vibration suppressing effect can be obtained. It becomes.
[0015]
According to a third aspect of the present invention, the mass member according to the first or second aspect is formed by winding a metal plate formed into a predetermined shape by press molding into a cylindrical shape, and joining opposing opposite ends. Is adopted.
[0016]
According to this means, the mass member having the concave portion and the convex portion at both shaft end portions can be easily manufactured while suppressing an increase in cost.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018]
FIG. 1 is a cross-sectional view of the dynamic damper according to the present embodiment along the axial direction, which is a cross-sectional view taken along line II of FIG. 2, and FIG. 2 is a front view of the dynamic damper viewed from the axial direction. .
[0019]
As shown in FIGS. 1 and 2, the dynamic damper according to the present embodiment has a pair of ring-shaped fixing members 1 and 1 attached to the outer peripheral surface of a rotating shaft, and is formed in a cylindrical shape and has two shaft ends. The mass member 2 in which the concave end surfaces 23 and 23 and the convex end surfaces 24 and 24 are alternately provided in the circumferential direction is connected to each shaft end of the mass member 2 and each of the fixing members 1 and 1, respectively. , 31 and a pair of ring-shaped elastic support members 3, 3 alternately provided in the circumferential direction with low spring portions 32, 32.
[0020]
The fixing members 1 and 1 are formed in a ring shape from a rubber material such as natural rubber. A pair of the fixing members 1 and 1 is used, and is fitted to an outer peripheral surface of a rotating shaft such as a drive shaft and is attached at a distance in the axial direction. The fixing members 1 and 1 have an inner diameter slightly smaller than the outer diameter of the rotary shaft, and are attached to the outer peripheral surface of the rotary shaft when attached to the rotary shaft. A ring-shaped locking groove 11 to which a fixing band (not shown) is attached is formed on the outer peripheral surface of one fixing member 1.
[0021]
The mass member 2 includes a mass body 21 formed of a ferrous metal in a cylindrical shape, and a covering rubber 22 that covers the inner and outer peripheral surfaces of the mass body 21. The mass member 2 has an inner diameter that is larger than the outer diameter of the rotating shaft by a predetermined dimension, is located between the pair of fixed members 1, 1, and is coaxially arranged outside the rotating shaft at a distance. . Thus, the mass member 2 can be displaced relative to the rotating shaft in the radial direction. The two axial end portions of the mass member 2 are provided with two concave end surfaces 23, 23 recessed inward in the axial direction, and two convex end surfaces 24, 24 located outside the concave end surfaces 23, 23 in the axial direction. Are provided alternately in the circumferential direction. These concave end surfaces 23, 23 and convex end surfaces 24, 24 are arranged at axially symmetric positions, respectively.
[0022]
The mass body 21 used here is formed by winding a metal plate formed into a predetermined shape by press molding into a cylindrical shape, and joining opposite ends. That is, first, a metal plate material is press-formed to form a rectangular metal plate 21a as shown in FIG. At both ends on the long side of the metal plate 21a, concave end surfaces 23 that are concave inward and convex end surfaces 24 that are located axially outward from the concave end surface 23 are provided alternately. Further, a plurality of through-holes 25,... Penetrating in the thickness direction are provided in the central portion in the width direction of the metal plate 21a along the longitudinal direction.
[0023]
Next, the metal plate 21a is wound into a cylindrical shape so that both short-side end surfaces of the metal plate 21a face each other, and the opposite ends are joined together. At this time, the joint may be firmly joined using welding or the like. Thereby, the mass body 21 as shown in FIGS. 4 and 5 is formed. In addition, the coating rubber 22 is formed on the inner peripheral surface and the outer peripheral surface of the mass body 21 thus manufactured by integrally vulcanizing and molding a rubber material such as natural rubber with the mass body 21.
[0024]
As shown in FIGS. 1 and 2, the elastic support members 3, 3 are formed of a rubber material such as natural rubber in a substantially frustoconical ring shape, and the small diameter side thereof is connected to one of the fixed members 1. The large diameter side is connected to one shaft end of the mass member 2. The elastic support members 3, 3 are formed by integral vulcanization molding with the mass body 21, and at the time of the vulcanization molding, the pair of fixing members 1, 1 and the covering rubber 22 are also formed with the elastic support members 3, 3, respectively. They are formed simultaneously in a state of being integrally connected.
[0025]
The elastic support members 3, 3 have one ends connected to the convex end surfaces 24, 24 of the mass member 2 so that the spring constant in the shearing direction has a target specific value (the elastic support member 3 having a target resonance frequency of the dynamic damper). 3), and one end is connected to the concave end surfaces 23, 23 of the mass member 2 so that the spring constant in the shearing direction is lower than the specific value. It has two low spring portions 32, 32 set. These high spring portions 31, 31 and low spring portions 32, 32 are alternately arranged in the circumferential direction.
[0026]
One end of each of the high spring portions 31, 31 is connected to the convex end surfaces 24, 24 of the mass member 2 and the free shear length L1 thereof is shortened, so that the predetermined spring constant is set higher than the specific value. I have. In addition, the low spring portions 32, 32 are set to a predetermined spring constant lower than the specific value, because one end is connected to the concave end surfaces 23, 23 of the mass member 2 and the free shear length L2 is lengthened. Have been.
[0027]
The dynamic damper of the present embodiment configured as described above is used as follows. First, when the dynamic damper is mounted on the drive shaft of an automobile, before the drive shaft is mounted on the vehicle body, the inner holes of the fixing members 1 and 1 are expanded and the dynamic damper is inserted from the shaft end of the drive shaft. A dynamic damper is arranged at a predetermined position. Then, the fixing of the dynamic damper to the drive shaft is completed by mounting the fixing band in the locking groove 11 of the fixing member 1.
[0028]
Then, when harmful vibrations are excited with the rotation of the drive shaft, the mass member 2 of the dynamic damper whose natural frequency is adapted to the frequency of the harmful vibrations is caused by the shear deformation of the elastic support members 3. By resonating, the vibration energy of the drive shaft is absorbed, and the excited harmful vibration is suppressed. In this case, the resonance frequency of the dynamic damper is set over a wide range so as to have a plurality of resonance frequencies so as to straddle one resonance frequency targeted by the drive shaft. Even if there is some variation, there is little possibility that the resonance frequency of the drive shaft and the resonance frequency of the dynamic damper are largely shifted due to variation or the like. Therefore, the resonance frequency of the drive shaft coincides with the resonance frequency of the dynamic damper, and a state where the maximum vibration suppression effect of the dynamic damper can be exhibited is secured.
[0029]
As described above, in the dynamic damper of the present embodiment, a plurality of resonance frequencies are set in a wide range so as to straddle one resonance frequency that is a target of the rotation axis. The reduction of the vibration suppression effect caused by the variation can be minimized.
[0030]
In the dynamic damper of the present embodiment, one ends of the high spring portions 31, 31 of the elastic support members 3, 3 are connected to the convex end surfaces 24, 24 of the mass member 2, and the low spring portions 32 of the elastic support members 3, 3 are connected. , 32 is connected to the concave end surfaces 23, 23 of the mass member 2, so that the free shear length L2 of the low spring portions 32, 32 is sufficiently longer than the free shear length L1 of the high spring portions 31, 31. It is also possible to shorten the free shear length L1 of the high spring portions 31, 31. Thereby, the spring ratio of the high spring portions 31, 31 and the low spring portions 32, 32 can be tuned without lowering the spring constant of the entire elastic support members 3, 3, and the tuning range of the spring ratio is expanded. Is done. In addition, the tuning range of the spring constant (target specific value) of the entire elastic support members 3 and 3 at the target resonance frequency of the dynamic damper is expanded. Therefore, according to the dynamic damper of the present embodiment, the spring ratio of the high spring portions 31, 31 and the low spring portions 32, 32 of the elastic support members 3, 3 can be tuned in a wider range.
[0031]
In addition, since the concave end surfaces 23, 23 and the convex end surfaces 24, 24 of the mass member 2 in the present embodiment are arranged at axially symmetric positions, respectively, the high spring portions 31, 31 of the elastic support members 3, 3 are low. Since the spring portions 32 and 32 are arranged in a well-balanced manner in the circumferential direction, tuning of their spring ratios is facilitated, and a better vibration suppression effect can be obtained.
[0032]
Further, since the mass body 21 of the mass member 2 in the present embodiment is formed by winding a metal plate 21a formed into a predetermined shape by press molding into a tubular shape and joining opposite ends thereof, both of them are formed. The mass body 21 having the concave portions 23, 23 and the convex portions 24, 24 at the shaft end can be easily manufactured while suppressing an increase in cost. The mass body 21 can also be manufactured by another method conventionally used, such as forging.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view along an axial direction of a dynamic damper according to an embodiment of the present invention, which is a cross-sectional view taken along line II of FIG. 2;
FIG. 2 is a front view of the dynamic damper according to the embodiment of the present invention as viewed from an axial direction.
FIG. 3 is a development view of a mass member according to the embodiment of the present invention.
FIG. 4 is a front view of the mass member according to the embodiment of the present invention as viewed from the axial direction.
FIG. 5 is a side view of the mass member according to the embodiment of the present invention as viewed in the direction of arrow a in FIG.
6 is a cross-sectional view along the axial direction of the conventional dynamic damper, and is a cross-sectional view taken along line VI-VI in FIG. 7;
FIG. 7 is a front view of a conventional dynamic damper viewed from an axial direction.
FIG. 8 is a graph showing a relationship between an acceleration level and a frequency of a mass member of a conventional dynamic damper.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Fixed member 2 ... Mass member 3, 3a ... Elastic support member 11 ... Locking groove 21 ... Mass body 21a ... Metal plate 22 ... Rubber coating part 23 ... Concave end surface 24 ... Convex end surface 25 ... Through-hole 31, 31a ... High Spring portions 32, 32a: low spring portions L1, L2, L3, L4: free to shear

Claims (3)

軸方向に距離を隔てて回転軸の外周面に取付けられる一対のリング状の固定部材と、一対の該固定部材の間に位置し前記回転軸の外側に距離を隔てて同軸的に配置される筒状の質量部材と、該質量部材の各軸端部と各前記固定部材とにそれぞれ連結されて前記質量部材の両軸端部を剪断方向に弾性支持する一対のリング状の弾性支持部材とを備えたダイナミックダンパにおいて、
前記質量部材の両軸端部には、軸方向内方へ凹んだ凹端面と該凹端面よりも軸方向外方に位置する凸端面が周方向において交互に設けられ、前記弾性支持部材は、前記凸端面に一端が連結されて剪断方向におけるばね定数が目標とする特定値よりも高く設定された高ばね部分と、前記凹端面に一端が連結されて剪断方向におけるばね定数が前記特定値よりも低く設定された低ばね部分とを有することを特徴とするダイナミックダンパ。
A pair of ring-shaped fixing members attached to the outer peripheral surface of the rotating shaft at a distance in the axial direction, and coaxially disposed at a distance outside the rotating shaft between the pair of fixing members; A cylindrical mass member, and a pair of ring-shaped elastic support members connected to each shaft end of the mass member and each of the fixing members to elastically support both shaft ends of the mass member in a shearing direction; In a dynamic damper with
At both axial ends of the mass member, a concave end surface recessed inward in the axial direction and a convex end surface located axially outward from the concave end surface are provided alternately in the circumferential direction, and the elastic support member is A high spring portion, one end of which is connected to the convex end surface and the spring constant in the shear direction is set higher than a target specific value, and the spring constant in the shear direction where one end is connected to the concave end surface is higher than the specific value. And a low spring portion set low.
前記質量部材の前記凹端面及び前記凸端面は、それぞれ軸対称位置に配置されていることを特徴とする請求項1記載のダイナミックダンパ。2. The dynamic damper according to claim 1, wherein the concave end surface and the convex end surface of the mass member are arranged at axially symmetric positions, respectively. 3. 前記質量部材は、プレス成形で所定形状に形成した金属板を筒状に巻き、対向する両端部どうしを接合させて形成されていることを特徴とする請求項1又は2記載のダイナミックダンパ。3. The dynamic damper according to claim 1, wherein the mass member is formed by winding a metal plate formed into a predetermined shape by press molding in a cylindrical shape, and joining opposite ends thereof. 4.
JP2002250779A 2002-08-29 2002-08-29 Dynamic damper Expired - Fee Related JP3888581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002250779A JP3888581B2 (en) 2002-08-29 2002-08-29 Dynamic damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002250779A JP3888581B2 (en) 2002-08-29 2002-08-29 Dynamic damper

Publications (2)

Publication Number Publication Date
JP2004092674A true JP2004092674A (en) 2004-03-25
JP3888581B2 JP3888581B2 (en) 2007-03-07

Family

ID=32057519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002250779A Expired - Fee Related JP3888581B2 (en) 2002-08-29 2002-08-29 Dynamic damper

Country Status (1)

Country Link
JP (1) JP3888581B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226521A (en) * 2005-01-20 2006-08-31 Tokai Rubber Ind Ltd Cylindrical dynamic damper
CN100380017C (en) * 2005-01-20 2008-04-09 东海橡胶工业株式会社 Cylindrical dynamic damper
JP2010025862A (en) * 2008-07-23 2010-02-04 Ihi Corp Rotary machine support device and design method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226521A (en) * 2005-01-20 2006-08-31 Tokai Rubber Ind Ltd Cylindrical dynamic damper
CN100380017C (en) * 2005-01-20 2008-04-09 东海橡胶工业株式会社 Cylindrical dynamic damper
US7635118B2 (en) 2005-01-20 2009-12-22 Tokai Rubber Industries, Ltd. Cylindrical dynamic damper
JP4496488B2 (en) * 2005-01-20 2010-07-07 東海ゴム工業株式会社 Cylindrical dynamic damper
JP2010025862A (en) * 2008-07-23 2010-02-04 Ihi Corp Rotary machine support device and design method thereof

Also Published As

Publication number Publication date
JP3888581B2 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
KR100506325B1 (en) Dual ring damper
JP2599059B2 (en) Dynamic damper for hollow drive shaft
US7635118B2 (en) Cylindrical dynamic damper
JP2004092674A (en) Dynamic damper
JP3780548B2 (en) Dynamic damper
JP2005048936A (en) Dynamic damper
JP2002317646A (en) Alternator and vibration restraining mechanism for internal combustion engine
KR100405777B1 (en) Damper
JPH0231626Y2 (en)
JPS6288838A (en) Dual-type damper
JP2006090528A (en) Vibration control device for rotary shaft
JP2005030466A (en) Dynamic damper
JP2004028177A (en) Torque fluctuation absorbing damper
JPH0645078Y2 (en) Dynamic damper
JP2001248688A (en) Dynamic damper
JP4496488B2 (en) Cylindrical dynamic damper
JP2006090530A (en) Vibration control device for rotary shaft
JP3532612B2 (en) Torsion damper
JP2008002552A (en) Dynamic damper
JP3534126B2 (en) Torque fluctuation absorption damper
JP2009079731A (en) Dynamic damper
JP2009127823A (en) Cylindrical dynamic damper
JPH0531303Y2 (en)
JP2007333197A (en) Dynamic damper
JP2005023970A (en) Dynamic damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061123

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees