JP2004257481A - Self-follow-up type resonance device - Google Patents

Self-follow-up type resonance device Download PDF

Info

Publication number
JP2004257481A
JP2004257481A JP2003049161A JP2003049161A JP2004257481A JP 2004257481 A JP2004257481 A JP 2004257481A JP 2003049161 A JP2003049161 A JP 2003049161A JP 2003049161 A JP2003049161 A JP 2003049161A JP 2004257481 A JP2004257481 A JP 2004257481A
Authority
JP
Japan
Prior art keywords
mass
lever
free end
force
fulcrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003049161A
Other languages
Japanese (ja)
Other versions
JP4311712B2 (en
Inventor
Takanobu Ide
孝信 井手
Akihiro Shimada
明宏 島田
Akira Saito
暁 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamashita Rubber Co Ltd
Original Assignee
Yamashita Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamashita Rubber Co Ltd filed Critical Yamashita Rubber Co Ltd
Priority to JP2003049161A priority Critical patent/JP4311712B2/en
Publication of JP2004257481A publication Critical patent/JP2004257481A/en
Application granted granted Critical
Publication of JP4311712B2 publication Critical patent/JP4311712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system of simple structure for changing resonance frequency to follow up input vibration. <P>SOLUTION: In this self-follow-up type resonance device, one end of a lever 2 is pivotally supported by a support point 5, and a free end 7 at the other end is born by a damping spring 6. The lever 2 forms an inclination angle θ to lift the free end 7. A mass 3 is provided to be movable on it, so that a dynamic damper 1 is composed of the mass 3 and the damping spring 6. In the self-follow-up type resonance device, as vibration is inputted to the free end 7, the mass 3 moves to a balance point between centrifugal force F and gravitational force G downward. The resonance frequency of the dynamic damper 1 thus automatically follows up input vibration to change itself to correspond to the input vibration. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、ダイナミックダンパーの一種であるとともに、入力振動に応じて自動的に共振周波数を変化させることができるようにした自主追随型共振装置に関する。
【0002】
【従来の技術】
マスとバネを組み合わせて制振するダイナミックダンパーは公知である。このダイナミックダンパーは、マスとバネ定数によって共振周波数が一定に決まってしまうため、入力振動に応じて共振周波数を変化させるべく、外部からの力でマスを制御することも知られている(特許文献1参照)。
また、振動系にてこを設け、てこの先端にマスを設けてその位置を可変としたものもある(特許文献2参照)。
【0003】
【特許文献1】特公平6−1097号公報
【特許文献2】特公平8−16497号公報
【0004】
【発明が解決しようとする課題】
ところで、上記従来例は、共振周波数を可変にできる利点がある反面、マスを制御するため大がかりで複雑なシステムとなり、高価なものになる。そこで、これを比較的簡単構造で安価に実現することが望まれ、本願発明はこの要請の実現を目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決するための本願の自主追随型共振装置に係る請求項1は、支点により自由端側を回動自在に支持されたレバーと、このレバー上へ移動自在に支持されたマスと、レバーの自由端側に設けられる制振バネとを備え、レバーの自由端側を入力振動で回動させることにより、マスに自由端側へ移動させる遠心力を与えると共に、マスを支点側へ移動させる戻し力を与え、この遠心力と戻し力のバランス点へマスを移動させることにより、入力振動に応じて共振周波数を自動的に変化させるようにしたことを特徴とする。
【0006】
請求項2は上記請求項1において、前記レバーを、支点よりも自由端側が高くなるように持ち上げて傾斜させ、マスに重力でレバー上を支点側へ滑り落ちる力を働かせて戻し力としたことを特徴とする。
【0007】
請求項3は上記請求項1において、前記レバーを水平とし、前記戻し力をバネ又は磁力により強制的に発生させることを特徴とする。
【0008】
【発明の効果】
請求項1によれば、マスを遠心力と戻し力でバランスさせたので、レバーが入力振動により回動すると、その回動に応じた遠心力がマスに働き、戻し力とのバランス点まで移動する。その結果、制振バネに作用するマスのモーメントを制振バネ上に位置する仮想質量に置き換えた等価マスとするとき、等価マスと制振バネのバネ定数とで共振周波数が定まり、かつ等価マスは実際のマスの移動によって変化するから、共振周波数も変化することになる。したがって、入力振動に応じた遠心力によりマスを移動させて共振周波数を変化させることができ、構造簡単かつ小型・軽量化した自主追随型共振装置が得られる。
【0009】
請求項2によれば、レバーを傾斜させることにより、マスに働く重力による力を戻し力として利用できるから、構造が最も簡単になる。
【0010】
請求項3によれば、レバーを水平とし、マスをバネ又は磁力により強制移動させるようにして戻し力としたので、比較的簡単な構造で戻し力を得ることができる。
【0011】
【発明の実施の形態】
以下、図面に基づいて実施形態を説明する。図1〜図4は第1実施例に係り、図1は装置全体の概略図、図2は作用説明図、図3は等価マスを用いた原理図、図4は共振時の振幅変化を示す図である。
【0012】
図1において、このダイナミックダンパー1は、レバー2と、その上を軸方向移動自在に支持されたマス3と、レバー2の一端側を支持部4へ回動自在に支持する支点5と、レバー2の自由端に取付けられた制振バネ6とを備える。符号7は自由端、8はダイナミックダンパー1の支持台部である。
【0013】
レバー2は丸棒状等の、例えば表面が低摩擦性をなす等の適宜材料からなるものであり、水平面に対して傾斜角θをなすように支持部4へ傾斜して取付けられ、自由端側が支点5よりも高くなっている。この例ではレバー2が傾斜角θをなす状態を基本状態とする。
【0014】
マス3は金属等からなる適宜質量を有するものであり、例えば貫通穴9を設け、これにレバー2を通すことにより、マス3がレバー2の上を長さ方向へ移動自在になっている。但し、レバー2によるマス3の支持構造は、モノレール式にガイドする等、上記に限らず任意にできる。質量の大きさは目的とするダイナミックダンパー特性により任意に設定できる。
【0015】
制振バネ6はレバー2の自由端における上下動を抑制するものであり、そのバネ定数は目的とするダイナミックダンパー特性により任意に設定できる。材料は金属やゴム等任意であり、形状もコイルバネやその他各種形状を適用できる。
【0016】
このダイナミックダンパー1は、レバー2の自由端側等へ振動を入力し、レバー2を上下へ回動させることにより、回動するマス3と制振バネ6の相互作用によりダイナミックダンパー効果を生じ、振動を制振するようになっている。
【0017】
図2〜図4によりダイナミックダンパー1の動作原理を説明する。以下において使用する符号及び記号は次の通りである。レバー2の長さをL、マス3の質量をm、支点5からマス3までのレバー2上における距離をr、マス3に働く重力による力をG、重力加速度をg、遠心力をF、マス3の振動時における速度をv、レバー2の回動時における角速度をω、振幅をx、制振バネ6のバネ定数をKとする。
【0018】
ここで、入力振動によって回動するレバー2上のマス3には、重力によってレバー2上を支点5側へ滑り落ちようとする力Gと、振動による遠心力によってレバー2上を自由端7側へ移動させようとする遠心力Fとが反対方向へ働く。重力による力Gは戻し力である。遠心力及びGの値は以下の通りである。
【0019】
遠心力F=mv/r=m(xω)/r
重力による力G=m・g・sinθ
マス3が逆方向の力FとGのバランス点でレバー2上の移動を停止する場合は、F=Gとなる。
【0020】
ここで図3に示す単純化したモデルにより等価マスMを定義する。すなわち、レバー2上の支点5から距離r上の点に位置するマス3によってモーメント力が支点5からの距離Lの点、すなわち自由端7において、制振バネ6の上に働き、このモーメント力に等しい重力による力を出す制振バネ上の仮想マスを等価マスMとする。
【0021】
このダイナミックダンパー系においては、共振周波数は、
ω=(K/M)1/2={(K/m)(L/r)}1/2
となり、これより
M=m・(r/L)
となる。
【0022】
次に、レバー2が振動入力で回動するときの挙動を説明する。振動入力によりレバー2が振動周波数で回動すると、振動に対応する遠心力Fがマス3に働く。一般に周波数が大きくなると、遠心力が増大する。
【0023】
そこで、遠心力Fが大きくなって、重力による力Gを越えるとマス3はレバー2上をバランス点まで移動する。このときのレバー2上における位置をrとすれば、その点における共振周波数ωnは前記式によってそのときの等価マスMによって定まり、等価マスMもm・(r/L)によって定まる。したがって、マス3は入力振動の周波数に応じて移動し、ダイナミックダンパー1の共振周波数ωnが自動的に変化することになる。
【0024】
また、等価マスMはm・(r/L)の関係にあるから、rが大きくなるほど、すなわちLに近づく自由端7側へ移動するほど大きくなる。一方、共振周波数ωnは、前記式より、等価マスMが増加するほど低くなる。したがって、入力振動の周波数が大きくなると遠心力Fが増大し、マス3がレバー2上を自由端7側へ移動するが、逆に等価マスMの増大により共振周波数ωnが下がることになる。
【0025】
さらに、図4に示すように、一般的な振動の振幅xは、共振点に向かって周波数が増大すると増大し、共振点を過ぎると周波数が増大するにしたがって小さくなる。
【0026】
このことは、レバー2上におけるマス3の移動は、共振周波数ωnになるまで自由端7側へ移動するが、共振周波数ωnを越えてさらに移動すると等価マスMが大きくなりすぎて共振周波数ωnが低くなり、振幅が小さくなるため、遠心力Fが小さくなり、その結果、共振点まで戻ることになる。このため、マス3はほぼ共振点となる位置へバランスして自動的に移動することになる。
【0027】
すなわち、入力振動の周波数に応じてダイナミックダンパー1は共振周波数を自動的に追随調整することを意味する。その結果、構造簡単かつ小型・軽量化した自主追随型共振装置が得られる。しかも、戻し力として重力を利用するので、さらに構造を簡単化できる。
【0028】
図5は第2実施例を示し、この例では自由端7に制振バネ6と並列のダンパー10を設けてある。このようにすると、ダンパー10による減衰が行われるため、防振効果をより大きくすることができる。
【0029】
図6は、レバー2上又はマス3の摺動部もしくは双方に粘性オイル等からなる摺動抵抗11を設けた第3実施例であり、これによりマス3の移動をゆっくりさせて急激な共振周波数の変化を阻止できる。
【0030】
図7以降は、レバー2の基本状態を水平にするとともに、戻し力を重力による力以外のものにした例である。図7は第4実施例であり、支点5で片持ち支持されたレバー2を水平にし、その上にマス3を軸方向移動自在に支持し、戻しバネ12で支点5側へ引っ張り付勢する。これにより、戻しバネ12がマス3に戻し力Rを与える。この点以外は前各実施例と同様に共振周波数を自動調整できる。自由端7側は制振バネ6の単独又はダンパー10との併用等いずれでもよい。
【0031】
図8は第5実施例であり、マス3とレバー2の自由端7側との間に磁石13,14を設け、それぞれ対面する側を同極にする。磁石は永久磁石又は電磁石のいずれも可能である。これにより、マス3が自由端7側へ近づくと、磁石13と磁石14が同極で反発し、マス3を磁力で支点5側へ押し戻。この場合は磁力が戻し力Rとなる。
【0032】
なお、異極の組合せからなる一対の磁石を支点5側とマス3の間に対向させて配置し、磁力を吸引力として使うこともできる。これらいずれの場合であっても、戻し力Rを磁力とした場合は、戻し力Rはマス3のレバー2上における変位量の2乗に比例するから、共振点へ移動を迅速させることができる。
【0033】
図9は第6実施例であり、支点5をレバー2の中間部に設けるとともに、レバー2の一端に制振バネ6を設け、他端を自由端7とし、支点5と自由端7の間にマス3を軸方向移動自在に支持し、戻しバネ12で支点5側へ引っ張るようにしてある。
【0034】
このようにすると、マス3の移動量に対して、等価マスMの大きさをレバー比で増大させることができる。なお、制振バネ6にダンパー10を併用することは自由である。また、この支点構造を第1〜第3実施例を含む他の実施例に適用することもできる。
【0035】
図10は第7実施例であり、マス3は非圧縮性液体が封入された筒体15内へ収容され、軸方向へピストンとして摺動自在であり、マス3に設けたオリフィス16によりマス3の両側間で液体移動を可能にしている。
【0036】
筒体15の一端は支点5により回動自在に支持され、他端の自由端7側には制振バネ6とダンパー10が設けられる。また筒体15内の支点5側端部とマス3の間に戻し力としても戻しバネ12が設けられる。ダンパー10の使用は任意である。
【0037】
自由端7側に振動を入力して筒体15を回動させると、マス3は入力振動の周波数に応じて筒体15内を移動するが、このときマス3はオリフィス16により減衰を伴う。したがって、マス3の移動に対する抵抗を設けることになり、この抵抗はオリフィス16におり任意に調整できる。なお、筒体15内へマス3を収容し、オリフィス16により抵抗を与える構造は、第1〜第3実施例における傾斜した支持構造にも適用できる。
【図面の簡単な説明】
【図1】第1実施例に係る装置全体の概略図
【図2】第1実施例に係る作用説明図
【図3】第1実施例に係る等価マスを使用した原理図
【図4】一般的な振動の共振における振幅の変化を示す図
【図5】第2実施例に係る概略図
【図6】第3実施例に係る概略図
【図7】第4実施例に係る概略図
【図8】第5実施例に係る概略図
【図9】第6実施例に係る概略図
【図10】第7実施例に係る概略図
【符号の説明】1:ダイナミックダンパー、2:レバー、3:マス、5:支点、6:制振バネ、7:自由端、10:ダンパー、11:戻しバネ、12:磁石、13:磁石、14:非圧縮性液体、15:筒体、16:オリフィス
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a self-tracking type resonance device which is a kind of a dynamic damper and is capable of automatically changing a resonance frequency according to input vibration.
[0002]
[Prior art]
2. Description of the Related Art A dynamic damper for damping vibration by combining a mass and a spring is known. In this dynamic damper, since the resonance frequency is fixed by the mass and the spring constant, it is also known to control the mass with an external force in order to change the resonance frequency according to the input vibration (Patent Document 1) 1).
There is also a vibration system in which a lever is provided, and a mass is provided at the tip of the lever to change its position (see Patent Document 2).
[0003]
[Patent Document 1] Japanese Patent Publication No. 6-1097 [Patent Document 2] Japanese Patent Publication No. 8-16497
[Problems to be solved by the invention]
By the way, the above-mentioned conventional example has an advantage that the resonance frequency can be made variable, but on the other hand, it becomes a large and complicated system for controlling the mass and is expensive. Therefore, it is desired to realize this with a relatively simple structure and at low cost, and the present invention aims to realize this demand.
[0005]
[Means for Solving the Problems]
Claim 1 according to the self-tracking type resonance device of the present application for solving the above-mentioned problem is a lever whose free end side is rotatably supported by a fulcrum, and a mass which is movably supported on the lever. A damping spring provided on the free end side of the lever, and by rotating the free end side of the lever by input vibration, a centrifugal force for moving the mass to the free end side and moving the mass to the fulcrum side are provided. The resonance frequency is automatically changed in accordance with the input vibration by applying a return force to move the mass to a balance point between the centrifugal force and the return force.
[0006]
A second aspect of the present invention is that, in the first aspect, the lever is lifted and inclined so that the free end side is higher than the fulcrum, and a force that causes the mass to slide down on the lever to the fulcrum side by gravity acts as a return force. Features.
[0007]
According to a third aspect of the present invention, in the first aspect, the lever is made horizontal, and the return force is forcibly generated by a spring or a magnetic force.
[0008]
【The invention's effect】
According to the first aspect, since the mass is balanced by the centrifugal force and the return force, when the lever rotates by the input vibration, the centrifugal force according to the rotation acts on the mass and moves to a balance point with the return force. I do. As a result, when the moment of the mass acting on the damping spring is replaced by the virtual mass located on the damping spring, the resonance frequency is determined by the equivalent mass and the spring constant of the damping spring. Changes due to the actual movement of the mass, so that the resonance frequency also changes. Therefore, the resonance frequency can be changed by moving the mass by the centrifugal force according to the input vibration, and a self-tracking type resonance device having a simple structure, small size and light weight can be obtained.
[0009]
According to the second aspect, by tilting the lever, the force due to gravity acting on the mass can be used as a return force, so that the structure is the simplest.
[0010]
According to the third aspect, since the lever is horizontal and the mass is forcibly moved by a spring or a magnetic force to provide the return force, the return force can be obtained with a relatively simple structure.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments will be described with reference to the drawings. 1 to 4 relate to the first embodiment, FIG. 1 is a schematic diagram of the entire apparatus, FIG. 2 is an explanatory diagram of the operation, FIG. 3 is a principle diagram using an equivalent mass, and FIG. FIG.
[0012]
In FIG. 1, the dynamic damper 1 includes a lever 2, a mass 3 supported on the lever 2 so as to be movable in the axial direction, a fulcrum 5 rotatably supporting one end of the lever 2 on a support portion 4, and a lever 2. And a damping spring 6 attached to the free end of the second damper. Reference numeral 7 denotes a free end, and reference numeral 8 denotes a support base of the dynamic damper 1.
[0013]
The lever 2 is made of a suitable material such as a round bar or the like, for example, having a low frictional surface. The lever 2 is attached to the support portion 4 so as to form an inclination angle θ with respect to a horizontal plane. It is higher than the fulcrum 5. In this example, a state in which the lever 2 forms the inclination angle θ is a basic state.
[0014]
The mass 3 is made of metal or the like and has an appropriate mass. For example, a through hole 9 is provided, and the lever 2 is passed through the through hole 9 so that the mass 3 can move on the lever 2 in the length direction. However, the support structure of the mass 3 by the lever 2 is not limited to the above, and can be arbitrarily set, such as a monorail type guide. The magnitude of the mass can be arbitrarily set according to the desired dynamic damper characteristics.
[0015]
The damping spring 6 suppresses the vertical movement at the free end of the lever 2, and its spring constant can be set arbitrarily according to the desired dynamic damper characteristic. The material is arbitrary such as metal or rubber, and the shape can be a coil spring or other various shapes.
[0016]
The dynamic damper 1 inputs vibration to the free end side and the like of the lever 2 and rotates the lever 2 up and down to produce a dynamic damper effect due to the interaction between the rotating mass 3 and the damping spring 6. Vibration is damped.
[0017]
The operation principle of the dynamic damper 1 will be described with reference to FIGS. The symbols and symbols used below are as follows. The length of the lever 2 is L, the mass of the mass 3 is m, the distance on the lever 2 from the fulcrum 5 to the mass 3 is r, the force of gravity acting on the mass 3 is G, the gravitational acceleration is g, and the centrifugal force is F. The velocity when the mass 3 vibrates is v, the angular velocity when the lever 2 rotates is ω, the amplitude is x 0 , and the spring constant of the damping spring 6 is K.
[0018]
Here, the mass 3 on the lever 2 that is rotated by the input vibration is applied to the force G by the gravity to slide down on the lever 2 to the fulcrum 5 side, and the centrifugal force by the vibration causes the lever 2 to move on the lever 2 toward the free end 7. And acts to the opposite direction. The force G due to gravity is a return force. The values of centrifugal force and G are as follows.
[0019]
Centrifugal force F = mv 2 / r = m (x 0 ω) 2 / r
Force due to gravity G = m · g · sin θ
When the mass 3 stops moving on the lever 2 at the balance point between the forces F and G in the opposite directions, F = G.
[0020]
Here, the equivalent mass M is defined by the simplified model shown in FIG. That is, the moment force acts on the damping spring 6 at the point at a distance L from the fulcrum 5, ie, at the free end 7, by the mass 3 located at a point r from the fulcrum 5 on the lever 2. The virtual mass on the damping spring that exerts a force due to gravity equal to
[0021]
In this dynamic damper system, the resonance frequency is
ω n = (K / M) 1/2 = {(K / m) (L / r)} 1/2
From this, M = m · (r / L)
It becomes.
[0022]
Next, the behavior when the lever 2 rotates by vibration input will be described. When the lever 2 rotates at the vibration frequency due to the vibration input, a centrifugal force F corresponding to the vibration acts on the mass 3. Generally, as the frequency increases, the centrifugal force increases.
[0023]
Then, when the centrifugal force F increases and exceeds the force G due to gravity, the mass 3 moves on the lever 2 to the balance point. Assuming that the position on the lever 2 at this time is r, the resonance frequency ωn at that point is determined by the equivalent mass M at that time, and the equivalent mass M is also determined by m · (r / L). Therefore, the mass 3 moves according to the frequency of the input vibration, and the resonance frequency ωn of the dynamic damper 1 automatically changes.
[0024]
Further, since the equivalent mass M has a relationship of m · (r / L), the larger the r is, that is, the larger the mass moves toward the free end 7 closer to L, the larger it becomes. On the other hand, according to the above equation, the resonance frequency ωn becomes lower as the equivalent mass M increases. Therefore, when the frequency of the input vibration increases, the centrifugal force F increases, and the mass 3 moves on the lever 2 to the free end 7 side. Conversely, the resonance frequency ωn decreases due to the increase in the equivalent mass M.
[0025]
Furthermore, as shown in FIG. 4, the amplitude x 0 of the general vibration decreases as increasing the frequency increases toward the resonance point, frequency increases past the resonance point.
[0026]
This means that the movement of the mass 3 on the lever 2 moves toward the free end 7 until the resonance frequency ωn is reached. However, when the mass 3 is further moved beyond the resonance frequency ωn, the equivalent mass M becomes too large and the resonance frequency ωn is increased. The centrifugal force F decreases because the amplitude decreases, and as a result, the centrifugal force returns to the resonance point. For this reason, the mass 3 is automatically moved in a balanced manner to a position substantially serving as a resonance point.
[0027]
That is, it means that the dynamic damper 1 automatically adjusts the resonance frequency according to the frequency of the input vibration. As a result, a self-tracking type resonance device having a simple structure, small size and light weight can be obtained. In addition, since gravity is used as the return force, the structure can be further simplified.
[0028]
FIG. 5 shows a second embodiment, in which a damper 10 is provided at the free end 7 in parallel with the damping spring 6. In this case, since the damping is performed by the damper 10, the vibration damping effect can be further increased.
[0029]
FIG. 6 shows a third embodiment in which a sliding resistor 11 made of viscous oil or the like is provided on the lever 2 or on the sliding portion of the mass 3 or on both sides thereof. Can be prevented from changing.
[0030]
7 and thereafter show an example in which the basic state of the lever 2 is horizontal and the return force is other than the force due to gravity. FIG. 7 shows a fourth embodiment in which the lever 2 cantilevered at the fulcrum 5 is leveled, the mass 3 is supported on the lever 2 movably in the axial direction, and the return spring 12 urges the fulcrum 5 toward the fulcrum 5. . Thereby, the return spring 12 applies the return force R to the mass 3. Except for this point, the resonance frequency can be automatically adjusted as in the previous embodiments. On the free end 7 side, the damping spring 6 may be used alone or in combination with the damper 10.
[0031]
FIG. 8 shows a fifth embodiment, in which magnets 13 and 14 are provided between the mass 3 and the free end 7 of the lever 2, and the sides facing each other have the same polarity. The magnet can be either a permanent magnet or an electromagnet. As a result, when the mass 3 approaches the free end 7, the magnets 13 and 14 repel with the same polarity and push the mass 3 back to the fulcrum 5 side by magnetic force. In this case, the magnetic force becomes the return force R.
[0032]
Note that a pair of magnets made of a combination of different poles may be arranged between the fulcrum 5 and the mass 3 so as to face each other, and the magnetic force may be used as the attraction force. In any of these cases, when the return force R is a magnetic force, the return force R is proportional to the square of the amount of displacement of the mass 3 on the lever 2, so that the movement to the resonance point can be performed quickly. .
[0033]
FIG. 9 shows a sixth embodiment, in which a fulcrum 5 is provided at an intermediate portion of the lever 2, a damping spring 6 is provided at one end of the lever 2, and the other end is a free end 7, between the fulcrum 5 and the free end 7. The mass 3 is supported movably in the axial direction, and is pulled toward the fulcrum 5 by a return spring 12.
[0034]
In this way, the magnitude of the equivalent mass M can be increased by the lever ratio with respect to the movement amount of the mass 3. The damper 10 can be used in combination with the damping spring 6. Further, this fulcrum structure can be applied to other embodiments including the first to third embodiments.
[0035]
FIG. 10 shows a seventh embodiment, in which the mass 3 is accommodated in a cylindrical body 15 in which an incompressible liquid is sealed, is slidable in the axial direction as a piston, and is moved by an orifice 16 provided in the mass 3. To allow liquid transfer between the two sides of the device.
[0036]
One end of the cylindrical body 15 is rotatably supported by the fulcrum 5, and a damping spring 6 and a damper 10 are provided on the free end 7 side of the other end. Also, a return spring 12 is provided as a return force between the end of the fulcrum 5 side of the cylinder 15 and the mass 3. Use of the damper 10 is optional.
[0037]
When vibration is input to the free end 7 and the cylinder 15 is rotated, the mass 3 moves within the cylinder 15 in accordance with the frequency of the input vibration. At this time, the mass 3 is attenuated by the orifice 16. Therefore, a resistance to the movement of the mass 3 is provided, and this resistance is at the orifice 16 and can be adjusted arbitrarily. The structure in which the mass 3 is accommodated in the cylindrical body 15 and the resistance is provided by the orifice 16 can be applied to the inclined support structure in the first to third embodiments.
[Brief description of the drawings]
FIG. 1 is a schematic view of an entire apparatus according to a first embodiment. FIG. 2 is an operation explanatory view according to the first embodiment. FIG. 3 is a principle diagram using an equivalent mass according to the first embodiment. FIG. 5 is a schematic diagram according to a second embodiment, FIG. 6 is a schematic diagram according to a third embodiment, FIG. 7 is a schematic diagram according to a fourth embodiment, FIG. 8 Schematic diagram of the fifth embodiment [FIG. 9] Schematic diagram of the sixth embodiment [FIG. 10] Schematic diagram of the seventh embodiment [Description of symbols] 1: Dynamic damper, 2: Lever, 3: Mass, 5: fulcrum, 6: damping spring, 7: free end, 10: damper, 11: return spring, 12: magnet, 13: magnet, 14: incompressible liquid, 15: cylindrical body, 16: orifice

Claims (3)

支点により自由端側を回動自在に支持されたレバーと、このレバー上へ移動自在に支持されたマスと、レバーの自由端側に設けられる制振バネとを備え、
レバーの自由端側を入力振動で回動させることにより、マスに自由端側へ移動させる遠心力を与えると共に、マスを支点側へ移動させる戻し力を与え、この遠心力と戻し力のバランス点へマスを移動させることにより、入力振動に応じて共振周波数を自動的に変化させるようにしたことを特徴とする自主追随型共振装置。
A lever rotatably supported on the free end side by a fulcrum, a mass movably supported on the lever, and a damping spring provided on the free end side of the lever;
By rotating the free end side of the lever by the input vibration, a centrifugal force for moving the mass to the free end side and a return force for moving the mass to the fulcrum side are given, and a balance point between the centrifugal force and the return force is given. A self-tracking type resonance apparatus characterized in that a resonance frequency is automatically changed in accordance with an input vibration by moving a mass.
前記レバーを、支点よりも自由端側が高くなるように持ち上げて傾斜させ、マスに重力でレバー上を支点側へ滑り落ちる力を働かせて戻し力としたことを特徴とする請求項1の自主追随型共振装置。2. The self-following type according to claim 1, wherein the lever is lifted and tilted so that the free end side is higher than a fulcrum, and a force is applied to the mass to slide down the lever on the fulcrum side by gravity to thereby provide a return force. Resonator. 前記レバーを水平とし、前記戻し力をバネ又は磁力により強制的に発生させることを特徴とする請求項1の自主追随型共振装置。2. The self-tracking resonance device according to claim 1, wherein the lever is horizontal, and the return force is forcibly generated by a spring or a magnetic force.
JP2003049161A 2003-02-26 2003-02-26 Self-following resonance device Expired - Fee Related JP4311712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049161A JP4311712B2 (en) 2003-02-26 2003-02-26 Self-following resonance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049161A JP4311712B2 (en) 2003-02-26 2003-02-26 Self-following resonance device

Publications (2)

Publication Number Publication Date
JP2004257481A true JP2004257481A (en) 2004-09-16
JP4311712B2 JP4311712B2 (en) 2009-08-12

Family

ID=33114947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049161A Expired - Fee Related JP4311712B2 (en) 2003-02-26 2003-02-26 Self-following resonance device

Country Status (1)

Country Link
JP (1) JP4311712B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021020590A (en) * 2019-07-29 2021-02-18 日本発條株式会社 Vibration attenuating device and vehicular seat provided with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021020590A (en) * 2019-07-29 2021-02-18 日本発條株式会社 Vibration attenuating device and vehicular seat provided with the same

Also Published As

Publication number Publication date
JP4311712B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
KR100331934B1 (en) Vibration mechanism having a magnetic spring
US6232689B1 (en) Energy extracting mechanism having a magnetic spring
KR20090123884A (en) Electromagnetic attraction tape magnetic bearing and control method thereof
RU2426922C1 (en) Procedure for damping oscillations of movable system and device for its implementation
JPH11190379A (en) Shock absorber for oscillating member
JP2004257481A (en) Self-follow-up type resonance device
JP3635342B2 (en) Magnetic levitation device
JPH10192785A (en) Vibration generating mechanism
JP2004301267A (en) Self-tuning tuned device
KR102532016B1 (en) Displacement sensitive variable MR damper and air spring apparatus including it and vibration control method by using the apparatus
CN108916600B (en) Digital tripod of anti-shake anti-tilt
Wang et al. A ferrofluid-based tuned mass damper with magnetic spring
JP2002048191A (en) Anti-vibration apparatus for vertical vibration of structure
US10487913B2 (en) Adjustable flywheel
Wang et al. A ferrofluid-based planar damper with magnetic spring
US6166465A (en) Vibration generating mechanism using repulsive forces of permanent magnets
JPS6353331A (en) Vibration control device
JP3820495B2 (en) Active seismic isolation device
CN219392826U (en) Mechanical vibration device using magnetic coulomb force as restoring force
KR100279187B1 (en) Vibration generator
JP3808605B2 (en) Excitation device
JP3696703B2 (en) Vibration generation mechanism
TWI231843B (en) Active hybrid electromagnetic shock absorber and shock absorbing method thereof
JPH06212834A (en) Spring pendulum type tuning mass damper
JP2002121704A (en) Vibration control device for diagonal bracing cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees