JP2004257457A - Electromotive working machine - Google Patents

Electromotive working machine Download PDF

Info

Publication number
JP2004257457A
JP2004257457A JP2003047905A JP2003047905A JP2004257457A JP 2004257457 A JP2004257457 A JP 2004257457A JP 2003047905 A JP2003047905 A JP 2003047905A JP 2003047905 A JP2003047905 A JP 2003047905A JP 2004257457 A JP2004257457 A JP 2004257457A
Authority
JP
Japan
Prior art keywords
output shaft
gearbox
motor
hydraulic pump
input shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003047905A
Other languages
Japanese (ja)
Other versions
JP4186647B2 (en
Inventor
Masatoshi Hara
正敏 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Construction Machinery Co Ltd
Original Assignee
Kobelco Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Construction Machinery Co Ltd filed Critical Kobelco Construction Machinery Co Ltd
Priority to JP2003047905A priority Critical patent/JP4186647B2/en
Publication of JP2004257457A publication Critical patent/JP2004257457A/en
Application granted granted Critical
Publication of JP4186647B2 publication Critical patent/JP4186647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Gear Transmission (AREA)
  • Vibration Prevention Devices (AREA)
  • General Details Of Gearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily connect a motor to a step-up gear while ensuring high concentricity. <P>SOLUTION: In a power transmission structure which increases the output of a motor 13 as a drive source by a step-up gear 18 and transmits the output to a hydraulic pump 7, an output shaft 15 of the motor is also used for an input shaft of the step-up gear by fitting and connecting the output shaft 15 of the motor to an input shaft hole 22 of the step-up gear 18, the motor 13 is connected to the step-up gear 18 while the self-weight of the step-up gear is supported by the output shaft 15 of the motor, and the rotational reaction force applied to the step-up gear 18 is supported by a reaction force supporting part. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は駆動源として電動機を搭載した電動式作業機械に関するものである。
【0002】
【従来の技術】
たとえば油圧ショベルにおいては、一般的には駆動源としてエンジンを搭載し、このエンジンによって各機器を駆動する構成がとられている。
【0003】
図5,6はこのエンジン駆動式油圧ショベルの上部構造を示し、図示しない下部走行体上に上部旋回体1が竪軸まわりに旋回自在に搭載され、この上部旋回体1の後部に設けられた機械室2内にエンジン3が設置される。図5中、4はキャビンである。
【0004】
エンジン3は、その長手方向がショベルの幅(左右)方向となる横長姿勢で設置され、図6に示すようにエンジン中心よりも下方位置で左右両側に突出した出力軸5,6の一方(通常は図示のように背面から見て右側の出力軸6。以下、この例で説明する)に、油圧シリンダ等の油圧アクチュエータの油圧源である油圧ポンプ7が連結される。
【0005】
なお、エンジン3の左側には作動油冷却用のオイルクーラー8、ラジエータ9及びこれらの冷却風を送るファン10が配置され、左側出力軸5に歯車伝動機構11を介して連動連結されたファン駆動軸12によってファン10が駆動される。
【0006】
ところで、トンネル内や建物内のように換気が悪い場所、またはエンジン騒音が問題となる場所等で使用される油圧ショベルの場合、上記エンジンに代えて、図7に示すように商用電源で駆動される電動機13が駆動源として搭載され、電動式油圧ショベルとして改装される場合がある。
【0007】
この場合、エンジン駆動式と同様に電動機13の左右両側に出力軸14,15が設けられ、右側出力軸15に油圧ポンプ7が連動連結される。
【0008】
なお、左側出力軸14は直接ファン10に連結される。また、エンジン冷却用のラジエータ9が不要につき取り外され、ファン10はオイルクーラー8のみに冷却風を送る。
【0009】
この場合、駆動源がエンジン3から電動機13に置換されることに伴い、次の問題が生じる。
【0010】
エンジン3は、普通、2000rpm以上の回転数で使用されるが、電動機13の場合、商用周波数との関係から、たとえば4極の場合その出力回転数は50Hz地域では1500rpm、60Hz地域では1800rpmとエンジン回転数よりも格段に低いものとなる。
【0011】
このため、エンジン駆動式の場合と同等の作業能力を確保するためには電動機出力を増速する必要がある。
【0012】
この増速手段として、インバータ(周波数変換器)を用いることが考えられるが、インバータそのものが高価であるうえに、インバータ用の制御盤、及び高調波に対するノイズ対策が必要となる等の理由から設備コストが高くつく。また、インバータ及びその制御盤を付加することで余分なスペースが必要となり、これらの点で増速手段としては不利となる。
【0013】
そこで、図7に示すように右側出力軸15とポンプ入力軸16を同軸上に配置し、これらの間に増速機構(たとえば遊星歯車機構)17を介在させることが考えられる(特許文献1参照)。
【0014】
【特許文献1】
実開昭63−137558号公報
【0015】
【発明が解決しようとする課題】
ところが、このように増速機17を用いる場合、電動機13と増速機17との間に芯ずれによる振動や連結部の破損等が発生しないように、電動機出力軸15と増速機入力軸の同心度(たとえば0.05程度)を確保する必要がある。
【0016】
その方策として、図7に示すように電動機13として、出力軸15の外周にフランジ15aが一体に設けられたフランジ付き電動機を用いることが考えられる。あるいは、特許文献1に示されているように、電動機出力軸15と増速機入力軸をカップリングを介して連結することも考えられる。
【0017】
しかし、こうすると、増速機17を電動機13及び油圧ポンプ7と同軸上に追加することで、ただでさえポンプ駆動部の全長(電動機13の右端からポンプ右端までの距離)Lが長くなる上に、フランジ15a(またはカップリング)分が加わってポンプ駆動部全長Lが益々長くなり、図示のように機械室2の幅内に納まらなくなるおそれがある。
【0018】
このため、現実的にはフランジやカップリング無しで電動機と増速機入力軸とを直結するしかなく、その結果、ポンプ駆動部の組立に熟練と時間を要し、しかも高い同心度を確保することが困難であった。
【0019】
本発明は上記の問題を解決し、電動機と増速機を高い同心度を確保しながら容易に連結することができる電動式作業機械を提供するものである。
【0020】
【課題を解決するための手段】
請求項1の発明は、油圧アクチュエータの油圧源である油圧ポンプと、この油圧ポンプの駆動源としての電動機と、この電動機の出力を増速して上記油圧ポンプに伝える増速機とを備え、この増速機の入力部に軸穴が設けられ、上記電動機の出力軸がこの軸穴に嵌合連結されることにより、電動機出力軸が増速機入力軸を兼用し、増速機の自重が電動機出力軸で支持された状態で電動機と増速機とが連結され、かつ、上記増速機に作用する回転反力を支持するための反力支持部が設けられたものである。
【0021】
請求項2の発明は、請求項1の構成において、増速機と油圧ポンプとは、増速機出力軸が油圧ポンプの入力軸を兼用し、ポンプ自重が増速機出力軸で支持された状態で連結されたものである。
【0022】
請求項3の発明は、請求項1または2の構成において、電動機の出力軸と油圧ポンプの入力軸が、平行かつ互いの軸心間に段差が形成される状態で配置し、増速機が上記段差部分に設けられたものである。
【0023】
請求項4の発明は、請求項1乃至3のいずれかの構成において、電動機の出力軸が、増速機の入力軸穴にテーパブッシュを介して嵌合連結されたものである。
【0024】
請求項5の発明は、請求項1乃至4のいずれかの構成において、反力支持部に、振動を吸収する防振体が設けられたものである。
【0025】
請求項6の発明は、請求項1乃至5のいずれかの構成において、電動機と油圧ポンプが機械幅方向に並んで配置されたものである。
【0026】
上記構成によると、電動機出力軸が増速機入力軸を兼用し、電動機出力軸で増速機の自重を支持した状態で両者を連結するため、電動機出力軸と増速機入力軸の同心度を確保することができる。
【0027】
つまり、電動機出力軸を増速機の入力部の軸穴に嵌め込むだけで、両者を同心状態で容易に連結することができる。
【0028】
従って、フランジやカップリングが不要となるため、ポンプ駆動部の全長を短くすることができる。これにより、駆動源をエンジンから電動機に置き換え、かつ、増速機を付加しながら、ポンプ駆動部を極力小形化し、このポンプ駆動部をエンジン駆動式の作業機械(とくに小形の作業機械)に設けられた既存のスペースに容易に納めることができる。
【0029】
この場合、増速機に作用する回転反力は反力支持部で支えられるため、電動機の回転トルクが増速機に確実に伝達される。
【0030】
また、請求項2の構成によると、増速機に対して油圧ポンプもまた、増速機出力軸がポンプ入力軸となる同心状態で簡単に連結することができる。
【0031】
この場合、電動機出力軸で増速機及び油圧ポンプの両者の自重を支えることとなる。
【0032】
請求項3の構成によると、電動機出力軸とポンプ入力軸とが段差を持って配置され、この段差を埋める形で増速機が設けられているため、増速機の電動機出力軸側部分とポンプ入力軸側部分を同一平面内に配置することが可能となる。
【0033】
このため、電動機出力軸、増速機、ポンプ入力軸の三者を同軸上に並べただけの場合と比較して、ポンプ駆動部の軸方向長さ(請求項6では機械幅方向の長さ)をさらに短縮することができる。
【0034】
請求項4の構成によると、電動機出力軸が増速機の入力軸穴にテーパブッシュを介して嵌合連結されるため、電動機出力軸と入力軸穴の同心度を上げ、しかもこれらの連結作業を一層容易化することができる。
【0035】
請求項5の構成によると、反力支持部に防振体が設けられているため、電動機及び増速機(請求項3ではさらに油圧ポンプ)から反力支持部への振動の伝達が抑えられる。このため、振動による反力支持部の損傷や変形等を防止することができる。
【0036】
【発明の実施の形態】
本発明の実施形態を図1〜図4によって説明する。
【0037】
以下の実施形態において、図7に示す部分と同一部分には同一符号を付して示し、その重複説明を省略する。
【0038】
図1に示すように、機械室2内に駆動源としての電動機13が横長姿勢で設けられ、図右側の出力軸(以下、単に電動機出力軸という)15に油圧ポンプ7の入力軸16が歯車式の増速機18を介して連結されている。
【0039】
電動機出力軸15とポンプ入力軸16は、平行にかつ互いの軸心間に段差aが形成されるように上下に位置ずれして配置され、この両軸15,16の段差a部分にこれを埋める形で増速機18が設けられている。
【0040】
この増速機18は、図2に示すように、同一平面(鉛直面)内に配置された入力、中間、出力各平歯車19,20,21を備え、入力平歯車19が電動機出力軸15に、出力平歯車21がポンプ入力軸16にそれぞれ取付けられている。
【0041】
この構成により、電動機13の回転力が増速機18により増速されて油圧ポンプ7に伝えられるため、増速比を適当値に設定することにより、エンジン式の場合と同等のポンプ回転数が得られ、機械本体の作業能力を生かすことができる。
【0042】
この場合、段差aを設けたことにより、上記のように各平歯車19,20,21を同一垂直面内に配置することができるため、ポンプ駆動部の軸方向長さL1(図1参照)L1を、図7のように電動機出力軸15、増速機17、ポンプ入力軸16の三者を同軸上に並べただけの場合の駆動部長さLよりも大幅に短縮し、ポンプ駆動部を小形化することができる。
【0043】
電動機出力軸15と増速機18の連結部分の詳細構造を図3に示す。
【0044】
電動機出力軸15は、増速機18の入力平歯車19に設けられた入力軸穴22に嵌め込まれた状態で入力平歯車19に結合され、この結合部分で回転力の伝達作用が行われるとともに、増速機18全体の自重が支えられる。
【0045】
すなわち、電動機13と増速機18とは、電動機出力軸15が増速機入力軸を兼用し、かつ、増速機自重が電動機出力軸15で支持された状態で連結されている。
【0046】
このように、電動機出力軸15と増速機入力軸とが同じ軸であるため、これらの同心度が自動的に確保され、電動機出力軸15を増速機18の入力軸穴22に嵌め込むだけで、両者を同心状態で容易に連結することができる。
【0047】
従って、両者間にフランジやカップリングを介在させる必要がなくなるため、ポンプ駆動部の全長L1をさらに短縮することができる。
【0048】
このため、駆動源を図5,6に示すエンジン3から電動機13に置き換え、かつ、増速機18を付加しながら、ポンプ駆動部を極力小形化し、このポンプ駆動部をエンジン駆動式の作業機械(とくに小形の作業機械)に設けられた既存のスペースに容易に納めることができる。
【0049】
また、増速機18の入力軸穴22の先端側にテーパブッシュ23が嵌め込まれ、電動機出力軸15の先端側がこのテーパブッシュ23を介して入力軸穴22に嵌合連結されている。
【0050】
このテーパブッシュ23により、電動機出力軸15と入力軸穴22の同心度を上げ、しかもこれらの連結作業を一層容易化することができる。
【0051】
さらに、図4に示すように、増速機18のケーシング24の下部にブラケット25が突設され、このブラケット25が防振体(たとえばゴム)26を介して、機械室2の固定部分に設けられた反力支持ブラケット27に止め付けられている。
【0052】
これにより反力支持部28が構成され、電動機13の回転によって増速機18に作用する図4矢印方向の回転反力がこの反力支持部28で支持されため、電動機トルクが増速機18に確実に伝達される。
【0053】
また、反力支持部28に設けられた防振体26によって振動が吸収され、電動機13及び増速機18から反力支持部28への振動の伝達が抑えられる。このため、振動による反力支持部28の損傷や変形等を防止することができる。
【0054】
一方、増速機18と油圧ポンプ7とは、電動機13と増速機18の場合と同様に、図2に示すように増速機出力軸がポンプ入力軸16を兼用し、ポンプ自重が増速機出力軸(ポンプ入力軸)16で支持される状態で連結されている。
【0055】
従って、この実施形態では、電動機出力軸15によって増速機18及び油圧ポンプ7両者の自重が支持され、かつ、油圧ポンプ7の回転反力も図4に示す反力支持部28で支持される。
【0056】
こうすれば、増速機18と油圧ポンプ7もまた、同心状態で簡単に連結することができる。
【0057】
ところで、本発明によると電動機出力軸15と増速機18の間にフランジやカップリングが不要となってポンプ駆動部の全長L1を小さくできるため、これだけで十分な縮小効果が得られる場合には、電動機出力軸15と増速機18とポンプ入力軸16を同軸上に配置してもよい。
【0058】
この場合、増速機18は同軸配置が可能なもの(たとえば遊星歯車機構)を採用すればよい。
【0059】
また、本発明は油圧ショベルだけでなく、油圧ショベルを母体として構成される深穴掘削機や破砕機等にも適用することができる。
【0060】
【発明の効果】
上記のように本発明によると、電動機出力軸が増速機入力軸を兼用し、電動機出力軸で増速機の自重を支持し、かつ、増速機に作用する回転反力を反力支持部で支持した状態で両者を連結したから、電動機出力軸を増速機の入力部の軸穴に嵌め込むだけで、両者を同心状態で容易に連結することができる。
【0061】
従って、フランジやカップリングが不要となるため、ポンプ駆動部の全長を短くすることができる。これにより、駆動源をエンジンから電動機に置き換え、かつ、増速機を付加しながら、ポンプ駆動部を極力小型化し、このポンプ駆動部をエンジン駆動式の作業機械(とくに小形の作業機械)に設けられた既存のスペースに容易に納めることができる。
【0062】
また、請求項2の発明によると、増速機に対して油圧ポンプもまた、増速機出力軸がポンプ入力軸となる同心状態で簡単に連結することができる。
【0063】
請求項3の発明によると、電動機出力軸とポンプ入力軸とを段差を持って配置し、この段差を埋める形で増速機を設けたから、電動機出力軸、増速機、ポンプ入力軸の三者を同軸上に並べただけの場合と比較して、ポンプ駆動部の軸方向長さ(請求項6では機械幅方向の長さ)をさらに短縮することができる。
【0064】
請求項4の発明によると、電動機出力軸を増速機の入力軸穴にテーパブッシュを介して嵌合連結するため、電動機出力軸と入力軸穴の同心度を上げ、しかもこれらの連結作業を一層容易化することができる。
【0065】
請求項5の発明によると、反力支持部に防振体を設けたから、電動機及び増速機(請求項3ではさらに油圧ポンプ)から反力支持部への振動の伝達を抑え、振動による反力支持部の損傷や変形等を防止することができる。
【図面の簡単な説明】
【図1】本発明の実施形態にかかる作業機械における電動機、油圧ポンプ等の配置を示す背面図である。
【図2】同実施形態における増速機の拡大断面図である。
【図3】図2の一部をさらに拡大して示す図である。
【図4】同実施形態における反力支持部の構造を示す正面図である。
【図5】エンジン駆動式作業機械の上部構造を示す概略平面図である。
【図6】同作業機械における電動機、油圧ポンプ等の配置を示す背面図である。
【図7】駆動源としてエンジンに代えて電動機を搭載した場合の図6相当図である。
【符号の説明】
13 駆動源としての電動機
15 増速機入力軸を兼用する電動機出力軸
16 増速機出力軸を兼用するポンプ入力軸
18 増速機
22 増速機の入力軸穴
23 テーパブッシュ
28 反力支持部
25 反力支持部を構成するブラケット
27 同反力支持ブラケット
26 防振体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electric work machine equipped with an electric motor as a drive source.
[0002]
[Prior art]
For example, a hydraulic shovel generally has a configuration in which an engine is mounted as a drive source and each device is driven by the engine.
[0003]
5 and 6 show an upper structure of the engine driven hydraulic excavator. An upper revolving unit 1 is mounted on a lower traveling unit (not shown) so as to be rotatable around a vertical axis, and is provided at a rear portion of the upper revolving unit 1. The engine 3 is installed in the machine room 2. In FIG. 5, reference numeral 4 denotes a cabin.
[0004]
The engine 3 is installed in a horizontally long posture in which the longitudinal direction is the width (left-right) direction of the shovel, and as shown in FIG. 6, one of the output shafts 5, 6 (normally As shown in the figure, a hydraulic pump 7, which is a hydraulic source of a hydraulic actuator such as a hydraulic cylinder, is connected to an output shaft 6 on the right side when viewed from the rear surface.
[0005]
An oil cooler 8 for cooling the working oil, a radiator 9 and a fan 10 for sending these cooling air are arranged on the left side of the engine 3, and the fan drive is connected to the left output shaft 5 via a gear transmission mechanism 11. The fan 10 is driven by the shaft 12.
[0006]
By the way, in the case of a hydraulic excavator used in a place with poor ventilation such as in a tunnel or a building, or in a place where engine noise is a problem, the excavator is driven by a commercial power supply as shown in FIG. There is a case where the electric motor 13 is mounted as a drive source and is remodeled as an electric hydraulic excavator.
[0007]
In this case, output shafts 14 and 15 are provided on the left and right sides of the electric motor 13 as in the case of the engine drive type, and the hydraulic pump 7 is connected to the right output shaft 15 in an interlocked manner.
[0008]
Note that the left output shaft 14 is directly connected to the fan 10. In addition, the radiator 9 for cooling the engine is unnecessary and removed, and the fan 10 sends cooling air only to the oil cooler 8.
[0009]
In this case, the following problem occurs as the drive source is replaced with the electric motor 13 from the engine 3.
[0010]
The engine 3 is usually used at a rotation speed of 2000 rpm or more. However, in the case of the electric motor 13, the output rotation speed of the motor 13 is 1500 rpm in a 50 Hz region and 1800 rpm in a 60 Hz region, for example, in the case of a 4-pole motor. It is much lower than the rotation speed.
[0011]
For this reason, it is necessary to increase the output of the electric motor in order to secure the same working capacity as in the case of the engine driven type.
[0012]
It is conceivable to use an inverter (frequency converter) as this speed increasing means. However, the equipment itself is expensive because the inverter itself is expensive, and a control panel for the inverter and noise countermeasures against harmonics are required. Costly. In addition, adding an inverter and its control panel requires extra space, which is disadvantageous as a speed increasing means.
[0013]
Therefore, it is conceivable to arrange the right output shaft 15 and the pump input shaft 16 coaxially as shown in FIG. 7 and to interpose a speed increasing mechanism (for example, a planetary gear mechanism) 17 therebetween (see Patent Document 1). ).
[0014]
[Patent Document 1]
JP-A-63-137558 [0015]
[Problems to be solved by the invention]
However, when the gearbox 17 is used as described above, the motor output shaft 15 and the gearbox input shaft are used so that vibrations due to misalignment between the motor 13 and the gearbox 17 and breakage of the connecting portion do not occur. (For example, about 0.05).
[0016]
As a measure, as shown in FIG. 7, it is conceivable to use, as the electric motor 13, a motor with a flange in which a flange 15 a is integrally provided on the outer periphery of the output shaft 15. Alternatively, as shown in Patent Document 1, it is conceivable to connect the motor output shaft 15 and the gearbox input shaft via a coupling.
[0017]
However, in this case, by adding the gearbox 17 coaxially with the electric motor 13 and the hydraulic pump 7, the overall length (distance from the right end of the electric motor 13 to the right end of the pump 13) L of the pump drive unit is increased. In addition, due to the addition of the flange 15a (or the coupling), the total length L of the pump driving section is further increased, and may not fit within the width of the machine room 2 as illustrated.
[0018]
For this reason, in reality, there is no choice but to directly connect the motor and the gearbox input shaft without a flange or coupling, and as a result, it takes time and skill to assemble the pump drive unit, and furthermore, a high concentricity is secured. It was difficult.
[0019]
The present invention solves the above-mentioned problems, and provides an electric working machine that can easily connect an electric motor and a gearbox while ensuring high concentricity.
[0020]
[Means for Solving the Problems]
The invention according to claim 1 includes a hydraulic pump that is a hydraulic source of a hydraulic actuator, an electric motor as a drive source of the hydraulic pump, and a gearbox that increases the output of the electric motor and transmits the output to the hydraulic pump, A shaft hole is provided at the input portion of the speed increaser, and the output shaft of the motor is fitted and connected to the shaft hole, so that the output shaft of the motor also serves as the input shaft of the speed increaser, and the weight of the speed increaser is reduced. Are connected to the electric motor and the gearbox while being supported by the electric motor output shaft, and a reaction force support portion for supporting a rotational reaction force acting on the gearbox is provided.
[0021]
According to a second aspect of the present invention, in the configuration of the first aspect, in the speed increaser and the hydraulic pump, the speed increaser output shaft also serves as the input shaft of the hydraulic pump, and the pump's own weight is supported by the speed increaser output shaft. They are connected in a state.
[0022]
According to a third aspect of the present invention, in the configuration of the first or second aspect, the output shaft of the electric motor and the input shaft of the hydraulic pump are arranged in a state in which a step is formed in parallel with each other and a step is formed between their shaft centers. This is provided at the step.
[0023]
According to a fourth aspect of the present invention, in any one of the first to third aspects, the output shaft of the electric motor is fitted and connected to the input shaft hole of the gearbox via a taper bush.
[0024]
According to a fifth aspect of the present invention, in the configuration according to any one of the first to fourth aspects, a vibration isolator for absorbing vibration is provided on the reaction force support portion.
[0025]
According to a sixth aspect of the present invention, in the configuration according to any one of the first to fifth aspects, the electric motor and the hydraulic pump are arranged side by side in the machine width direction.
[0026]
According to the above configuration, the motor output shaft also serves as the gearbox input shaft, and the motor output shaft supports the own weight of the gearbox and connects them together, so that the concentricity between the motor output shaft and the gearbox input shaft is increased. Can be secured.
[0027]
In other words, by simply fitting the motor output shaft into the shaft hole of the input section of the speed increasing gear, the two can be easily connected in a concentric state.
[0028]
Therefore, since no flange or coupling is required, the overall length of the pump driving section can be reduced. As a result, the pump drive unit is made as small as possible while replacing the drive source with an electric motor from an engine and adding a gearbox. This pump drive unit is provided in an engine-driven work machine (especially a small work machine). It can be easily stored in the existing space.
[0029]
In this case, since the rotational reaction force acting on the gearbox is supported by the reaction force support portion, the rotational torque of the electric motor is reliably transmitted to the gearbox.
[0030]
Further, according to the configuration of the second aspect, the hydraulic pump can also be easily connected to the gearbox in a concentric state in which the gearbox output shaft is the pump input shaft.
[0031]
In this case, the motor output shaft supports the weights of both the gearbox and the hydraulic pump.
[0032]
According to the configuration of claim 3, the motor output shaft and the pump input shaft are arranged with a step, and the gearbox is provided so as to fill the step. It is possible to arrange the pump input shaft side portion in the same plane.
[0033]
For this reason, the axial length of the pump drive unit (the length in the machine width direction in claim 6) is smaller than the case where the three members of the motor output shaft, the speed increaser, and the pump input shaft are simply arranged coaxially. ) Can be further reduced.
[0034]
According to the configuration of the fourth aspect, the motor output shaft is fitted and connected to the input shaft hole of the speed increaser via the taper bush, so that the concentricity between the motor output shaft and the input shaft hole is increased, and furthermore, these connection work is performed. Can be further facilitated.
[0035]
According to the configuration of claim 5, since the vibration isolator is provided on the reaction force support portion, transmission of vibration from the electric motor and the gearbox (in addition to the hydraulic pump in claim 3) to the reaction force support portion is suppressed. . Therefore, it is possible to prevent the reaction force support portion from being damaged or deformed due to the vibration.
[0036]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
[0037]
In the following embodiments, the same parts as those shown in FIG. 7 are denoted by the same reference numerals, and the description thereof will not be repeated.
[0038]
As shown in FIG. 1, an electric motor 13 as a drive source is provided in the machine room 2 in a horizontally long attitude, and an input shaft 16 of the hydraulic pump 7 is mounted on a right output shaft (hereinafter simply referred to as an electric motor output shaft) 15 by a gear. It is connected via a speed increaser 18 of the type.
[0039]
The motor output shaft 15 and the pump input shaft 16 are arranged parallel to each other and vertically displaced so that a step a is formed between their axes. A speed-increasing gear 18 is provided so as to be buried.
[0040]
As shown in FIG. 2, the speed increaser 18 includes input, intermediate, and output spur gears 19, 20, and 21 arranged in the same plane (vertical plane). An output spur gear 21 is attached to the pump input shaft 16.
[0041]
With this configuration, the rotational force of the electric motor 13 is increased by the speed increaser 18 and transmitted to the hydraulic pump 7, so that by setting the speed increase ratio to an appropriate value, the pump rotation speed equivalent to that of the engine type can be obtained. As a result, the working capacity of the machine body can be utilized.
[0042]
In this case, by providing the step a, the respective spur gears 19, 20, and 21 can be arranged in the same vertical plane as described above, so that the axial length L1 of the pump drive unit (see FIG. 1) L1 is greatly reduced from the drive unit length L in the case where the motor output shaft 15, the gearbox 17, and the pump input shaft 16 are simply arranged coaxially as shown in FIG. Can be miniaturized.
[0043]
FIG. 3 shows a detailed structure of a connecting portion between the motor output shaft 15 and the gearbox 18.
[0044]
The motor output shaft 15 is coupled to the input spur gear 19 while being fitted in an input shaft hole 22 provided in the input spur gear 19 of the speed increasing gear 18, and the coupling portion performs the transmitting action of the rotational force. , The weight of the entire gearbox 18 is supported.
[0045]
That is, the motor 13 and the gearbox 18 are connected in such a manner that the motor output shaft 15 also serves as the gearbox input shaft, and the weight of the gearbox is supported by the motor output shaft 15.
[0046]
As described above, since the motor output shaft 15 and the gearbox input shaft are the same shaft, their concentricity is automatically secured, and the motor output shaft 15 is fitted into the input shaft hole 22 of the gearbox 18. The two can be easily connected in a concentric manner.
[0047]
Accordingly, there is no need to interpose a flange or a coupling between the two, and the overall length L1 of the pump driving unit can be further reduced.
[0048]
For this reason, the drive source is replaced with the electric motor 13 from the engine 3 shown in FIGS. 5 and 6, and the pump drive unit is miniaturized as much as possible while adding the speed increasing device 18. This pump drive unit is engine-driven work machine. (Especially small work machines) can be easily stored in the existing space.
[0049]
Further, a taper bush 23 is fitted into a tip end of the input shaft hole 22 of the speed increaser 18, and a tip end of the motor output shaft 15 is fitted and connected to the input shaft hole 22 via the taper bush 23.
[0050]
The concentricity between the motor output shaft 15 and the input shaft hole 22 can be increased by the tapered bush 23, and the connecting operation thereof can be further facilitated.
[0051]
Further, as shown in FIG. 4, a bracket 25 protrudes from a lower portion of the casing 24 of the speed increaser 18, and the bracket 25 is provided on a fixed portion of the machine room 2 via a vibration isolator (for example, rubber) 26. The bracket 27 is fixed to the reaction force support bracket 27.
[0052]
Thereby, a reaction force support portion 28 is formed, and the rotation reaction force acting on the speed increaser 18 in the direction of the arrow in FIG. 4 by the rotation of the motor 13 is supported by the reaction force support portion 28, so that the motor torque is reduced. Is reliably transmitted.
[0053]
Further, vibration is absorbed by the vibration isolator 26 provided on the reaction force support portion 28, and transmission of vibration from the electric motor 13 and the speed increasing device 18 to the reaction force support portion 28 is suppressed. Therefore, it is possible to prevent the reaction force support portion 28 from being damaged or deformed due to the vibration.
[0054]
On the other hand, as in the case of the electric motor 13 and the gearbox 18, the gearbox 18 and the hydraulic pump 7 use the pump input shaft 16 as the gearbox output shaft as shown in FIG. The gears are connected while being supported by a speed output shaft (pump input shaft) 16.
[0055]
Accordingly, in this embodiment, the motor output shaft 15 supports the own weights of both the gearbox 18 and the hydraulic pump 7, and the rotational reaction force of the hydraulic pump 7 is also supported by the reaction force support portion 28 shown in FIG.
[0056]
In this way, the gearbox 18 and the hydraulic pump 7 can also be easily connected concentrically.
[0057]
By the way, according to the present invention, a flange or a coupling is not required between the motor output shaft 15 and the gearbox 18, and the overall length L1 of the pump drive unit can be reduced. Alternatively, the motor output shaft 15, the speed increaser 18 and the pump input shaft 16 may be arranged coaxially.
[0058]
In this case, the speed-increasing gear 18 may adopt a coaxial arrangement (for example, a planetary gear mechanism).
[0059]
In addition, the present invention can be applied not only to a hydraulic excavator but also to a deep hole excavator, a crusher, and the like that are configured using a hydraulic excavator as a base.
[0060]
【The invention's effect】
As described above, according to the present invention, the motor output shaft also serves as the gearbox input shaft, supports the own weight of the gearbox with the motor output shaft, and supports the rotational reaction force acting on the gearbox as a reaction force. Since both are connected in a state where they are supported by the unit, the two can be easily connected in a concentric state only by fitting the output shaft of the motor into the shaft hole of the input unit of the gearbox.
[0061]
Therefore, since no flange or coupling is required, the overall length of the pump driving section can be reduced. As a result, the drive source is replaced with an electric motor from an engine, and the pump drive unit is miniaturized as much as possible while adding a gearbox. This pump drive unit is provided in an engine-driven work machine (particularly a small work machine). It can be easily stored in the existing space.
[0062]
According to the second aspect of the present invention, the hydraulic pump can be easily connected to the gearbox in a concentric state in which the gearbox output shaft is the pump input shaft.
[0063]
According to the third aspect of the present invention, the motor output shaft and the pump input shaft are arranged with a step, and the speed increaser is provided to fill the step. The axial length of the pump drive unit (the length in the machine width direction in claim 6) can be further reduced as compared with the case where the operators are simply arranged coaxially.
[0064]
According to the invention of claim 4, the motor output shaft is fitted and connected to the input shaft hole of the speed increaser via the taper bush, so that the concentricity between the motor output shaft and the input shaft hole is increased, and furthermore, these connecting operations are performed. This can be further facilitated.
[0065]
According to the fifth aspect of the present invention, since the vibration isolator is provided on the reaction force support portion, transmission of vibration from the electric motor and the gearbox (in the third embodiment, a hydraulic pump) to the reaction force support portion is suppressed, and the reaction by the vibration is suppressed. Damage and deformation of the force support can be prevented.
[Brief description of the drawings]
FIG. 1 is a rear view showing an arrangement of an electric motor, a hydraulic pump, and the like in a working machine according to an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view of the speed increaser according to the embodiment.
FIG. 3 is a diagram showing a part of FIG. 2 in a further enlarged manner.
FIG. 4 is a front view showing a structure of a reaction force support portion in the embodiment.
FIG. 5 is a schematic plan view showing an upper structure of the engine-driven work machine.
FIG. 6 is a rear view showing an arrangement of an electric motor, a hydraulic pump, and the like in the work machine.
FIG. 7 is a diagram corresponding to FIG. 6 when an electric motor is mounted instead of an engine as a drive source.
[Explanation of symbols]
Reference Signs List 13 Motor 15 as drive source Motor output shaft 16 also used as gearbox input shaft 16 Pump input shaft 18 also used as gearbox output shaft Gearbox 22 Gearbox input shaft hole 23 Taper bush 28 Reaction force support 25 Bracket 27 Constituting Reaction Force Support Section Same Reaction Force Support Bracket 26 Vibration Isolator

Claims (6)

油圧アクチュエータの油圧源である油圧ポンプと、この油圧ポンプの駆動源としての電動機と、この電動機の出力を増速して上記油圧ポンプに伝える増速機とを備え、この増速機の入力部に軸穴が設けられ、上記電動機の出力軸がこの軸穴に嵌合連結されることにより、電動機出力軸が増速機入力軸を兼用し、増速機の自重が電動機出力軸で支持された状態で電動機と増速機とが連結され、かつ、上記増速機に作用する回転反力を支持するための反力支持部が設けられたことを特徴とする電動式作業機械。A hydraulic pump that is a hydraulic source of the hydraulic actuator, an electric motor as a drive source of the hydraulic pump, and a gearbox that increases the output of the electric motor and transmits the output to the hydraulic pump. A shaft hole is provided in the shaft, and the output shaft of the motor is fitted and connected to the shaft hole, so that the motor output shaft also serves as the gearbox input shaft, and the own weight of the gearbox is supported by the motor output shaft. An electric work machine, wherein the electric motor and the speed increaser are connected in the extended state, and a reaction force support portion for supporting a rotational reaction force acting on the speed increaser is provided. 請求項1記載の電動式作業機械において、増速機と油圧ポンプとは、増速機出力軸が油圧ポンプの入力軸を兼用し、ポンプ自重が増速機出力軸で支持された状態で連結されたことを特徴とする電動式作業機械。2. The electric work machine according to claim 1, wherein the gearbox and the hydraulic pump are connected in a state where the gearbox output shaft also serves as the input shaft of the hydraulic pump, and the pump's own weight is supported by the gearbox output shaft. An electric work machine characterized by being performed. 電動機の出力軸と油圧ポンプの入力軸が、平行かつ互いの軸心間に段差が形成される状態で配置し、増速機が上記段差部分に設けられたことを特徴とする請求項1または2記載の電動式作業機械。The output shaft of the electric motor and the input shaft of the hydraulic pump are arranged in parallel and in a state where a step is formed between their axes, and a speed-increasing gear is provided at the step. 2. The electric work machine according to 2. 電動機の出力軸が、増速機の入力軸穴にテーパブッシュを介して嵌合連結されたことを特徴とする請求項1乃至3のいずれか1項に記載の電動式作業機械。The electric work machine according to any one of claims 1 to 3, wherein an output shaft of the electric motor is fitted and connected to an input shaft hole of the speed increaser via a taper bush. 反力支持部に、振動を吸収する防振体が設けられたことを特徴とする請求項1乃至4のいずれか1項に記載の電動式作業機械。The electric work machine according to any one of claims 1 to 4, wherein a vibration isolator that absorbs vibration is provided on the reaction force support portion. 電動機と油圧ポンプが機械幅方向に並んで配置されたことを特徴とする請求項1乃至5のいずれか1項に記載の電動式作業機械。The electric work machine according to any one of claims 1 to 5, wherein the electric motor and the hydraulic pump are arranged side by side in the machine width direction.
JP2003047905A 2003-02-25 2003-02-25 Electric work machine Expired - Fee Related JP4186647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003047905A JP4186647B2 (en) 2003-02-25 2003-02-25 Electric work machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003047905A JP4186647B2 (en) 2003-02-25 2003-02-25 Electric work machine

Publications (2)

Publication Number Publication Date
JP2004257457A true JP2004257457A (en) 2004-09-16
JP4186647B2 JP4186647B2 (en) 2008-11-26

Family

ID=33114023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003047905A Expired - Fee Related JP4186647B2 (en) 2003-02-25 2003-02-25 Electric work machine

Country Status (1)

Country Link
JP (1) JP4186647B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112443006A (en) * 2019-09-03 2021-03-05 广西柳工机械股份有限公司 Drive device for construction machine
CN112483629A (en) * 2019-09-12 2021-03-12 株式会社牧田 Working machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112443006A (en) * 2019-09-03 2021-03-05 广西柳工机械股份有限公司 Drive device for construction machine
CN112483629A (en) * 2019-09-12 2021-03-12 株式会社牧田 Working machine

Also Published As

Publication number Publication date
JP4186647B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
JP2002154343A (en) Power transmission mechanism for front and rear wheel drive vehicle
US9561715B2 (en) Wheel hub with electric motor
JP2012029369A (en) Vehicle drive device and vehicle comprising rotary electric machine
JP2019055765A (en) Electric vehicle
JP4656519B2 (en) Pump device
JPH0825392B2 (en) Mounting device for horizontal engine and pump mechanism
JP2004257457A (en) Electromotive working machine
JP2008291629A (en) Integrated power transmission device of excavating vehicle
JP5639539B2 (en) Swivel device for construction machinery
JP6415916B2 (en) Construction machinery
JP2009202611A (en) Power transmission apparatus of working vehicle
CN212447130U (en) Vehicle power system and railway engineering machinery vehicle
CN2900612Y (en) Layout structure of road surface machinery planing device power system
JP2008290707A (en) Vehicle having supporting structure of front axle gear
CN111347889A (en) Vehicle power system and railway engineering machinery vehicle
WO2019176094A1 (en) Electrically driven vehicle
KR101301233B1 (en) an operation device for the cooling fan in heavy construction equipment
JP2001011891A (en) Construction machine
CN220082043U (en) Gearbox assembly for dual-motor driving engineering machinery
CN215626390U (en) Transmission device, hoisting mechanism and engineering machinery
CN219007599U (en) Power transmission system and working machine
KR102255133B1 (en) Power transmitting device for rice planting machine
WO2023190179A1 (en) Swiveling work machine
JP6929252B2 (en) Construction machinery
JP2003278182A (en) Electric working machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees