JP2004257441A - Fluid bearing device - Google Patents

Fluid bearing device Download PDF

Info

Publication number
JP2004257441A
JP2004257441A JP2003047152A JP2003047152A JP2004257441A JP 2004257441 A JP2004257441 A JP 2004257441A JP 2003047152 A JP2003047152 A JP 2003047152A JP 2003047152 A JP2003047152 A JP 2003047152A JP 2004257441 A JP2004257441 A JP 2004257441A
Authority
JP
Japan
Prior art keywords
fluid
bearing
rotating body
shaft
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003047152A
Other languages
Japanese (ja)
Inventor
Tsutomu Kawashima
川島  勉
Yosuke Umiuchi
洋介 海内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisso Engineering Co Ltd
Original Assignee
Nisso Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisso Engineering Co Ltd filed Critical Nisso Engineering Co Ltd
Priority to JP2003047152A priority Critical patent/JP2004257441A/en
Publication of JP2004257441A publication Critical patent/JP2004257441A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid bearing device which is capable of reliably eliminating dust generation attributable to a structure for preventing detachment or side deviation of a shaft, or any wear and seizure caused during the low-speed rotation, and excellent in simplicity and maintainability. <P>SOLUTION: The fluid bearing device in which a shaft 15 of a rotating body 1 is supported by a bearing surface 28 in a non-contact manner with fluid S fed between the bearing surface 28 and the shaft 15 from a fluid feed means 3 has an injection unit 29 for preventing side deviation which is provided facing a side surface 11 across the axis of the rotating body 1 and connected to the fluid feed means 3 so that the fluid S fed from the fluid feed means 3 is injected from the injection unit 29 to keep the distance between a bearing body 2 and the rotating body 1. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、回転体の軸を流体圧を利用して非接触状態で支持する流体軸受装置に関し、特に回転体と共に液中で使用する場合に好適な流体軸受装置に関する。
【0002】
【従来の技術】
流体軸受装置は、回転体の軸と軸受本体の軸受面との間に油や水などの流体を供給し、流体圧を利用して非接触で軸を支持するもので、滑り軸受や転がり軸受等の採用が困難な場合に用いられている。流体潤滑方式からは動圧軸受系及び静圧軸受系に大別される。動圧軸受系は、例えば、流体が回転体の回転に伴って軸受面との間の狭い隙間へと引きずり込まれる、いわゆるくさび作用によって圧力が発生し、該圧力で回転体の軸を支える構造である。静圧軸受系は、例えば、外部の流体供給機構により加圧流体を軸と軸受面との隙間に供給し軸全周を定圧(静圧)で支持する構造である。これらには磁気軸受も含まれる。軸受特徴は、回転体の軸を軸受本体に対し非接触で支持することにより、軸受部の回転摩耗が小さく焼き付き現象も防止でき発塵も少ないこと、製造において軸及び軸受面の仕上げ加工精度が緩和させること、摩擦力及びその変動が小さくなるため寿命を長く維持できること、回転雑音の問題がないこと等の利点を有している。
【0003】
ところで、流体軸受装置は、軸を非接触で支持することに起因して、回転体が振動等の影響を受けて支持状態が不安定になり易く、又、一つの軸受装置でラジアル方向とスラスト方向の荷重を受けることが難しい。このため、例えば、ラジアル方向の荷重を支えるものでは、スラスト方向の荷重を受けた場合に回転体の軸が水平又は横方向へ移動し、該移動を抑えるものがなければ軸受本体から外れたり横ずれが生じる。なお、このような、軸の抜け止めや横ずれ防止構造としては、例えば、特開平8−182287号に開示されているごとく機械的な抜け止め(回転体であるロータのスラスト方向の抜けを防ぐためモータの外部に抜止部材、つまりロータフレームのフランジ部で係止するようにした構成)となるため、回転体が抜止部材に接触して、接触部分より発塵が生じ、上記した発塵防止の利点が生かされない。
【0004】
また、回転に伴って形成される流体潤滑膜により軸を支持する場合には、汎用性に優れているが、高回転でなければ軸と軸受本体との間が流体潤滑状態にならず、回転開始時や停止時及び低速回転では境界潤滑(軸が軸受面に接触)状態となり、焼き付き現象が生じてしまうため、これらを頻繁に繰り返す軸系には使用できない。なお、このような対処例としては下記文献1に開示の支持装置がある。この構造は、低速回転時には軸を転がり軸受で支持し、高速回転時には軸を流体軸受で支持するようにして、低速回転から高速化回転まで対応できるようにしたものであるが、転がり軸受及び流体軸受の両者を備えるため構造が複雑となりコスト面及びメンテナンス性に問題がある。
【0005】
【特許文献1】
特開平5−138407号公報
【発明が解決しようとする課題】
上記従来の流体軸受装置では、部材同士を接触させる機械的な抜け止めや横ずれ防止構造に起因した発塵、低速回転時等の焼き付き現象の虞があり適用分野が限られている。そこで、本発明の目的は、以上の流体軸受装置の長所、つまり非摩耗性、長寿命、低騒音に加え、前記した抜け止めや横ずれ防止構造に起因した発塵の虞や低速回転時等に生じる摩耗及び焼き付き現象の虞を確実になくし、しかも簡易性やメンテナンス性に優れた流体軸受装置を提供することにある。
【0006】
【課題を解決するための手段】
以上の目的を達成するため本発明は、図面を参照し特定すると、回転体1の軸15が軸受本体2の軸受面28に支持されると共に、流体供給手段3から前記軸受面28と前記軸15との間に供給される流体Sにより非接触状態で支持されるようにする流体軸受装置において、前記回転体1の軸線上に交差する側面11と対向して設けられ、かつ前記流体供給手段3に接続されている横ずれ防止用噴射部29を有し、前記流体供給手段3から供給される流体Sを前記噴射部29より噴射して、前記軸受本体2と前記回転体1との間の距離を保つ(距離をほぼ一定に調整し維持する)ことを特徴としている。
【0007】
以上の流体軸受装置では、流体供給手段を介し噴射部より噴射される流体により、軸受本体と回転体との間の距離が保たれて、従来の流体軸受で生じ易い軸の抜けや横ずれを防ぐことができる。構造的には、流体供給手段が軸受面と軸との間に流体を供給して非接触(以下、これを「浮上」と称することもある)状態にするものを兼用しているため製造費を抑えることができ、流体式であるためメンテナンス等も容易になる。作動的には、上記した部材同士を接触させる機械的ではなく、流体噴射つまり流体圧を利用しているため摩耗や発塵の虞が全くない。ここで、本発明の回転体において、「側面」とは横ずれ防止用噴射部より噴射される流体圧又は噴射圧を受ける箇所を意味し、図面の側面11に限られず、軸部15の軸線上に交差する側面(端面)も含まれる。後者の場合は、例えば、軸受本体が略L形であり、該L形の水平片部を軸受面にし、該L形の垂直片部側に横ずれ防止用噴射部を設けるようにする。従って、請求項5の「流体受部」も図面の側面11に限られず、軸部15の側面(端面)であってもよい。
【0008】
以上の本発明は請求項2〜7のように展開することが可能である。すなわち、
・請求項2は、前記回転体1がハウジング20に収容された流体S中で回転され、前記流体供給手段3が前記ハウジング内の流体を直接又は前記ハウジング外へ一旦取り出してから前記噴射部29へ供給する構成である。この場合は、噴射する流体がハウジング内で使用している気体や液であることから、又、ハウジング内の流体総量が減じないことから、維持費を抑えることができる。また、専用流体を用いるのに比べてハウジング内の流体への不純物混入の虞がない。
・請求項3では、前記横ずれ防止用噴射部29が前記軸受本体2に設けられているため、噴射部を支持する専用部材を不要にでき、装置構造やハウジング内を煩雑化することなく、取扱性に優れ、設置の簡素化も可能にする。
・請求項4は、前記流体供給手段3に接続されている回転用噴射部4を有し、前記流体供給手段3から供給される流体Sを前記噴射部4より前記回転体1又は軸15へ噴射して回転体1を回転する構成である。この場合は、浮上用の流体供給手段が、横ずれ防止用及び回転駆動用として利用されるため、簡素化が図られ、経費を合理的に抑える。
・請求項5は、前記回転用噴射部4が前記軸受本体2に設けられ、前記回転体1の側面11に設けられた流体受部17へ向けて流体を噴射する構成である。この場合は、回転用噴射部から噴射される流体圧を流体受部で受けて、回転体を効率よく回転できるようにする。
【0009】
・請求項6は、前記軸受本体2が、前記ハウジング20内の底部又は該ハウジング20内に設けられる設置板35に取り付けられる保持具25と、軸受面28を形成して前記保持具25に対し回転自在に取り付けられている軸受27とからなる構成である。これは、例えば、回転体を回転停止するため浮上用の流体供給を止めると、回転体が自重により軸受面に着地するが、その際、軸が浮上及び着地過程で軸受面の軸線上からずれると正常に着地できない虞がある。このため、この構造では、軸受が保持具に対し回転自在にして、軸が着地する際、軸線上からずれていても軸受の回転を伴って軸を確実に受け止め可能にする。ここでの「回転自在」には、例えば、ピボット軸受のような揺動に近い回転構成も含む。
・請求項7では、前記軸受本体2が、前記流体供給手段3を構成している流体供給用配管部33と前記噴射部28a,29等とを接続する中継用配管部37を有しているため、装置の簡素化、設置の容易性、取扱性等を共に向上できる。
【0010】
【発明の実施の形態】
本発明の実施形態としての流体軸受装置を図面を参照しながら説明する。図1は流体軸受装置と回転体の軸との関係を模式的に示す原理図であり、図2は一変形例である。図3〜図6は流体軸受装置の適用例を示し、図3はハウジングの片側を断面した模式図、図4はハウジングの正面側を断面しかつ一部省略した模式図、図5は流体軸受装置の配置例を示す概略外観図、図6は図5の装置のうち軸受本体の箇所で断面した縦断面図である。以下の説明では、流体軸受装置の基本構造及び図2の変形例、図3〜図6に基づいて図1の装置を使用した適用例、該適用例に基づく作動に言及する。
【0011】
(基本構造)本発明の流体軸受装置は、図1及び図6で説明すると、回転体1の軸15を軸受本体2で支持し、流体供給手段3から軸受本体2の軸受面28と軸15との間に供給される流体Sにより軸15(回転体1)を浮上させて非接触で支持する。図1の例では、軸受本体2が保持具25と、保持具25上に取り付けられる抑え部材26と、抑え部材26の中央に回転自在に位置決め規制される軸受27とで構成されている。保持具25は、上下方向の配管箇所を空洞にしそこに下流配管部37を配置し、上中央部に設けられた軸受配置用の凹状部と、軸受本体片側に設けられた回転用噴射部4を有している。下流配管部37は、上流側の配管部36の一方に接続されて保持具25上に設けられる軸受27の下面である前記凹状部に通じている管部37aと、配管部36の他方に接続されて保持具25の略上下中間まで延び、更に前記液吐出部4に通じている管部37bとで構成されている。噴射部4は、図5のごとく略L形の上向きノズル4aを装着したり、上向きに傾斜した孔として形成される。これらは、後述する横ずれ防止用噴射部29の孔線上から少しずれている。
【0012】
抑え部材26は保持具25の上面に固定される。中央部には、軸受用の貫通孔及び該貫通孔の下側を一回り径大にした径大孔が設けられている。上面には、軸15の外径より大きな隙間を保っている対の規制棒26aが設けられている。各規制棒26aは、軸受27上の軸15が水平又は左右方向へ大きく動こうとしたとき、該軸15の動きを規制する。軸受27は、円柱体形であり、上面に形成されている凹円弧の軸受面28と、周囲に形成されて前記抑え部材26の径大孔に嵌合する鍔部27aと、下面に形成されて前記下流配管部37の管部37aから導入される流体Sを受け入れる円錐状の空洞部27bと、空洞部27bから軸受本体片側に略水平に貫通されている横ずれ防止用の噴射部29と、軸受面28と空洞部27bとの間に多数設けられている上下方向の貫通孔である浮上用噴射部28aとを一体に有している。噴射部29には、図4のごとくノズル29aが必要に応じて装着される。
【0013】
以上の軸受27は、下側が前記保持具25の凹状部に嵌合配置された後、抑え部材26が保持具25上に固定(図1及び図2では省略したが、図5に図示したねじ26b等で固定)される。すると、軸受27は、鍔部27aを抑え部材26の径大孔に位置規制した状態で保持具25に組み付けられ、本発明の流体軸受装置となる。これに対し、流体供給手段3は、適用例で述べるように使用条件によって設計される。要は、流体をポンプ等を通じて設計圧及び流量で配管部33、36及び37等を通じて、噴射部4、噴射部29、噴射部28aへ供給できればよい。また、流体としては、不活性ガスや反応用ガス等の気体、油や薬液等の液体であっても差し支えない。そして、以上の流体軸受装置では、流体供給手段3から供給される流体が噴射部4、噴射部29、噴射部28aへそれぞれ圧送されて噴射される。このうち、噴射部28aは、軸15の外周囲に向けて流体を噴射し、該流体圧により軸15を軸受面28から浮かして非接触状態にする。噴射部4は、回転体1の側面11(に設けられた流体受部17)に向けて流体を噴射して、該流体圧により回転体1を一方向へ回転する。噴射部29は、回転体1の側面11に向けて流体を噴射して、該流体圧により軸受本体2と回転体1との間の距離が不用意に近づかないようにする。要は、流体軸受系で生じ易い軸の抜けや横ずれ防止構造である。この利点としては簡易であり、最小経費で実施可能で、しかも流体式であるため保守が簡単に行える等である。
【0014】
(変形例)図2の流体軸受装置において、図1の装置と異なる点は、まず、上記した抑え部材26を省略し、軸受27Aを保持具25Aに対し固定することで部材数を少なくして簡略化した。また、軸受27Aは、抑え部材26を省略したため、軸受面28の凹円弧状と連続して上に延びた規制面26dを形成している。軸受面28の形状は軸15の浮上効率を考慮し、規制面26dの形状は軸15の外径より若干径大でかつ軸15の浮上高さを考慮して設計される。このように、本発明の流体軸受装置は必要に応じ変更可能なもので、例えば、浮上用噴射部28aとして、噴射部4や29と同様に孔にノズルを付設したり、該ノズルの角度や位置等も任意に設計される。また、軸受本体2の配管部37は、当該軸受本体に形成した通し孔自体で構成する態様、つまり専用配管37a,37bでなくとも何ら差し支えない。
【0015】
(適用例)ここでは、上記図1の流体軸受装置を使用した態様、つまり実際に回転体の軸受要素として実施される場合の有用性を明らかにするため、水力機械や処理容器等を構成している回転体1を油中で支持する例で説明する。この例では、回転体1が両側に軸部15を有し、ハウジング20内に設けられて上記軸受本体2をユニット化した軸受組立体5に支持され、又、ハウジング20内に入れられた油Sに浸漬された状態で、浮上及び回転される。
【0016】
このうち、回転体1は、周囲10が機器類や溶液等を内部に出し入れ可能な略円筒形であり、両側面11に設けられて端面中心外側へ突出されている円柱状軸(回転軸と同じ)15と、両側面11の外端面に設けられた流体受部17とを有している。流体受部17は、全体が水車形に設計され、外端面に対し軸15と同心円上に設けられており、軸15よりかなり径大となった胴部外周に複数の羽根18を有している。各羽根18は全体がギヤの長い歯形状となっている。要は、羽根18が外部から流体圧を受けたとき、その流体圧を面的に受け易くする形状であればよい。なお、回転体1の軸部15は、回転体1が自動搬送機でセットされたり移動されるため、ロボットハンドで把持できるよう軸受本体2の軸受面28より外へ突出する長さに形成されている。
【0017】
ハウジング20は、周囲側壁20a及び底壁20bで区画され、回転体1が内部に設置される軸受組立体5に対し余裕を持ってセットされる大きさとなっている。この例では、上開口が必要に応じて蓋21により開閉され、又、上記流体供給手段3がハウジング20内の油Sを循環する経路として構成されている。この循環経路は、処理部30と、液圧送用ポンプ31と、弁装置32等を有し、それらがハウジング20側のジョイント22に連結した配管部33等で接続されている。処理部30は、例えば、ハウジング20内から取り出した油Sについて、加熱又/及び濾過等を行う。勿論、構造的には、処理部30を利用して、ハウジング20に対し外部設備より油Sを導入したり、不図示の排出部に代え、ジョイント22内側に底部20bへ延びる配管部を接続してハウジング20内の油Sを交換可能にしてもよい。弁装置32は、ポンプ31と軸受組立体5との間に介在されており、細部を省略したが、三方弁及びその分配流量を調整する制御部等からなる。このように、この流体供給手段3は、本発明の流体軸受装置を構成すると共に、ハウジング20内の油Sを制御する機能も兼ねている。そして、ハウジング20の油Sは、上流側配管33aから取り出され、処理部30及びポンプ31から配管33b、弁装置32から分岐された2つの配管33c、ハウジング20の底壁20b上に設けられた軸受組立体5を通じ、上記した各噴射部4、29、28aよりハウジング20内へ戻される。なお、構造的には、流体供給手段3を流体軸受装置専用として構成したり、又、ハウジング20内にポンプ31等の必要部を内蔵して外部より制御するようにしても差し支えない。
【0018】
軸受組立体5は、以上の回転体1に対応してユニット化され、上記軸受本体2を対に設置板35に設けて両側の軸15を支持可能となっている。細部は、図5及び図6のごとく設置板35と、設置板35上の左右に取り付けられた軸受本体2と、設置板35に内設されて配管33cと接続されている配管部36と、各軸受本体2に内設されて前記対応する配管部36と接続される下流配管部37とを有している。設置板35は矩形板状で、配管箇所を空洞にしそこに各配管部36を配置している。設置板35には、両側の軸受本体2に対応した取付孔及び配管部36を軸受本体2側に連通する連通孔、ハウジング20の底壁20bにねじ等で固定する取付孔35a等が設けられている。図5の符号34は、前記各配管33cに対応する配管部36を接続するジョイントである。このジョイント34は、模式化しているが、例えば設置板35の側面や底面側に付設されることもある。
【0019】
(作動)以上の構造では、ハウジング20の油Sが処理部30で適宜に処理された後、ポンプ31から配管33bを通って弁装置32により2方向に分岐され、各配管33cから設置板35に配管されている2本の配管部36へ設計流量及び液圧で圧送される。そして、油Sは、一方の配管部36から保持具25の管部37a、軸受27の空洞部27bへ圧送された後、一部が噴射部28aより上方へ噴射され、一部が噴射部29(のノズル29a)より略水平方向へ噴射される。同時に、油Sは、他方の配管部36から保持具25の管部37bより噴射部4(のノズル4a)から斜め上方へ噴射される。なお、以上の構造では、ハウジング20から取り出した油Sを全て噴射部28a、29、4から噴射している。しかし、使用設計によっては、ハウジング20から取り出した油Sのうち、過剰液部分をハウジング20へ直に戻すよう構成される。
【0020】
そして、流体軸受構造としては、回転体1が両側の軸受本体2に保持させていると、噴射部28aから噴射される油Sの噴射流又は液圧により軸15を軸受面28上へ押し上げる力として作用する。回転体1は、軸受本体2の軸受面28から浮上され、非接触状態となるため軸受面28に対する当接力がなくなる。これは、静圧軸受系に属する浮上態様であり、回転体1が回転されていると、軸受面28に対する摩擦力がなくなって軸保持部に生じ易い不純物発生の虞を解消できる。同時に、回転体1は、噴射部4(のノズル4a)から噴射されて流体受部17の対応する羽根18に向かう噴射流又は液圧により回転を開始する。回転体1の回転は、浮上状態であるため、噴射部4の噴射力として弱い力でも回転され、該噴射力を制御することにより回転速度も可変される。これが流体軸受の長所である。この構造では、回転動力源が既設のポンプ31で行え、機械式に比べて不純物混入の虞が全くない。なお、回転体1を交換する場合は、例えば、弁装置32を介し管部37aへの通路を閉じて噴射部4等からの噴射を停止する。すると、回転体1は自重により軸受面28に着地する。この構造では、軸受27が保持具25及び抑え部材26に対し回動自在であるため、回転体1が浮上後に着地する際、軸受27が必要に応じて向きを変えて対応軸15を軸受面28で確実に受け止めることができる。同時に、この構造では、以上の回転体1の浮上及び回転過程において、両軸受本体2の各噴射部29(のノズル29a)から噴射される油Sの噴射流又は液圧により、回転体1が両軸受本体2の間にセンタリング調整される。これは、例えば、回転体1が浮上状態において水平又は軸15の軸線方向へ動くと、回転体1の側面11(この例では流体受部17)が対応する軸受本体6に衝突する虞、衝突に起因した不純物発生の虞がある。しかし、この構造では、従来の抜け止めや横ずれ防止構造に代えて、前記した流体圧によるセンタリング調整によりそのような虞を全て解消できる。
【0021】
なお、本発明は以上の形態により何ら制約されない。発明の流体軸受装置は請求項1で特定した要件を具備しておればよく、以上の形態を参考にして必要に応じ変更可能なものである。例えば、各部材の材質は対象流体に応じて適宜選定されること、軸受本体の構成部材及び形状を変更すること、回転体は何でもよいこと等である。
【0022】
【発明の効果】
以上説明したように、本発明の流体軸受装置は、流体軸受の長所を損なうことなく課題に挙げた抜け止めや横ずれ防止構造に起因した発塵の虞と、低速回転時や停止時等の焼き付き現象、それに起因した発塵の虞とを確実に解消でき、また、構成部材も少なく簡易性、低コスト化、メンテナン性に優れたものを提供できる。これにより、本発明は流体軸受の採用機会及び応用分野を拡大して、例えば、水力機械等を構成している回転体を液中で長期継続して支持する場合、各種反応や分散等を温度等安定した液中で行う回転体を支持する場合等に有益となる。
【図面の簡単な説明】
【図1】発明形態の流体軸受装置と軸との関係を示す原理図である。
【図2】図1の装置を変形した一例を示す図である。
【図3】上記流体軸受装置の適用例を示す模式断面図である。
【図4】上記適用例における模式断面図である。
【図5】上記適用例における軸受本体の組立体を示す模式外観図である。
【図6】図4の組立体の要部を示す模式縦断面図である。
【符号の説明】
1…回転体(15は軸、17は流体受部、18は羽根)
2…軸受本体(25は保持具、27は軸受)
3…流体供給手段(31はポンプ、32は弁装置、33と37は配管部)
4…ハウジング
7…浮上用噴射部(流体供給手段)
8…横ずれ防止用噴射部(流体供給手段)
9…回転用噴射部(流体供給手段)
33a,33b,33c…配管
37a,37b…配管
S…油(流体)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrodynamic bearing device for supporting a shaft of a rotating body in a non-contact state by using a fluid pressure, and more particularly to a hydrodynamic bearing device suitable for use in a liquid together with a rotating body.
[0002]
[Prior art]
A fluid bearing device supplies a fluid such as oil or water between a shaft of a rotating body and a bearing surface of a bearing body, and uses a fluid pressure to support the shaft in a non-contact manner. It is used when it is difficult to adopt such. The fluid lubrication system is roughly classified into a dynamic bearing system and a hydrostatic bearing system. The dynamic pressure bearing system has, for example, a structure in which a fluid is drawn into a narrow gap between the bearing surface and the so-called wedge action as the rotating body rotates, and a pressure is generated by a so-called wedge action, and the pressure supports the shaft of the rotating body. It is. The static pressure bearing system has a structure in which, for example, an external fluid supply mechanism supplies a pressurized fluid to a gap between a shaft and a bearing surface and supports the entire circumference of the shaft at a constant pressure (static pressure). These include magnetic bearings. The features of the bearing are that the rotating body shaft is supported in non-contact with the bearing body, so that the rotational wear of the bearing part is small and the seizure phenomenon can be prevented and the generation of dust is small, and the finishing accuracy of the shaft and bearing surface in manufacturing is high. It has advantages such as relaxation, reduction of frictional force and its fluctuation, maintenance of a long life, and no problem of rotational noise.
[0003]
By the way, in the fluid bearing device, the rotating body is likely to be unstable due to the influence of vibration or the like due to the shaft being supported in a non-contact manner. It is difficult to receive the load in the direction. For this reason, for example, in the case of supporting a load in the radial direction, the shaft of the rotating body moves in the horizontal or lateral direction when receiving a load in the thrust direction, and if there is nothing to suppress the movement, it will come off from the bearing body or laterally shift. Occurs. As such a structure for preventing the shaft from slipping out and lateral displacement, for example, as disclosed in Japanese Patent Application Laid-Open No. 8-182287, a mechanical stopper (to prevent the rotor as a rotating body from slipping in the thrust direction). In this case, the rotating body comes into contact with the retaining member, and dust is generated from the contact portion. The benefits are not exploited.
[0004]
In addition, when the shaft is supported by the fluid lubricating film formed with the rotation, the versatility is excellent. At the time of start, stop, and low-speed rotation, boundary lubrication (the shaft contacts the bearing surface) occurs, and a seizure phenomenon occurs. Therefore, it cannot be used for a shaft system that repeats these frequently. As an example of such a measure, there is a supporting device disclosed in the following document 1. In this structure, the shaft is supported by rolling bearings during low-speed rotation, and the shaft is supported by fluid bearings during high-speed rotation, so that it can handle from low-speed rotation to high-speed rotation. Since both bearings are provided, the structure becomes complicated and there are problems in cost and maintenance.
[0005]
[Patent Document 1]
JP-A-5-138407 [Problems to be Solved by the Invention]
In the above-described conventional hydrodynamic bearing device, there is a risk of dust generation due to a mechanical stopper for preventing members from coming into contact with each other or a structure for preventing lateral displacement, and a seizure phenomenon at the time of low-speed rotation and the like, and the application field is limited. Therefore, an object of the present invention is to provide the advantages of the above hydrodynamic bearing device, that is, in addition to the non-abrasion, long life, low noise, the possibility of dust generation due to the above-mentioned retaining and side slip prevention structure, and the low speed rotation. An object of the present invention is to provide a hydrodynamic bearing device that reliably eliminates the risk of abrasion and seizure that occur, and that is excellent in simplicity and maintainability.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention, when specified with reference to the drawings, is configured such that the shaft 15 of the rotating body 1 is supported on the bearing surface 28 of the bearing main body 2, and the bearing surface 28 and the shaft A fluid bearing device which is supported in a non-contact state by a fluid S supplied between the rotating body 1 and the fluid supply means 15 and is provided so as to face a side surface 11 intersecting the axis of the rotating body 1. 3 for ejecting the fluid S supplied from the fluid supply means 3 from the ejecting unit 29, between the bearing body 2 and the rotating body 1. It is characterized by maintaining the distance (adjusting and maintaining the distance almost constant).
[0007]
In the above hydrodynamic bearing device, the distance between the bearing main body and the rotating body is maintained by the fluid ejected from the ejecting unit via the fluid supply means, thereby preventing the shaft from slipping off or laterally shifting, which is likely to occur in the conventional fluid bearing. be able to. Structurally, the fluid supply means also serves to supply the fluid between the bearing surface and the shaft to bring the fluid into a non-contact state (hereinafter, this may be referred to as "floating"). And maintenance is easy because of the fluid type. Operationally, fluid injection, that is, fluid pressure is used instead of mechanical contact between the above members, and there is no fear of wear or dust generation. Here, in the rotating body of the present invention, the “side surface” means a portion that receives a fluid pressure or an injection pressure injected from the side slip prevention injection portion, and is not limited to the side surface 11 in the drawing, and is on the axis of the shaft portion 15. Side surfaces (end surfaces) that intersect with. In the latter case, for example, the bearing body is substantially L-shaped, the L-shaped horizontal piece is used as a bearing surface, and a side-shift preventing injection portion is provided on the L-shaped vertical piece. Therefore, the “fluid receiving portion” in claim 5 is not limited to the side surface 11 in the drawing, but may be the side surface (end surface) of the shaft portion 15.
[0008]
The present invention described above can be developed as in claims 2 to 7. That is,
The second aspect is characterized in that the rotating body 1 is rotated in the fluid S contained in the housing 20 and the fluid supply means 3 takes out the fluid in the housing directly or once out of the housing, and then the injection unit 29. It is a structure to supply to. In this case, since the fluid to be ejected is gas or liquid used in the housing, and since the total amount of fluid in the housing does not decrease, the maintenance cost can be reduced. In addition, there is no risk of impurities mixing into the fluid in the housing as compared with the case where a dedicated fluid is used.
In the third aspect, since the injection portion 29 for preventing lateral displacement is provided in the bearing main body 2, a dedicated member for supporting the injection portion can be unnecessary, and the device structure and the housing can be handled without complication. Excellent in simplicity and simplifies installation.
-Claim 4 has a rotary injection unit 4 connected to the fluid supply unit 3, and the fluid S supplied from the fluid supply unit 3 is supplied from the injection unit 4 to the rotating body 1 or the shaft 15. This is a configuration in which the rotating body 1 is rotated by jetting. In this case, since the floating fluid supply means is used for preventing lateral displacement and rotating, the simplification is achieved and the cost is reduced rationally.
-Claim 5 is a configuration in which the rotation injection unit 4 is provided on the bearing main body 2 and injects fluid toward a fluid receiving unit 17 provided on a side surface 11 of the rotating body 1. In this case, the fluid pressure received from the rotation jetting portion is received by the fluid receiving portion so that the rotating body can be efficiently rotated.
[0009]
According to claim 6, the bearing body 2 forms a bearing 25 attached to a bottom portion in the housing 20 or an installation plate 35 provided in the housing 20, and a bearing surface 28 to form the bearing body 28 And a bearing 27 rotatably mounted. This is because, for example, when the supply of fluid for floating is stopped to stop the rotation of the rotating body, the rotating body lands on the bearing surface by its own weight, but at this time, the shaft deviates from the axis of the bearing surface during the floating and landing process. May not be able to land normally. For this reason, in this structure, the bearing is made rotatable with respect to the holder, and when the shaft lands, even if the shaft is displaced from the axis, the shaft can be reliably received with the rotation of the bearing. Here, “rotatably” includes, for example, a rotation configuration close to swinging such as a pivot bearing.
In claim 7, the bearing main body 2 has a relay pipe portion 37 for connecting the fluid supply pipe portion 33 constituting the fluid supply means 3 to the jetting portions 28a, 29 and the like. Therefore, the simplification of the device, the ease of installation, and the ease of handling can be improved.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
A hydrodynamic bearing device as an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a principle view schematically showing a relationship between a hydrodynamic bearing device and a shaft of a rotating body, and FIG. 2 shows a modification. 3 to 6 show an application example of the hydrodynamic bearing device. FIG. 3 is a schematic diagram showing a cross section of one side of the housing, FIG. 4 is a schematic diagram showing a cross section of the front side of the housing and a part thereof is omitted, and FIG. FIG. 6 is a vertical cross-sectional view of the device shown in FIG. In the following description, reference will be made to the basic structure of the hydrodynamic bearing device, a modified example of FIG. 2, an application example using the device of FIG. 1 based on FIGS. 3 to 6, and an operation based on the application example.
[0011]
(Basic Structure) In the hydrodynamic bearing device of the present invention, referring to FIGS. 1 and 6, the shaft 15 of the rotating body 1 is supported by the bearing body 2, and the fluid supply means 3 and the bearing surface 28 of the bearing body 2 and the shaft 15 The shaft 15 (the rotator 1) is levitated by the fluid S supplied between them and supported in a non-contact manner. In the example of FIG. 1, the bearing body 2 includes a holder 25, a holding member 26 mounted on the holder 25, and a bearing 27 that is rotatably positioned at the center of the holding member 26. The retainer 25 is provided with a hollow pipe portion in the vertical direction, a downstream pipe portion 37 disposed therein, a concave portion for bearing arrangement provided in the upper central portion, and a rotary injection portion 4 provided on one side of the bearing body. have. The downstream pipe section 37 is connected to one of the upstream pipe sections 36 and is connected to the other of the pipe sections 36 and the pipe section 37 a communicating with the concave section which is the lower surface of the bearing 27 provided on the holder 25. And a tube portion 37b extending to substantially the middle of the holder 25 in the vertical direction and further communicating with the liquid discharging portion 4. As shown in FIG. 5, the injection unit 4 is provided with a substantially L-shaped upward nozzle 4a or formed as a hole inclined upward. These are slightly displaced from the hole line of the lateral displacement prevention injection unit 29 described later.
[0012]
The holding member 26 is fixed to the upper surface of the holder 25. A through hole for a bearing and a large-diameter hole whose diameter is slightly larger on the lower side of the through hole are provided at the center. On the upper surface, a pair of regulating rods 26a that keep a gap larger than the outer diameter of the shaft 15 is provided. Each restriction bar 26a restricts the movement of the shaft 15 when the shaft 15 on the bearing 27 attempts to move largely horizontally or horizontally. The bearing 27 has a cylindrical shape and has a concave arc-shaped bearing surface 28 formed on the upper surface, a flange portion 27 a formed around the fitting surface and fitted to the large-diameter hole of the holding member 26, and a lower surface formed on the lower surface. A conical hollow portion 27b for receiving the fluid S introduced from the pipe portion 37a of the downstream pipe portion 37, an injection portion 29 for preventing lateral displacement that penetrates substantially horizontally from the hollow portion 27b to one side of the bearing body; A floating injection part 28a, which is a large number of through-holes provided in the vertical direction, is provided integrally between the surface 28 and the hollow part 27b. As shown in FIG. 4, a nozzle 29a is attached to the ejection unit 29 as needed.
[0013]
After the lower side of the bearing 27 is fitted and arranged in the concave portion of the holder 25, the holding member 26 is fixed on the holder 25 (not shown in FIGS. 1 and 2, but the screw shown in FIG. 5). 26b). Then, the bearing 27 is assembled to the holder 25 in a state where the position of the flange 27a is restricted to the large-diameter hole of the holding member 26, and the hydrodynamic bearing device of the present invention is obtained. On the other hand, the fluid supply means 3 is designed according to use conditions as described in an application example. In short, it is only necessary that the fluid can be supplied to the injection unit 4, the injection unit 29, and the injection unit 28a through the piping units 33, 36, 37, and the like at the designed pressure and flow rate through a pump or the like. Further, the fluid may be a gas such as an inert gas or a reaction gas, or a liquid such as an oil or a chemical solution. In the above hydrodynamic bearing device, the fluid supplied from the fluid supply means 3 is pressure-fed and ejected to the ejection unit 4, the ejection unit 29, and the ejection unit 28a, respectively. Of these, the ejection unit 28a ejects a fluid toward the outer periphery of the shaft 15, and the shaft 15 is floated from the bearing surface 28 by the fluid pressure to make a non-contact state. The ejection unit 4 ejects a fluid toward (the fluid receiving unit 17 provided on) the side surface 11 of the rotating body 1 and rotates the rotating body 1 in one direction by the fluid pressure. The ejection unit 29 ejects a fluid toward the side surface 11 of the rotating body 1 so that the distance between the bearing main body 2 and the rotating body 1 does not approach carelessly due to the fluid pressure. The point is a structure for preventing the shaft from coming off or laterally shifting, which is likely to occur in the fluid bearing system. This has the advantage that it is simple, can be implemented with minimal expense, and can be easily maintained because it is fluid.
[0014]
(Modification) The hydrodynamic bearing device shown in FIG. 2 is different from the device shown in FIG. 1 in that the number of members is reduced by first omitting the above-described holding member 26 and fixing the bearing 27A to the holder 25A. Simplified. In addition, the bearing 27A has a regulating surface 26d that extends upward continuously with the concave arc shape of the bearing surface 28 because the pressing member 26 is omitted. The shape of the bearing surface 28 is designed in consideration of the floating efficiency of the shaft 15, and the shape of the regulating surface 26d is designed to be slightly larger than the outer diameter of the shaft 15 and in consideration of the floating height of the shaft 15. As described above, the hydrodynamic bearing device of the present invention can be changed as necessary. For example, a nozzle may be attached to a hole as the levitation injection unit 28a in the same manner as the injection units 4 and 29, or the angle of the nozzle may be changed. The position and the like are also arbitrarily designed. In addition, the pipe portion 37 of the bearing main body 2 may be configured by the through hole itself formed in the bearing main body, that is, may not be the dedicated pipes 37a and 37b.
[0015]
(Application Example) Here, in order to clarify the mode of using the hydrodynamic bearing device of FIG. 1 described above, that is, the usefulness when actually implemented as a bearing element of a rotating body, a hydraulic machine, a processing vessel, and the like are configured. An example will be described in which the rotating body 1 is supported in oil. In this example, the rotating body 1 has shaft portions 15 on both sides and is supported by a bearing assembly 5 that is provided in a housing 20 and is a unit of the bearing main body 2. It floats and rotates while being immersed in S.
[0016]
Among these, the rotating body 1 has a substantially cylindrical shape whose periphery 10 is capable of taking in and out devices and solutions and the like, and is provided on both side surfaces 11 and protrudes outside the center of the end face. The same) 15 and fluid receiving portions 17 provided on the outer end surfaces of both side surfaces 11. The fluid receiving portion 17 is entirely designed in a water wheel shape, is provided concentrically with the shaft 15 with respect to the outer end surface, and has a plurality of blades 18 on the outer periphery of the trunk portion which is considerably larger in diameter than the shaft 15. I have. Each of the blades 18 has a long gear shape as a whole. The point is that the blade 18 may have any shape so that when the blade 18 receives a fluid pressure from the outside, the blade 18 can easily receive the fluid pressure. The shaft portion 15 of the rotating body 1 is formed to have a length protruding outside the bearing surface 28 of the bearing body 2 so that the rotating body 1 can be set or moved by the automatic carrier, so that the rotating body 1 can be gripped by a robot hand. ing.
[0017]
The housing 20 is divided by a peripheral side wall 20a and a bottom wall 20b, and has a size such that the rotating body 1 is set with a margin with respect to a bearing assembly 5 installed therein. In this example, the upper opening is opened and closed by the lid 21 as necessary, and the fluid supply means 3 is configured as a path for circulating the oil S in the housing 20. The circulation path includes a processing unit 30, a hydraulic pressure pump 31, a valve device 32, and the like, which are connected by a piping unit 33 connected to the joint 22 on the housing 20 side. The processing unit 30 performs, for example, heating and / or filtration on the oil S taken out of the housing 20. Of course, structurally, the processing unit 30 is used to introduce oil S into the housing 20 from external equipment, or to connect a piping unit extending to the bottom 20b inside the joint 22 instead of a discharge unit (not shown). The oil S in the housing 20 may be exchangeable. The valve device 32 is interposed between the pump 31 and the bearing assembly 5 and includes a three-way valve and a control unit for adjusting the distribution flow rate thereof, although details are omitted. Thus, the fluid supply means 3 constitutes the hydrodynamic bearing device of the present invention, and also has a function of controlling the oil S in the housing 20. Then, the oil S in the housing 20 is taken out from the upstream pipe 33a and provided on the bottom wall 20b of the housing 20 and the two pipes 33c branched from the processing unit 30 and the pump 31 and the pipe 33b from the valve device 32. Through the bearing assembly 5, the fuel is returned into the housing 20 from each of the injection parts 4, 29 and 28 a described above. In terms of structure, the fluid supply means 3 may be configured exclusively for the hydrodynamic bearing device, or a necessary part such as the pump 31 may be built in the housing 20 and externally controlled.
[0018]
The bearing assembly 5 is formed into a unit corresponding to the rotating body 1 described above, and the bearing main body 2 is provided on a mounting plate 35 as a pair so that the shafts 15 on both sides can be supported. As shown in FIGS. 5 and 6, details of the mounting plate 35, the bearing body 2 mounted on the left and right sides of the mounting plate 35, a pipe portion 36 provided inside the mounting plate 35 and connected to the pipe 33c, A downstream piping section 37 is provided in each bearing body 2 and connected to the corresponding piping section 36. The installation plate 35 has a rectangular plate shape, and has a hollow piping portion, in which each piping portion 36 is disposed. The installation plate 35 is provided with a mounting hole corresponding to the bearing body 2 on both sides, a communication hole for communicating the pipe portion 36 to the bearing body 2 side, a mounting hole 35a for fixing the bottom wall 20b of the housing 20 with a screw or the like. ing. Reference numeral 34 in FIG. 5 denotes a joint that connects the pipe sections 36 corresponding to the pipes 33c. The joint 34 is schematically illustrated, but may be attached to, for example, a side surface or a bottom surface of the installation plate 35.
[0019]
(Operation) In the above structure, after the oil S in the housing 20 is appropriately processed in the processing unit 30, the oil is branched in two directions by the valve device 32 from the pump 31 through the pipe 33b, and the installation plate 35 is connected to each pipe 33c. At a designed flow rate and hydraulic pressure to two pipe sections 36 piped in the pipe. Then, after the oil S is pressure-fed from one of the pipe portions 36 to the pipe portion 37a of the holder 25 and the hollow portion 27b of the bearing 27, a part of the oil S is jetted upward from the jetting portion 28a, and a portion is jetted out of the jetting portion 29. (Nozzle 29a) is injected in a substantially horizontal direction. At the same time, the oil S is injected obliquely upward from the injection part 4 (nozzle 4a) from the pipe part 37b of the holder 25 from the other pipe part 36. In the above structure, all the oil S taken out of the housing 20 is injected from the injection units 28a, 29, and 4. However, depending on the design used, the excess liquid portion of the oil S taken out of the housing 20 is directly returned to the housing 20.
[0020]
As the fluid bearing structure, when the rotating body 1 is held by the bearing bodies 2 on both sides, a force for pushing up the shaft 15 onto the bearing surface 28 by the jet flow or liquid pressure of the oil S injected from the injection portion 28a. Act as The rotating body 1 floats from the bearing surface 28 of the bearing body 2 and is brought into a non-contact state, so that there is no contact force with the bearing surface 28. This is a floating mode belonging to the hydrostatic bearing system, and when the rotating body 1 is rotated, the frictional force with respect to the bearing surface 28 is lost and the risk of generation of impurities easily generated in the shaft holding portion can be eliminated. At the same time, the rotating body 1 starts rotating by a jet flow or a liquid pressure which is jetted from the (nozzle 4 a) of the jetting unit 4 toward the corresponding blade 18 of the fluid receiving unit 17. Since the rotation of the rotator 1 is in a floating state, the rotator 1 is rotated even by a weak force as the injection force of the injection unit 4, and the rotation speed is also variable by controlling the injection force. This is an advantage of the hydrodynamic bearing. In this structure, the rotary power source can be performed by the existing pump 31, and there is no risk of impurity contamination as compared with the mechanical type. When replacing the rotating body 1, for example, the passage to the pipe portion 37a via the valve device 32 is closed to stop the injection from the injection unit 4 or the like. Then, the rotating body 1 lands on the bearing surface 28 by its own weight. In this structure, since the bearing 27 is rotatable with respect to the holder 25 and the holding member 26, when the rotating body 1 lands after floating, the bearing 27 changes its direction as necessary to move the corresponding shaft 15 to the bearing surface. At 28, it can be reliably received. At the same time, in this structure, in the above-described floating and rotating process of the rotating body 1, the rotating body 1 is caused by the jet flow or the liquid pressure of the oil S injected from each of the injection portions 29 (nozzles 29 a) of the dual-bearing main body 2. Centering adjustment is performed between the two bearing bodies 2. This is because, for example, when the rotating body 1 moves horizontally or in the axial direction of the shaft 15 in a floating state, the side surface 11 (the fluid receiving portion 17 in this example) of the rotating body 1 may collide with the corresponding bearing body 6, There is a possibility that impurities may be generated due to this. However, in this structure, all such fears can be eliminated by the above-described centering adjustment by the fluid pressure instead of the conventional structure for preventing slippage or lateral displacement.
[0021]
Note that the present invention is not limited at all by the above-described embodiment. The hydrodynamic bearing device of the present invention only needs to satisfy the requirements specified in claim 1, and can be changed as necessary with reference to the above embodiment. For example, the material of each member is appropriately selected according to the target fluid, the constituent members and the shape of the bearing main body are changed, and the rotating body may be anything.
[0022]
【The invention's effect】
As described above, the hydrodynamic bearing device of the present invention has the risk of dust generation due to the retaining and side-slip prevention structures mentioned above without impairing the advantages of the hydrodynamic bearing, and the seizure during low-speed rotation and stoppage. The phenomenon and the danger of dust generation due to the phenomenon can be surely eliminated, and a component having few constituent members and having excellent simplicity, low cost, and excellent maintainability can be provided. Accordingly, the present invention expands the application opportunities and application fields of the fluid bearing, for example, when a rotating body constituting a hydraulic machine or the like is continuously supported in a liquid for a long time, various reactions and dispersions are performed at a temperature. This is useful when, for example, supporting a rotating body performed in a stable liquid.
[Brief description of the drawings]
FIG. 1 is a principle diagram showing a relationship between a hydrodynamic bearing device of the present invention and a shaft.
FIG. 2 is a diagram showing an example in which the device of FIG. 1 is modified.
FIG. 3 is a schematic sectional view showing an application example of the hydrodynamic bearing device.
FIG. 4 is a schematic sectional view in the application example.
FIG. 5 is a schematic external view showing an assembly of a bearing main body in the application example.
FIG. 6 is a schematic longitudinal sectional view showing a main part of the assembly of FIG. 4;
[Explanation of symbols]
1. Rotating body (15 is a shaft, 17 is a fluid receiving part, 18 is a blade)
2 ... Bearing body (25 is a holder, 27 is a bearing)
3. Fluid supply means (31 is a pump, 32 is a valve device, 33 and 37 are piping sections)
4 Housing 7 Floating injection unit (fluid supply means)
8: Side-shift prevention injection unit (fluid supply means)
9 ... Rotating injection unit (fluid supply means)
33a, 33b, 33c: Piping 37a, 37b: Piping S: Oil (fluid)

Claims (7)

回転体の軸が軸受本体の軸受面に支持されると共に、流体供給手段から前記軸受面と前記軸との間に供給される流体により非接触状態で支持されるようにする流体軸受装置において、
前記回転体の軸線上に交差する側面と対向して設けられ、かつ前記流体供給手段に接続されている横ずれ防止用噴射部を有し、前記流体供給手段から供給される流体を前記噴射部より噴射して、前記軸受本体と前記回転体との間の距離を保つことを特徴とする流体軸受装置。
A fluid bearing device in which a shaft of a rotating body is supported by a bearing surface of a bearing body and is supported in a non-contact state by a fluid supplied between the bearing surface and the shaft from a fluid supply unit.
A side-shift preventing ejection unit provided opposite to a side surface intersecting on the axis of the rotating body and connected to the fluid supply unit, and supplying a fluid supplied from the fluid supply unit from the ejection unit. A fluid bearing device, which injects and maintains a distance between the bearing main body and the rotating body.
前記回転体がハウジングに収容された流体中で回転され、前記流体供給手段が前記ハウジング内の流体を直接又は前記ハウジング外へ一旦取り出してから前記噴射部へ供給する請求項1に記載の流体軸受装置。2. The fluid bearing according to claim 1, wherein the rotating body is rotated in a fluid accommodated in a housing, and the fluid supply unit supplies the fluid in the housing to the ejection unit directly or once after taking the fluid out of the housing. 3. apparatus. 前記横ずれ防止用噴射部が前記軸受本体に設けられている請求項1又は2に記載の流体軸受装置。3. The hydrodynamic bearing device according to claim 1, wherein the lateral displacement prevention injection unit is provided on the bearing main body. 4. 前記流体供給手段に接続されている回転用噴射部を有し、前記流体供給手段から供給される流体を前記噴射部より前記回転体又は前記軸へ噴射して回転体を回転する請求項1から3の何れかに記載の流体軸受装置。2. The apparatus according to claim 1, further comprising: a rotating ejection unit connected to the fluid supply unit, wherein the fluid supplied from the fluid supply unit is ejected from the ejection unit to the rotating body or the shaft to rotate the rotating body. 3. 4. The hydrodynamic bearing device according to any one of the above items 3. 前記回転用噴射部が前記軸受本体に設けられ、前記流体を前記回転体の側面に突設された流体受部へ向けて噴射する請求項4に記載の流体軸受装置。The fluid bearing device according to claim 4, wherein the rotation ejection unit is provided on the bearing main body, and ejects the fluid toward a fluid receiving unit protruding from a side surface of the rotating body. 前記軸受本体が、前記ハウジング内の底部又は該ハウジング内に設けられる設置板に取り付けられる保持具と、軸受面を形成して前記保持具に対し回転自在に取り付けられている軸受とからなる請求項2から5の何れかに記載の流体軸受装置。The said bearing main body consists of the holding | maintenance attached to the bottom part in the said housing or the installation board provided in the said housing, and the bearing which forms a bearing surface and is rotatably attached with respect to the said holding | maintenance. 6. The hydrodynamic bearing device according to any one of 2 to 5. 前記軸受本体が、前記流体供給手段を構成している流体供給用配管部と前記噴射部等とを接続する中継用配管部を有している請求項1から6の何れかに記載の流体軸受装置。The fluid bearing according to any one of claims 1 to 6, wherein the bearing main body includes a relay piping portion that connects the fluid supply piping portion and the injection portion or the like that constitute the fluid supply unit. apparatus.
JP2003047152A 2003-02-25 2003-02-25 Fluid bearing device Pending JP2004257441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003047152A JP2004257441A (en) 2003-02-25 2003-02-25 Fluid bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003047152A JP2004257441A (en) 2003-02-25 2003-02-25 Fluid bearing device

Publications (1)

Publication Number Publication Date
JP2004257441A true JP2004257441A (en) 2004-09-16

Family

ID=33113473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003047152A Pending JP2004257441A (en) 2003-02-25 2003-02-25 Fluid bearing device

Country Status (1)

Country Link
JP (1) JP2004257441A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194055A (en) * 2016-04-18 2017-10-26 ゼネラル・エレクトリック・カンパニイ Oil-free gas turbine engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194055A (en) * 2016-04-18 2017-10-26 ゼネラル・エレクトリック・カンパニイ Oil-free gas turbine engine

Similar Documents

Publication Publication Date Title
JP2012072851A (en) Lubricating device for rolling bearing
JP2010116956A (en) Journal bearing
JP2016016382A (en) Defoaming device, discharge device and defoaming method
KR20190142866A (en) Centrifugal filter
JP2004257441A (en) Fluid bearing device
JP4422535B2 (en) Lubrication device for bearing position of rotating shaft
JP2000240771A (en) Planetary transmission mechanism
JPWO2008072403A1 (en) Non-contact liquid sealing apparatus and method
JP5018334B2 (en) Rolling bearing device
EP2826566A1 (en) Use of a foil bearing in a rotary atomizer, method of spray drying, and rotary atomizer for a spray drying apparatus
JPH0957573A (en) Liquid turbine incorporated tool holder and liquid circulation method used for the holder
US2621086A (en) Hydrostatically lubricated spherical bearing
US3684333A (en) Hydrostatic bearings
JP2005090713A (en) Bearing device
JPH09177797A (en) Shaft box structure
JPH0810734A (en) Three-dimensional nozzle device
US5525751A (en) System for moving a submerged web
KR101690420B1 (en) Mixed bearing device and driving method thereof
JP4045291B2 (en) Rolling bearing device
CN112011935B (en) Cloth lifting method and cloth lifting wheel using same
JP4169401B2 (en) Flat lapping / polishing machine
CN213267097U (en) Active and double passive cloth lifting wheel
JPH10339319A (en) Bearing device
KR20190074488A (en) Apparatus for removing a bubble formed in degreasing tank
JP2000120710A (en) Lubricating nozzle for high-speed rolling bearing

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20051215

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

A131 Notification of reasons for refusal

Effective date: 20090731

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20091204

Free format text: JAPANESE INTERMEDIATE CODE: A02