JP2004256773A - Thermal decomposition apparatus of plastic and method for thermally decomposing the same - Google Patents

Thermal decomposition apparatus of plastic and method for thermally decomposing the same Download PDF

Info

Publication number
JP2004256773A
JP2004256773A JP2003052083A JP2003052083A JP2004256773A JP 2004256773 A JP2004256773 A JP 2004256773A JP 2003052083 A JP2003052083 A JP 2003052083A JP 2003052083 A JP2003052083 A JP 2003052083A JP 2004256773 A JP2004256773 A JP 2004256773A
Authority
JP
Japan
Prior art keywords
residue
pyrolyzer
decomposition
transfer means
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003052083A
Other languages
Japanese (ja)
Inventor
Takashi Kamiyama
隆 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Plant Systems and Services Corp filed Critical Toshiba Plant Systems and Services Corp
Priority to JP2003052083A priority Critical patent/JP2004256773A/en
Publication of JP2004256773A publication Critical patent/JP2004256773A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

<P>PROBLEM TO BE SOLVED: To simplify a constitution of a transporting means of decomposition residue staying in a tubular type thermal decomposer to a discharging part side for reducing operational cost. <P>SOLUTION: This thermal decomposition apparatus is provided by installing a freely rotating thin and long screw type residue-transporting means 4 at the inside of the tubular thermal decomposer. Since the residue-transporting means 4 is driven and rotated by movement power caused by molten plastic moving in the thermal decomposer 2, and transports the decomposition residue to the discharging part side 6 by the rotation of the screw blade 19, there is no need to install a specific driving means. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は廃プラスチック等のプラスチックを熱分解して燃料や化学原料等の資源として回収するための熱分解装置および熱分解方法に関する。
【0002】
【従来の技術】
従来から、工場や一般家庭から廃棄物として排出されるプラスチック類(以下、廃プラスチックという)は酸素不存在下に熱分解され、資源として有用な燃料油やモノマー等の化学原料として回収しリサイクルしている。廃プラスチックには熱分解に適したものと、熱分解が比較的困難なものがある。
【0003】
熱分解に適した廃プラスチックとしては、ポリエチレン等のオレフィン系プラスチック、或いはポリスチレン、スチレンーブタジ共重合体(SB樹脂)、スチレンーアクリルーブタジエン共重合体(ABS樹脂)などのスチレン系のプラスチック等があり、熱分解が比較的困難な廃プラスチックとしては、PVC、PETおよびエポキシ樹脂のような熱硬化樹脂等がある。そこで従来から、収集した廃プラスチックから熱分解に適したものだけを選別したもの、或いはそれに脱塩化水素処理したPVCなどを混合したものを原料プラスチックとして熱分解装置に供給している。
【0004】
一方、熱分解装置を構成する熱分解器には槽型と管型が存在する。槽型の熱分解器は比較的内容積の大きな槽内にプラスチックを投入し、所定時間攪拌しながら熱分解するものである。槽型の熱分解器は反応が遅いので大量のプラスチックをバッチ的に熱分解するのに適しているが、1バッチごとに昇温操作と冷却操作を繰り返すので、その熱効率は比較的低い。
【0005】
これに対して管型の熱分解器は比較的内容積の小さい細長い管により熱分解を行うものである。このような管型の熱分解器は反応が速いの、少量のプラスチックを連続的に熱分解するのに適している。連続的な熱分解を行う場合にはバッチ式の場合のように昇温操作と冷却操作を繰り返す必要がないので、その熱効率は比較的高くなる。そこで近年、管型の熱分解器が特に注目されている。
【0006】
管型の熱分解器を用いてプラスチックを連続的に熱分解する場合において、一方の端部に設けた入口部から供給される溶融プラスチックは、熱分解器の内部を移動する間に酸素不存在下に周囲から加熱されて次第に熱分解し、他方の端部に設けた排出部から生成した分解ガスと分解残渣が排出する。しかし熱分解を長時間継続すると、管型の熱分解器の内部に排出しきれない分解残渣が次第に滞留する。また熱分解器の内壁面に炭化物によるコーキングなどが次第に付着し、最悪の場合には熱分解器の閉塞事故を起こすこともある。そこで管型の熱交換器にはこの残渣等を排出する手段が必須になる。
【0007】
管型の熱分解器内に滞留する分解残渣等を排出する手段として、その内部にスクリュ式の残渣移送手段を設けたものが知られている。この残渣排出手段は細長い軸と、その軸の外周部に設けた螺旋状のスクリュ羽根有し、その軸を管型の熱分解器の軸方向に沿って配置し、軸の一方を管型の熱分解器から外側に延長してモータ等の駆動手段に連結することにより構成される。
【0008】
そして熱分解に際して駆動手段で残渣排出手段の軸を回転駆動することにより、スクリュ羽根が管型の熱分解器のその内壁に付着したコーキング等を掻き取ると共に、掻き取ったコーキング物質と内部に滞留する分解残渣を排出部側に移送して排出する。
【0009】
一方、管型の熱分解器の内部に特別な残渣排出手段を設けず、外部からの清掃のみにより分解残渣等を排出する方法もある。すなわち熱分解操作を一次中断し、管型の熱分解器の内部に細長いブラシ等を差し込んで機械的にコーキングを掻き取り分解残渣等を排出する方法である。
【0010】
【発明が解決しようとする課題】
しかし、前者のスクリュ式の残渣排出手段を用いて熱分解運転中に分解残渣を移出する方法では、高粘度の溶融プラスチックをスクリュ羽根で攪拌しているので、高出力の駆動手段を必要とし、それに応じて電力消費量も大きくなるという問題がある。さらにスクリュ羽根を設けた軸を管型の熱分解器に貫通して外部へ延長する必要があるので、その貫通部分の高温シール機構が必要になる。
【0011】
一方、後者のブラシ等による分解残渣等の排出方法では、分解残渣排出操作ごとに熱分解を一次中断する必要があるので、熱分解効率が低下するという問題がある。また手作業になるため排出に手間と時間がかかるという問題もある。
そこで本発明はこれら従来の分解残渣等の排出における問題を解決することを課題とし、そのための新しい熱分解装置および熱分解方法の提供を目的とする。
【0012】
【課題を解決するための手段】
前記課題を解決する本発明に係る熱分解装置は、管型の熱分解器における一方の端部に設けた入口部から溶融プラスチックを加圧供給し、他方の端部に設けた排出部から分解ガスおよび分解残渣を排出するように構成した熱分解装置である。そして本装置は、自由回転する細長いスクリュ式の残渣移送手段を前記熱分解器の内部に沿って延長し、該残渣移送手段は熱分解器内を移動する溶融プラスチックにより回転駆動されて分解残渣を排出部側に移送するように構成されていることを特徴とする(請求項1)。
【0013】
上記熱分解装置において、前記管型の熱分解器の排出部に残渣を回収する残渣回収部を連結し、前記残渣移送手段は軸部とその外周部に設けたスクリュ羽根を有し、軸の下流側の端部のみを軸受部21で回転自在に支持することができる(請求項2)。
【0014】
また、課題を解決する本発明に係る熱分解方法は、管型の熱分解器における一方の端部に設けた入口部から溶融プラスチックを加圧供給し、他方の端部に設けた排出部から分解ガスおよび分解残渣を排出する熱分解方法である。そして本方法は、自由回転する細長いスクリュ式の残渣移送手段を前記熱分解器の内部に沿って設けておき、前記熱分解器内を移動する溶融プラスチックにより残渣移送手段を回転駆動して分解残渣を排出部側に移送することを特徴とする(請求項3)。
【0015】
上記熱分解方法において、前記プラスチックとしてポリスチレン系樹脂を使用し、その熱分解加熱温度を400〜800℃、熱分解圧力を2〜10kPaの減圧状態とすることができる(請求項4)。
【0016】
【発明の実施の形態】
次に本発明の実施の形態を図面により説明する。図1は本発明に係る熱分解装置のプロセスフロー図である。熱分解装置1は細長い管型の熱分解器2(以下、単に熱分解器2という)と、熱分解器2の周囲を覆う細長い加熱部3と、熱分解器2の内部に沿って設けた自由回転する細長いスクリュ式の残渣移送手段4を備えている。
【0017】
熱交換器2の一方の端部に入口部5が設けられ、他方の端部に排出部6が設けられる。入口部5は配管aを介して溶融プラスチックの供給装置7に接続され、排出部6は分解残渣を回収する残渣回収部8に連結される。この残渣回収部8の断面図は熱分解器2より大きく構成される。そして残渣回収部8の上部が配管bを介して凝縮器9に接続され、下部は開閉弁10を設けた配管cを介して図示しない残渣回収容器等に接続される。なお配管a、配管cは外側に断熱層を被覆することが望ましい。
【0018】
熱分解器2は高い伝熱性および耐熱性を有するステンレス系の金属管を直線状に加工して加熱部3内に配置され、通常、その内径は50〜300mm程度、長さは1〜10m程度とされるが、それら範囲に限らず、処理容量等により最適な範囲を選択することができる。熱分解器2の周囲を覆う加熱部3は、耐熱性および断熱性を有する材料で構築された周壁を有する加熱室11を備え、その加熱室11には図示しない加熱ガス発生装置から供給される加熱ガスの入口部12と、熱分解器2と熱交換した後の加熱ガスを排出する排出部13が設けられる。なお加熱ガス発生装置は重油や後述する凝縮器9から流出する揮発成分を燃料とするバーナを備え、発生する高温の燃焼ガスを加熱ガスとして加熱部3に供給する。
【0019】
供給装置7は一般にプラスチックの成型分野で使用されるプラスチック溶融押出機を転用することができる。そして供給装置7は廃プラスチック等のプラスチックを細かく破砕したプラスチック片を溶融部15に供給するホッパ14と、ホッパ14から供給されるプラスチック片を加熱して溶融する溶融部15と、駆動モータおよび減速機からなる駆動部15aと、駆動部15aにより溶融部15内のプラスチックを下流側に移動し、それを配管aに押し出す押出部16を備えている。
【0020】
残渣回収部8は密閉型の槽形状に構成され、その上部に設けた開口部に配管bが接続され、その配管bの先端部には凝縮器9が接続され、その凝縮器9は熱分解器2から残渣回収部8を経て流出する分解ガスを冷却し、比較的沸点の高いスチレン等の分解モノマーを含む成分を油分として凝縮して配管dから図示しない蒸留塔などに供給し、比較的沸点の低い水素、エチレン等のガス成分として配管eからガス処理装置へ移送する。なお配管eには真空ポンプ等の減圧手段17が所望により設けられるが、この減圧手段17を運転することにより、凝縮器9および熱分解器2の内部を減圧状態とすることができる。
【0021】
次に本発明の特徴部分である残渣移送手段4について説明する。残渣移送手段4は熱分解器2の内壁に付着したコーキング等を除去し、その除去したコーキング物と共に滞留する分解残渣を排出部6側に移送するものである。この残渣移送手段4は細長い軸18と、その軸18の外周部に沿って設けた螺旋状のスクリュ羽根19と、その軸18の下流側端部のみの残渣回収部8の内側に設けた軸受部21を備えている。そして軸18の先端は軸支されず先端がテーパに形成されている。
【0022】
即ち、図2は軸18の先端部の拡大図であり、図3はその後端部の軸受部の拡大図である。図1および図2に示すように、軸18の回りを均一に流通し軸18を熱分解器2の軸線上に位置させる。
軸18の下流端は軸受21により支持され、軸18に加わる軸方向加重を支持する。
【0023】
残渣移送手段4は、加圧状態で供給され熱分解器2内を移動する溶融プラスチックの移動力もしくは圧送力により自動的に回転駆動され、そのスクリュ羽根19の押出し作用で残渣を排出部6側に移送するものである。そのため十分な回転駆動力が得られるようにスクリュ羽根の面積、形状および螺旋方向が決定される。
【0024】
次に上記熱分解装置1によりプラスチックを熱分解する方法を説明する。先ず減圧手段17を運転して凝縮器9および熱分解器2を減圧状態にすると共に、加熱部3により熱分解器2を周囲から加熱して所望の熱分解温度まで昇温する。熱分解を減圧状態で行うことにより、モノマー回収する場合の副生物発生を抑制でき、熱分解温度が高いほど熱分解効率が高くなる。
【0025】
例えばスチレン系のプラスチックを熱分解する場合、熱分解器2の内圧を2〜10kPa程度、熱分解加熱温度を400〜800℃程度とすることが望ましい。なお熱分解温度を高くすると、それ応じて分解残渣やコーキング付着量も多くなるが、本発明による残渣移送手段4により、それらは効率よく熱分解器2から排出部6側に移送して排出できる。
【0026】
一方、供給装置7を運転して廃プラスチックを加熱溶融し、熱分解器2への溶融プラスチックの供給準備を行う。さらに熱分解器2を含む系統内に窒素等の不活性ガスを供給し、系統内を酸素不存在の状態とする。次に配管aに設けた開閉弁(図示せず)を開けて溶融プラスチックを熱分解器2の入口部5に供給する。なお溶融プラスチックの圧力は供給装置7の押出部16の吐出圧により設定できるが、溶融プラスチックの圧力が高いほど、熱分解器2内の移動速度を高めることができ、それによって残渣移送手段4の駆動力も高めることができる。
【0027】
しかし溶融プラスチックの移動速度をあまり高くすると、溶融プラスチックが熱分解器2内を通過する間に十分な熱分解時間を得ることが難しくなるので、ある範囲内に制限される。実験によれば、例えば直径100mm、長さ5mの熱分解器2でスチレン系プラスチックを熱分解する場合、前記の温度および圧力範囲において、入口部5における溶融プラスチックの圧力を1〜10Kg/cm程度に設定することにより十分な熱分解時間を確保でき、且つ、分解残渣移送手段4を1〜3rpm程度の緩やかな速度で回転させてコーキングを十分に除去し、残渣を排出部6側に効率よく移送できることが分かった。
【0028】
前記のように熱分解器2内を溶融プラスチックが移動すると、その移動力により残渣移送し4が回転駆動し、それによって熱分解器2の内壁に付着したコーキング等が除去され、分解残渣が排出部6側に移送される。その際、残渣移送手段4の軸18には移送方向側への軸方向応力が加わるが、この応力は残渣回収部8の側壁25に設けた軸受部21のスラスト軸受により受け止められる。
【0029】
残渣移送手段4により排出部6側に移送された分解残渣等は残渣回収部8内に滞留する。熱分解運転を継続すると残渣回収部8内の分解残渣等は次第に蓄積していくので、定期的に開閉弁10を開けて配管cから分解残渣等を外部に排出する。一方、熱分解によって生成した分解ガスは配管bを経て凝縮器9に流出し、そこで冷却されて比較的沸点の高いスチレン等の分解モノマーを含む成分が油分として凝縮し、配管dから図示しない蒸留塔などに供給される。また比較的沸点の低いガス成分は配管eから回収される。
【0030】
これまで説明した実施形態では、残渣移送手段4を軸19とその外側に設けたスクリュ羽根19で構成したが、場合によっては軸18を有さず、螺旋状の連続したスクリュ羽根19だけで残渣移送手段4を構成することもできる。その場合には溶融プラスチックの移動力により、残渣移送手段4の後端部が残渣回収部8の側壁25に押し付けられ、後端部に摩擦抵抗が発生する恐れがあるので、該部分から短軸を延長し、その延長部分を図3に示す軸受部21で軸支することが望ましい。
【0031】
【発明の効果】
以上のように本発明に係る熱分解装置は、自由回転する細長いスクリュ式の残渣移送手段を管型の熱分解器の内部に沿って延長し、該残渣移送手段は熱分解器内を移動する溶融プラスチックにより回転駆動して分解残渣を排出部側に移送するように構成されていることを特徴とする。
【0032】
このように構成すると、管型の熱分解器の内壁に付着するコーキング等を効率よく除去できる共に、内部に滞留する分解残渣等を効率よくその排出部側に移送できる。また、従来の残渣移送手段のように高出力の駆動手段を熱分解器の外部に設ける必要がなく、それによって装置構成の簡単化および小型化を達成でき、装置コストおよび電力等の運転コストも低下できる。さらに従来の残渣移送手段のように、スクリュ羽根の軸を管型の熱分解器に貫通して外部へ延長する必要がないので、該貫通部分の高温シール機構が不要になる。
【0033】
上記熱分解装置において、前記管型の熱分解器の排出部に残渣を回収する残渣回収部を連結し、前記残渣移送手段は軸とその外周部に設けたスクリュ羽根を有し、軸の下流側端部のみを軸受部21で回転自在に支持することができる。このように構成すると、残渣移送手段で移送した分解残渣等を一時的に貯留し、定期的にもしくは随時に、効率よく分解残渣等を外部に排出できる。また熱分解器より大きな断面を有し比較的強固に構築できる残渣回収部の側壁を利用して残渣移送手段の軸を回転自在に支持できるので、溶融プラスチックの移動によって残渣移送手段に発生する軸方向応力を容易に受けることができる。
【0034】
さらに本発明に係る熱分解方法は、自由回転する細長いスクリュ式の残渣移送手段を前記熱分解器の内部に沿って設け、熱分解器内を移動する溶融プラスチックにより残渣移送手段を回転駆動して分解残渣を排出部側に移送することを特徴とする。本方法によれば、管型の熱分解器の内壁に付着するコーキング等を効率よく除去できる共に、内部に滞留する分解残渣等を効率よくその排出部側に移送でき、さらに電力等の運転コストも低下できる。
【0035】
上記熱分解方法において、前記プラスチックとしてポリスチレン系樹脂を使用し、その熱分解加熱温度を400〜800℃、熱分解圧力を2〜10kPaとすることができる。このように構成すると高い熱分解効率が得られると共に副生物の生成を抑制でき、それに伴って増加する分解残渣等は残渣移送手段により効率よく排出部側に移送することができる。
【図面の簡単な説明】
【図1】本発明に係る熱分解装置のプロセスフロー図。
【図2】同装置の残渣移送手段の先端部の拡大図。
【図3】同装置の後端の軸受部の拡大図。
【符号の説明】
1 熱分解装置
2 熱分解器
3 加熱部
4 残渣移送手段
5 入口部
6 排出部
7 供給装置
8 残渣回収部
9 凝縮器
10 開閉弁
11 加熱室
12 入口部
13 排出部
14 ホッパ
15 溶融部
15a 駆動部
16 押出部
17 減圧手段
18 軸
19 スクリュ羽根
21 軸受部
22 フランジ
23 相フランジ
25 側壁
a〜e 配管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pyrolysis apparatus and a pyrolysis method for pyrolyzing plastics such as waste plastics and recovering them as resources such as fuels and chemical raw materials.
[0002]
[Prior art]
Conventionally, plastics discharged as waste from factories and households (hereinafter referred to as waste plastics) are thermally decomposed in the absence of oxygen, and recovered and recycled as useful fuel resources and chemical raw materials such as monomers. ing. Some waste plastics are suitable for pyrolysis and others are relatively difficult to pyrolyze.
[0003]
Examples of waste plastics suitable for thermal decomposition include olefin-based plastics such as polyethylene, and styrene-based plastics such as polystyrene, styrene-butadiene copolymer (SB resin), and styrene-acryl-butadiene copolymer (ABS resin). Waste plastics that are relatively difficult to thermally decompose include thermosetting resins such as PVC, PET and epoxy resins. In view of the above, conventionally, only those suitable for thermal decomposition are selected from collected waste plastics, or those obtained by mixing dehydrochlorinated PVC and the like are supplied to a pyrolysis apparatus as raw material plastics.
[0004]
On the other hand, there are a tank type and a tube type in the pyrolyzer constituting the pyrolysis apparatus. The tank-type pyrolyzer is a device in which plastic is put into a tank having a relatively large internal volume and is thermally decomposed while stirring for a predetermined time. A tank-type pyrolyzer is suitable for pyrolyzing a large amount of plastic in a batch because the reaction is slow, but the thermal efficiency is relatively low because the heating and cooling operations are repeated for each batch.
[0005]
On the other hand, a tube-type pyrolyzer performs a pyrolysis using an elongated tube having a relatively small internal volume. Such a tubular pyrolyzer has a fast reaction and is suitable for continuously pyrolyzing a small amount of plastic. When performing continuous thermal decomposition, there is no need to repeat the temperature raising operation and the cooling operation as in the case of the batch type, so that the thermal efficiency is relatively high. Therefore, in recent years, a tube-type pyrolyzer has received particular attention.
[0006]
In the case where plastic is continuously pyrolyzed using a tubular pyrolyzer, the molten plastic supplied from the inlet provided at one end is free from oxygen while moving inside the pyrolyzer. It is heated from below and gradually decomposes gradually, and the generated decomposition gas and decomposition residue are discharged from the discharge portion provided at the other end. However, if the thermal decomposition is continued for a long time, the decomposition residue that cannot be completely discharged will gradually accumulate in the tubular pyrolyzer. In addition, caulking due to carbides and the like gradually adheres to the inner wall surface of the pyrolyzer, and in the worst case, the pyrolyzer may be blocked. Therefore, a means for discharging the residue or the like is indispensable for the tubular heat exchanger.
[0007]
2. Description of the Related Art As a means for discharging decomposition residues and the like remaining in a tubular pyrolyzer, a means in which a screw-type residue transfer means is provided therein is known. This residue discharging means has an elongated shaft and a helical screw blade provided on the outer periphery of the shaft, and the shaft is arranged along the axial direction of the tubular pyrolyzer, and one of the shafts is formed in a tubular shape. It is constructed by extending outward from the pyrolyzer and connecting to driving means such as a motor.
[0008]
By rotating the shaft of the residue discharging means by the driving means during the pyrolysis, the screw blade scrapes off the caulk or the like attached to the inner wall of the tubular pyrolyzer and stays inside the scraped caulking substance. The decomposed residue is transferred to the discharge section and discharged.
[0009]
On the other hand, there is a method in which no special residue discharging means is provided inside the tubular pyrolyzer, and the decomposition residue and the like are discharged only by cleaning from the outside. That is, the thermal decomposition operation is temporarily interrupted, and a slender brush or the like is inserted into a tubular pyrolyzer to mechanically scrape coking to discharge decomposition residues and the like.
[0010]
[Problems to be solved by the invention]
However, in the former method of transferring the decomposition residue during the pyrolysis operation using the screw-type residue discharging means, a high-viscosity molten plastic is agitated by the screw blade, so a high-output driving means is required, There is a problem that the power consumption increases accordingly. Further, since it is necessary to extend the shaft provided with the screw blades through the tubular pyrolyzer and extend it to the outside, a high-temperature sealing mechanism for the penetrated portion is required.
[0011]
On the other hand, in the latter method of discharging decomposition residues using a brush or the like, there is a problem that thermal decomposition efficiency is reduced because thermal decomposition must be temporarily interrupted every time a decomposition residue discharge operation is performed. In addition, there is a problem that it takes time and effort to discharge because of manual operation.
Therefore, an object of the present invention is to solve the problems of the conventional discharge of decomposition residues and the like, and an object of the present invention is to provide a new thermal decomposition apparatus and a new thermal decomposition method therefor.
[0012]
[Means for Solving the Problems]
A pyrolysis apparatus according to the present invention that solves the above-mentioned problem is to supply molten plastic under pressure from an inlet provided at one end of a tubular type pyrolyzer and decompose it from a discharge provided at the other end. This is a pyrolysis apparatus configured to discharge gas and decomposition residues. Then, the present apparatus extends a freely rotating elongated screw-type residue transfer means along the inside of the pyrolyzer, and the residue transfer means is driven to rotate by the molten plastic moving in the pyrolyzer to remove the decomposition residue. It is configured to be transferred to the discharge section side (claim 1).
[0013]
In the above-mentioned pyrolysis apparatus, a residue recovery unit for recovering a residue is connected to an outlet of the tubular type pyrolyzer, and the residue transfer means has a shaft and a screw blade provided on an outer periphery thereof. Only the downstream end can be rotatably supported by the bearing 21 (claim 2).
[0014]
Further, the pyrolysis method according to the present invention for solving the problems is to supply molten plastic under pressure from an inlet provided at one end of a tubular pyrolyzer, and to supply a molten plastic from an outlet provided at the other end. This is a thermal decomposition method that discharges decomposition gas and decomposition residues. The method further comprises providing a freely rotating elongated screw-type residue transfer means along the inside of the pyrolyzer, and rotating and driving the residue transfer means by the molten plastic moving in the pyrolyzer. Is transported to the discharge section side (claim 3).
[0015]
In the above pyrolysis method, a polystyrene resin is used as the plastic, and the pyrolysis heating temperature can be reduced to 400 to 800 ° C. and the pyrolysis pressure can be reduced to 2 to 10 kPa (claim 4).
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a process flow diagram of a pyrolysis apparatus according to the present invention. The thermal decomposition device 1 is provided along the inside of the thermal decomposer 2, a long and thin tube-type thermal decomposer 2 (hereinafter, simply referred to as the thermal decomposer 2), a long and thin heating section 3 surrounding the thermal decomposer 2. An elongated screw-type residue transfer means 4 which is free to rotate is provided.
[0017]
An inlet 5 is provided at one end of the heat exchanger 2, and an outlet 6 is provided at the other end. The inlet 5 is connected to a supply device 7 for molten plastic via a pipe a, and the discharge unit 6 is connected to a residue recovery unit 8 for recovering decomposition residues. The sectional view of the residue recovery unit 8 is larger than the pyrolyzer 2. The upper portion of the residue collecting section 8 is connected to the condenser 9 via a pipe b, and the lower portion is connected to a residue collecting container or the like (not shown) via a pipe c provided with an on-off valve 10. It is desirable that the pipes a and c be coated with a heat insulating layer on the outside.
[0018]
The pyrolyzer 2 is disposed in the heating part 3 by processing a stainless steel metal tube having high heat conductivity and heat resistance into a straight line, and usually has an inner diameter of about 50 to 300 mm and a length of about 1 to 10 m. However, the present invention is not limited to these ranges, and an optimum range can be selected according to the processing capacity and the like. The heating unit 3 that covers the periphery of the pyrolyzer 2 includes a heating chamber 11 having a peripheral wall made of a material having heat resistance and heat insulation, and the heating chamber 11 is supplied from a heating gas generator (not shown). An inlet 12 for the heated gas and an outlet 13 for discharging the heated gas after heat exchange with the pyrolyzer 2 are provided. The heating gas generator includes a burner that uses fuel oil or volatile components flowing out of a condenser 9 described later as fuel, and supplies the generated high-temperature combustion gas to the heating unit 3 as a heating gas.
[0019]
The feeding device 7 can be diverted from a plastic melt extruder generally used in the plastic molding field. The supply device 7 includes a hopper 14 that supplies a plastic piece obtained by finely crushing plastic such as waste plastic to the melting section 15, a melting section 15 that heats and melts the plastic piece supplied from the hopper 14, a driving motor, and a deceleration. A driving unit 15a formed of a machine and an extruding unit 16 for moving the plastic in the melting unit 15 downstream by the driving unit 15a and extruding the plastic into the pipe a are provided.
[0020]
The residue collecting section 8 is configured in a closed tank shape, and a pipe b is connected to an opening provided at an upper portion thereof, and a condenser 9 is connected to a tip end of the pipe b, and the condenser 9 is thermally decomposed. The decomposed gas flowing out of the vessel 2 through the residue recovery unit 8 is cooled, a component containing a decomposed monomer such as styrene having a relatively high boiling point is condensed as an oil, and supplied to a distillation column (not shown) from a pipe d. It is transferred as a gas component such as hydrogen and ethylene having a low boiling point from a pipe e to a gas treatment device. The pipe e is provided with a pressure reducing means 17 such as a vacuum pump as required. By operating the pressure reducing means 17, the inside of the condenser 9 and the inside of the pyrolyzer 2 can be reduced in pressure.
[0021]
Next, the residue transfer means 4 which is a feature of the present invention will be described. The residue transfer means 4 is for removing coking and the like adhering to the inner wall of the thermal decomposer 2 and transferring the decomposition residue staying together with the removed coking matter to the discharge section 6 side. The residue transfer means 4 includes an elongated shaft 18, a helical screw blade 19 provided along the outer periphery of the shaft 18, and a bearing provided inside the residue recovery unit 8 at only the downstream end of the shaft 18. A section 21 is provided. The tip of the shaft 18 is not supported, and the tip is tapered.
[0022]
That is, FIG. 2 is an enlarged view of a front end portion of the shaft 18, and FIG. 3 is an enlarged view of a bearing portion at a rear end portion. As shown in FIG. 1 and FIG. 2, the fluid flows uniformly around the shaft 18 and the shaft 18 is positioned on the axis of the pyrolyzer 2.
The downstream end of the shaft 18 is supported by a bearing 21 and supports an axial load applied to the shaft 18.
[0023]
The residue transfer means 4 is automatically rotated and driven by the moving force or the pressure feeding force of the molten plastic which is supplied in the pressurized state and moves in the pyrolyzer 2, and the residue is discharged by the pushing action of the screw blade 19. Is to be transferred to Therefore, the area, shape, and spiral direction of the screw blade are determined so that a sufficient rotational driving force can be obtained.
[0024]
Next, a method of thermally decomposing plastic by the above-mentioned thermal decomposition apparatus 1 will be described. First, the pressure reducing means 17 is operated to put the condenser 9 and the thermal decomposer 2 into a reduced pressure state, and the heating unit 3 heats the thermal decomposer 2 from the surroundings to raise the temperature to a desired thermal decomposition temperature. By performing the thermal decomposition under reduced pressure, the generation of by-products when recovering the monomer can be suppressed, and the higher the thermal decomposition temperature, the higher the thermal decomposition efficiency.
[0025]
For example, when thermally decomposing a styrene-based plastic, it is desirable that the internal pressure of the pyrolyzer 2 be about 2 to 10 kPa and the pyrolysis heating temperature be about 400 to 800 ° C. In addition, if the pyrolysis temperature is increased, the decomposition residue and the amount of adhering caulk increase accordingly, but they can be efficiently transferred from the pyrolyzer 2 to the discharge section 6 and discharged by the residue transfer means 4 according to the present invention. .
[0026]
On the other hand, the supply device 7 is operated to heat and melt the waste plastic, thereby preparing to supply the molten plastic to the pyrolyzer 2. Further, an inert gas such as nitrogen is supplied into a system including the thermal decomposer 2 to make the system oxygen-free. Next, an on-off valve (not shown) provided in the pipe a is opened to supply the molten plastic to the inlet 5 of the pyrolyzer 2. The pressure of the molten plastic can be set by the discharge pressure of the extruding section 16 of the supply device 7, but the higher the pressure of the molten plastic, the higher the moving speed in the pyrolyzer 2 can be. The driving force can also be increased.
[0027]
However, if the moving speed of the molten plastic is too high, it is difficult to obtain a sufficient pyrolysis time while the molten plastic passes through the pyrolyzer 2, so that it is limited to a certain range. According to an experiment, when the styrene-based plastic is thermally decomposed by, for example, the pyrolyzer 2 having a diameter of 100 mm and a length of 5 m, the pressure of the molten plastic at the inlet portion 5 is 1 to 10 kg / cm 2 in the above-mentioned temperature and pressure range. By setting the temperature to about 1, sufficient thermal decomposition time can be secured, and the decomposition residue transfer means 4 is rotated at a moderate speed of about 1 to 3 rpm to sufficiently remove coking, and the residue is efficiently discharged to the discharge section 6 side. It turns out that it can be transported well.
[0028]
When the molten plastic moves in the pyrolyzer 2 as described above, the moving force causes the residue to be transferred and the rotary 4 to be driven to rotate, thereby removing the coking and the like adhering to the inner wall of the pyrolyzer 2 and discharging the decomposition residue. It is transferred to the part 6 side. At this time, an axial stress in the transfer direction is applied to the shaft 18 of the residue transfer means 4, and this stress is received by the thrust bearing of the bearing 21 provided on the side wall 25 of the residue recovery unit 8.
[0029]
Decomposed residues and the like transferred to the discharge section 6 by the residue transfer means 4 stay in the residue recovery section 8. When the thermal decomposition operation is continued, the decomposition residues and the like in the residue recovery unit 8 gradually accumulate, so that the on-off valve 10 is periodically opened to discharge the decomposition residues and the like from the pipe c to the outside. On the other hand, the cracked gas generated by the thermal decomposition flows out to the condenser 9 via the pipe b, where it is cooled and the component containing the cracked monomer such as styrene having a relatively high boiling point is condensed as an oil component, and a distillation not shown from the pipe d. It is supplied to a tower. Gas components having a relatively low boiling point are recovered from the pipe e.
[0030]
In the embodiments described so far, the residue transfer means 4 is constituted by the shaft 19 and the screw blades 19 provided on the outside thereof. However, in some cases, the residue transfer means 4 does not have the shaft 18 and is constituted only by the spiral continuous screw blades 19. The transfer means 4 can also be constituted. In this case, the rear end of the residue transfer means 4 is pressed against the side wall 25 of the residue recovery unit 8 due to the moving force of the molten plastic, and frictional resistance may be generated at the rear end. , And the extended portion is preferably supported by a bearing 21 shown in FIG.
[0031]
【The invention's effect】
As described above, in the pyrolysis apparatus according to the present invention, the elongated screw-type residue transfer means that rotates freely extends along the inside of the tubular type pyrolyzer, and the residue transfer means moves inside the pyrolyzer. It is characterized in that it is configured to be driven to rotate by molten plastic to transfer the decomposition residue to the discharge section side.
[0032]
With this configuration, coking and the like adhering to the inner wall of the tubular pyrolyzer can be efficiently removed, and the decomposition residue and the like staying inside can be efficiently transferred to the discharge side. Further, it is not necessary to provide a high-power driving means outside the pyrolyzer as in the conventional residue transfer means, whereby the apparatus configuration can be simplified and downsized, and the operating cost such as the apparatus cost and electric power can be reduced. Can be lowered. Furthermore, unlike the conventional residue transfer means, it is not necessary to penetrate the shaft of the screw blade through the tubular pyrolyzer and extend it to the outside, so that a high-temperature sealing mechanism for the penetrated portion is not required.
[0033]
In the above-mentioned pyrolysis apparatus, a residue recovery section for recovering a residue is connected to a discharge section of the tubular pyrolyzer, and the residue transfer means has a shaft and a screw blade provided on an outer peripheral portion thereof, and a downstream portion of the shaft. Only the side end can be rotatably supported by the bearing 21. With this configuration, the decomposition residue and the like transferred by the residue transfer means can be temporarily stored, and the decomposition residue and the like can be efficiently discharged to the outside periodically or as needed. In addition, since the shaft of the residue transfer means can be rotatably supported by using the side wall of the residue recovery section which has a larger cross section than the pyrolyzer and can be constructed relatively firmly, the shaft generated in the residue transfer means by the movement of the molten plastic. Directional stress can be easily received.
[0034]
Further, in the pyrolysis method according to the present invention, a slender screw-type residue transfer means that freely rotates is provided along the inside of the pyrolyzer, and the residue transfer means is rotationally driven by molten plastic moving in the pyrolyzer. The decomposition residue is transferred to the discharge section. According to this method, coking and the like adhering to the inner wall of the tubular type pyrolyzer can be efficiently removed, and decomposition residues and the like staying inside can be efficiently transferred to the discharge portion side. Can also be reduced.
[0035]
In the above pyrolysis method, a polystyrene resin is used as the plastic, the pyrolysis heating temperature can be 400 to 800 ° C., and the pyrolysis pressure can be 2 to 10 kPa. With this configuration, high thermal decomposition efficiency can be obtained, and the generation of by-products can be suppressed, and the decomposition residue and the like that increase along with the decomposition can be efficiently transferred to the discharge side by the residue transfer means.
[Brief description of the drawings]
FIG. 1 is a process flow diagram of a pyrolysis apparatus according to the present invention.
FIG. 2 is an enlarged view of a tip of a residue transfer means of the apparatus.
FIG. 3 is an enlarged view of a bearing portion at a rear end of the device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pyrolysis apparatus 2 Pyrolyzer 3 Heating part 4 Residue transfer means 5 Inlet part 6 Discharge part 7 Supply device 8 Residue recovery part 9 Condenser 10 On-off valve 11 Heating chamber 12 Inlet part 13 Discharge part 14 Hopper 15 Melting part 15a Drive Part 16 Extrusion part 17 Decompression means 18 Shaft 19 Screw blade 21 Bearing part 22 Flange 23 Companion flange 25 Side walls a to e Piping

Claims (4)

管型の熱分解器2における一方の端部に設けた入口部5から溶融プラスチックを加圧供給し、他方の端部に設けた排出部6から分解ガスおよび分解残渣を排出するように構成した熱分解装置において、
自由回転する細長いスクリュ式の残渣移送手段4が前記熱分解器2の内部に沿って延長され、該残渣移送手段4は熱分解器2内を移動する溶融プラスチックにより回転駆動されて分解残渣を排出部6側に移送するように構成されていることを特徴とするプラスチックの熱分解装置。
The tubular pyrolyzer 2 is configured so that molten plastic is supplied under pressure from an inlet 5 provided at one end of the tubular pyrolyzer 2 and a cracked gas and a cracked residue are discharged from a discharge 6 provided at the other end. In the pyrolysis equipment,
A freely rotating elongated screw-type residue transfer means 4 is extended along the inside of the pyrolyzer 2, and the residue transfer means 4 is driven to rotate by the molten plastic moving in the pyrolyzer 2 to discharge the decomposition residue. A pyrolysis apparatus for plastics, which is configured to be transported to the part 6 side.
請求項1において、前記管型の熱分解器2の排出部6に分解残渣を回収する残渣回収部8が連結され、前記残渣移送手段4は軸18とその外側に設けたスクリュ羽根19を有し、軸18の下流側端部のみが回転自在に軸受部21により支持されていることを特徴とするプラスチックの熱分解装置。The residue recovery unit 8 for recovering decomposition residues is connected to the discharge unit 6 of the tubular type pyrolyzer 2, and the residue transfer means 4 has a shaft 18 and a screw blade 19 provided outside thereof. A pyrolysis apparatus for plastics, wherein only the downstream end of the shaft 18 is rotatably supported by the bearing 21. 管型の熱分解器2における一方の端部に設けた入口部5から溶融プラスチックを加圧供給し、他方の端部に設けた排出部6から分解ガスおよび分解残渣を排出する熱分解方法において、自由回転する細長いスクリュ式の残渣移送手段4を前記熱分解器2の内部に沿って設けておき、熱分解器2内を移動する溶融プラスチックにより残渣移送手段4を回転駆動して分解残渣を排出部6側に移送することを特徴とするプラスチックの熱分解方法。In a pyrolysis method in which molten plastic is supplied under pressure from an inlet portion 5 provided at one end of a tubular pyrolyzer 2 and a decomposition gas and a decomposition residue are discharged from a discharge portion 6 provided at the other end. An elongated screw-type residue transfer means 4 which is freely rotatable is provided along the inside of the pyrolyzer 2, and the residue transfer means 4 is rotationally driven by the molten plastic moving in the pyrolyzer 2 to remove the decomposition residue. A method for thermally decomposing plastics, wherein the plastic is transferred to the discharge section 6 side. 請求項3において、前記プラスチックとしてポリスチレン系樹脂を用い、その熱分解加熱温度を400〜800℃、熱分解圧力を2〜10kPaの減圧状態としたことを特徴とするプラスチックの熱分解方法。4. The method for thermally decomposing plastic according to claim 3, wherein a polystyrene resin is used as the plastic, and the pyrolysis heating temperature is 400 to 800 [deg.] C. and the pyrolysis pressure is 2 to 10 kPa under reduced pressure.
JP2003052083A 2003-02-27 2003-02-27 Thermal decomposition apparatus of plastic and method for thermally decomposing the same Pending JP2004256773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003052083A JP2004256773A (en) 2003-02-27 2003-02-27 Thermal decomposition apparatus of plastic and method for thermally decomposing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003052083A JP2004256773A (en) 2003-02-27 2003-02-27 Thermal decomposition apparatus of plastic and method for thermally decomposing the same

Publications (1)

Publication Number Publication Date
JP2004256773A true JP2004256773A (en) 2004-09-16

Family

ID=33117029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003052083A Pending JP2004256773A (en) 2003-02-27 2003-02-27 Thermal decomposition apparatus of plastic and method for thermally decomposing the same

Country Status (1)

Country Link
JP (1) JP2004256773A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010094187A1 (en) * 2009-02-20 2010-08-26 Zhao Jianjun Catalytic cracking moving bed reactor for high-value utilizing waste tyres
DE102010050153A1 (en) * 2010-11-02 2012-05-03 Adam Handerek Reactor and method for at least partially decomposing and / or cleaning plastic material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010094187A1 (en) * 2009-02-20 2010-08-26 Zhao Jianjun Catalytic cracking moving bed reactor for high-value utilizing waste tyres
DE102010050153A1 (en) * 2010-11-02 2012-05-03 Adam Handerek Reactor and method for at least partially decomposing and / or cleaning plastic material
WO2012072061A1 (en) 2010-11-02 2012-06-07 SCHLÜTER, Hartwig Reactor and process for at least partially decomposing and/or cleaning plastic material
DE102010050153B4 (en) * 2010-11-02 2012-10-25 Adam Handerek Reactor and method for at least partially decomposing and / or cleaning plastic material

Similar Documents

Publication Publication Date Title
JP5819607B2 (en) Low pressure pyrolysis equipment and continuous oil carbonization equipment
WO2005068587A1 (en) Apparatus for restoring waste plastic to oil
CN105542830A (en) Double-spiral continuous cracking furnace
KR20090031341A (en) Process and apparatus for use in recycling composite materials
US8344036B2 (en) Method of processing silicone wastes
JPH09291290A (en) Plastic treating apparatus and apparatus for converting plastic into oil
JP2004256773A (en) Thermal decomposition apparatus of plastic and method for thermally decomposing the same
JP2004035851A (en) Liquefaction apparatus
JP2005134079A (en) Condensation method and condenser for polystyrene pyrolysis gas
JP2007204516A (en) Method and apparatus for thermal decomposition of thermosetting resin
KR100405276B1 (en) Pyrolysis reactor of waste plastics
KR100853464B1 (en) Provide device refri-genating transactin of high polymer waste
JP3808646B2 (en) Heat treatment method
WO2004020167A1 (en) Method for recycling foamed polystyrol resin
JP4278193B2 (en) Waste plastic thermal decomposition reactor
JP2004189779A (en) Cleaning method and thermal decomposition method for thermal decomposition apparatus
CN219024284U (en) Slag discharging system of reaction kettle
JP3321640B2 (en) Pyrolysis apparatus and pyrolysis method
JPH08113786A (en) Recovering apparatus for converting used foamed polystyrene to oil
JP2000117739A (en) Apparatus for melting and heat decomposing plastic
KR100754981B1 (en) Dry-distillationing equipment for scrapped plastic
JP3774831B2 (en) Plastic pyrolysis equipment
CN219689637U (en) Waste single thermal cracking system
CN210795779U (en) Graphite production furnace for producing graphite with uniform heat conduction
CN215480720U (en) Pyrolysis apparatus