JP2004256744A - Impact resistant reinforcing material, method for producing the same and high-impact reinforced polystyrene - Google Patents

Impact resistant reinforcing material, method for producing the same and high-impact reinforced polystyrene Download PDF

Info

Publication number
JP2004256744A
JP2004256744A JP2003050994A JP2003050994A JP2004256744A JP 2004256744 A JP2004256744 A JP 2004256744A JP 2003050994 A JP2003050994 A JP 2003050994A JP 2003050994 A JP2003050994 A JP 2003050994A JP 2004256744 A JP2004256744 A JP 2004256744A
Authority
JP
Japan
Prior art keywords
impact
mass
polystyrene
reinforcing material
rubbery polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003050994A
Other languages
Japanese (ja)
Other versions
JP4156403B2 (en
Inventor
Hiroyuki Fuji
廣幸 藤
Naoki Konishi
直樹 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno UMG Co Ltd
Original Assignee
UMG ABS Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UMG ABS Ltd filed Critical UMG ABS Ltd
Priority to JP2003050994A priority Critical patent/JP4156403B2/en
Publication of JP2004256744A publication Critical patent/JP2004256744A/en
Application granted granted Critical
Publication of JP4156403B2 publication Critical patent/JP4156403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an impact resistant reinforcing material giving a high-impact styrene resin having high impact strength unattainable by conventional techniques without deteriorating the properties (surface appearance, tensile strength, etc.) of a polystyrene and provide a high-impact reinforced polystyrene. <P>SOLUTION: The method for the production of the impact resistant reinforcing material comprises an impregnation step to impregnate (occlude) a monomer component containing 0-18 mass% vinyl cyanide compound and an aromatic vinyl compound in a rubbery polymer having a gel content of 40-98% and an average particle diameter of 100-550 nm and a polymerization step to perform the graft polymerization of 70-20 pts. mass of the monomer component to 30-80 pts. mass (solid basis) of the rubbery polymer in a manner to give a mass-average molecular weight of 50,000-200,000 using an oil-soluble thermally decomposable initiator having a 10-hr half-life temperature of 30-90°C. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、スチレン系樹脂の耐衝撃性補強材及びその製造方法、並びに耐衝撃性補強材で補強された耐衝撃性補強ポリスチレンに関する。
【0002】
【従来の技術】
ポリスチレンは、優れた透明性と外観を有し、且つ、引っ張り強度や剛性が高く、食品容器、文房具、雑貨等の分野で広く用いられているが、耐衝撃性が低いという欠点があった。そのため、ゴム成分で補強して耐衝撃性を改良した耐衝撃性ポリスチレンが開発され、家電製品、OA機器、機械部品など広く用いられている。
【0003】
耐衝撃性ポリスチレンとしては、その開発の初期に於いては、ポリブタジエンやスチレン・ブタジエン共重合体等のゴム状重合体とポリスチレンをブレンドする方法が提案されていた。しかし、ゴム相と樹脂相との界面の親和性が乏しく、十分な耐衝撃性が得られないという欠点があった。
そこで、現在では、未架橋のゴム状重合体をスチレンモノマーに溶解させて、そのまま重合を行う塊状重合法か、或いは予備重合を行った後に懸濁重合を行う、塊状懸濁重合法によって製造されている(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開平5−320272号公報
【0005】
【発明が解決しようとする課題】
しかしながら、ポリスチレンにゴム成分を配合した従来の耐衝撃性ポリスチレンでは、スチレンモノマーに対するゴム状重合体の溶解度が約10%程度と低い為に、ゴム含有量をこれ以上増やすことが出来ない。そのため、充分に衝撃強度の高い製品を製造することができない。また、ゴム成分をスチレンモノマーに溶解して重合する為に、生成重合体中に多量のポリスチレンを包含したゴム相が粒子となって分散する。ゴム相の中に包含されたポリスチレンは、ポリスチレンとしての特性を発揮しない上、ゴム相の粒子径が1.0〜3.0μmと大きいために、ゴム含量が少ないにも関わらず剛性がポリスチレンに比べて大幅に低下する。
【0006】
更に、銘柄を変更する為には重合処方を変更しなくてはならないが、この重合段階での銘柄変更には長時間を要し、また、そのために格外品の発生も多くなる。これらのことから自ずと銘柄の種類が限定され、種々の性能を有した銘柄のものが製造し難い状況であった。
【0007】
本発明は、上記事情に鑑みてなされたものであって、ポリスチレンの特性(表面外観、引っ張り強度等)を損なうことなく、従来技術では得られない高い衝撃強度を有する耐衝撃性スチレン系樹脂を製造することができる耐衝撃性補強材を提供することを目的とする。
また、様々な物性バランスを有する耐衝撃性補強ポリスチレンを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の耐衝撃性補強材の製造方法は、ゲル含有率が40〜98%、平均粒子径100〜550nmのゴム質重合体に、シアン化ビニル化合物0〜18質量%と芳香族ビニル化合物とを含む単量体成分を含浸(オクルード)する含浸工程と、
その後、10時間半減期温度が30〜90℃の油溶性熱分解系開始剤を用いて、質量平均分子量が50000〜200000となるように、ゴム質重合体30〜80質量部(固形分換算)に、単量体成分70〜20質量部をグラフト重合する重合工程とを有することを特徴とする。
その際、前記重合工程では、ゴム質重合体の内部に、単量体成分の重合体を内部存在率10〜60質量%の範囲で形成することが好ましい。
また、上記ゴム質重合体が、ポリブタジエン、スチレン・ブタジエン・α−オレフィン共重合体、エチレン・α−オレフィン非共役ジエン共重合体、及びアクリル系ゴムからなる群より選ばれる1種又は2種以上であることが好ましい。
本発明の耐衝撃性補強材は、上記の製造方法により得られることを特徴とする。
本発明の耐衝撃性補強ポリスチレンは、耐衝撃性補強材と、ポリスチレン及び/又は耐衝撃性ポリスチレンとを溶融混合してなることを特徴とする。
【0009】
【発明の実施の形態】
本発明の耐衝撃性補強材の製造方法は、ゴム質重合体に単量体成分を含浸する含浸工程と、その後、特定の重合開始剤を用いて、ゴム質重合体に単量体成分をグラフト重合する重合工程とを有する。
ここで使用されるゴム質重合体は、ゲル含有率が40〜98%、好ましくは50〜98%であり、平均粒子径が100〜550nm、好ましくは150〜450nmである。ゴム質重合体のゲル含有率が40%未満では、表面外観が悪化し、98%を超えると十分な耐衝撃性が得られない傾向にある。また、ゴム質重合体の平均粒子径が100nm未満では十分な耐衝撃性が得られず、550nmを超えると安定なラテックスが得られない傾向にある。なお、ゴム状重合体の粒子系の分布は単一の分布を有していてもよいし、複数の分布を有していてもよい。
【0010】
本明細書において、ゲル含有率とは、粉体状のゴム質重合体を、トルエン中にて80℃で24時間浸漬した後、200メッシュ金網で濾過し、金網上に残った不溶分の割合(%)を求め、これをゲル含有率とした。
【0011】
このようなゴム質重合体の具体例としては、ポリブタジエン、スチレン・ブタジエン共重合体、アクリロニトリル・ブタジエン共重合体、エチレン・α−オレフィン共重合体、エチレン・α−オレフィン非共役ジエン共重合体、アクリル系ゴムなどを挙げることができる。これらは単独で又は2種以上を組み合わせて用いられる。
【0012】
ゴム質重合体に含浸、グラフトされる単量体成分は、シアン化ビニル化合物と芳香族ビニル化合物とを含み、シアン化ビニル化合物の添加量は、芳香族ビニル化合物とシアン化ビニル化合物の合計量に対し、0〜18質量%、好ましくは0.1〜5質量%であり、更に好ましくは0.5〜3質量%である。シアン化ビニル化合物の割合が上記範囲を外れると十分な耐衝撃性補強効果が得られない傾向にある。
【0013】
芳香族ビニル化合物の具体例としては、スチレン、α−メチルスチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、ジメチルスチレン、t−ブチルスチレン、クロルスチレン、ジクロルスチレン、ブロムスチレン、ジブロムスチレン等が挙げられ、特に、スチレンが好ましい。これらは単独で又は2種以上を組み合わせて用いられる。
【0014】
シアン化ビニル化合物の具体例としては、アクリロニトリル、メタクリロニトリル等が挙げられ、特にアクリロ二トリルが好ましい。これらは単独で又は2種以上を組み合わせて用いられる。
さらに、単量体成分中には、本発明の目的に対して支障のない範囲で、芳香族ビニル単量体およびシアン化ビニル単量体と共重合可能な他の単量体を含有させることができる。他の単量体としては、例えばメチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、アミルアクリレート、ヘキシルアクリレート、オクチルアクリレート、2−エチルヘキシルアクリレート、シクロヘキシルアクリレート、ドデシルアクリレート、オクタデシルアクリレート、フェニルアクリレート、ベンジルアクリレートなどのアクリル酸エステル;メチルメタクレート、エチルメタクレート、プロピルメタクリレート、ブチルメタクリレート、アミルメタクリレート、ヘキシルメタクリレート、オクチルメタクリレート、2−エチルヘキシルメタクリレート、シクロヘキシルメタクリレート、ドデシルメタクリレート、オクタデシルメタクリレート、フェニルメタクリレート、ベンジルメタクリレートなどのメタクリル酸エステル;無水マレイン酸、無水イタコン酸、無水シトラコン酸などの不飽和酸無水物;アクリル酸、メタクリル酸などの不飽和酸;マレイミド、N−メチルマレイミド、N−ブチルマレイミド、N−(p−メチルフェニル)マレイミド、N−フェニルマレイミド、N−シクロヘキシルマレイミドなどのα−またはβ−不飽和ジカルボン酸のイミド化合物(マレイミド系単量体ともいう);グリシジルメタクリレート、アリルグリシジルエーテルなどのエポキシ化合物;アクリルアミド、メタクリルアミドなどの不飽和カルボン酸アミド;アクリルアミン、メタクリル酸アミノメチル、メタクリル酸アミノエチル、メタクリル酸アミノプロピル、アミノスチレンなどのアミノ基含有不飽和化合物、3−ヒドロキシ−1−プロペン、4−ヒドロキシ−1−ブテン、シス−4−ヒドロキシ−2−ブテン、トランス−4−ヒドロキシ−2−ブテン、3−ヒドロキシ−2−メチル−1−プロペン、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレートなどの水酸基含有不飽和化合物;ビニルオキサゾリンなどのオキサゾリン基含有不飽和化合物などが挙げられる。また、これらの単量体は1種または2種以上で使用される。
【0015】
含浸工程においては、ゴム質重合体の内部に単量体成分を含浸させる際に、含浸温度が40〜80℃であることが好ましく、50〜70℃であることがより好ましい。また、含浸時間については、15〜90分間であることが好ましく、30〜60分間であることがより好ましい。含浸時間、含浸温度がこの範囲から外れると、最終的に得られる熱可塑性樹脂組成物が十分な補強効果を発揮しない可能性がある。
【0016】
本発明における重合工程は、ゴム質重合体に単量体成分を含浸させた後、10時間半減期温度が30〜90℃の油溶性熱分解系開始剤を用いて、グラフト重合を行う。10時間半減期温度が30℃未満の油溶性熱分解性開始剤では、安全性上問題があり、90℃を超えるものでは十分な耐衝撃性補強効果が得られない傾向にある。更に、10時間半減期温度が上記範囲を外れると、目的とする質量平均分子量50000〜200000のグラフト共重合体を得ることが困難となる。
【0017】
油溶性熱分解系開始剤の具体例としては、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、ジ−2−エチルヘキシルパーオキシジカーボネート、ジ−イソプロピルパーオキシジカーボネイト、t−ブチルパーオキシネオデカネート、t−ブチルパーオキシピバレイト、t−ヘキシルパーオキシピバレイト、アゾイソブチルニトリル等を挙げることができ、これらを単独で又は2種以上を組み合わせて用いることができる。
【0018】
本発明の耐衝撃性補強材において、ゴム質重合体と単量体成分との割合は、ゴム質重合体30〜80質量部(固形分換算)に対し、単量体成分70〜20質量部とする。ゴム質重合体の割合が30質量部未満の場合、ゴム含有量が少なすぎて耐衝撃性補強効果を十分に得られず、他方、80質量部を超えても、十分な耐衝撃性補強効果が得られない。このような理由により、より好ましいグラフト重合割合は、ゴム質重合体40〜70質量部(固形分換算)に対し、単量体成分60〜30質量部である。
【0019】
重合工程においては、ゴム質重合体に単量体成分を含浸させた後、油溶性熱分解系開始剤を用いて、グラフト重合を行う。その重合方法としては、公知の付加重合法、例えば、乳化重合法、溶液重合法、塊状重合法、塊状懸濁重合法などの各種方法を採用できるが、特に、重合を容易に制御できることから、乳化重合法が好適である。また、上記の重合は、一段であってもよいし、多段であってもよい。
【0020】
このようにして得られる耐衝撃性補強材(グラフト重合体)は、その質量平均分子量が50000〜200000であり、より好ましくは70000〜170000である。質量平均分子量が上記範囲外の場合、衝撃強度や流動性に劣る傾向にある。
【0021】
ゴム質重合体にグラフトした単量体成分の重合体の質量平均分子量を測定するには、まず、耐衝撃性補強材をテトラヒドロフラン(以下、THFと略す)中に投入して一晩放置したものを30分間超音波洗浄器にかけて、未グラフト体を完全に溶離させた後、遠心分離機を用いて12,000rpm で1時間遠心分離してTHF不溶分(グラフト体)を得る。次いで、このTHF不溶分をクロロホルム中に分散させ、オゾン分解によりゴムを分解してグラフト鎖を回収してから蒸発乾固し、これをTHFに溶解してTHF溶液を得る。そして、このTHF溶液を試料として用い、ゲルパーミエーションクロマトグラフィ(GPC)によってスチレン換算の分子量を測定する。
【0022】
耐衝撃性補強材のゴム質重合体の内部には、単量体成分の重合体が内部存在率10〜80質量%の範囲で形成されており、20〜50質量%の範囲で形成されていることが好ましい。内部存在率が10質量%未満であると、熱可塑性樹脂組成物の耐衝撃性が向上しないことがあり、一方、80質量%を超えると、光沢が低下することがある。ここで、内部存在率とは、ゴム質重合体に対するゴム質重合体内部に位置する単量体成分の重合体量のことであり、下記式(1)で求められる値のことである。なお、ゴム質重合体の内部に位置する単量体成分の重合体は、ゴム質重合体にグラフト結合していなくてもよい。
【0023】
【数1】

Figure 2004256744
【0024】
耐衝撃性補強材のグラフト率は10〜200質量%が好ましく、20〜180質量%であることがより好ましい。グラフト率が10質量%未満であると衝撃強度が低くなることがあり、200質量%を超えると流動性、光沢が低下することがある。ここで、グラフト率とは、下記式(2)で求められる値のことである。
【0025】
【数2】
Figure 2004256744
【0026】
また、本発明の耐衝撃性補強材は、ゴム質重合体に包含されるスチレン量が、従来の耐衝撃性ポリスチレンよりも少ないので、ポリスチレンの優れた特性を発揮し、後段で説明するように、ポリスチレンと混合した際に、分散ゴム相の粒子径が比較的小さいため、従来の耐衝撃性ポリスチレンよりも、優れた表面外観を有する。
【0027】
〈耐衝撃性補強ポリスチレン〉
本発明の耐衝撃性補強ポリスチレンは、上述した耐衝撃性補強材と、ポリスチレン及び/又は耐衝撃性ポリスチレンとを任意の割合で配合し、溶融混合することにより得ることができる。通常の場合、耐衝撃性補強材10〜40質量部に対してポリスチレン及び/又は耐衝撃性ポリスチレン90〜60質量部で混合するのが好ましい。また、混合・混練する手段としては、例えば、リボンブレンダー、ヘンシェルミキサー、バンバリーミキサー等などが挙げられる。
本発明の耐衝撃性補強ポリスチレンには、必要に応じてさらに他の任意成分を配合することもできる。他の任意成分としては、例えば、脂肪族カルボン酸エステル系やパラフィン等の外部滑剤、離型剤、帯電防止剤、紫外線吸収剤、ヒンダードフェノール系の光安定剤、ガラス繊維、難燃剤、着色剤などが挙げられる。任意成分の添加量は、耐衝撃性補強ポリスチレンの特性が維持される範囲であれば特に制限はない。
【0028】
本発明によれば、耐衝撃性補強材のポリスチレン又は耐衝撃ポリスチレンに対する親和性が良好なため、耐衝撃性ポリエチレンと耐衝撃性補強材との混合比率を容易に変更して、様々な物性バランスを有する耐衝撃性補強スチレン系樹脂を得ることができ、種々の性能を有した銘柄のものを容易に製造することができる。
【0029】
このようにして製造された耐衝撃性補強ポリスチレンは、公知の成形方法により所望の形状に成形することができる。成形品は、例えば、食品容器、文房具、雑貨、家電製品、OA機器、機械部品など幅広い分野で用いられ、工業的な利用価値は極めて大きいといえる。
【0030】
【実施例】
以下、本発明を実施例および比較例を示してより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例および比較例中に示される「部」および「%」は断らない限り質量基準である。
また、実施例および比較例における各測定法は次の通りである。
[ゴム質重合体のゲル含有量]
粉体状のゴム質重合体をトルエン中に80℃で24時間浸漬した。その後、200メッシュ金網で濾過し、トルエン不溶分の割合(%)を求めて、これをゲル含有量とした。
[ゴム質重合体の平均粒子径]
含浸前のゴム質重合体の分散粒子の粒径を、ベックマン・コールター社製粒度分布測定装置LS230(レーザー散乱・回折法)を用いて測定した。
【0031】
[質量平均分子量]
耐衝撃性補強材をTHF中に投入して一晩放置したものを30分間超音波洗浄器にかけて、未グラフト体を完全に溶離させた後、遠心分離機を用いて12,000rpm で1時間遠心分離して、不溶分(グラフト体)を得た。次いで、この不溶分をクロロホルム中に分散させ、オゾン分解によりゴムを分解してグラフト鎖を回収してから蒸発乾固し、これをTHFに溶解してTHF溶液を得た。そして、このTHF溶液を試料として用い、ゲルパーミエーションクロマトグラフィ(GPC)によってスチレン換算の分子量を測定した。
以下に、実施例及び比較例を挙げて本発明をより具体的に説明する。
【0032】
(実施例1)
ポリブタジエン−1(ゲル含有率94%、平均粒子径290nm)50部、スチレン47.5部、アクリロ二トリル2.5部(単量体成分中の5%)、t−ドデシルメルカプタン0.1部、ロジン酸ナトリウム1.0部、水酸化カリウム0.05部、純水160部を反応器に仕込み、60℃に昇温して60分間含浸させた後、t−ヘキシルパーオキシピバレイト0.3部を添加し、75℃まで昇温して2時間重合を行った。得られたラテックスに酸化防止剤を添加し、塩化カルシウム水溶液中に投入して凝固させ、洗浄、脱水、乾燥してグラフト重合体(A−1)を得た。なお、重合条件については、表1にも示す。
【0033】
【表1】
Figure 2004256744
表中、
HPP:t−ヘキシルパーオキシピバレイト
AIBN:アゾイソブチルニトリル
CHP:クメンヒドロパーオキサイド
レドックス剤:硫酸第一鉄0.004部、ピロリン酸ソーダ0.1部、ブドウ糖0.18部を示す(但し、レドックス剤はCHP系のみ使用)。
【0034】
得られたグラフト重合体(A−1)を表2に示す割合でポリスチレン(東洋スチレン(株)製G20)と混合し、ポリエチレンワックス0.1部を加えてバンバリーミキサーで混練してペレット化した。得られたペレットを射出成形機(「J75E−P」型、日本製鋼所(株)製)を用いて試験片を作製した。得られた試験片について、以下の評価を行った。その評価結果を表2に示す。
【0035】
(アイゾット衝撃値)
ASTM D256に準じて、アイゾット衝撃値(J/m)を測定した。
(引っ張り強度)
ASTM D638に準じて、引張強度(MPa)を測定した。
(表面光沢)
60mm×90mm×3mm厚の試験片を成形し、試験片中央部の光沢をスガ試験機(株)製デジタル変角光沢計UGV−4Dを用いて、入射角60°で測定した。
【0036】
【表2】
Figure 2004256744
【0037】
(実施例2)
実施例1の重合開始剤をAIBNに変更した以外は、実施例1と同様にして重合を行い、グラフト重合体(A−2)を得た。
このグラフト重合体(A−2)を表2に示す割合でポリスチレンと混合し、実施例1と同様にして試験片を作製した。その試験片の評価結果を表2に示す。
【0038】
(実施例3)
実施例1の単量体成分をスチレン47.5部、アクリロ二トリル2.5部の代わりに、スチレン45.0部、アクリロニトリル5.0部(単量体成分中の10%)に変更した以外は、実施例1と同様にして重合を行い、グラフト重合体(A−3)を得た。
このグラフト重合体(A−3)を表2に示す割合でポリスチレンと混合し、実施例1と同様にして試験片を作製した。その試験片の評価結果を表2に示す。
【0039】
(実施例4)
実施例1のポリブタジエン−1をポリブタジエン−2(ゲル含有率85%、平均粒子径420nm)に変更した以外は、実施例1と同様にして重合を行い、グラフト重合体(A−4)を得た。
このグラフト重合体(A−4)を表2に示す割合でポリスチレンと混合し、実施例1と同様にして試験片を作製した。その試験片の評価結果を表2に示す。
【0040】
(実施例5)
実施例1の含浸時間を5分間と変更した以外は、実施例1と同様にして重合を行い、グラフト重合体(A−5)を得た。
このグラフト重合体(A−5)を表2に示す割合でポリスチレンと混合し、実施例1と同様にして試験片を作製した。その試験片の評価結果を表2に示す。
【0041】
(実施例6)
実施例1の単量体成分をスチレン47.5部、アクリロ二トリル2.5部の代わりに、スチレン50.0部に変更した以外は、実施例1と同様にして重合を行い、グラフト重合体(A−6)を得た。
このグラフト重合体(A−6)を表2に示す割合でポリスチレンと混合し、実施例1と同様にして試験片を作製した。その試験片の評価結果を表2に示す。
【0042】
(実施例7)
実施例1と同様の方法で得たグラフト重合体(A−1)を表2に示す割合で耐衝撃性ポリスチレン(出光石油化学(株)製HT−50)と混合し、実施例1と同様にして試験片を作製した。その試験片の評価結果を表2に示す。
【0043】
(実施例8)
実施例1と同様の方法で得たグラフト重合体(A−1)を表2に示す割合でポリスチレンと混合し、実施例1と同様にして試験片を作製した。その試験片の評価結果を表2に示す。
【0044】
(比較例1)
実施例1のアクリロ二トリルを12.5質量部に変更した以外は、実施例1と同様にして重合を行い、グラフト重合体(A−7)を得た。
このグラフト重合体(A−7)を表3に示す割合でポリスチレンと混合し、実施例1と同様にして試験片を作製した。その試験片の評価結果を表3に示す。
【0045】
【表3】
Figure 2004256744
【0046】
(比較例2)
実施例1のゴム質重合体を25質量部と変更した以外は、実施例1と同様にして重合を行い、グラフト重合体(A−8)を得た。
このグラフト重合体(A−8)を表3に示す割合でポリスチレンと混合し、実施例1と同様にして試験片を作製した。その試験片の評価結果を表3に示す。
【0047】
(比較例3)
実施例1のポリブタジエン−1を、ポリブタジエン−3(ゲル含有率98%、平均粒子径80nm)に変更した以外は、実施例1と同様にして重合を行い、グラフト重合体(A−9)を得た。
このグラフト重合体(A−9)を表3に示す割合でポリスチレンと混合し、実施例1と同様にして試験片を作製した。その試験片の評価結果を表3に示す。
【0048】
(比較例4)
実施例1のゴム質重合体のゲル含有量を45%に変更した以外は、実施例1と同様にして重合を行い、グラフト重合体(A−10)を得た。
このグラフト重合体(A−10)を表3に示す割合でポリスチレンと混合し、実施例1と同様にして試験片を作製した。その試験片の評価結果を表3に示す。
【0049】
(比較例5)
実施例1の重合開始剤をクメンハイドロパーオキサイドに変更し、更に、触媒(硫酸第一鉄0.004質量部、ピロリン酸ナトリウム0.1質量部、ブドウ糖0.18質量部)を添加した以外は、実施例1と同様にして重合を行い、グラフト重合体(A−11)を得た。
このグラフト重合体(A−11)を表3に示す割合でポリスチレンと混合し、実施例1と同様にして試験片を作製した。その試験片の評価結果を表3に示す。
【0050】
(比較例6)
実施例1のt−ドデシルメルカプタン量を0.45部に変更した以外は、実施例1と同様にして重合を行い、グラフト重合体(A−12)を得た。
このグラフト重合体(A−12)を表3に示す割合でポリスチレンと混合し、実施例1と同様にして試験片を作製した。その試験片の評価結果を表3に示す。
【0051】
(比較例7)
実施例1のゴム質重合体の粒子径を700nmに変更した以外は、実施例1と同様にして重合を行い、グラフト重合体(A−13)を得た。
このグラフト重合体(A−13)を表3に示す割合でポリスチレンと混合し、実施例1と同様にして試験片を作製した。その試験片の評価結果を表3に示す。
【0052】
(比較例8、9)
ポリスチレンまたは耐衝撃性ポリスチレンに、ポリエチレンワックス0.1質量部を加えてバンバリーミキサーで混練してペレット化した。得られたペレットを射出成形機(「J75E−P」型、日本製鋼所(株)製)を用いて試験片を作製した。その試験片の評価結果を表3に示す。
【0053】
表1より明らかなように、本発明による耐衝撃性補強材をブレンドして得られた耐衝撃性ポリスチレンは、従来技術で得られた耐衝撃性ポリスチレンより、優れたアイゾット衝撃強度を有し、かつ、引っ張り強度、及び表面外観にも優れていた。
更に、本発明の耐衝撃性補強材の混合割合を増すことにより、従来技術による耐衝撃性ポリスチレンでは得られない高い衝撃強度を持った、耐衝撃性補強ポリスチレンを得ることが出来た。
【0054】
【発明の効果】
本発明の耐衝撃性補強材によれば、従来技術で製造される耐衝撃性ポリスチレンよりも格段に優れた表面外観を有する耐衝撃性補強スチレン系樹脂を製造することが出来る。
本発明によれば、機械的な溶融混合により、耐衝撃性補強材とスチレン系樹脂との混合比率を容易に変えて、様々な耐衝撃性と剛性バランスを有する耐衝撃性スチレン系樹脂を製造することが出来る。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an impact-resistant reinforcing material of a styrene-based resin, a method for producing the same, and an impact-resistant polystyrene reinforced with the impact-resistant reinforcing material.
[0002]
[Prior art]
Polystyrene has excellent transparency and appearance, high tensile strength and rigidity, and is widely used in the fields of food containers, stationery, sundries, and the like, but has a drawback of low impact resistance. Therefore, impact-resistant polystyrene in which impact resistance is improved by reinforcing with a rubber component has been developed, and is widely used in home electric appliances, OA equipment, mechanical parts, and the like.
[0003]
In the early stage of the development of impact polystyrene, a method of blending polystyrene with a rubbery polymer such as polybutadiene or styrene-butadiene copolymer was proposed. However, there is a disadvantage that the affinity of the interface between the rubber phase and the resin phase is poor, and sufficient impact resistance cannot be obtained.
Therefore, at present, it is manufactured by a bulk polymerization method in which an uncrosslinked rubbery polymer is dissolved in a styrene monomer and polymerization is performed as it is, or a bulk polymerization method in which suspension polymerization is performed after preliminary polymerization is performed. (For example, see Patent Document 1).
[0004]
[Patent Document 1]
JP-A-5-320272 [0005]
[Problems to be solved by the invention]
However, in conventional impact polystyrene in which a rubber component is blended with polystyrene, the rubber content cannot be further increased because the solubility of the rubbery polymer in the styrene monomer is as low as about 10%. Therefore, a product having sufficiently high impact strength cannot be manufactured. Further, since the rubber component is dissolved in the styrene monomer and polymerized, a rubber phase containing a large amount of polystyrene in the resulting polymer is dispersed as particles. The polystyrene included in the rubber phase does not exhibit the properties of polystyrene, and the rubber phase has a large particle size of 1.0 to 3.0 μm, so that the rigidity is reduced to polystyrene despite the low rubber content. It is much lower than this.
[0006]
Further, in order to change the brand, the polymerization recipe must be changed. However, changing the brand in this polymerization stage requires a long time, and the generation of extraordinary products also increases. For these reasons, the types of brands are naturally limited, and brands having various performances are difficult to manufacture.
[0007]
The present invention has been made in view of the above circumstances, and provides an impact-resistant styrene-based resin having a high impact strength that cannot be obtained by conventional techniques without impairing the properties (surface appearance, tensile strength, etc.) of polystyrene. It is an object to provide an impact resistant reinforcement that can be manufactured.
Another object of the present invention is to provide impact-resistant reinforced polystyrene having various physical property balances.
[0008]
[Means for Solving the Problems]
In the method for producing an impact-resistant reinforcing material of the present invention, a rubbery polymer having a gel content of 40 to 98% and an average particle size of 100 to 550 nm is added to a vinyl cyanide compound 0 to 18% by mass and an aromatic vinyl compound. An impregnation step of impregnating (occluding) a monomer component containing
Thereafter, using an oil-soluble pyrolysis initiator having a 10-hour half-life temperature of 30 to 90 ° C., 30 to 80 parts by mass (solid content conversion) of the rubbery polymer so that the mass average molecular weight becomes 50,000 to 200,000. And a polymerization step of graft-polymerizing 70 to 20 parts by mass of a monomer component.
At that time, in the polymerization step, it is preferable to form a polymer of the monomer component in the rubbery polymer in an internal abundance of 10 to 60% by mass.
Further, the rubbery polymer is one or more selected from the group consisting of polybutadiene, styrene / butadiene / α-olefin copolymer, ethylene / α-olefin non-conjugated diene copolymer, and acrylic rubber. It is preferable that
The impact-resistant reinforcing material of the present invention is obtained by the above-mentioned manufacturing method.
The impact-resistant reinforcing polystyrene of the present invention is characterized in that an impact-resistant reinforcing material is melt-mixed with polystyrene and / or impact-resistant polystyrene.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for producing an impact-resistant reinforcing material of the present invention comprises an impregnation step of impregnating a rubbery polymer with a monomer component, and then, using a specific polymerization initiator, adding the monomer component to the rubbery polymer. And a polymerization step for graft polymerization.
The rubbery polymer used here has a gel content of 40 to 98%, preferably 50 to 98%, and an average particle size of 100 to 550 nm, preferably 150 to 450 nm. If the gel content of the rubbery polymer is less than 40%, the surface appearance deteriorates, and if it exceeds 98%, sufficient impact resistance tends to be not obtained. If the average particle size of the rubbery polymer is less than 100 nm, sufficient impact resistance cannot be obtained, and if it exceeds 550 nm, a stable latex tends not to be obtained. The rubbery polymer particle system may have a single distribution or a plurality of distributions.
[0010]
In the present specification, the gel content refers to a ratio of an insoluble content remaining on the wire mesh after the powdery rubbery polymer is immersed in toluene at 80 ° C. for 24 hours and then filtered through a 200 mesh wire mesh. (%) Was determined, and this was defined as the gel content.
[0011]
Specific examples of such a rubbery polymer include polybutadiene, styrene / butadiene copolymer, acrylonitrile / butadiene copolymer, ethylene / α-olefin copolymer, ethylene / α-olefin non-conjugated diene copolymer, Acrylic rubber and the like can be mentioned. These are used alone or in combination of two or more.
[0012]
The monomer component impregnated and grafted into the rubbery polymer contains a vinyl cyanide compound and an aromatic vinyl compound, and the added amount of the vinyl cyanide compound is the total amount of the aromatic vinyl compound and the vinyl cyanide compound. 0 to 18% by mass, preferably 0.1 to 5% by mass, and more preferably 0.5 to 3% by mass. If the proportion of the vinyl cyanide compound is out of the above range, a sufficient impact resistance reinforcing effect tends not to be obtained.
[0013]
Specific examples of the aromatic vinyl compound include styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, dimethylstyrene, t-butylstyrene, chlorostyrene, dichlorostyrene, bromostyrene, Examples thereof include dibromostyrene, and styrene is particularly preferable. These are used alone or in combination of two or more.
[0014]
Specific examples of the vinyl cyanide compound include acrylonitrile and methacrylonitrile, and acrylonitrile is particularly preferable. These are used alone or in combination of two or more.
Further, in the monomer component, other monomers copolymerizable with the aromatic vinyl monomer and the vinyl cyanide monomer are contained within a range that does not hinder the object of the present invention. Can be. As other monomers, for example, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, amyl acrylate, hexyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, dodecyl acrylate, octadecyl acrylate, phenyl acrylate, benzyl acrylate, and the like Acrylates of methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, amyl methacrylate, hexyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, dodecyl methacrylate, octadecyl methacrylate, phenyl methacrylate, benzyl methacrylate Any methacrylic acid ester; unsaturated acid anhydrides such as maleic anhydride, itaconic anhydride and citraconic anhydride; unsaturated acids such as acrylic acid and methacrylic acid; maleimide, N-methylmaleimide, N-butylmaleimide, N- ( imide compounds of α- or β-unsaturated dicarboxylic acids such as p-methylphenyl) maleimide, N-phenylmaleimide, N-cyclohexylmaleimide (also referred to as maleimide monomers); epoxy compounds such as glycidyl methacrylate and allyl glycidyl ether Unsaturated carboxylic acid amides such as acrylamide and methacrylamide; unsaturated compounds containing an amino group such as acrylamine, aminomethyl methacrylate, aminoethyl methacrylate, aminopropyl methacrylate and aminostyrene; 3-hydroxy-1-pro 4-hydroxy-1-butene, cis-4-hydroxy-2-butene, trans-4-hydroxy-2-butene, 3-hydroxy-2-methyl-1-propene, 2-hydroxyethyl acrylate, Examples include a hydroxyl group-containing unsaturated compound such as hydroxyethyl methacrylate; and an oxazoline group-containing unsaturated compound such as vinyl oxazoline. These monomers are used alone or in combination of two or more.
[0015]
In the impregnation step, when the rubber component is impregnated with the monomer component, the impregnation temperature is preferably from 40 to 80 ° C, more preferably from 50 to 70 ° C. The impregnation time is preferably from 15 to 90 minutes, more preferably from 30 to 60 minutes. If the impregnation time and the impregnation temperature are out of this range, the finally obtained thermoplastic resin composition may not exhibit a sufficient reinforcing effect.
[0016]
In the polymerization step of the present invention, after the rubbery polymer is impregnated with the monomer component, graft polymerization is performed using an oil-soluble thermal decomposition initiator having a 10-hour half-life temperature of 30 to 90 ° C. An oil-soluble thermally decomposable initiator having a 10-hour half-life temperature of less than 30 ° C. has a problem in safety, and if it exceeds 90 ° C., a sufficient impact resistance reinforcing effect tends not to be obtained. Further, when the 10-hour half-life temperature is out of the above range, it becomes difficult to obtain the intended graft copolymer having a weight average molecular weight of 50,000 to 200,000.
[0017]
Specific examples of the oil-soluble thermal decomposition initiator include benzoyl peroxide, lauroyl peroxide, di-2-ethylhexylperoxydicarbonate, di-isopropylperoxydicarbonate, t-butylperoxyneodecanate and t-butylperoxyneodecanate. Butyl peroxypivalate, t-hexyl peroxypivalate, azoisobutylnitrile and the like can be mentioned, and these can be used alone or in combination of two or more.
[0018]
In the impact-resistant reinforcing material of the present invention, the ratio of the rubbery polymer to the monomer component is 70 to 20 parts by mass of the monomeric component based on 30 to 80 parts by mass (in terms of solid content) of the rubbery polymer. And When the proportion of the rubbery polymer is less than 30 parts by mass, the rubber content is too small to provide a sufficient impact resistance reinforcing effect. On the other hand, when it exceeds 80 parts by mass, a sufficient impact resistance reinforcing effect is obtained. Can not be obtained. For these reasons, a more preferable graft polymerization ratio is 60 to 30 parts by mass of the monomer component based on 40 to 70 parts by mass (in terms of solid content) of the rubbery polymer.
[0019]
In the polymerization step, after the rubbery polymer is impregnated with the monomer component, graft polymerization is performed using an oil-soluble thermal decomposition initiator. As the polymerization method, known addition polymerization methods, for example, an emulsion polymerization method, a solution polymerization method, a bulk polymerization method, various methods such as a bulk suspension polymerization method can be adopted, particularly, since the polymerization can be easily controlled, Emulsion polymerization is preferred. Further, the above polymerization may be performed in one stage or in multiple stages.
[0020]
The thus obtained impact-resistant reinforcing material (graft polymer) has a mass average molecular weight of 50,000 to 200,000, more preferably 70,000 to 170,000. When the weight average molecular weight is out of the above range, impact strength and fluidity tend to be poor.
[0021]
In order to measure the mass average molecular weight of the polymer of the monomer component grafted on the rubbery polymer, first, an impact-resistant reinforcing material was put into tetrahydrofuran (hereinafter abbreviated as THF) and left overnight. Is subjected to an ultrasonic cleaner for 30 minutes to completely elute the ungrafted body, and then centrifuged at 12,000 rpm for 1 hour using a centrifuge to obtain a THF-insoluble matter (grafted body). Next, the THF-insoluble matter is dispersed in chloroform, the rubber is decomposed by ozonolysis to collect the graft chain, and then evaporated to dryness. This is dissolved in THF to obtain a THF solution. Then, using the THF solution as a sample, the molecular weight in terms of styrene is measured by gel permeation chromatography (GPC).
[0022]
Inside the rubbery polymer of the impact-resistant reinforcing material, a polymer of a monomer component is formed in an internal abundance range of 10 to 80% by mass, and formed in a range of 20 to 50% by mass. Is preferred. If the internal abundance is less than 10% by mass, the impact resistance of the thermoplastic resin composition may not be improved, while if it exceeds 80% by mass, the gloss may be reduced. Here, the internal abundance refers to a polymer amount of a monomer component located inside the rubbery polymer relative to the rubbery polymer, and is a value obtained by the following formula (1). In addition, the polymer of the monomer component located inside the rubbery polymer may not be graft-bonded to the rubbery polymer.
[0023]
(Equation 1)
Figure 2004256744
[0024]
The graft ratio of the impact-resistant reinforcing material is preferably from 10 to 200% by mass, and more preferably from 20 to 180% by mass. If the graft ratio is less than 10% by mass, the impact strength may decrease, and if it exceeds 200% by mass, the fluidity and gloss may decrease. Here, the graft ratio is a value obtained by the following equation (2).
[0025]
(Equation 2)
Figure 2004256744
[0026]
In addition, the impact-resistant reinforcing material of the present invention, since the amount of styrene contained in the rubbery polymer is smaller than that of conventional impact-resistant polystyrene, exhibits excellent properties of polystyrene, as described later. When mixed with polystyrene, the dispersed rubber phase has a relatively small particle size, so that it has a better surface appearance than conventional impact-resistant polystyrene.
[0027]
<Impact reinforced polystyrene>
The impact-resistant reinforced polystyrene of the present invention can be obtained by blending the above-mentioned impact-resistant reinforcing material, polystyrene and / or impact-resistant polystyrene at an arbitrary ratio, and melt-mixing. In a normal case, it is preferable to mix polystyrene and / or 90 to 60 parts by mass of impact-resistant polystyrene with 10 to 40 parts by mass of the impact-resistant reinforcing material. Examples of the means for mixing and kneading include a ribbon blender, a Henschel mixer, a Banbury mixer, and the like.
The impact-resistant polystyrene of the present invention may further contain other optional components, if necessary. Other optional components include, for example, an external lubricant such as an aliphatic carboxylic acid ester or paraffin, a release agent, an antistatic agent, an ultraviolet absorber, a hindered phenol-based light stabilizer, a glass fiber, a flame retardant, and a coloring agent. Agents and the like. The amount of the optional component is not particularly limited as long as the properties of the impact-resistant polystyrene are maintained.
[0028]
According to the present invention, since the affinity of the impact-resistant reinforcing material for polystyrene or impact-resistant polystyrene is good, the mixing ratio of the impact-resistant polyethylene and the impact-resistant reinforcing material can be easily changed to achieve various physical property balances. Can be obtained, and brands having various performances can be easily manufactured.
[0029]
The impact-resistant reinforced polystyrene thus produced can be molded into a desired shape by a known molding method. Molded articles are used in a wide range of fields such as food containers, stationery, miscellaneous goods, home appliances, OA equipment, and mechanical parts, and can be said to have extremely high industrial utility value.
[0030]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples as long as the gist is not exceeded. Note that “parts” and “%” shown in Examples and Comparative Examples are based on mass unless otherwise specified.
The measuring methods in the examples and comparative examples are as follows.
[Gel content of rubbery polymer]
The powdery rubbery polymer was immersed in toluene at 80 ° C. for 24 hours. Thereafter, the mixture was filtered through a 200-mesh wire gauze, and the proportion (%) of the toluene-insoluble content was determined, and this was defined as the gel content.
[Average particle size of rubbery polymer]
The particle diameter of the dispersed particles of the rubbery polymer before impregnation was measured using a particle size distribution analyzer LS230 (laser scattering / diffraction method) manufactured by Beckman Coulter.
[0031]
[Mass average molecular weight]
The impact-resistant reinforcing material was put in THF and left overnight, and then subjected to an ultrasonic cleaner for 30 minutes to completely elute the ungrafted body, and then centrifuged at 12,000 rpm for 1 hour using a centrifuge. Separation gave an insoluble matter (graft). Next, the insoluble matter was dispersed in chloroform, the rubber was decomposed by ozonolysis to collect the graft chains, and then evaporated to dryness, and dissolved in THF to obtain a THF solution. Then, using this THF solution as a sample, the molecular weight in terms of styrene was measured by gel permeation chromatography (GPC).
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0032]
(Example 1)
50 parts of polybutadiene-1 (gel content: 94%, average particle size: 290 nm), styrene: 47.5 parts, acrylonitrile: 2.5 parts (5% in the monomer component), t-dodecyl mercaptan 0.1 part , 1.0 part of sodium rosinate, 0.05 part of potassium hydroxide and 160 parts of pure water were charged into a reactor, heated to 60 ° C. and impregnated for 60 minutes, and then t-hexylperoxypivalate 0 was added. Then, the mixture was heated to 75 ° C. and polymerized for 2 hours. An antioxidant was added to the obtained latex, and the mixture was poured into an aqueous calcium chloride solution to coagulate, washed, dehydrated and dried to obtain a graft polymer (A-1). The polymerization conditions are also shown in Table 1.
[0033]
[Table 1]
Figure 2004256744
In the table,
HPP: t-hexylperoxypivalate AIBN: azoisobutylnitrile CHP: cumene hydroperoxide redox agent: 0.004 part of ferrous sulfate, 0.1 part of sodium pyrophosphate, 0.18 part of glucose , Redox agents only use CHP type).
[0034]
The obtained graft polymer (A-1) was mixed with polystyrene (G20, manufactured by Toyo Styrene Co., Ltd.) at the ratio shown in Table 2, and added with 0.1 part of polyethylene wax, kneaded with a Banbury mixer and pelletized. . A test piece was prepared from the obtained pellet using an injection molding machine (“J75E-P” type, manufactured by Japan Steel Works, Ltd.). The following evaluation was performed about the obtained test piece. Table 2 shows the evaluation results.
[0035]
(Izod impact value)
The Izod impact value (J / m) was measured according to ASTM D256.
(Tensile strength)
The tensile strength (MPa) was measured according to ASTM D638.
(Surface gloss)
A test piece having a thickness of 60 mm × 90 mm × 3 mm was molded, and the gloss at the center of the test piece was measured at an incident angle of 60 ° using a digital variable-angle gloss meter UGV-4D manufactured by Suga Test Instruments Co., Ltd.
[0036]
[Table 2]
Figure 2004256744
[0037]
(Example 2)
Polymerization was carried out in the same manner as in Example 1 except that the polymerization initiator in Example 1 was changed to AIBN, to obtain a graft polymer (A-2).
This graft polymer (A-2) was mixed with polystyrene at the ratio shown in Table 2, and a test piece was prepared in the same manner as in Example 1. Table 2 shows the evaluation results of the test pieces.
[0038]
(Example 3)
Instead of 47.5 parts of styrene and 2.5 parts of acrylonitrile, the monomer component of Example 1 was changed to 45.0 parts of styrene and 5.0 parts of acrylonitrile (10% of the monomer components). Except for the above, polymerization was carried out in the same manner as in Example 1 to obtain a graft polymer (A-3).
This graft polymer (A-3) was mixed with polystyrene at the ratio shown in Table 2 to prepare a test piece in the same manner as in Example 1. Table 2 shows the evaluation results of the test pieces.
[0039]
(Example 4)
Polymerization was carried out in the same manner as in Example 1 except that polybutadiene-1 in Example 1 was changed to polybutadiene-2 (gel content: 85%, average particle diameter: 420 nm) to obtain a graft polymer (A-4). Was.
This graft polymer (A-4) was mixed with polystyrene at the ratio shown in Table 2 to prepare a test piece in the same manner as in Example 1. Table 2 shows the evaluation results of the test pieces.
[0040]
(Example 5)
Polymerization was carried out in the same manner as in Example 1 except that the impregnation time in Example 1 was changed to 5 minutes, to obtain a graft polymer (A-5).
This graft polymer (A-5) was mixed with polystyrene at the ratio shown in Table 2 to prepare a test piece in the same manner as in Example 1. Table 2 shows the evaluation results of the test pieces.
[0041]
(Example 6)
Polymerization was carried out in the same manner as in Example 1 except that the monomer component of Example 1 was changed to 50.0 parts of styrene instead of 47.5 parts of styrene and 2.5 parts of acrylonitrile, and the graft weight was changed. A compound (A-6) was obtained.
This graft polymer (A-6) was mixed with polystyrene at the ratio shown in Table 2, and a test piece was prepared in the same manner as in Example 1. Table 2 shows the evaluation results of the test pieces.
[0042]
(Example 7)
The graft polymer (A-1) obtained in the same manner as in Example 1 was mixed with impact-resistant polystyrene (HT-50 manufactured by Idemitsu Petrochemical Co., Ltd.) in the ratio shown in Table 2, and the same as in Example 1. To prepare a test piece. Table 2 shows the evaluation results of the test pieces.
[0043]
(Example 8)
The graft polymer (A-1) obtained in the same manner as in Example 1 was mixed with polystyrene at the ratio shown in Table 2, and a test piece was prepared in the same manner as in Example 1. Table 2 shows the evaluation results of the test pieces.
[0044]
(Comparative Example 1)
Polymerization was carried out in the same manner as in Example 1 except that acrylonitrile in Example 1 was changed to 12.5 parts by mass, to obtain a graft polymer (A-7).
This graft polymer (A-7) was mixed with polystyrene at the ratio shown in Table 3 to prepare a test piece in the same manner as in Example 1. Table 3 shows the evaluation results of the test pieces.
[0045]
[Table 3]
Figure 2004256744
[0046]
(Comparative Example 2)
Polymerization was carried out in the same manner as in Example 1 except that the amount of the rubbery polymer in Example 1 was changed to 25 parts by mass, to obtain a graft polymer (A-8).
This graft polymer (A-8) was mixed with polystyrene at the ratio shown in Table 3 to prepare a test piece in the same manner as in Example 1. Table 3 shows the evaluation results of the test pieces.
[0047]
(Comparative Example 3)
Polymerization was carried out in the same manner as in Example 1 except that polybutadiene-1 in Example 1 was changed to polybutadiene-3 (gel content: 98%, average particle diameter: 80 nm), and a graft polymer (A-9) was obtained. Obtained.
This graft polymer (A-9) was mixed with polystyrene at the ratio shown in Table 3, and a test piece was prepared in the same manner as in Example 1. Table 3 shows the evaluation results of the test pieces.
[0048]
(Comparative Example 4)
Polymerization was carried out in the same manner as in Example 1 except that the gel content of the rubbery polymer of Example 1 was changed to 45%, to obtain a graft polymer (A-10).
This graft polymer (A-10) was mixed with polystyrene at the ratio shown in Table 3 to prepare a test piece in the same manner as in Example 1. Table 3 shows the evaluation results of the test pieces.
[0049]
(Comparative Example 5)
Except that the polymerization initiator of Example 1 was changed to cumene hydroperoxide, and further a catalyst (ferrous sulfate 0.004 part by mass, sodium pyrophosphate 0.1 part by mass, glucose 0.18 part by mass) was added. Was polymerized in the same manner as in Example 1 to obtain a graft polymer (A-11).
This graft polymer (A-11) was mixed with polystyrene at the ratio shown in Table 3, and a test piece was prepared in the same manner as in Example 1. Table 3 shows the evaluation results of the test pieces.
[0050]
(Comparative Example 6)
Polymerization was carried out in the same manner as in Example 1 except that the amount of t-dodecyl mercaptan in Example 1 was changed to 0.45 parts, to obtain a graft polymer (A-12).
This graft polymer (A-12) was mixed with polystyrene at the ratio shown in Table 3, and a test piece was prepared in the same manner as in Example 1. Table 3 shows the evaluation results of the test pieces.
[0051]
(Comparative Example 7)
Polymerization was carried out in the same manner as in Example 1 except that the particle size of the rubbery polymer of Example 1 was changed to 700 nm, to obtain a graft polymer (A-13).
This graft polymer (A-13) was mixed with polystyrene at the ratio shown in Table 3 to prepare a test piece in the same manner as in Example 1. Table 3 shows the evaluation results of the test pieces.
[0052]
(Comparative Examples 8 and 9)
0.1 part by mass of polyethylene wax was added to polystyrene or impact-resistant polystyrene, and the mixture was kneaded with a Banbury mixer to form pellets. A test piece was prepared from the obtained pellet using an injection molding machine (“J75E-P” type, manufactured by Japan Steel Works, Ltd.). Table 3 shows the evaluation results of the test pieces.
[0053]
As is clear from Table 1, the impact-resistant polystyrene obtained by blending the impact-resistant reinforcing material according to the present invention has a higher Izod impact strength than the impact-resistant polystyrene obtained by the prior art, And it was also excellent in tensile strength and surface appearance.
Further, by increasing the mixing ratio of the impact-resistant reinforcing material of the present invention, an impact-resistant reinforced polystyrene having a high impact strength that cannot be obtained by the impact-resistant polystyrene according to the prior art can be obtained.
[0054]
【The invention's effect】
According to the impact-resistant reinforcing material of the present invention, it is possible to produce an impact-resistant styrenic resin having a much better surface appearance than impact-resistant polystyrene produced by the prior art.
According to the present invention, it is possible to easily change the mixing ratio of an impact-resistant reinforcing material and a styrene-based resin by mechanical melting and mixing to produce an impact-resistant styrene-based resin having various impact resistances and rigidity balances. You can do it.

Claims (5)

ゲル含有率が40〜98%、平均粒子径100〜550nmのゴム質重合体に、シアン化ビニル化合物0〜18質量%と芳香族ビニル化合物とを含む単量体成分を含浸(オクルード)する含浸工程と、
その後、10時間半減期温度が30〜90℃の油溶性熱分解系開始剤を用いて、質量平均分子量が50000〜200000となるように、ゴム質重合体30〜80質量部(固形分換算)に、単量体成分70〜20質量部をグラフト重合する重合工程とを有することを特徴とする耐衝撃性補強材の製造方法。
Impregnation in which a rubbery polymer having a gel content of 40 to 98% and an average particle diameter of 100 to 550 nm is impregnated (ocluded) with a monomer component containing 0 to 18% by mass of a vinyl cyanide compound and an aromatic vinyl compound. Process and
Thereafter, using an oil-soluble pyrolysis initiator having a 10-hour half-life temperature of 30 to 90 ° C., 30 to 80 parts by mass (in terms of solid content) of the rubbery polymer such that the mass average molecular weight becomes 50,000 to 200,000. And a polymerization step of graft-polymerizing 70 to 20 parts by mass of a monomer component.
前記重合工程では、ゴム質重合体の内部に、単量体成分の重合体を内部存在率10〜60質量%の範囲で形成することを特徴とする請求項1に記載の耐衝撃性補強材の製造方法。2. The impact-resistant reinforcing material according to claim 1, wherein, in the polymerization step, a polymer of a monomer component is formed within the rubbery polymer in a range of an internal abundance of 10 to 60% by mass. Manufacturing method. 前記ゴム質重合体が、ポリブタジエン、スチレン・ブタジエン・α−オレフィン共重合体、エチレン・α−オレフィン非共役ジエン共重合体、及びアクリル系ゴムからなる群より選ばれる1種又は2種以上であることを特徴とする請求項1又は2記載の耐衝撃性補強材の製造方法。The rubbery polymer is one or more selected from the group consisting of polybutadiene, styrene / butadiene / α-olefin copolymer, ethylene / α-olefin non-conjugated diene copolymer, and acrylic rubber. The method for producing an impact-resistant reinforcing material according to claim 1 or 2, wherein: 請求項1〜3のいずれかに記載の製造方法により得られることを特徴とする耐衝撃性補強材。An impact-resistant reinforcing material obtained by the manufacturing method according to claim 1. 請求項4記載の耐衝撃性補強材と、ポリスチレン及び/又は耐衝撃性ポリスチレンとを溶融混合してなることを特徴とする耐衝撃性補強ポリスチレン。An impact-resistant reinforcing polystyrene obtained by melting and mixing the impact-resistant reinforcing material according to claim 4 and polystyrene and / or impact-resistant polystyrene.
JP2003050994A 2003-02-27 2003-02-27 Impact-resistant reinforcing material, production method thereof, and impact-resistant reinforced polystyrene composition Expired - Fee Related JP4156403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003050994A JP4156403B2 (en) 2003-02-27 2003-02-27 Impact-resistant reinforcing material, production method thereof, and impact-resistant reinforced polystyrene composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003050994A JP4156403B2 (en) 2003-02-27 2003-02-27 Impact-resistant reinforcing material, production method thereof, and impact-resistant reinforced polystyrene composition

Publications (2)

Publication Number Publication Date
JP2004256744A true JP2004256744A (en) 2004-09-16
JP4156403B2 JP4156403B2 (en) 2008-09-24

Family

ID=33116262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003050994A Expired - Fee Related JP4156403B2 (en) 2003-02-27 2003-02-27 Impact-resistant reinforcing material, production method thereof, and impact-resistant reinforced polystyrene composition

Country Status (1)

Country Link
JP (1) JP4156403B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176697A (en) * 2004-12-24 2006-07-06 Umg Abs Ltd Impact resistant polyphenylene ether and method for producing the same
JP2008038026A (en) * 2006-08-07 2008-02-21 Umg Abs Ltd Modifier, method of producing molded article and method of recycling waste styrenic resin, using same
CN113136076A (en) * 2021-04-13 2021-07-20 浙江三和塑料有限公司 Permanent anti-ESD material special for PC carrier tape and preparation method thereof
CN114015172A (en) * 2021-10-28 2022-02-08 滁州杰事杰新材料有限公司 High-performance PS composite material and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4556503B2 (en) * 2004-06-09 2010-10-06 ユーエムジー・エービーエス株式会社 Recycled styrene resin composition and molded product

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176697A (en) * 2004-12-24 2006-07-06 Umg Abs Ltd Impact resistant polyphenylene ether and method for producing the same
JP2008038026A (en) * 2006-08-07 2008-02-21 Umg Abs Ltd Modifier, method of producing molded article and method of recycling waste styrenic resin, using same
CN113136076A (en) * 2021-04-13 2021-07-20 浙江三和塑料有限公司 Permanent anti-ESD material special for PC carrier tape and preparation method thereof
CN114015172A (en) * 2021-10-28 2022-02-08 滁州杰事杰新材料有限公司 High-performance PS composite material and preparation method thereof
CN114015172B (en) * 2021-10-28 2023-05-30 滁州杰事杰新材料有限公司 High-performance PS composite material and preparation method thereof

Also Published As

Publication number Publication date
JP4156403B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JPS6284109A (en) Production of thermoplastic resin composition
JP2726918B2 (en) Impact resistant thermoplastic resin composition
WO2006019215A1 (en) Method for preparing rubber-reinforced thermoplastic resin, and rubber-reinforced themoplastic resin composition using the same
JP2010500466A (en) Transparent rubber-modified styrenic resin and its production method by continuous bulk polymerization
JP3946060B2 (en) Thermoplastic resin composition
JP4156403B2 (en) Impact-resistant reinforcing material, production method thereof, and impact-resistant reinforced polystyrene composition
JP4556503B2 (en) Recycled styrene resin composition and molded product
JPS6395211A (en) Thermoplastic resin composition
JP4530123B2 (en) Thermoplastic resin composition
JP4376524B2 (en) Thermoplastic resin composition and molded body
JPH0530861B2 (en)
JP2796595B2 (en) Multilayer polymer and resin composition
JP2003192742A (en) Process for producing impact-resistant thermoplastic resin excellent in weatherability, and thermoplastic resin composition
JP2003165888A (en) Thermoplastic resin composition and molded article thereof
JP4159899B2 (en) Thermoplastic resin composition and method for producing the same
JPS63243156A (en) Thermoplastic resin composition
JP2508192B2 (en) Process for producing N-arylmaleimide copolymer
JP2699945B2 (en) Thermoplastic resin composition
JPH1025371A (en) Rubber-containing resin composition and styrene-based resin composition using the same
JP5646921B2 (en) Acrylic rubber reinforced thermoplastic resin and method for producing the same
JP4818580B2 (en) Method for producing impact-resistant polyphenylene ether
JP4198275B2 (en) Graft copolymer and resin composition containing the same
JP2003327777A (en) Thermoplastic resin composition
JP3516226B2 (en) Rubber-rich MABS resin composition and rubber-modified thermoplastic resin composition
JPH0559247A (en) Weather-resistant, high-impact polymer composition excellent in heat resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4156403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees