JP4556503B2 - Recycled styrene resin composition and molded product - Google Patents
Recycled styrene resin composition and molded product Download PDFInfo
- Publication number
- JP4556503B2 JP4556503B2 JP2004171442A JP2004171442A JP4556503B2 JP 4556503 B2 JP4556503 B2 JP 4556503B2 JP 2004171442 A JP2004171442 A JP 2004171442A JP 2004171442 A JP2004171442 A JP 2004171442A JP 4556503 B2 JP4556503 B2 JP 4556503B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- polymer
- waste
- mass
- impact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Landscapes
- Graft Or Block Polymers (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、廃ポリスチレンや廃耐衝撃性ポリスチレンの再生、再利用のための樹脂配合材として有用な樹脂配合用耐衝撃性補強材を配合してなる再生スチレン系樹脂組成物とこの再生スチレン系樹脂組成物を成形してなる再生スチレン系樹脂成形品に関する。 The present invention relates to a recycled styrene-based resin composition comprising an impact-resistant reinforcing material for resin blending, which is useful as a resin blending material for recycling and recycling waste polystyrene and waste impact-resistant polystyrene, and the recycled styrene-based resin composition. The present invention relates to a regenerated styrene resin molded product formed by molding a resin composition.
ポリスチレンは、優れた透明性と外観を有し、且つ、引っ張り強度や剛性が高く、食品容器、文房具、雑貨等の分野で広く用いられているが、耐衝撃性が低いという欠点があった。そのため、ゴム成分で補強して耐衝撃性を改良した耐衝撃性ポリスチレンが開発され、家電製品、OA機器、機械部品などに広く用いられるようになった。 Polystyrene has excellent transparency and appearance, has high tensile strength and rigidity, and is widely used in the fields of food containers, stationery, miscellaneous goods, etc., but has a drawback of low impact resistance. For this reason, impact resistant polystyrene reinforced with a rubber component to improve impact resistance has been developed and widely used in home appliances, OA equipment, machine parts, and the like.
耐衝撃性ポリスチレンとしては、その開発の初期においては、ポリブタジエンやスチレン・ブタジエン共重合体等のゴム状重合体とポリスチレンを単にブレンドする方法が提案されていた。しかし、ゴム相と樹脂相との界面の親和性が乏しく、十分な耐衝撃性が得られないという欠点があった。そこで、現在、耐衝撃性ポリスチレンは、未架橋のゴム質重合体をスチレンモノマーに溶解させて、そのまま重合を行う塊状重合法か、或いは予備重合を行った後に懸濁重合を行う、塊状懸濁重合法によって製造されている(例えば、特許文献1参照)。 As the high impact polystyrene, in the early stages of its development, a method of simply blending polystyrene with a rubbery polymer such as polybutadiene or styrene / butadiene copolymer has been proposed. However, there is a drawback in that sufficient impact resistance cannot be obtained due to poor affinity at the interface between the rubber phase and the resin phase. Therefore, currently, impact-resistant polystyrene is a bulk polymerization method in which an uncrosslinked rubber polymer is dissolved in a styrene monomer and polymerization is performed as it is, or suspension polymerization is performed after preliminary polymerization is performed. It is produced by a polymerization method (see, for example, Patent Document 1).
一方、ABSは、優れた加工性と外観を有し、且つ、引っ張り強度や剛性がポリスチレンよりも更に高く、耐熱性や耐薬品性にも優れていることから、ポリスチレン系よりも更に広い分野で使用されているが、熱安定性が低いという欠点があった。そのため、種々の熱安定剤などの付与が試みられ、熱安定性を改良したABSが開発され、自動車部品、家電製品、OA機器、機械部品などに広く用いられるようになった。
昨今の環境問題対策から、近年、ポリスチレン、耐衝撃性ポリスチレンやABS等のプラスチック製品のリサイクルの要求が高まり、既に家電リサイクル法施行により必須の状況にあるが、未だにそのリサイクルシステムは万全とは言えない状況にある。 In recent years, the demand for recycling plastic products such as polystyrene, impact-resistant polystyrene, and ABS has increased due to recent environmental countermeasures, and it is already indispensable due to the enforcement of the Home Appliance Recycling Law, but the recycling system is still perfect. There is no situation.
本発明は、上記従来の実状に鑑みてなされたものであって、ポリスチレンや耐衝撃性ポリスチレン、或いはこれにABSを混合した樹脂の特性を保持し、従来技術では得られない高い衝撃強度を有する再生スチレン系樹脂を製造することができる廃樹脂の再生材を用いて、廃ポリスチレン、廃耐衝撃性ポリスチレン、或いはこれらに廃ABSを混合した廃樹脂から、様々な物性バランスを有する再生スチレン系樹脂組成物及び成形品を提供することを目的とする。 The present invention has been made in view of the above-described conventional situation, and retains the characteristics of polystyrene, high-impact polystyrene, or a resin in which ABS is mixed with this, and has high impact strength that cannot be obtained by the prior art. Recycled styrene resin with various physical properties balance from waste polystyrene, waste impact-resistant polystyrene, or waste resin mixed with waste ABS using waste resin recycled material that can produce recycled styrene resin It aims at providing a composition and a molded article.
本発明の再生スチレン系樹脂組成物は、ゲル含有率40〜98質量%、平均粒子径100〜550nmのゴム質重合体に、芳香族ビニル化合物を主体とし、シアン化ビニル化合物を0.1〜10質量%含む単量体成分を含浸させる含浸工程と、その後、10時間半減期温度が30〜90℃の油溶性熱分解系開始剤を用いて、該ゴム質重合体に該単量体成分をグラフト重合する重合工程とを経て製造されるグラフト重合体であって、前記ゴム質重合体30〜80質量部(固形分換算)に、前記単量体成分70〜20質量部をグラフト重合してなり(ただし、ゴム質重合体と単量体成分との合計で100質量部)、質量平均分子量が40000〜200000であるグラフト重合体よりなる樹脂配合用耐衝撃性補強材を含む廃樹脂の再生材と、廃ポリスチレン及び/又は廃耐衝撃性ポリスチレン、或いは少なくとも一種が廃樹脂である廃ポリスチレン及び/又は廃耐衝撃性ポリスチレンとABSとの混合樹脂とを溶融混合してなることを特徴とする。 The regenerated styrene resin composition of the present invention comprises a rubber polymer having a gel content of 40 to 98% by mass and an average particle size of 100 to 550 nm, mainly composed of an aromatic vinyl compound, and 0.1 % of a vinyl cyanide compound. The impregnation step of impregnating the monomer component containing 10 mass% , and then using the oil-soluble pyrolysis initiator having a 10-hour half-life temperature of 30 to 90 ° C., the monomer is added to the rubber polymer. A graft polymer produced through a polymerization step of graft-polymerizing the components, and graft-polymerizing 70 to 20 parts by mass of the monomer component to 30 to 80 parts by mass (in terms of solid content) of the rubbery polymer Waste resin containing an impact-resistant reinforcing material for compounding a resin comprising a graft polymer having a mass average molecular weight of 40,000 to 200,000 (however, the total of the rubbery polymer and the monomer component is 100 parts by mass) Recycled materials and waste Polystyrene and / or Hai耐impact polystyrene, or at least one is characterized by comprising a mixed resin of the waste polystyrene and / or Hai耐impact polystyrene and ABS is spent resin by melt mixing.
このゴム質重合体としては、ポリブタジエン、スチレン・ブタジエン・α−オレフィン共重合体、エチレン・α−オレフィン非共役ジエン共重合体、及びアクリル系ゴムからなる群より選ばれる1種又は2種以上が挙げられる。 The rubbery polymer of this, polybutadiene, styrene-butadiene-alpha-olefin copolymer, an ethylene-alpha-olefin non-conjugated diene copolymer, and one or more selected from the group consisting of acrylic rubber Is mentioned .
本発明の再生スチレン系樹脂組成物は、廃ポリスチレン及び/又は廃耐衝撃性ポリスチレン、或いは少なくとも一種が廃樹脂である廃ポリスチレン及び/又は廃耐衝撃性ポリスチレンとABSとの混合樹脂と、本発明の樹脂配合用耐衝撃性補強材、更には必要に応じて本発明の樹脂配合用改質材とを溶融混合してなることを特徴とする。 The recycled styrene-based resin composition of the present invention includes waste polystyrene and / or waste impact-resistant polystyrene, or a mixture resin of waste polystyrene and / or waste impact-resistant polystyrene and ABS, at least one of which is a waste resin, and the present invention. It is characterized in that it is obtained by melt-mixing the impact-resistant reinforcing material for resin blending and, if necessary, the resin blending reforming material of the present invention.
本発明の再生スチレン系樹脂成形品は、このような本発明の再生スチレン系樹脂組成物を成形してなることを特徴とする。 The regenerated styrenic resin molded product of the present invention is formed by molding such a regenerated styrene resin composition of the present invention.
本発明の廃樹脂の再生材によれば、これを廃樹脂と機械的に溶融混合するのみで、従来技術で製造される再生スチレン系樹脂に比べて格段に優れた表面外観と高い衝撃強度を有し、様々な物性バランスを有する再生スチレン系樹脂を製造することができる。 According to the recycled material of the waste resin of the present invention, the surface appearance and the high impact strength that are remarkably superior to the recycled styrene resin produced by the prior art can be obtained simply by mechanically melting and mixing this with the waste resin. Recycled styrenic resin having various physical property balances can be produced.
本発明の廃樹脂の再生材は、廃樹脂に対する混合割合の制約もなく、容易に表面外観、耐衝撃性や剛性等の物性バランスに優れた再生スチレン系樹脂を製造することができ、更には廃ABSの混合により、バージン樹脂よりもむしろ耐衝撃性を高めることもでき、廃ポリスチレン、廃耐衝撃性ポリスチレン、更には廃ABSの再利用に有用である。 The recycled material of the waste resin of the present invention can easily produce a recycled styrene-based resin excellent in the balance of physical properties such as surface appearance, impact resistance and rigidity, without restriction on the mixing ratio with respect to the waste resin. By mixing waste ABS, it is possible to increase impact resistance rather than virgin resin, which is useful for recycling waste polystyrene, waste impact polystyrene, and waste ABS.
以下に本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
[樹脂配合用耐衝撃性補強材]
まず、本発明の樹脂配合用耐衝撃性補強材について、その製造手順に従って説明する。
[Impact-resistant reinforcement for compounding resin]
First, the impact-resistant reinforcing material for resin blending of the present invention will be described in accordance with its production procedure.
本発明の樹脂配合用耐衝撃性補強材は、特定のゴム質重合体に単量体成分を含浸(オクルード)する含浸工程と、その後、特定の重合開始剤を用いて、ゴム質重合体に単量体成分をグラフト重合する重合工程とを経て製造される。 The impact-strengthening reinforcing material for resin blending of the present invention comprises an impregnation step of impregnating (occluding) a monomer component into a specific rubber polymer, and then using a specific polymerization initiator to form a rubber polymer. It is produced through a polymerization process in which a monomer component is graft-polymerized.
ここで使用されるゴム質重合体は、ゲル含有率が40〜98質量%、好ましくは50〜95質量%であり、平均粒子径が100〜550nm、好ましくは150〜450nmのものである。ゴム質重合体のゲル含有率が40質量%未満では、得られる樹脂配合用耐衝撃性補強材を用いた樹脂製品の表面外観が悪化し、98質量%を超えると十分な耐衝撃性が得られない傾向にある。また、ゴム質重合体の平均粒子径が100nm未満では得られる樹脂配合用耐衝撃性補強材を用いた樹脂製品に十分な耐衝撃性が得られず、550nmを超えると安定なラテックスが得られない傾向にある。ゴム質重合体の粒子径分布は単一分布であっても良く、複数の分布を有するものであっても良い。 The rubbery polymer used here has a gel content of 40 to 98% by mass, preferably 50 to 95% by mass, and an average particle size of 100 to 550 nm, preferably 150 to 450 nm. When the gel content of the rubbery polymer is less than 40% by mass, the surface appearance of the resin product using the resulting impact-resistant reinforcing material for resin compounding deteriorates, and when it exceeds 98% by mass, sufficient impact resistance is obtained. It tends to be impossible. Also, if the average particle size of the rubbery polymer is less than 100 nm, sufficient impact resistance cannot be obtained for the resin product using the obtained impact-resistant reinforcing material for resin blending, and if it exceeds 550 nm, a stable latex is obtained. There is no tendency. The rubbery polymer may have a single particle size distribution or a plurality of distributions.
なお、本明細書において、ゴム質重合体のゲル含有率とは、粉体状のゴム質重合体を、トルエン中にて80℃で24時間浸漬した後、200メッシュ金網で濾過し、金網上に残った不溶分の割合(質量%)を求めて得られた値である。 In the present specification, the gel content of the rubbery polymer means that the powdery rubbery polymer is immersed in toluene at 80 ° C. for 24 hours and then filtered through a 200 mesh wire mesh. It is the value obtained by calculating | requiring the ratio (mass%) of the insoluble matter which remained in.
このようなゴム質重合体の具体例としては、ポリブタジエン、スチレン・ブタジエン共重合体、アクリロニトリル・ブタジエン共重合体、エチレン・α−オレフィン共重合体、エチレン・α−オレフィン非共役ジエン共重合体、アクリル系ゴムなどを挙げることができる。これらは1種を単独で用いても良く、2種以上を組み合わせて用いても良い。 Specific examples of such a rubbery polymer include polybutadiene, styrene / butadiene copolymer, acrylonitrile / butadiene copolymer, ethylene / α-olefin copolymer, ethylene / α-olefin non-conjugated diene copolymer, An acrylic rubber etc. can be mentioned. These may be used alone or in combination of two or more.
ゴム質重合体に含浸、グラフトされる単量体成分は、芳香族ビニル化合物を主体として20質量%以上、特に30質量%以上含むものであるが、その他、シアン化ビニル化合物を含み、更には必要に応じて後述するその他の共重合可能な単量体を含んでいても良い。単量体成分中のシアン化ビニル化合物の含有量は0.1〜10質量%であり、好ましくは0.5〜7.5質量%である。シアン化ビニル化合物を含むことにより相溶性が良好となり、耐衝撃性が向上するという効果が奏されるが、その割合が多過ぎると相溶性が不十分となり、耐衝撃性補強効果が得られない傾向にある。 The monomer component impregnated and grafted on the rubber polymer contains 20% by mass or more, particularly 30% by mass or more of the aromatic vinyl compound as a main component, but also contains a vinyl cyanide compound and further necessary. Accordingly, other copolymerizable monomers described later may be included. The content of the vinyl cyanide compound in the monomer component is 0 . 1 to 10 wt%, good Mashiku is 0.5 to 7.5 mass%. By including a vinyl cyanide compound, the compatibility is improved and the impact resistance is improved. However, if the ratio is too large, the compatibility becomes insufficient and the impact resistance reinforcing effect cannot be obtained. There is a tendency.
単量体成分中の芳香族ビニル化合物の具体例としては、スチレン、α−メチルスチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、ジメチルスチレン、t−ブチルスチレン、クロルスチレン、ジクロルスチレン、ブロムスチレン、ジブロムスチレン等が挙げられ、特に、スチレンが好ましい。これらは1種を単独で用いても良く、2種以上を組み合わせて用いても良い。 Specific examples of the aromatic vinyl compound in the monomer component include styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, dimethylstyrene, t-butylstyrene, chlorostyrene, distyrene. Examples include chlorostyrene, bromostyrene, and dibromostyrene, and styrene is particularly preferable. These may be used alone or in combination of two or more.
シアン化ビニル化合物の具体例としては、アクリロニトリル、メタクリロニトリル等が挙げられ、特にアクリロニトリルが好ましい。これらは1種を単独で用いても良く、2種以上を組み合わせて用いても良い。 Specific examples of the vinyl cyanide compound include acrylonitrile and methacrylonitrile, and acrylonitrile is particularly preferable. These may be used alone or in combination of two or more.
更に、単量体成分中には、本発明の目的に対して支障のない範囲で、芳香族ビニル化合物及びシアン化ビニル化合物と共重合可能な他の単量体を含有させることができる。他の単量体としては、例えばメチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、アミルアクリレート、ヘキシルアクリレート、オクチルアクリレート、2−エチルヘキシルアクリレート、シクロヘキシルアクリレート、ドデシルアクリレート、オクタデシルアクリレート、フェニルアクリレート、ベンジルアクリレートなどのアクリル酸エステル;メチルメタクレート、エチルメタクレート、プロピルメタクリレート、ブチルメタクリレート、アミルメタクリレート、ヘキシルメタクリレート、オクチルメタクリレート、2−エチルヘキシルメタクリレート、シクロヘキシルメタクリレート、ドデシルメタクリレート、オクタデシルメタクリレート、フェニルメタクリレート、ベンジルメタクリレートなどのメタクリル酸エステル;無水マレイン酸、無水イタコン酸、無水シトラコン酸などの不飽和酸無水物;アクリル酸、メタクリル酸などの不飽和酸;マレイミド、N−メチルマレイミド、N−ブチルマレイミド、N−(p−メチルフェニル)マレイミド、N−フェニルマレイミド、N−シクロヘキシルマレイミドなどのα−又はβ−不飽和ジカルボン酸のイミド化合物(マレイミド系単量体ともいう);グリシジルメタクリレート、アリルグリシジルエーテルなどのエポキシ化合物;アクリルアミド、メタクリルアミドなどの不飽和カルボン酸アミド;アクリルアミン、メタクリル酸アミノメチル、メタクリル酸アミノエチル、メタクリル酸アミノプロピル、アミノスチレンなどのアミノ基含有不飽和化合物、3−ヒドロキシ−1−プロペン、4−ヒドロキシ−1−ブテン、シス−4−ヒドロキシ−2−ブテン、トランス−4−ヒドロキシ−2−ブテン、3−ヒドロキシ−2−メチル−1−プロペン、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレートなどの水酸基含有不飽和化合物;ビニルオキサゾリンなどのオキサゾリン基含有不飽和化合物などが挙げられる。また、これらの単量体は1種を単独で用いても良く、2種以上を組み合わせて用いても良い。 Furthermore, the monomer component can contain other monomers copolymerizable with the aromatic vinyl compound and the vinyl cyanide compound within a range that does not hinder the object of the present invention. Examples of other monomers include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, amyl acrylate, hexyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, dodecyl acrylate, octadecyl acrylate, phenyl acrylate, and benzyl acrylate. Acrylic acid ester of; methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, amyl methacrylate, hexyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, dodecyl methacrylate, octadecyl methacrylate, phenyl methacrylate, benzyl methacrylate Any methacrylic acid ester; unsaturated acid anhydride such as maleic anhydride, itaconic anhydride and citraconic anhydride; unsaturated acid such as acrylic acid and methacrylic acid; maleimide, N-methylmaleimide, N-butylmaleimide, N- ( p-methylphenyl) maleimide, N-phenylmaleimide, N-cyclohexylmaleimide and other α- or β-unsaturated dicarboxylic acid imide compounds (also referred to as maleimide monomers); glycidyl methacrylate, allyl glycidyl ether and other epoxy compounds Unsaturated carboxylic acid amides such as acrylamide and methacrylamide; amino group-containing unsaturated compounds such as acrylic amine, aminomethyl methacrylate, aminoethyl methacrylate, aminopropyl methacrylate, and aminostyrene, 3-hydroxy-1-propene 4-hydroxy-1-butene, cis-4-hydroxy-2-butene, trans-4-hydroxy-2-butene, 3-hydroxy-2-methyl-1-propene, 2-hydroxyethyl acrylate, 2-hydroxy Examples thereof include hydroxyl group-containing unsaturated compounds such as ethyl methacrylate; oxazoline group-containing unsaturated compounds such as vinyl oxazoline. Moreover, these monomers may be used individually by 1 type, and may be used in combination of 2 or more type.
本発明の補強材を製造するには、まず、前述のゴム質重合体に上記単量体成分を含浸させる。この含浸工程において、含浸温度は40〜80℃であることが好ましく、50〜70℃であることがより好ましい。また、含浸時間は15〜90分間であることが好ましく、30〜60分間であることがより好ましい。含浸時間、含浸温度がこの範囲から外れると、最終的に得られる樹脂組成物に対して十分な補強効果を発揮しない可能性がある。 In order to produce the reinforcing material of the present invention, first, the above-mentioned rubbery polymer is impregnated with the monomer component. In this impregnation step, the impregnation temperature is preferably 40 to 80 ° C, and more preferably 50 to 70 ° C. The impregnation time is preferably 15 to 90 minutes, more preferably 30 to 60 minutes. If the impregnation time and the impregnation temperature are out of this range, there is a possibility that a sufficient reinforcing effect is not exhibited with respect to the finally obtained resin composition.
このようにして、ゴム質重合体の内部に単量体成分を含浸させた後の重合工程では、10時間半減期温度が30〜90℃の油溶性熱分解系開始剤を用いて、グラフト重合を行う。10時間半減期温度が30℃未満の油溶性熱分解性開始剤では、安全性上問題があり、90℃を超えるものでは十分な耐衝撃性補強効果が得られない傾向にある。更に、10時間半減期温度が上記範囲を外れると、目的とする質量平均分子量40000〜200000のグラフト共重合体を得ることが困難となる。 In this way, in the polymerization step after impregnating the monomer component inside the rubber polymer, graft polymerization is performed using an oil-soluble pyrolysis initiator having a 10-hour half-life temperature of 30 to 90 ° C. I do. Oil-soluble pyrolyzable initiators having a 10-hour half-life temperature of less than 30 ° C have safety problems, and those exceeding 90 ° C tend not to have a sufficient impact resistance reinforcing effect. Furthermore, when the 10-hour half-life temperature is out of the above range, it becomes difficult to obtain a target graft copolymer having a weight average molecular weight of 40,000 to 200,000.
このような油溶性熱分解系開始剤の具体例としては、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、ジ−2−エチルヘキシルパーオキシジカーボネート、ジ−イソプロピルパーオキシジカーボネイト、t−ブチルパーオキシネオデカネート、t−ブチルパーオキシピバレイト、t−ヘキシルパーオキシピバレイト、アゾイソブチルニトリル等を挙げることができ、これらは1種を単独で或いは2種以上を組み合わせて用いることができる。 Specific examples of such oil-soluble pyrolysis initiators include benzoyl peroxide, lauroyl peroxide, di-2-ethylhexyl peroxydicarbonate, di-isopropyl peroxydicarbonate, t-butylperoxyneodecanate. , T-butyl peroxypivalate, t-hexyl peroxypivalate, azoisobutyl nitrile, and the like. These can be used alone or in combination of two or more.
重合方法としては、公知の付加重合法、例えば、乳化重合法、溶液重合法、塊状重合法、塊状懸濁重合法などの各種方法を採用できるが、特に、重合を容易に制御できることから、乳化重合法が好適である。また、上記の重合は、一段であっても良いし、多段であっても良い。 As the polymerization method, various known methods such as an addition polymerization method, for example, an emulsion polymerization method, a solution polymerization method, a bulk polymerization method, a bulk suspension polymerization method and the like can be adopted. In particular, since the polymerization can be easily controlled, emulsification is performed. A polymerization method is preferred. In addition, the above polymerization may be performed in one stage or in multiple stages.
この重合に供するゴム質重合体と単量体成分との割合は、ゴム質重合体30〜80質量部(固形分換算)に対し、単量体成分70〜20質量部とする(ただし、ゴム質重合体と単量体成分との合計で100重量部)。ゴム質重合体の割合が30質量部未満で単量体成分が70質量部を超える場合、得られる補強材のゴム含有量が少なすぎ、耐衝撃性補強効果に優れた補強材を得ることができず、ゴム質重合体が80質量部を超え、単量体成分が20質量部未満の場合も十分な耐衝撃性補強効果が得られない。より好ましいグラフト重合割合は、ゴム質重合体40〜70質量部(固形分換算)に対し、単量体成分60〜30質量部である。従って、前述の含浸工程では、ゴム質重合体と単量体成分とをこのような割合で含浸工程に供し、その後、重合工程に移行することが好ましい。 The ratio of the rubbery polymer and the monomer component used for the polymerization is 70 to 20 parts by mass of the monomer component (provided that the rubber is 30 to 80 parts by mass (solid content conversion)). 100 parts by weight in total of the polymer and the monomer component). When the proportion of the rubbery polymer is less than 30 parts by mass and the monomer component exceeds 70 parts by mass, the rubber content of the obtained reinforcing material is too small, and it is possible to obtain a reinforcing material excellent in impact resistance reinforcing effect. In the case where the rubbery polymer exceeds 80 parts by mass and the monomer component is less than 20 parts by mass, a sufficient impact resistance reinforcing effect cannot be obtained. A more preferable graft polymerization ratio is 60 to 30 parts by mass of the monomer component with respect to 40 to 70 parts by mass (in terms of solid content) of the rubber-like polymer. Therefore, in the above-described impregnation step, it is preferable that the rubbery polymer and the monomer component are supplied to the impregnation step in such a ratio, and then the polymerization step is performed.
また、重合温度や重合時間などの重合条件は、安全性や効率面などから任意に設定することができる。 The polymerization conditions such as polymerization temperature and polymerization time can be arbitrarily set from the viewpoint of safety and efficiency.
このようにして得られる、本発明の補強材を構成するグラフト重合体は、その質量平均分子量が40000〜200000であり、より好ましくは60000〜170000である。質量平均分子量が上記範囲外の場合、これを用いた樹脂組成物の衝撃強度や流動性に劣る傾向にある。 The thus obtained graft polymer constituting the reinforcing material of the present invention has a mass average molecular weight of 40000-200000, more preferably 60000-170000. When the mass average molecular weight is out of the above range, the resin composition using the same tends to be inferior in impact strength and fluidity.
なお、このグラフト重合体の質量平均分子量を測定するには、まず、グラフト重合体をテトラヒドロフラン(以下、THFと略す)中に投入して一晩放置したものを30分間超音波洗浄器にかけて、グラフト体を完全に溶離させた後、遠心分離機を用いて12,000rpmで1時間遠心分離してTHF不溶分(グラフト体)を得る。次いで、このTHF不溶分をクロロホルム中に分散させ、オゾン分解によりゴムを分解してグラフト鎖を回収してから蒸発乾固し、これをTHFに溶解してTHF溶液を得る。そして、このグラフト体を溶解したTHF溶液を試料として用い、ゲルパーミエーションクロマトグラフィ(GPC)によってスチレン換算の分子量を測定する。 In order to measure the mass average molecular weight of the graft polymer, first, the graft polymer was put into tetrahydrofuran (hereinafter abbreviated as THF) and allowed to stand overnight. After the body is completely eluted, it is centrifuged at 12,000 rpm for 1 hour using a centrifuge to obtain a THF-insoluble matter (graft). Next, the THF-insoluble matter is dispersed in chloroform, the rubber is decomposed by ozonolysis, the graft chain is recovered and evaporated to dryness, and this is dissolved in THF to obtain a THF solution. And the THF solution which melt | dissolved this graft body is used as a sample, and the molecular weight of styrene conversion is measured by gel permeation chromatography (GPC).
また、本発明の補強材を構成するゴム質重合体の内部には、単量体成分の重合体が内部存在率10〜60質量%の範囲で形成されていることが好ましく、20〜50質量%の範囲で形成されていることがより好ましい(以下、グラフト重合体の単量体成分の重合体の内部存在率を単に「内部存在率」と称す。)。この内部存在率が10質量%未満であると、本発明の補強材を用いた樹脂組成物の耐衝撃性が向上しないことがあり、一方、60質量%を超えると、光沢が低下することがある。ここで、内部存在率とは、グラフト重合体に占めるゴム質重合体に対するゴム質重合体内部に位置する単量体成分の重合体量のことであり、下記式(1)で定義される値である。なお、ゴム質重合体の内部に位置する単量体成分の重合体は、ゴム質重合体にグラフト結合していなくてもよい。このゴム質重合体内部に位置する単量体成分の重合体量は、簡便な算出方法として、含浸前のゴム質重合体の粒子径とグラフト重合後のゴム質重合体の膨張率を測定し、その体積増加率から単量体の内部残存率を算出することにより求めることができる。 Moreover, it is preferable that the polymer of a monomer component is formed in the range of 10-60 mass% of internal components in the rubbery polymer which comprises the reinforcing material of this invention, and 20-50 mass. % Is more preferable (hereinafter, the internal abundance of the monomer component of the graft polymer is simply referred to as “internal abundance”). When the internal abundance is less than 10% by mass, the impact resistance of the resin composition using the reinforcing material of the present invention may not be improved. On the other hand, when it exceeds 60% by mass, the gloss may be lowered. is there. Here, the internal abundance is a polymer amount of a monomer component located inside the rubber polymer relative to the rubber polymer in the graft polymer, and is a value defined by the following formula (1). It is. The polymer of the monomer component located inside the rubber polymer may not be grafted to the rubber polymer. The amount of polymer of the monomer component located inside the rubber polymer is measured by measuring the particle size of the rubber polymer before impregnation and the expansion rate of the rubber polymer after graft polymerization as a simple calculation method. The internal residual rate of the monomer can be calculated from the volume increase rate.
また、本発明の補強材を構成するグラフト重合体のグラフト率は10〜200質量%が好ましく、20〜180質量%であることがより好ましい。グラフト率が10質量%未満であると、これを用いた樹脂組成物の耐衝撃強度が低くなることがあり、200質量%を超えると流動性、耐衝撃性が低下することがある。ここで、グラフト率とは、下記式(2)で算出される値であり、ゴム質重合体の種類により測定方法を適宜選択することができ、例えば、ポリブタジエンの場合では、オゾン分解法による測定で求めることができる。 Further, the graft ratio of the graft polymer constituting the reinforcing material of the present invention is preferably 10 to 200% by mass, and more preferably 20 to 180% by mass. If the graft ratio is less than 10% by mass, the impact strength of the resin composition using the same may be lowered, and if it exceeds 200% by mass, the fluidity and impact resistance may be lowered. Here, the graft ratio is a value calculated by the following formula (2), and a measurement method can be appropriately selected depending on the type of the rubbery polymer. For example, in the case of polybutadiene, measurement by an ozonolysis method is possible. Can be obtained.
このようなグラフト重合体を含む本発明の樹脂配合用耐衝撃性補強材は、ゴム質重合体に包含されるスチレン等の芳香族ビニル化合物量が、従来の耐衝撃性ポリスチレンよりも少ないので、スチレン系の優れた特性を発揮し、また、分散ゴム相の粒子径が比較的小さいため、廃ポリスチレン系樹脂及びこれら廃ポリスチレン系樹脂と廃ABSと混合した際に、従来のポリスチレン系樹脂よりも優れた表面外観を有する樹脂製品を得ることができる。 Since the impact-resistant reinforcing material for resin blending of the present invention containing such a graft polymer has a smaller amount of an aromatic vinyl compound such as styrene included in the rubbery polymer than conventional impact-resistant polystyrene, Exhibits the superior properties of styrene and has a relatively small particle size of the dispersed rubber phase, so when mixed with waste polystyrene resins and these waste polystyrene resins and waste ABS, compared to conventional polystyrene resins A resin product having an excellent surface appearance can be obtained.
[樹脂配合用改質材]
本発明の樹脂配合用改質材は、ゴム質重合体を含まない芳香族ビニル化合物を主体とする単量体成分を重合して得られる硬質重合体を含むものである。
[Reformers for resin compounding]
The modifier for resin blending of the present invention includes a hard polymer obtained by polymerizing a monomer component mainly composed of an aromatic vinyl compound not containing a rubbery polymer.
この単量体成分はゴム質重合体を含まず、芳香族ビニル化合物を主体としているが、その他、シアン化ビニル化合物、更には必要に応じて後述するその他の共重合可能な単量体を含んでいても良い。単量体成分中のシアン化ビニル化合物の含有量は0〜18質量%、好ましくは0.1〜10質量%であり、更に好ましくは0.5〜7.5質量%である。シアン化ビニル化合物を含むことにより相溶性が向上し十分な改質効果が得られるが、その割合が多過ぎると相溶性が不十分となり、十分な改質効果が得られない傾向にある。 This monomer component does not contain a rubbery polymer, and is mainly composed of an aromatic vinyl compound, but also contains a vinyl cyanide compound and, if necessary, other copolymerizable monomers described later. You can leave. Content of the vinyl cyanide compound in a monomer component is 0-18 mass%, Preferably it is 0.1-10 mass%, More preferably, it is 0.5-7.5 mass%. By including a vinyl cyanide compound, the compatibility is improved and a sufficient reforming effect is obtained. However, when the ratio is too large, the compatibility is insufficient and the sufficient reforming effect tends not to be obtained.
単量体成分中の芳香族ビニル化合物の具体例としては、スチレン、α−メチルスチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、ジメチルスチレン、t−ブチルスチレン、クロルスチレン、ジクロルスチレン、ブロムスチレン、ジブロムスチレン等が挙げられ、特に、スチレンが好ましい。これらは1種を単独で用いても良く、2種以上を組み合わせて用いても良い。 Specific examples of the aromatic vinyl compound in the monomer component include styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, dimethylstyrene, t-butylstyrene, chlorostyrene, distyrene. Examples include chlorostyrene, bromostyrene, and dibromostyrene, and styrene is particularly preferable. These may be used alone or in combination of two or more.
シアン化ビニル化合物の具体例としては、アクリロニトリル、メタクリロニトリル等が挙げられ、特にアクリロニトリルが好ましい。これらは1種を単独で用いても良く、2種以上を組み合わせて用いても良い。 Specific examples of the vinyl cyanide compound include acrylonitrile and methacrylonitrile, and acrylonitrile is particularly preferable. These may be used alone or in combination of two or more.
更に、単量体成分中には、本発明の目的に対して支障のない範囲で、芳香族ビニル化合物及びシアン化ビニル化合物と共重合可能な他の単量体を含有させることができる。他の単量体としては、例えばメチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、アミルアクリレート、ヘキシルアクリレート、オクチルアクリレート、2−エチルヘキシルアクリレート、シクロヘキシルアクリレート、ドデシルアクリレート、オクタデシルアクリレート、フェニルアクリレート、ベンジルアクリレートなどのアクリル酸エステル;メチルメタクレート、エチルメタクレート、プロピルメタクリレート、ブチルメタクリレート、アミルメタクリレート、ヘキシルメタクリレート、オクチルメタクリレート、2−エチルヘキシルメタクリレート、シクロヘキシルメタクリレート、ドデシルメタクリレート、オクタデシルメタクリレート、フェニルメタクリレート、ベンジルメタクリレートなどのメタクリル酸エステル;無水マレイン酸、無水イタコン酸、無水シトラコン酸などの不飽和酸無水物;アクリル酸、メタクリル酸などの不飽和酸;マレイミド、N−メチルマレイミド、N−ブチルマレイミド、N−(p−メチルフェニル)マレイミド、N−フェニルマレイミド、N−シクロヘキシルマレイミドなどのα−又はβ−不飽和ジカルボン酸のイミド化合物(マレイミド系単量体ともいう);グリシジルメタクリレート、アリルグリシジルエーテルなどのエポキシ化合物;アクリルアミド、メタクリルアミドなどの不飽和カルボン酸アミド;アクリルアミン、メタクリル酸アミノメチル、メタクリル酸アミノエチル、メタクリル酸アミノプロピル、アミノスチレンなどのアミノ基含有不飽和化合物、3−ヒドロキシ−1−プロペン、4−ヒドロキシ−1−ブテン、シス−4−ヒドロキシ−2−ブテン、トランス−4−ヒドロキシ−2−ブテン、3−ヒドロキシ−2−メチル−1−プロペン、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレートなどの水酸基含有不飽和化合物;ビニルオキサゾリンなどのオキサゾリン基含有不飽和化合物などが挙げられる。また、これらの単量体は1種を単独で用いても良く、2種以上を組み合わせて用いても良い。 Furthermore, the monomer component can contain other monomers copolymerizable with the aromatic vinyl compound and the vinyl cyanide compound within a range that does not hinder the object of the present invention. Examples of other monomers include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, amyl acrylate, hexyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, dodecyl acrylate, octadecyl acrylate, phenyl acrylate, and benzyl acrylate. Acrylic acid ester of; methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, amyl methacrylate, hexyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, dodecyl methacrylate, octadecyl methacrylate, phenyl methacrylate, benzyl methacrylate Any methacrylic acid ester; unsaturated acid anhydride such as maleic anhydride, itaconic anhydride and citraconic anhydride; unsaturated acid such as acrylic acid and methacrylic acid; maleimide, N-methylmaleimide, N-butylmaleimide, N- ( p-methylphenyl) maleimide, N-phenylmaleimide, N-cyclohexylmaleimide and other α- or β-unsaturated dicarboxylic acid imide compounds (also referred to as maleimide monomers); glycidyl methacrylate, allyl glycidyl ether and other epoxy compounds Unsaturated carboxylic acid amides such as acrylamide and methacrylamide; amino group-containing unsaturated compounds such as acrylic amine, aminomethyl methacrylate, aminoethyl methacrylate, aminopropyl methacrylate, and aminostyrene, 3-hydroxy-1-propene 4-hydroxy-1-butene, cis-4-hydroxy-2-butene, trans-4-hydroxy-2-butene, 3-hydroxy-2-methyl-1-propene, 2-hydroxyethyl acrylate, 2-hydroxy Examples thereof include hydroxyl group-containing unsaturated compounds such as ethyl methacrylate; oxazoline group-containing unsaturated compounds such as vinyl oxazoline. Moreover, these monomers may be used individually by 1 type, and may be used in combination of 2 or more type.
本発明の改質材を製造するには、このようなゴム質重合体を含まない単量体成分を公知の重合方法、例えば乳化重合、懸濁重合、塊状重合等の重合法により重合させて硬質重合体を得る。 In order to produce the modifying material of the present invention, such a monomer component not containing a rubbery polymer is polymerized by a known polymerization method, for example, a polymerization method such as emulsion polymerization, suspension polymerization or bulk polymerization. A hard polymer is obtained.
単量体成分の重合に用いる重合開始剤としては、水溶性、油溶性、など特に種類の制限はなく、重合方法に合せて選定することができる。 The polymerization initiator used for the polymerization of the monomer component is not particularly limited, such as water solubility and oil solubility, and can be selected according to the polymerization method.
また、重合温度や重合時間などの重合条件は、安全性や効率面などから任意に設定することができる。 The polymerization conditions such as polymerization temperature and polymerization time can be arbitrarily set from the viewpoint of safety and efficiency.
このようにして得られる、本発明の改質材を構成する硬質重合体は、その質量平均分子量が好ましくは50000〜500000であり、より好ましくは100000〜450000である。質量平均分子量が上記範囲外の場合、これを用いた樹脂組成物は耐衝撃性や流動性に劣る傾向にある。 The thus obtained hard polymer constituting the modifier of the present invention preferably has a mass average molecular weight of 50,000 to 500,000, more preferably 100,000 to 450,000. When the mass average molecular weight is out of the above range, the resin composition using the same tends to be inferior in impact resistance and fluidity.
なお、この硬質重合体の質量平均分子量を測定するには、硬質重合体をTHF中に投入して一晩放置したものを30分間超音波洗浄器にかけて、完全に溶離させた後、この溶液を試料として用い、ゲルパーミエーションクロマトグラフィ(GPC)によってスチレン換算の分子量を測定すれば良い。 In order to measure the mass average molecular weight of the hard polymer, the hard polymer was put into THF and allowed to stand overnight, and then subjected to an ultrasonic cleaner for 30 minutes to completely elute the solution. The sample may be used as a sample, and the molecular weight in terms of styrene may be measured by gel permeation chromatography (GPC).
[廃樹脂]
本発明において、「廃樹脂」とは、樹脂の生産工程では、出始めや終わりで発生する製品とならない樹脂屑(塊も含む)やペレット、余剰生産品などが挙げられる。また、目的の成形品を成形する工程では、各種成形加工等で発生する樹脂屑(塊も含む)や不適合成形品や余剰成形品および余剰ペレットなど、不要の樹脂や樹脂成形品が挙げられる。
[Waste resin]
In the present invention, the “waste resin” includes resin scraps (including lumps), pellets, surplus products, etc. that do not become products generated at the beginning or end of the resin production process. Further, in the process of molding the target molded product, unnecessary resin and resin molded products such as resin waste (including lumps) generated in various molding processes, non-conforming molded products, surplus molded products, and surplus pellets can be used.
そして、市場などで役目を終えた製品や売れ残りなどの製品の樹脂部分が挙げられ、例えば、食品容器、文房具、発泡スチロール、CD、MD、カセットテープなどのケース部分、雑貨などに用いられているポリスチレン系樹脂、家電製品、OA機器、機械部品などに用いられている耐衝撃性ポリスチレン系樹脂、自動車部品、家電製品、OA機器、機械部品などの筐体等に使用されているABS、ASA、AES系樹脂などが挙げられる。 Resin parts of products that have finished their role in the market and unsold products are listed. For example, polystyrene used in cases such as food containers, stationery, foamed polystyrene, CD, MD, cassette tape, and miscellaneous goods. ABS, ASA, AES used in casings for impact-resistant polystyrene resins, automobile parts, home appliances, OA equipment, mechanical parts, etc. used in plastic resins, home appliances, OA equipment, machine parts, etc. Based resins and the like.
これら樹脂の製造や成形などの各工程で発生する樹脂や市場などで役目を終えた製品の樹脂部分を廃樹脂としている。また、本発明では、これらスチレン系樹脂が用いられているアロイ材料、例えば、ポリカーボネート樹脂やポリフェニレン樹脂、ポリエチレンテレプタレートやポリブチレンテレフタレート系樹脂、ポリアミド樹脂などのアロイ材料や変性された材料であっても効果を発揮することが出来る。 Waste resin is used as resin generated in each process such as manufacturing and molding of these resins and the resin portion of products that have finished their role in the market. In the present invention, alloy materials in which these styrene resins are used, for example, alloy materials such as polycarbonate resins, polyphenylene resins, polyethylene terephthalate, polybutylene terephthalate resins, polyamide resins, and modified materials. Even the effect can be demonstrated.
[廃樹脂の再生材]
本発明の廃樹脂の再生材は、上記本発明の樹脂配合用耐衝撃性補強材と樹脂配合用改質材とを含むものである。
[Recycled waste resin materials]
The recycled material for waste resin of the present invention includes the above-mentioned impact-resistant reinforcing material for resin blending and the modifier for resin blending of the present invention.
この再生材において、補強材と改質材との含有割合は特に制限はなく、廃樹脂の配合量や目的の特性に合せて任意の割合で配合することができる。 In this recycled material, the content ratio of the reinforcing material and the modifying material is not particularly limited, and can be blended at an arbitrary ratio according to the blended amount of the waste resin and the desired characteristics.
なお、本発明の再生材は、本発明の補強材と改質材とが予め所定の割合で混合されたものであっても良く、各々別々に提供されるものであっても良い。 The recycled material of the present invention may be a material in which the reinforcing material and the modifying material of the present invention are mixed in advance at a predetermined ratio, or may be provided separately.
また、本発明の再生材は、本発明の補強材と改質材以外の、通常、樹脂添加剤として用いられる各種の添加剤を含むものであっても良い。 Further, the recycled material of the present invention may contain various additives that are usually used as resin additives other than the reinforcing material and the modifying material of the present invention.
[再生スチレン系樹脂組成物]
本発明の再生スチレン系樹脂組成物は、
(1) 廃ポリスチレン
(2) 廃耐衝撃性ポリスチレン
(3) 廃ポリスチレンと廃耐衝撃性ポリスチレンとの混合樹脂
(4) 廃ポリスチレンと廃ABSとの混合樹脂
(5) 廃耐衝撃性ポリスチレンと廃ABSとの混合樹脂
(6) 廃ポリスチレンと廃耐衝撃性ポリスチレンと廃ABSとの混合樹脂
(7) 上記(1)〜(6)のいずれかに更にポリスチレン及び/又は耐衝撃性ポリスチレンのバージン樹脂を混合した混合樹脂
(8) 上記(1)〜(7)のいずれかに更にABSのバージン樹脂を混合した混合樹脂
に、本発明の樹脂配合用耐衝撃性補強材、或いは本発明の樹脂配合用耐衝撃性補強材及び改質材を溶融混合したものである(以下上記(1)〜(8)を「廃樹脂」と称す場合がある。)。
[Recycled styrene resin composition]
The regenerated styrene resin composition of the present invention is
(1) Waste polystyrene
(2) Waste impact resistant polystyrene
(3) Mixed resin of waste polystyrene and waste impact-resistant polystyrene
(4) Mixed resin of waste polystyrene and waste ABS
(5) Mixed resin of waste impact resistant polystyrene and waste ABS
(6) Mixed resin of waste polystyrene, waste impact polystyrene and waste ABS
(7) A mixed resin obtained by further mixing virgin resin of polystyrene and / or impact-resistant polystyrene with any of the above (1) to (6)
(8) The mixed resin obtained by further mixing ABS virgin resin with any of the above (1) to (7), the impact-resistant reinforcing material for resin blending of the present invention, or the impact-resistant reinforcing material for resin blending of the present invention (1) to (8) may be referred to as “waste resin” hereinafter .
更に、本発明の再生スチレン系樹脂組成物は、これらのポリスチレン系、ABS系以外のその他の熱可塑性樹脂をブレンドしたものであっても良い。本発明の再生スチレン系樹脂組成物にブレンドし得るその他の熱可塑性樹脂としては特に制限はないが、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリアミド樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂等が挙げられ、これらは1種を単独で、あるいは2種以上を混合してブレンドすることができる。これらその他の熱可塑性樹脂は、目的に応じて配合することができる。これらの他の熱可塑性樹脂をブレンドすることにより、本発明の再生スチレン系樹脂組成物の応用分野は更に広くなり、リサイクル性に優れたものとなる。 In a further, reproduction styrenic resin composition of the present invention, these polystyrene-based, or may be blended with other thermoplastic resins other than ABS system. Other thermoplastic resins that can be blended with the regenerated styrene-based resin composition of the present invention are not particularly limited, and examples thereof include polycarbonate resins, polyphenylene ether resins, polyamide resins, polyethylene terephthalate resins, polybutylene terephthalate resins, and the like. Can be blended singly or in combination of two or more. These other thermoplastic resins can be blended according to the purpose. By blending these other thermoplastic resins, the application field of the regenerated styrene resin composition of the present invention is further broadened, and the recyclability is excellent.
本発明の補強材及び改質材の配合量は、これを配合する樹脂の種類(ABSの有無及びABSの割合、バージン樹脂の割合等)に応じて、所望の物性が得られるような程度であれば良く、特に制限はない。 The blending amount of the reinforcing material and the modifying material of the present invention is such that desired physical properties can be obtained according to the type of resin blended therewith (the presence or absence of ABS, the proportion of ABS, the proportion of virgin resin, etc.). There is no particular limitation.
本発明の補強材及び改質材は、任意の配合量で配合可能であるが、通常の場合、本発明の補強材および/または改質材を配合する場合、廃樹脂と補強材と改質材の合計100質量部中、補強材および/または改質材が10〜60質量部、特に20〜50質量部となるように配合することが好ましい。 The reinforcing material and the modifying material of the present invention can be blended in an arbitrary blending amount. However, when the reinforcing material and / or the modifying material of the present invention are blended in a normal case, the waste resin, the reinforcing material and the modifying material are modified. It is preferable to blend so that the reinforcing material and / or the modifying material may be 10 to 60 parts by mass, particularly 20 to 50 parts by mass in the total 100 parts by mass of the material.
本発明の補強材、改質材の配合量が少な過ぎると、これを配合したことによる十分な補強効果、改質効果を得ることができず、また、多過ぎるとコストアップを招き、廃樹脂の再生、再利用には不適当である。 If the blending amount of the reinforcing material and the modifying material of the present invention is too small, it is not possible to obtain a sufficient reinforcing effect and reforming effect due to the blending of this, and if too much, the cost increases, and the waste resin It is unsuitable for reproduction and reuse.
廃樹脂と本発明の補強材、改質材の溶融混合は、例えば、リボンブレンダー、ヘンシェルミキサー、バンバリーミキサーなどを用いて常法に従って行うことができる。 The melt mixing of the waste resin, the reinforcing material of the present invention, and the modifying material can be performed according to a conventional method using, for example, a ribbon blender, a Henschel mixer, a Banbury mixer, or the like.
なお、本発明の再生スチレン系樹脂組成物は、廃樹脂と本発明の補強材、改質材の他、必要に応じて更に他の任意成分を配合することもできる。他の任意成分としては、例えば、脂肪族カルボン酸エステル系やパラフィン等の外部滑剤、離型剤、帯電防止剤、紫外線吸収剤、ヒンダードフェノール系の光安定剤、ガラス繊維、難燃剤難燃剤(ハロゲン系難燃剤、リン系難燃剤、アンチモン化合物など)、ドリップ防止剤、抗菌剤、防カビ剤、シリコ−ンオイル、カップリング剤、着色剤などの各種の添加剤が挙げられ、これらを1種以上配合しても良い。これらの任意成分の添加量は、再生スチレン系樹脂組成物の特性が維持される範囲であれば特に制限はない。 The regenerated styrene resin composition of the present invention may further contain other optional components as required in addition to the waste resin, the reinforcing material and the modifier of the present invention. Other optional components include, for example, external lubricants such as aliphatic carboxylic acid esters and paraffin, mold release agents, antistatic agents, ultraviolet absorbers, hindered phenol light stabilizers, glass fibers, flame retardant flame retardants (Halogen flame retardant, phosphorus flame retardant, antimony compound, etc.), various additives such as anti-drip agent, antibacterial agent, fungicide, silicone oil, coupling agent, colorant, etc. More than one species may be blended. The amount of these optional components added is not particularly limited as long as the characteristics of the regenerated styrene resin composition are maintained.
本発明の樹脂配合用耐衝撃性補強材、或いは本発明の樹脂配合用耐衝撃性補強材及び改質材は、廃ポリスチレン、廃耐衝撃性ポリスチレン、更には廃ABSに対する親和性が良好なため、これらを任意の割合で混合し、またその混合比率を任意に変更することにより、様々な物性バランスを有する再生スチレン系樹脂組成物を得ることができ、種々の性能を有した再生スチレン系樹脂組成物を容易に製造することができる。 The impact-resistant reinforcing material for resin blending of the present invention, or the impact-resistant reinforcing material for resin blending and modifying material of the present invention has good affinity for waste polystyrene, waste impact-resistant polystyrene, and waste ABS. The regenerated styrenic resin having various performances can be obtained by mixing these at an arbitrary ratio and by arbitrarily changing the mixing ratio to obtain a regenerated styrene resin composition having various physical property balances. The composition can be easily produced.
[再生スチレン系樹脂成形品]
本発明の再生スチレン系樹脂成形品は、このようにして製造された再生スチレン系樹脂組成物を公知の成形方法により所望の形状に成形してなるものであり、例えば、食品容器、文房具、雑貨、自動車部品、家電製品、OA機器、機械部品など幅広い分野で用いられ、その工業的な利用価値は極めて大きい。
[Recycled styrene resin molded product]
The regenerated styrene resin molded product of the present invention is obtained by molding the regenerated styrene resin composition thus produced into a desired shape by a known molding method. For example, food containers, stationery, miscellaneous goods It is used in a wide range of fields such as automobile parts, home appliances, OA equipment, and machine parts, and its industrial utility value is extremely large.
以下に、製造例、実施例、比較例及び参考例を示して本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、以下において、「部」及び「%」は断らない限り質量基準である。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to production examples, examples, comparative examples, and reference examples. However, the present invention is not limited to the following examples unless it exceeds the gist. In the following, “part” and “%” are based on mass unless otherwise noted.
また、各例における各種物性ないし特性の測定法は次の通りである。
<ゴム質重合体のゲル含有量>
粉体状のゴム質重合体をトルエン中に80℃で24時間浸漬した。その後、200メッシュ金網で濾過し、トルエン不溶分の割合(%)を求めて、これをゲル含有量とした。
<ゴム質重合体の平均粒子径>
含浸前のゴム質重合体の粒径を、オスニウム酸を用いて染色し、透過型電子顕微鏡(TEM)にて粒子径を測定した。
<グラフト重合体の質量平均分子量>
グラフト重合体をTHF中に投入して一晩放置したものを30分間超音波洗浄器にかけて、グラフト体を完全に溶離させた後、遠心分離機を用いて12,000rpmで1時間遠心分離してTHF不溶分(グラフト体)を得た。次いで、このTHF不溶分をクロロホルム中に分散させ、オゾン分解によりゴムを分解してグラフト鎖を回収してから蒸発乾固し、これをTHFに溶解してTHF溶液を得た。このグラフト体を溶解したTHF溶液を試料として用い、それぞれゲルパーミエーションクロマトグラフィ(GPC)によってスチレン換算の分子量を測定した。
<グラフト重合体のグラフト率>
上記、グラフト重合体の重量平均分子量を測定する手順の中で、遠心分離してTHF不溶分(グラフト体)までを同様に操作し、このTHF不溶分を抽出して乾燥重量を測定する。次いで、この不溶分をクロロホルム中に分散させ、オゾン分解によりゴムを分解してグラフト鎖を回収し乾燥重量を測定する。このようにしてオゾン分解前の重量(式(2)の分母)とオゾン分解後の重量(式(2)の分子)から、ゴム質重合体にグラフトしている単量体を求めた。
<グラフト重合体の内部存在率>
グラフト重合前(含浸前)のゴム質重合体の粒子径を透過型電子顕微鏡(TEM)にて測定したが、同様にして、グラフト重合を行った後のゴム質重合体の粒子径をTEMにて測定した。単量体がゴム質重合体内部に存在した場合、粒子径は大きくなるため、重合前と重合後の平均体積増加分から単量体の内部残存率を求めた。
<硬質重合体の質量平均分子量>
硬質重合体をTHF中に投入して一晩放置したものを30分間超音波洗浄器にかけて、完全に溶離させた後、この溶液を試料として用い、ゲルパーミエーションクロマトグラフィ(GPC)によってスチレン換算の分子量を測定した。
The methods for measuring various physical properties and characteristics in each example are as follows.
<Gel content of rubbery polymer>
The powdery rubbery polymer was immersed in toluene at 80 ° C. for 24 hours. Thereafter, the mixture was filtered through a 200-mesh wire mesh to determine the proportion (%) of toluene insoluble matter, and this was used as the gel content.
<Average particle diameter of rubbery polymer>
The particle size of the rubbery polymer before impregnation was dyed with osmic acid, and the particle size was measured with a transmission electron microscope (TEM).
<Mass average molecular weight of graft polymer>
The graft polymer was put in THF and allowed to stand overnight, and then subjected to an ultrasonic cleaner for 30 minutes to completely elute the graft body, and then centrifuged at 12,000 rpm for 1 hour using a centrifuge. A THF-insoluble matter (graft) was obtained. Next, the THF-insoluble matter was dispersed in chloroform, the rubber was decomposed by ozonolysis, the graft chain was recovered and evaporated to dryness, and this was dissolved in THF to obtain a THF solution. The THF solution in which this graft was dissolved was used as a sample, and the molecular weight in terms of styrene was measured by gel permeation chromatography (GPC).
<Graft ratio of graft polymer>
In the above-described procedure for measuring the weight average molecular weight of the graft polymer, centrifugal separation is performed in the same manner up to the THF-insoluble matter (graft body), and the THF-insoluble matter is extracted and the dry weight is measured. Next, this insoluble matter is dispersed in chloroform, the rubber is decomposed by ozonolysis, the graft chain is recovered, and the dry weight is measured. Thus, the monomer grafted to the rubber polymer was determined from the weight before ozonolysis (denominator of formula (2)) and the weight after ozonolysis (molecule of formula (2)).
<Internal abundance ratio of graft polymer>
The particle diameter of the rubber polymer before graft polymerization (before impregnation) was measured with a transmission electron microscope (TEM). Similarly, the particle diameter of the rubber polymer after graft polymerization was measured as TEM. Measured. When the monomer is present inside the rubbery polymer, the particle size becomes large. Therefore, the internal residual ratio of the monomer was determined from the average volume increase before and after the polymerization.
<Mass average molecular weight of hard polymer>
A hard polymer placed in THF and allowed to stand overnight is subjected to an ultrasonic cleaner for 30 minutes to completely elute it, and then this solution is used as a sample. Was measured.
[グラフト重合体の製造]
製造例1(実施例)
ポリブタジエン−1(ゲル含有率94%、平均粒子径290nm)50部、スチレン47.5部、アクリロニトリル2.5部(単量体成分中の5%)、t−ドデシルメルカプタン0.1部、ロジン酸ナトリウム1.0部、水酸化カリウム0.05部、純水160部を反応器に仕込み、60℃に昇温して60分間含浸させた後、t−ヘキシルパーオキシピバレイト0.3部を添加し、75℃まで昇温して2時間重合を行った。得られたラテックスに酸化防止剤を添加し、塩化カルシウム水溶液中に投入して凝固させ、洗浄、脱水、乾燥してグラフト重合体(A−1)を得た。
[Production of graft polymer]
Production Example 1 (Example)
Polybutadiene-1 (gel content 94%, average particle size 290 nm) 50 parts, styrene 47.5 parts, acrylonitrile 2.5 parts (5% in the monomer component), t-dodecyl mercaptan 0.1 part, rosin A reactor was charged with 1.0 part of sodium acid, 0.05 part of potassium hydroxide and 160 parts of pure water, heated to 60 ° C. and impregnated for 60 minutes, and then t-hexyl peroxypivalate 0.3. Part was added, the temperature was raised to 75 ° C., and polymerization was carried out for 2 hours. An antioxidant was added to the obtained latex, and the mixture was poured into an aqueous calcium chloride solution to be solidified, washed, dehydrated and dried to obtain a graft polymer (A-1).
得られたグラフト重合体の質量平均分子量、グラフト率及び内部存在率を重合条件と共に表1に示す。 Table 1 shows the mass average molecular weight, graft ratio, and internal abundance of the obtained graft polymer together with the polymerization conditions.
製造例2(実施例)
重合開始剤をアゾイソブチルニトリルに変更した以外は、実施例1と同様にして重合を行い、グラフト重合体(A−2)を得た。
Production Example 2 (Example)
Polymerization was carried out in the same manner as in Example 1 except that the polymerization initiator was changed to azoisobutyl nitrile to obtain a graft polymer (A-2).
得られたグラフト重合体の質量平均分子量、グラフト率及び内部存在率を重合条件と共に表1に示す。 Table 1 shows the mass average molecular weight, graft ratio, and internal abundance of the obtained graft polymer together with the polymerization conditions.
製造例3(実施例)
単量体成分をスチレン45.0部、アクリロニトリル5.0部(単量体成分中の10%)に変更した以外は、実施例1と同様にして重合を行い、グラフト重合体(A−3)を得た。
Production Example 3 (Example)
Polymerization was carried out in the same manner as in Example 1 except that the monomer component was changed to 45.0 parts of styrene and 5.0 parts of acrylonitrile (10% in the monomer component), and the graft polymer (A-3 )
得られたグラフト重合体の質量平均分子量、グラフト率及び内部存在率を重合条件と共に表1に示す。 Table 1 shows the mass average molecular weight, graft ratio, and internal abundance of the obtained graft polymer together with the polymerization conditions.
製造例4(実施例)
ポリブタジエン−1をポリブタジエン−2(ゲル含有率85%、平均粒子径420nm)に変更した以外は、実施例1と同様にして重合を行い、グラフト重合体(A−4)を得た。
Production Example 4 (Example)
Polymerization was performed in the same manner as in Example 1 except that polybutadiene-1 was changed to polybutadiene-2 (gel content: 85%, average particle size: 420 nm) to obtain a graft polymer (A-4).
得られたグラフト重合体の質量平均分子量、グラフト率及び内部存在率を重合条件と共に表1に示す。 Table 1 shows the mass average molecular weight, graft ratio, and internal abundance of the obtained graft polymer together with the polymerization conditions.
製造例5(実施例)
含浸時間を5分間に変更した以外は、実施例1と同様にして重合を行い、グラフト重合体(A−5)を得た。
Production Example 5 (Example)
Except having changed the impregnation time into 5 minutes, it superposed | polymerized like Example 1 and obtained the graft polymer (A-5).
得られたグラフト重合体の質量平均分子量、グラフト率及び内部存在率を重合条件と共に表1に示す。 Table 1 shows the mass average molecular weight, graft ratio, and internal abundance of the obtained graft polymer together with the polymerization conditions.
製造例6(比較例)
単量体成分をスチレン50.0部に変更した以外は、実施例1と同様にして重合を行い、グラフト重合体(A−6)を得た。
Production Example 6 ( Comparative Example)
Except having changed the monomer component into 50.0 parts of styrene, it superposed | polymerized like Example 1 and obtained the graft polymer (A-6).
得られたグラフト重合体の質量平均分子量、グラフト率及び内部存在率を重合条件と共に表1に示す。 Table 1 shows the mass average molecular weight, graft ratio, and internal abundance of the obtained graft polymer together with the polymerization conditions.
製造例7(比較例)
アクリロニトリルの使用量を12.5部(単量体成分中の25%)に変更した以外は、実施例1と同様にして重合を行い、グラフト重合体(A−7)を得た。
Production Example 7 (Comparative Example)
Polymerization was carried out in the same manner as in Example 1 except that the amount of acrylonitrile used was changed to 12.5 parts (25% in the monomer component) to obtain a graft polymer (A-7).
得られたグラフト重合体の質量平均分子量、グラフト率及び内部存在率を重合条件と共に表1に示す。 Table 1 shows the mass average molecular weight, graft ratio, and internal abundance of the obtained graft polymer together with the polymerization conditions.
製造例8(比較例)
実施例1のゴム質重合体の使用量を25部に変更した以外は、実施例1と同様にして重合を行い、グラフト重合体(A−8)を得た。
Production Example 8 (Comparative Example)
Except having changed the usage-amount of the rubber-like polymer of Example 1 into 25 parts, it superposed | polymerized like Example 1 and obtained the graft polymer (A-8).
得られたグラフト重合体の質量平均分子量、グラフト率及び内部存在率を重合条件と共に表1に示す。 Table 1 shows the mass average molecular weight, graft ratio, and internal abundance of the obtained graft polymer together with the polymerization conditions.
製造例9(比較例)
ポリブタジエン−1を、ポリブタジエン−3(ゲル含有率98%、平均粒子径80nm)に変更した以外は、実施例1と同様にして重合を行い、グラフト重合体(A−9)を得た。
Production Example 9 (Comparative Example)
Polymerization was performed in the same manner as in Example 1 except that polybutadiene-1 was changed to polybutadiene-3 (gel content: 98%, average particle size: 80 nm) to obtain a graft polymer (A-9).
得られたグラフト重合体の質量平均分子量、グラフト率及び内部存在率を重合条件と共に表1に示す。 Table 1 shows the mass average molecular weight, graft ratio, and internal abundance of the obtained graft polymer together with the polymerization conditions.
製造例10(比較例)
ゴム質重合体をゲル含有量45%のゴム質重合体に変更した以外は、実施例1と同様にして重合を行い、グラフト重合体(A−10)を得た。
Production Example 10 (Comparative Example)
Polymerization was performed in the same manner as in Example 1 except that the rubber polymer was changed to a rubber polymer having a gel content of 45% to obtain a graft polymer (A-10).
得られたグラフト重合体の質量平均分子量、グラフト率及び内部存在率を重合条件と共に表1に示す。 Table 1 shows the mass average molecular weight, graft ratio, and internal abundance of the obtained graft polymer together with the polymerization conditions.
製造例11(比較例)
重合開始剤をクメンハイドロパーオキサイドに変更し、更に、触媒(硫酸第一鉄0.004部、ピロリン酸ナトリウム0.1部、ブドウ糖0.18部)を添加した以外は、実施例1と同様にして重合を行い、グラフト重合体(A−11)を得た。
Production Example 11 (Comparative Example)
Example 1 except that the polymerization initiator was changed to cumene hydroperoxide and a catalyst (0.004 part of ferrous sulfate, 0.1 part of sodium pyrophosphate, 0.18 part of glucose) was added. Polymerization was carried out to obtain a graft polymer (A-11).
得られたグラフト重合体の質量平均分子量、グラフト率及び内部存在率を重合条件と共に表1に示す。 Table 1 shows the mass average molecular weight, graft ratio, and internal abundance of the obtained graft polymer together with the polymerization conditions.
製造例12(比較例)
t−ドデシルメルカプタン量を0.45部に変更した以外は、実施例1と同様にして重合を行い、グラフト重合体(A−12)を得た。
Production Example 12 (Comparative Example)
Polymerization was carried out in the same manner as in Example 1 except that the amount of t-dodecyl mercaptan was changed to 0.45 part to obtain a graft polymer (A-12).
得られたグラフト重合体の質量平均分子量、グラフト率及び内部存在率を重合条件と共に表1に示す。 Table 1 shows the mass average molecular weight, graft ratio, and internal abundance of the obtained graft polymer together with the polymerization conditions.
製造例13(比較例)
ゴム質重合体を平均粒子径700nmのゴム質重合体に変更した以外は、実施例1と同様にして重合を行い、グラフト重合体(A−13)を得た。
Production Example 13 (Comparative Example)
Polymerization was carried out in the same manner as in Example 1 except that the rubber polymer was changed to a rubber polymer having an average particle diameter of 700 nm to obtain a graft polymer (A-13).
得られたグラフト重合体の質量平均分子量、グラフト率及び内部存在率を重合条件と共に表1に示す。 Table 1 shows the mass average molecular weight, graft ratio, and internal abundance of the obtained graft polymer together with the polymerization conditions.
[硬質重合体の製造]
製造例14(実施例)
純水180部、ロジン酸ナトリウム2.5部、水酸化カリウム0.05部を反応器に仕込み、75℃に昇温した後、過硫酸カリウム0.15部を添加し、スチレン95部、アクリロニトリル5部、t−ドデシルメルカプタン0.2部を2時間掛けて滴下し、滴下終了後、1時間放置した。得られたラテックスを塩化カルシウム水溶液中に投入して凝固させ、洗浄、脱水、乾燥して硬質重合体(B−1)を得た。
[Production of hard polymer]
Production Example 14 (Example)
A reactor was charged with 180 parts of pure water, 2.5 parts of sodium rosinate, and 0.05 parts of potassium hydroxide, heated to 75 ° C., 0.15 part of potassium persulfate was added, 95 parts of styrene, and acrylonitrile. 5 parts and 0.2 part of t-dodecyl mercaptan were added dropwise over 2 hours, and the mixture was allowed to stand for 1 hour after completion of the addition. The obtained latex was put into an aqueous calcium chloride solution to be coagulated, washed, dehydrated and dried to obtain a hard polymer (B-1).
この硬質重合体の質量平均分子量は380000であった。 The mass average molecular weight of this hard polymer was 380000.
[補強材及び改質材の評価]
実施例1〜10、比較例15
表2に示すグラフト重合体を表2に示す割合で各種樹脂と混合し、ポリエチレンワックス0.1部を加えてバンバリーミキサーで混練してペレット化した。得られたペレットを用いて射出成形機(「J75E−P」型、日本製鋼所(株)製)により必要な試験片を作製した。得られた試験片について、以下の評価を行い、結果を表2に示した。
(アイゾット衝撃値)
ASTM D256に準じて、アイゾット衝撃値(J/m,23℃)を測定した。
(引張強度)
ASTM D638に準じて、引張強度(MPa)を測定した。
(表面光沢)
60mm×90mm×3mm厚の試験片を成形し、試験片中央部の光沢をスガ試験機(株)製デジタル変角光沢計「UGV−4D」を用いて、入射角60°で測定した。
[Evaluation of reinforcements and modifiers]
Examples 1 to 10, Comparative Example 15
The graft polymer shown in Table 2 was mixed with various resins at the ratio shown in Table 2, 0.1 part of polyethylene wax was added, and the mixture was kneaded with a Banbury mixer to be pelletized. Using the obtained pellets, necessary test specimens were prepared by an injection molding machine (“J75E-P” type, manufactured by Nippon Steel Works). The obtained test pieces were evaluated as follows, and the results are shown in Table 2.
(Izod impact value)
The Izod impact value (J / m, 23 ° C.) was measured according to ASTM D256.
(Tensile strength)
Tensile strength (MPa) was measured according to ASTM D638.
(Surface gloss)
A test piece of 60 mm × 90 mm × 3 mm thickness was molded, and the gloss at the center of the test piece was measured at an incident angle of 60 ° using a digital variable angle gloss meter “UGV-4D” manufactured by Suga Test Instruments Co., Ltd.
実施例11〜16
グラフト重合体(A−1)と硬質重合体(B−1)とを表3に示す割合で各種樹脂と混合したこと以外は、実施例1と同様にして試験片の作製及び評価を行い、結果を表3に示した。
Examples 11-16
Except that the graft polymer (A-1) and the hard polymer (B-1) were mixed with various resins in the proportions shown in Table 3, preparation and evaluation of the test piece were performed in the same manner as in Example 1, The results are shown in Table 3.
比較例1〜14
表4に示すグラフト重合体を表4に示す割合で各種樹脂及び硬質重合体と混合したこと以外は、実施例1と同様にして試験片の作製及び評価を行い、結果を表4に示した。
Comparative Examples 1-14
A test piece was prepared and evaluated in the same manner as in Example 1 except that the graft polymer shown in Table 4 was mixed with various resins and a hard polymer in the ratio shown in Table 4, and the results are shown in Table 4. .
参考例1〜4
表5に示す樹脂について、実施例1と同様にして試験片の作製及び評価を行い、結果を表5に示した。
Reference Examples 1-4
For the resins shown in Table 5, test pieces were prepared and evaluated in the same manner as in Example 1, and the results are shown in Table 5.
上記評価結果より明らかなように、本発明の樹脂配合用耐衝撃性補強材、或いは本発明の樹脂配合用耐衝撃性補強材及び改質材をブレンドして得られた再生スチレン系樹脂は、従来技術で得られた耐衝撃性ポリスチレンより、優れたアイゾット衝撃強度を有し、かつ、引張強度、及び表面外観にも優れていた。 As is clear from the above evaluation results, the regenerated styrene resin obtained by blending the impact-resistant reinforcing material for resin blending of the present invention, or the impact-resistant reinforcing material for resin blending of the present invention and a modifier, It had superior Izod impact strength than the impact-resistant polystyrene obtained by the prior art, and was excellent in tensile strength and surface appearance.
更に、本発明の樹脂配合用耐衝撃性補強材の混合割合を増すことにより、従来技術による耐衝撃性ポリスチレンでは得られない高い衝撃強度を持った、再生スチレン系樹脂を得ることができた。 Furthermore, by increasing the mixing ratio of the impact-resistant reinforcing material for resin blending according to the present invention, it was possible to obtain a regenerated styrene resin having a high impact strength that cannot be obtained by conventional impact-resistant polystyrene.
Claims (6)
廃ポリスチレン及び/又は廃耐衝撃性ポリスチレン、或いは少なくとも一種が廃樹脂である廃ポリスチレン及び/又は廃耐衝撃性ポリスチレンとABSとの混合樹脂とを溶融混合してなることを特徴とする再生スチレン系樹脂組成物。 A rubbery polymer having a gel content of 40 to 98% by mass and an average particle size of 100 to 550 nm is impregnated with a monomer component mainly composed of an aromatic vinyl compound and 0.1 to 10% by mass of a vinyl cyanide compound. Produced through an impregnation step, and then a polymerization step in which the monomer component is graft polymerized to the rubbery polymer using an oil-soluble pyrolysis initiator having a 10-hour half-life temperature of 30 to 90 ° C. A graft polymer obtained by graft-polymerizing 70 to 20 parts by mass of the monomer component to 30 to 80 parts by mass (in terms of solid content) of the rubbery polymer (provided that the rubber polymer and A total of 100 parts by mass with the monomer component), a recycled material of waste resin containing an impact-resistant reinforcing material for resin blending comprising a graft polymer having a mass average molecular weight of 40,000 to 200,000 ,
Waste polystyrene and / or waste impact-resistant polystyrene, or recycled polystyrene based on melt polystyrene of at least one kind of waste polystyrene and / or waste impact-resistant polystyrene and ABS mixed resin Resin composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004171442A JP4556503B2 (en) | 2004-06-09 | 2004-06-09 | Recycled styrene resin composition and molded product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004171442A JP4556503B2 (en) | 2004-06-09 | 2004-06-09 | Recycled styrene resin composition and molded product |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005350542A JP2005350542A (en) | 2005-12-22 |
JP4556503B2 true JP4556503B2 (en) | 2010-10-06 |
Family
ID=35585285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004171442A Expired - Fee Related JP4556503B2 (en) | 2004-06-09 | 2004-06-09 | Recycled styrene resin composition and molded product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4556503B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013014702A (en) * | 2011-07-05 | 2013-01-24 | Riken Technos Corp | Thermoplastic resin composition |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5179026B2 (en) * | 2006-08-07 | 2013-04-10 | ユーエムジー・エービーエス株式会社 | MODIFIED MATERIAL, METHOD FOR PRODUCING MOLDED ARTICLE USING SAME, AND METHOD FOR RECYCLING WASTE STYRENE |
JP2009161655A (en) * | 2008-01-07 | 2009-07-23 | Sharp Corp | Method for recycling biomass-based thermoplastic resin waste, method for producing biomass-based thermoplastic resin molded article and biomass-based thermoplastic resin molded article |
JP2010222456A (en) * | 2009-03-23 | 2010-10-07 | Ps Japan Corp | Styrene-based resin composition excellent in chemical resistance and molded article formed using this |
CN103756172A (en) * | 2013-12-12 | 2014-04-30 | 连云港海水化工有限公司 | High flame-retardant high impact-resistant regenerated polystyrene (EPS) particles, and preparation method thereof |
CN103739975A (en) * | 2013-12-12 | 2014-04-23 | 连云港海水化工有限公司 | High fire-retardant and high impact-resistant regenerated polystyrene XPS particle and preparation method thereof |
JP6785054B2 (en) * | 2016-04-05 | 2020-11-18 | 東洋スチレン株式会社 | Styrene-based resin composition |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5286492A (en) * | 1976-01-13 | 1977-07-18 | Mitsubishi Petrochem Co Ltd | Production of novel polymer particles |
JPH01318026A (en) * | 1988-06-20 | 1989-12-22 | Asahi Chem Ind Co Ltd | Rubber particle containing fine resin particle enclosed therein |
JPH0480221A (en) * | 1990-07-23 | 1992-03-13 | Showa Denko Kk | Preparation of high-impact resin composition |
JPH09136926A (en) * | 1995-11-15 | 1997-05-27 | Denki Kagaku Kogyo Kk | Transparent, rubber-reinforced thermoplastic resin |
JPH1121323A (en) * | 1997-07-04 | 1999-01-26 | Mitsubishi Rayon Co Ltd | Preparation of graft copolymer |
JP4156403B2 (en) * | 2003-02-27 | 2008-09-24 | ユーエムジー・エービーエス株式会社 | Impact-resistant reinforcing material, production method thereof, and impact-resistant reinforced polystyrene composition |
-
2004
- 2004-06-09 JP JP2004171442A patent/JP4556503B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5286492A (en) * | 1976-01-13 | 1977-07-18 | Mitsubishi Petrochem Co Ltd | Production of novel polymer particles |
JPH01318026A (en) * | 1988-06-20 | 1989-12-22 | Asahi Chem Ind Co Ltd | Rubber particle containing fine resin particle enclosed therein |
JPH0480221A (en) * | 1990-07-23 | 1992-03-13 | Showa Denko Kk | Preparation of high-impact resin composition |
JPH09136926A (en) * | 1995-11-15 | 1997-05-27 | Denki Kagaku Kogyo Kk | Transparent, rubber-reinforced thermoplastic resin |
JPH1121323A (en) * | 1997-07-04 | 1999-01-26 | Mitsubishi Rayon Co Ltd | Preparation of graft copolymer |
JP4156403B2 (en) * | 2003-02-27 | 2008-09-24 | ユーエムジー・エービーエス株式会社 | Impact-resistant reinforcing material, production method thereof, and impact-resistant reinforced polystyrene composition |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013014702A (en) * | 2011-07-05 | 2013-01-24 | Riken Technos Corp | Thermoplastic resin composition |
Also Published As
Publication number | Publication date |
---|---|
JP2005350542A (en) | 2005-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5096460B2 (en) | Resin composition with excellent scratch resistance | |
WO1995018837A1 (en) | Maleimide copolymer and resin composition containing the same | |
JP2021521311A (en) | Thermoplastic resin composition | |
JPH0335048A (en) | Impact-resistant thermoplastic resin composition | |
JP4556503B2 (en) | Recycled styrene resin composition and molded product | |
KR20150068313A (en) | COMPOSITION OF STYRENE RESIN HAVING Chemical Resistance and SUPERIOR HEAT RESISTANCE AND MOLDED ARTICLE MADE FROM the SAME | |
JP7199567B2 (en) | Alkyl acrylate compound-vinyl cyanide compound-aromatic vinyl compound graft copolymer, method for producing the same, and thermoplastic resin composition containing the same | |
JP4580493B2 (en) | Resin composition for molding vehicle lamp and vehicle lamp using the same | |
US9644090B2 (en) | Polymer mixtures with optimized toughness/stiffness ratio and optical properties | |
JP4618692B2 (en) | Rubber-containing graft polymer and thermoplastic resin composition | |
JP5756269B2 (en) | Thermoplastic resin composition and molded body | |
JP4530123B2 (en) | Thermoplastic resin composition | |
JP4156403B2 (en) | Impact-resistant reinforcing material, production method thereof, and impact-resistant reinforced polystyrene composition | |
JP5179026B2 (en) | MODIFIED MATERIAL, METHOD FOR PRODUCING MOLDED ARTICLE USING SAME, AND METHOD FOR RECYCLING WASTE STYRENE | |
JP2006045337A (en) | Thermoplastic resin composition and its molded product | |
JP4159899B2 (en) | Thermoplastic resin composition and method for producing the same | |
JP2012136644A (en) | Rubber-reinforced thermoplastic resin composition | |
JPS63243156A (en) | Thermoplastic resin composition | |
JP6341593B2 (en) | Method for producing graft copolymer and method for producing thermoplastic resin composition | |
JP4818580B2 (en) | Method for producing impact-resistant polyphenylene ether | |
JP5646921B2 (en) | Acrylic rubber reinforced thermoplastic resin and method for producing the same | |
JP2003327777A (en) | Thermoplastic resin composition | |
JP3438833B2 (en) | Manufacturing method of impact-resistant thermoplastic resin | |
JP3516226B2 (en) | Rubber-rich MABS resin composition and rubber-modified thermoplastic resin composition | |
JP3359454B2 (en) | Graft copolymer and resin composition using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070530 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100302 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100421 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100629 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100712 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4556503 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130730 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130730 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140730 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |