JP2004255668A - Method for manufacturing printing plate for lithographic printing and printing plate manufactured by the method - Google Patents

Method for manufacturing printing plate for lithographic printing and printing plate manufactured by the method Download PDF

Info

Publication number
JP2004255668A
JP2004255668A JP2003047835A JP2003047835A JP2004255668A JP 2004255668 A JP2004255668 A JP 2004255668A JP 2003047835 A JP2003047835 A JP 2003047835A JP 2003047835 A JP2003047835 A JP 2003047835A JP 2004255668 A JP2004255668 A JP 2004255668A
Authority
JP
Japan
Prior art keywords
light
printing plate
printing
hydrophilic
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003047835A
Other languages
Japanese (ja)
Inventor
Tetsuhiro Koide
哲裕 小出
Takayuki Sanada
隆幸 真田
Yuko Suzuki
祐子 鈴木
Koji Takano
弘二 高野
Masaya Naito
真哉 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003047835A priority Critical patent/JP2004255668A/en
Publication of JP2004255668A publication Critical patent/JP2004255668A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a printing plate for CTP(computer to plate) on which an image can be directly plotted by a laser beam with a low energy because of a high sensitivity to light, and which has sufficient inking properties and does not require post processings such as development and wiping operation, and the printing plate manufactured by the method. <P>SOLUTION: The method for manufacturing the printing plate for lithographic printing comprises crosslinking of a photosensitive resin composition comprising a hydrophilic polymer, a crosslinking agent and a light absorbing agent, or a photosensitive resin composition comprising the hydrophilic polymer, the crosslinking agent, a hydrophobic polymer and the light absorbing agent. The method manufactures the printing plate by irradiating with light an original plate for lithographic printing having at least a hydrophilic resin photosensitive layer the irradiation part of which changes from a hydrophilic nature to an ink-philic nature and not requiring development processing or wiping processing to form an image part. A structural change in the cross section of the original plate generated by irradiation with the light observed by an SEM (scanning electron microscopy) is limited within a depth of 0.5 μm from the surface of the irradiation part. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は平版印刷用の刷版の製造方法およびそれにより製造された刷版に関する。さらに詳しくは低エネルギーのレーザー光で直接描画でき、着インク性が十分で、且つ現像や拭き取り操作等の後工程が不要な平版印刷用の刷版の製造方法およびそれにより製造された刷版に関する。
【0002】
【従来技術】
平版印刷、所謂オフセット印刷は紙への印刷に於いて主流であり、広く用いられている。従来このオフセット印刷で用いられる刷版は、印刷原稿を一旦紙等に出力した後、この原稿を写真撮影して版下フィルムを作成し、この版下フィルムを通して感光性の刷版を露光、現像することにより作られていた。しかし、近年情報のデジタル化とレーザーの高出力化により刷版の作成に於いて上記した版下フィルムを使用せずに、レーザーを走査して直接刷版に描画して版を作成する方法、所謂CTP(Computer To Plate)法が実用に供されている。
【0003】
現在実用化されているCTP用の刷版として、近赤外線領域の光による熱反応を用いた平版印刷用の刷版が開示され、該刷版は既に市場に供されている(特許文献1参照)。しかし、この刷版は従来の刷版と同じように現像処理を必要としている。
【0004】
そこで、湿式現像処理の不要な平版印刷用の刷版として、露光領域で自己分散性樹脂粒子が溶融・融着して画像を形成する原版が開示されている(特許文献2参照)。この刷版は感光層の非画線部が湿し水で除去が可能な原版であり、いわゆる印刷機上で現像することができ、専用の現像機を必要とはしないが、印刷機上で現像した場合、湿し水やインクを汚染するだけでなく、保存時の湿度管理に厳しさが要求されると言う欠点を有する。また印刷中に画像が剥がれないためには露光領域の自己分散性樹脂粒子を親水性支持体面まで完全に溶融・融着させる必要があり、感度が低いと言う欠点も有する。
【0005】
湿式現像も印刷機上現像も必要としない平版印刷用の刷版として、独立し且つ接触関係にある疎水性熱可塑性樹脂微粒子を含有する親水性樹脂層を有し、熱により疎水性熱可塑性樹脂粒子が融着し、親水性が変化する刷版が開示されている(特許文献3参照)。しかし、この刷版は特に光照射で描画した際は感度が低く、且つ親水性樹脂層は強度が弱く耐刷性に劣る。又、着インク性を改善するために疎水性熱可塑成樹脂の量を増やすと、簡単に地汚れしてしまうという欠点を有する。
【0006】
更に、親水性樹脂中に該親水性樹脂中の親水基と反応する親油性物質を含むマイクロカプセルを含有した感光層からなり、光の照射によりマイクロカプセルを破壊して親水性樹脂を親油化する技術が開示されている(特許文献4参照)。しかしこの方法は解像度を上げたり、地汚れを防止するにはマイクロカプセルの粒径を非常に小さくしなければならず、製造が非常に困難であった。またマイクロカプセルを破壊して親油化するためには高エネルギーが必要であり、感度が低いと言う欠点も有する。
【0007】
更に、チタン又はチタン酸化物等の無機系の光吸収層の上にシリコーン樹脂の撥インク層を積層した構成の刷版も開発され市販されている(特許文献5参照)。しかしシリコーン樹脂層をアブレーションにより除去するためには高エネルギーが必要であり、感度が低いと言う欠点を有する。またこの刷版はシリコーン樹脂層がインクをはじき非画線部となり、近赤外光の照射により画線部が形成されるが、光の照射だけでは照射部のシリコーン樹脂層は除去されず、印刷に際しては光を照射した部分のシリコーン樹脂を除去するために拭き取り操作を必要とする。もしこのシリコーン樹脂の拭き取りが不十分な場合は照射部にインクが十分に付着せず、画像部に欠陥が生じ、うまく印刷できないという問題があった。
【0008】
【特許文献1】
特開平7−20629号公報
【特許文献2】
特開平9−127683号公報、
【特許文献3】
米国特許第3,476,937号明細書
【特許文献4】
特開平7−1850号公報
【特許文献5】
特開平7−314934号公報
【0009】
【発明が解決しようとする課題】
本発明の目的は、光に対する感度が高いため低エネルギーのレーザー光で直接描画でき、着インク性が十分で、且つ現像や拭き取り操作等の後工程が不要なCTP用の刷版の製造方法およびその方法で製造した刷版を提供することである。
【0010】
【課題を解決するための手段】
本発明者らは鋭意検討した結果、特定の架橋親水性樹脂感光層を用いた平版印刷用の原版に光を照射すると、照射部表面近傍の状態が発泡や融着等により変化するとともに、照射部表面が親インク性に変わるが、印刷においてインクが十分に付着するためには画像部の表面部分が親インク性であれば良く、架橋親水性樹脂感光層を支持体上に設けた平版印刷用の原版に光を照射して生じる照射部表面の変化の深さを制御することにより、上記の目的を達成できることを見出し、本発明に到達した。
【0011】
すなわち、本発明によれば、親水性ポリマー、架橋剤及び光吸収剤を含有してなる感光性樹脂組成物、または、親水性ポリマー、架橋剤、疎水性ポリマー及び光吸収剤を含有してなる感光性樹脂組成物を架橋してなるものであって、光照射部が親水性から親インク性に変化する、親水性樹脂感光層を少なくとも有し、現像処理または拭き取り処理が不要な平版印刷用の原版に、光を照射して画像部を形成する刷版の製造方法において、光を照射することにより生じる該原版断面のSEMで観察される構造変化を、照射部表面から深さ0.5μm以内の領域にとどめることを特徴とする平版印刷用の刷版の製造方法が提供される。
【0012】
さらには上記方法により製造された平版印刷用の刷版が提供される。
【0013】
【発明の実施の形態】
以下に本発明の平版印刷用の刷版の製造方法について詳細に説明する。
本発明の平版印刷用の刷版は、少なくとも、基板に、水に不溶性の親水性樹脂からなる感光層を設けてなる。この際用いられる基板の具体例としては、アルミ板、鋼板、ステンレス板、銅板等の金属板やポリエステル、ナイロン、ポリエチレン、ポリプロピレン、ポリカーボネート、ABS樹脂等のプラスチックフィルムや紙、アルミ箔ラミネート紙、金属蒸着紙、プラスチックフィルムラミネート紙等が挙げられる。これらの基材の厚さには特に制限はないが、通常100〜400μm程度である。又、これらの基材は密着性の改良等のために酸化処理、クロメート処理、サンドブラスト処理、コロナ放電処理等の表面処理を施してもよい。
【0014】
次に本発明の水に不溶性の親水性樹脂からなる感光層に関して詳しく説明する。本発明の平版印刷用の刷版は湿し水を用いるオフセット印刷用の現像や拭き取り操作等の後工程不要な刷版であり、感光層の光照射部以外は非画像部になる。従って本発明の感光層は親水性で、且つ水に溶けないことが必要である。そして、本発明の刷版では光を照射した部分の該感光層が、表面近傍において親水性から親インク性に変化する。そのため、本発明の刷版は光の照射後に現像や拭き取り等が不要となる。
【0015】
上記したような特性の変化を具現化するために、本発明の感光層は、親水性ポリマー、架橋剤及び光吸収剤を含有してなる感光性樹脂組成物、あるいは親水性ポリマー、架橋剤、疎水性ポリマー及び光吸収剤を含有してなる感光性樹脂組成物を架橋してなるものである。親水性ポリマーは架橋することにより水に不溶となる。
【0016】
本発明の感光層に用いられる親水性ポリマーは、親水性基及び架橋剤と反応する官能基(架橋官能基)を有するポリマーである。親水性ポリマーの親水性基としては、例えば、水酸基、アミド基、アミノ基、スルホンアミド基、オキシメチレン基、オキシエチレン基等、更にカルボキシル基、スルホン酸基、ホスホン酸基等の酸性基やこれら酸性基のアルカリ金属塩やアミン塩等が挙げられる。
【0017】
また架橋官能基としては、水酸基、アミド基、アミノ基、イソシアナート基、グリシジル基、オキサゾリン基、メチロール基、及びメチロール基とメタノールやブタノール等のアルコールとが縮合したメトキシメチル基やブトキシメチル基等、更にカルボキシル基、スルホン酸基、ホスホン酸基等の酸性基やこれら酸性基のアルカリ金属塩やアミン塩等が挙げられる。
【0018】
親水性ポリマーのより具体的な例としては、水溶性の以下のポリマーが挙げられる。即ち、セルロース類、ゼラチン、前記した親水性基や架橋官能基を有する不飽和酸及びその誘導体類やN−ビニルアセトアミド、N−ビニルホルムアミド、酢酸ビニル、ビニルエーテル等を重合、共重合してなるポリマー及びこのポリマーの加水分解ポリマー等である。
【0019】
前記した親水性基や架橋官能基を有する不飽和酸及びその誘導体の具体例としては、水酸基を有する不飽和酸誘導体としては、ヒドロキシエチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、メチロール(メタ)アクリルアミドや、該メチロール(メタ)アクリルアミドとメチルアルコールやブチルアルコールとの縮合物であるメトキシメチル(メタ)アクリルアミド、ブトキシメチル(メタ)アクリルアミド等が挙げられる。
【0020】
アミド基を有する不飽和酸誘導体としては無置換又は置換(メタ)アクリルアミド、無置換又は置換イタコン酸アミド、無置換又は置換フマル酸アミド、無置換又は置換フタル酸アミド、N―ビニルアセトアミド、N−ビニルホルムアミド等が挙げられる。無置換又は置換(メタ)アクリルアミドのより具体例としては、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、ダイアセトン(メタ)アクリルアミド、メチロール(メタ)アクリルアミド、メトキシメチル(メタ)アクリルアミド、ブトキシメチル(メタ)アクリルアミド、スルホン酸プロピル(メタ)アクリルアミド等が挙げられる。前記イタコン酸アミド等の二塩基酸アミドの場合は一方のカルボキシル基がアミド化されたモノアミドであっても良く、両方のカルボキシル基がアミド化されたジアミドであっても良い。更に、グリシジル基を有する不飽和酸誘導体としては、グリシジル(メタ)アクリレート、パラビニルフェニルグリシジルエーテル等が挙げられる。
【0021】
カルボキシル基を有する不飽和酸としては、(メタ)アクリル酸等の一塩基不飽和酸、イタコン酸、フマル酸、マレイン酸及びその無水物等の二塩基不飽和酸やこれら二塩基不飽和酸のモノエステル、モノアミド等が挙げられる。
【0022】
また、スルホン酸基を有する不飽和酸としては、スルホエチル(メタ)アクリレート、(メタ)アクリルアミドメチルプロパンスルホン酸、ビニルスルホン酸、ビニルメチルスルホン酸、イソプロぺニルメチルスルホン酸、(メタ)アクリル酸にエチレンオキシド、又はプロピレンオキシドを付加したアルコールの硫酸エステル(例えば、三洋化成工業(株)のエレミノールRS−30)、(メタ)アクリロイロキシエチルスルホン酸、モノアルキルスルホコハク酸エステルとアリル基を有する化合物とのエステル、モノアルキルスルホコハク酸エステルとグリシジル(メタ)アクリレートとの反応生成物等が、ホスホン酸基を有する重合性不飽和モノマーとしては、ビニルリン酸、リン酸モノ(2−ヒドロキシエチル)(メタ)アクリレート、リン酸モノアルキルエステルのモノ(2−ヒドロキシエチル)(メタ)アクリレート等が挙げられる。
【0023】
これらのカルボキシル基、スルホン酸基やホスホン酸基はアルカリ金属、アルカリ土類金属やアミン類で中和されていても良い。中和に用いられるアルカリ金属としては、ナトリウム、カリウム、リチウム等が、アルカリ土類金属としては、カルシウム、マグネシウム等が、及びアミンとしては、アンモニア、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等が挙げられる。
【0024】
重合するに際しては前記したこれらの不飽和酸及びその誘導体と共重合可能なモノマーを併用しても良い。共重合可能なモノマーとしては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、グリシジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソポロニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、スチレン、α−メチルスチレン、アクリロニトリル、メタクリロニトリル、酢酸ビニル等が挙げられる。まお、前記の記述に於いて、(メタ)アクリルアミドや(メタ)アクリル酸等に於ける(メタ)アクリル、(メタ)アクリロイル、更に(メタ)アクリレート等は、それぞれアクリルおよびメタクリル、アクリロイルおよびメタクリロイル、アクリレートおよびメタクリレートを意味する。
【0025】
本発明の親水性ポリマーを架橋するのに用いられる架橋剤としては、前記親水性ポリマーと架橋反応して親水性ポリマーを水に不溶性にすることにより親水性樹脂感光層の耐刷性を向上させるものであればよく、例えば、親水性ポリマー中の架橋性官能基である水酸基、カルボキシル基、スルホン酸基、グリシジル基、場合によってはアミド基と反応する公知の多価アルコール化合物類、多価カルボン酸化合物やその無水物類、多個グリシジル化合物類、多価アミン、多価イソシアネート化合物やブロックイソシアネート化合物、エポキシ樹脂、オキサゾリン樹脂、アミノ樹脂等が挙げられる。
【0026】
本発明に於いては前記した架橋剤の中でも、硬化速度と感光性樹脂組成物の室温での安定性や感光層の親水性と耐刷性のバランス等から、公知の種々の水性エポキシ樹脂、公知のオキサゾリン樹脂、公知のアミノ樹脂、水性ブロックイソシアネート化合物が好ましい。アミノ樹脂としては、公知のメラミン樹脂、尿素樹脂、ベンゾグアナミン樹脂、グリコールウリル樹脂等やこれら樹脂の変性樹脂、例えばカルボキシ変性メラミン樹脂等が挙げられる。又、架橋反応を促進するために、前記したエポキシ樹脂を用いる際には3級アミン類を、アミノ樹脂を用いる場合は、パラトルエンスルホン酸、アルキルベンゼンスルホン酸類、塩化アンモニウム等の酸性化合物を併用しても良い。
【0027】
上記架橋剤の主な役割は、前記親水性ポリマーを架橋し親水性ポリマーを水に不溶性にすることであるが、さらに架橋剤が自己重合性を有する場合には、感光層において該架橋剤が親水性ポリマー中に島相を形成し、感光層中表面近傍において光吸収剤が光を吸収して光エネルギーを熱エネルギーに変換した際、発生した熱により島相が発泡あるいは融着し、光照射部表面の親水性を親インク性に変化させることも含まれる。
【0028】
本発明の感光性樹脂組成物には、光の照射により照射部表面近傍の親水性が親インク性に変化しやすいように疎水性ポリマーを用いることが望ましい。疎水性ポリマーとしては、版の感度、光照射した際の親インク化のしやすさ等から動的光散乱法で測定した平均粒子径が0.005〜0.5μmの水分散疎水性樹脂が好ましく、平均粒子径が0.01〜0.2μmの水分散疎水性樹脂が更に好ましい。水分散疎水性樹脂とは、微細なポリマー粒子と必要に応じて該粒子を覆う保護剤からなる粒子を水性液に分散させた疎水性ポリマーを意味し、不飽和モノマーを乳化重合や懸濁重合することによって作られた疎水性ポリマー、特に酸性基を有する疎水性ポリマー、又は該ポリマーの有機溶剤溶液を必要ならば酸性基を中和したり、分散安定剤を加えて水中に分散したポリマー、必要ならば有機溶剤を溜去して水中に分散したポリマー等が挙げられる。水分散疎水性樹脂は、より具体的には例えば、ビニルポリマー系ラテックス、共役ジエンポリマー系ラテックス、アクリル系ラテックス、水分散ポリウレタン樹脂、水分散ポリエステル樹脂、水分散エポキシ樹脂等が挙げられる。
【0029】
上記疎水性ポリマーの役割は、感光層において該疎水性ポリマーが親水性ポリマー中に島相として形成され、感光層中表面近傍の光吸収剤が光を吸収して光エネルギーを熱エネルギーに変換した際、発生した熱により島相の疎水性ポリマーが発泡あるいは融着し、光照射部表面の親水性を低下させて親インク性に変化させることであると推定される。この発泡あるいは融着を効率よく行わせるには、疎水性ポリマーの平均粒子径が前記したように0.005〜0.5μmであることが好ましい。この粒子径の範囲内であれば、発生した熱で疎水性ポリマーが発泡あるいは融着しやすく、感度に優れる。
【0030】
本発明の感光層に上記疎水性ポリマーを使用する場合、疎水性ポリマー量は形態変化の点からは多い方が好ましいが、多くなり過ぎると地汚れを起こし好ましくない。この点から本発明に於ける感光性樹脂組成物中の疎水性ポリマー量は、固形分で70wt%以下であることが好ましい。
【0031】
本発明の感光層に用いられる光吸収剤としては、光を吸収して熱を生じるものであればよく、光の照射に際しては光吸収剤が吸収する波長域の光を適宜用いればよい。光吸収剤の具体例としては、シアニン系色素、ポリメチン系色素、フタロシアニン系色素、ナフタロシアニン系色素、アントラシアニン系色素、ポルフィリン系色素、アゾ系色素、ベンゾキノン系色素、ナフトキノン系色素、ジチオール金属錯体類、ジアミンの金属錯体類、ニグロシン等の各種色素、及びカーボンブラック等が挙げられる。
【0032】
これらの色素に於いては、明室での取り扱い性、露光機に用いる光源の出力や使い易さの点から750〜1100nmの領域の光を吸収する色素が好ましい。色素の吸収波長域に関しては置換基やπ電子の共役系の長さ等により変えることが出来る。これらの光吸収剤は感光性樹脂組成物が含まれる水溶液に溶解していても、又分散していても良い。前記した光吸収剤の中で、本発明に於いては親水性の光吸収剤が好ましい。より具体的には光吸収剤の吸収波長と親水性の点から、下記一般式(1)で示されるシアニン色素が好ましい。
【0033】
【化1】

Figure 2004255668
〔式中、R、Rはアルキル基、または一部を他の原子又は原子団で置き換えたアルキル基、Aはそれぞれ独立にスルホン酸基またはスルホン酸塩、Yは水素原子、アルキル基、ハロゲン原子、もしくはハロゲン原子で置換されている官能基、Zは水素原子または環状構造を形成するアルキレン基を示し、一部が他の原子または原子団で置き換えられていてもよい。また、n、mはそれぞれ独立して0〜6の整数を表し、o、pはそれぞれ独立して0または1を表し、分子内のスルホン酸またはスルホン酸塩の数はm+n+o+p≧1であり、Xは1価の陰イオン、ただしナフト縮合環のNとスルホン酸基が分子内で塩を作る場合にはなくてもよい。〕
【0034】
さらに、本発明の感光性樹脂組成物には、印刷条件に対する安定性を広げるため、種々の界面活性剤を添加することが望ましい。前記界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、非イオン性界面活性剤及び両性界面活性剤が挙げられる。また、感光性樹脂組成物水溶液の塗布性を良化するため、ハジキ防止剤、レベリング剤等の添加剤を添加しても良い。
【0035】
本発明の水に不溶の親水性樹脂からなる感光層は、親水性ポリマー、架橋剤及び光吸収剤を含有する感光性樹脂組成物が含まれる溶液、あるいは親水性ポリマー、架橋剤、疎水性ポリマー及び光吸収剤を含有する感光性樹脂組成物が含まれる溶液を基板に塗布し、乾燥、硬化すればよい。塗布する方法としては塗布する溶液の粘度や塗布速度等によって異なるが、通常例えば、ロールコーター、ブレードコーター、グラビアコーター、カーテンフローコーター、ダイコーターやスプレー法等を用いれば良い。塗布溶液を塗布した後、加熱して乾燥及び親水性ポリマーの架橋を行う。加熱温度は通常50〜200℃程度である。感光層の膜厚は特に制限はないが、通常0.5〜10μm程度が好ましい。
【0036】
さらに、本発明の平版印刷用の刷版に用いる原版は、該感光層上に必要に応じて表面層を設けてもよい。この場合、感度、分解物の発生の問題から、表面層の厚さは0.4μm以下であることが好ましい。
【0037】
本発明の平版印刷用の刷版に用いる原版は光吸収剤の吸収波長域の光を照射すると、表面近傍の光吸収剤がその光を吸収して発熱する。この発熱により感光層の光照射部は、自己重合した架橋剤や疎水性ポリマーが発泡したり熱融着して状態が変化する。この状態変化に伴い親インク化が起こる。親インク化する機構は明確ではないが、例えば発泡する場合、自己重合性を有する架橋剤からなる島相が発泡し、疎水性の架橋剤自己重合物が表面に露出し、かつフラクタル構造を形成することで親インク化が増幅されると考えられる。また熱融着する場合、疎水性ポリマーが熱により溶融し、周囲の架橋親水性樹脂を巻き込みながら融着することで、親インク化すると考えられる。
【0038】
印刷で光照射部にインクを付着させるには最表層が親インク性であれば良い。従って、光を照射することによって生じる原版断面の変化の深さは、露光に必要なパワーおよび露光時間の点から浅い方が良く、表面から0.5μm以内であることが好ましい。なお、ここでいう原版断面の構造変化の深さとは、原版の光を照射した部位を垂直に切断し、その断面を走査型電子顕微鏡(SEM)により15,000倍で観察したとき、明確に識別できる、自己重合した架橋剤や疎水性ポリマーが発泡あるいは熱融着することにより海島構造が消失している深さを測定した数値である。深さ0.5μmを超えて変化させた場合は、照射する光の所要エネルギーが大きくなるだけでなく、最表層が分解、燃焼等によって除去、融除されやすくなり、照射部の周辺に分解物が飛散することがあるため拭き取り工程が必須となる。また、分解、燃焼した最表層は着インク性が悪くなるので、このようなことは避けられなければならない。
【0039】
但し、あまりに深さが浅い場合は、印刷開始時点では良好な着インク性がえられるものの、数万枚の印刷を繰り返すと表層が削れる可能性がある。このため、表面からの変化の深さは0.03μm以上あることが望ましい。
【0040】
原版断面の変化の深さを制御する方法はさまざま存在するが、発熱量を制御する方法が簡便である。具体的には、光を照射した原版の断面を調べ、照射する光量を制御したり、使用する光吸収剤の量を最適化させて発熱量を制御すればよい。
【0041】
本発明の平版印刷用の原版の光の照射に用いられる光の波長は特に限定はなく、光吸収剤の吸収波長域に合致する光を用いればよい。照射に際しては照射所要時間の点から収束光を高速で走査するのが好ましく、使用し易く、且つ高出力の光源が適しており、この点から照射する光としてはレーザー光、特に750〜1100nmの波長域の発振波長を有するレーザー光が好ましく、例えば830nmの高出力半導体レーザーや1064nmのYAGレーザーを用い得る。これらのレーザーを搭載した露光機は所謂サーマル用プレートセッター(露光機)として既に市場に供されている。
【0042】
本発明の製造方法によって製造される刷版は、平版印刷で製造されるさまざまな用途に提供される。例えば、カタログ,パンフレットなどの印刷のほか、校正刷り、フィルムなどへの印刷、壁紙材への印刷などに使用可能である。
【0043】
【実施例】
[実施例1]
(親水性ポリマーP−1の合成)
1000ccのフラスコに水500gを入れ、窒素をバブリングして溶存酸素を除去した後、80℃に昇温した。窒素ガスを上記フラスコに流しながら、そこにアクリルアミド140.2g、2−ヒドロキシエチルアクリレート9.8g、水150gからなるモノマー溶液と過硫酸カリウム1.5gを水100gに溶解した開始剤の水溶液を、内温を80℃に維持しながら、別々に2時間に渡り連続滴下した。滴下終了後80℃で3時間重合を続けた。最後に水100gを加え、親水性ポリマーP−1の15%水溶液を合成した。
【0044】
(平版印刷用原版の作成)
接着性向上のため予めプライマーとして2μmの厚さのウレタン樹脂(第一工業製薬(株)製スーパーフレックス(登録商標)410)を塗布した厚さ0.3mmのアルミニウム板に下記組成(単位:質量部とwt%、以下同様)からなる感光性樹脂組成物が含まれる水溶液を、ワイヤーバーを用いて塗布した後、120℃で10分間乾燥し、2μmの膜厚の感光層を成膜して平版印刷用の原版を作成した。
【0045】
感光性樹脂組成物の組成
上記親水性ポリマーP−1の水溶液(固形分15%) 333部
メチル化メラミン樹脂(三井サイテック(株)製サイメル(登録商標)350、固形分80%) 50部
シアニン色素の水溶液(日本感光性色素(株)製IR−125、固形分5%) 186部
アニオン性界面活性剤(第一工業製薬(株)製ネオコール(登録商標)YSK、固形分70%) 1部
【0046】
(描画)
この原版に波長830nmの半導体レーザー光を300mJ/cmの照射エネルギー密度となるように集光しながら走査照射して、200線/インチの画像情報の描画を行った。この原版の断面をSEMで観察を行ったところ、照射部の表面から0.4μm深さまで親水性樹脂感光層が変化していた。
【0047】
(印刷評価)
この刷版を現像や拭き取り操作をせずに湿し水を用いるオフセット印刷機((株)小森コーポレーション製SPRINT26)にセットし、湿し水として(株)日研化学研究所製のH液アストロマーク3の2%水溶液、インクとして東洋インキ製造(株)製のハイエコー(登録商標)SOYを使用して印刷を行った。その結果光の未照射部にはインクが全く付かず、一方、照射部にはインクが十分に付着し描画した画像が印刷用紙上に再現された。5千枚印刷後でも未照射部にはインクが全く付かず、照射部へのインク付着性も損なわれなかった。
【0048】
[実施例2]
実施例1の感光性樹脂組成物を下記組成に代えた以外は実施例1と同様にして平版印刷用の原版を作った。
感光性樹脂組成物の組成
上記親水性ポリマーP−1の水溶液(固形分15%) 213部
メチル化メラミン樹脂(三井サイテック(株)製サイメル(登録商標)350、固形分80%) 10部
水分散ウレタン樹脂(第一工業製薬(株)製スーパーフレックス(登録商標)410、固形分40%) 125部
シアニン色素の水溶液(日本感光性色素(株)製IR−125、固形分5%) 200部
アニオン性界面活性剤(第一工業製薬(株)製ネオコール(登録商標)YSK、固形分70%) 1部
【0049】
この原版に波長830nmの半導体レーザー光を220mJ/cmの照射エネルギー密度となるように集光しながら走査照射して、200線/インチの画像情報の描画を行った。この原版の断面をSEMで観察を行ったところ、親水性樹脂感光層のうち、照射部の表面から0.2μm深さまでが変化していた。印刷評価を実施例1と同様に行ったところ、光の未照射部にはインクが全く付かず、一方、照射部にはインクが十分に付着し、描画した画像が印刷用紙上に再現された。
【0050】
[実施例3]
実施例1の感光性樹脂組成物を下記組成に代えた以外は実施例1と同様にして平版印刷用の原版を作った。
感光性樹脂組成物の組成
上記親水性ポリマーP−1の水溶液(固形分15%) 333部
メチル化メラミン樹脂(三井サイテック(株)製サイメル(登録商標)350、固形分80%) 50部
シアニン色素の水溶液(日本感光性色素(株)製IR−125、固形分5%) 166部
アニオン性界面活性剤(第一工業製薬(株)製ネオコール(登録商標)YSK、固形分70%) 1部
【0051】
この原版に波長830nmの半導体レーザー光を330mJ/cmの照射エネルギー密度となるように集光しながら走査照射して、200線/インチの画像情報の描画を行った。この原版の断面をSEMで観察を行ったところ、照射部の表面から0.5μm深さまでの親水性樹脂感光層が変化していた。印刷評価を実施例1と同様に行ったところ、光の未照射部にはインクが全く付かず、一方、照射部にはインクが十分に付着し、描画した画像が印刷用紙上に再現された。
【0052】
[比較例1]
実施例2の原版に波長830nmの半導体レーザー光を450mJ/cmの照射エネルギー密度となるように集光しながら走査照射して、200線/インチの画像情報の描画を行った。この原版の断面をSEMで観察を行ったところ、親水性樹脂感光層のうち、照射部の表面から0.6μmまでが変化し、最表層の一部は分解し周囲に分解物と思われるゴミが飛散していた。印刷評価を行ったところ、照射部の着インク性が不十分で、描画した画像は印刷用紙上に再現されなかった。
【0053】
【発明の効果】
本発明により、低エネルギーのレーザー光で直接描画でき、着インク性が十分で、且つ現像や拭き取り等の後工程不要な湿し水を用いる平版印刷用の刷版を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a printing plate for lithographic printing and a printing plate produced thereby. More specifically, the present invention relates to a method of manufacturing a lithographic printing plate that can be directly drawn with a low-energy laser beam, has sufficient ink-adhesiveness, and does not require a post-process such as development or wiping operation, and a printing plate manufactured thereby. .
[0002]
[Prior art]
Lithographic printing, so-called offset printing, is the mainstream in printing on paper and is widely used. Conventionally, the printing plate used in this offset printing is to print the original on paper and then take a photograph of the original to create an underlay film, and expose and develop a photosensitive plate through this underlay film. It was made by doing. However, in recent years, the digitization of information and the increase in the output of the laser, without using the above-mentioned underlay film in the preparation of the printing plate, a method of creating a plate by scanning a laser and drawing directly on the printing plate, The so-called CTP (Computer To Plate) method has been put to practical use.
[0003]
As a printing plate for CTP currently in practical use, a printing plate for lithographic printing using a thermal reaction by light in a near-infrared region is disclosed, and the printing plate has already been put on the market (see Patent Document 1). ). However, this printing plate requires a development process like a conventional printing plate.
[0004]
Therefore, as a printing plate for lithographic printing that does not require wet development, an original plate is disclosed in which self-dispersible resin particles are melted and fused in an exposed area to form an image (see Patent Document 2). This printing plate is an original plate in which the non-image area of the photosensitive layer can be removed with a dampening solution, and can be developed on a so-called printing machine, and does not require a special developing machine. When developed, it not only contaminates fountain solution and ink, but also has the disadvantage that strict control of humidity during storage is required. Further, in order for the image not to be peeled off during printing, it is necessary to completely melt and fuse the self-dispersible resin particles in the exposed area to the surface of the hydrophilic support, which has a disadvantage that the sensitivity is low.
[0005]
As a printing plate for lithographic printing that does not require wet development or on-press development, it has a hydrophilic resin layer containing hydrophobic thermoplastic resin particles that are independent and in contact with each other. A printing plate in which the particles are fused and the hydrophilicity changes is disclosed (see Patent Document 3). However, this printing plate has low sensitivity particularly when drawing by light irradiation, and the hydrophilic resin layer has low strength and poor printing durability. Further, when the amount of the hydrophobic thermoplastic resin is increased in order to improve the ink-adhering property, there is a disadvantage that the background is easily stained.
[0006]
Furthermore, the photosensitive layer contains a microcapsule containing a lipophilic substance that reacts with a hydrophilic group in the hydrophilic resin in the hydrophilic resin, and the microcapsule is broken by light irradiation to make the hydrophilic resin lipophilic. (See Patent Document 4). However, in this method, the particle size of the microcapsules must be made very small in order to increase the resolution and prevent background contamination, and it has been very difficult to manufacture. In addition, high energy is required to break the microcapsules to make them lipophilic, and they have the disadvantage of low sensitivity.
[0007]
Further, a printing plate having a structure in which an ink repellent layer of a silicone resin is laminated on an inorganic light absorbing layer such as titanium or a titanium oxide has been developed and marketed (see Patent Document 5). However, the removal of the silicone resin layer by ablation requires high energy, and has the disadvantage of low sensitivity. In this printing plate, the silicone resin layer repels the ink to form a non-image area, and an image area is formed by irradiation with near-infrared light. At the time of printing, a wiping operation is required to remove the silicone resin in a portion irradiated with light. If the wiping of the silicone resin is insufficient, there is a problem that the ink does not sufficiently adhere to the irradiated portion, a defect occurs in the image portion, and printing cannot be performed well.
[0008]
[Patent Document 1]
JP-A-7-20629 [Patent Document 2]
JP-A-9-127683,
[Patent Document 3]
US Patent No. 3,476,937 [Patent Document 4]
JP-A-7-1850 [Patent Document 5]
JP-A-7-314934
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a printing plate for CTP, which has high sensitivity to light and can be directly drawn with a low-energy laser beam, has sufficient ink-adhesiveness, and does not require a post-process such as development or wiping operation. The purpose is to provide a printing plate manufactured by the method.
[0010]
[Means for Solving the Problems]
The present inventors have conducted intensive studies and as a result, when irradiating light to a lithographic printing original plate using a specific cross-linked hydrophilic resin photosensitive layer, the state near the surface of the irradiated portion changes due to foaming and fusion, etc. The surface of the image area changes to ink-philic, but in order for the ink to adhere sufficiently in printing, the surface of the image area only needs to be ink-philic, and lithographic printing in which a cross-linked hydrophilic resin photosensitive layer is provided on a support It has been found that the above object can be achieved by controlling the depth of change of the surface of the irradiated portion caused by irradiating the light onto the original master for use, and arrived at the present invention.
[0011]
That is, according to the present invention, a photosensitive resin composition containing a hydrophilic polymer, a crosslinking agent and a light absorbing agent, or a hydrophilic polymer, a crosslinking agent, a hydrophobic polymer and a light absorbing agent are contained. For lithographic printing, which is obtained by cross-linking a photosensitive resin composition and in which a light-irradiated portion changes from hydrophilic to ink-philic, and has at least a hydrophilic resin photosensitive layer and does not require a developing process or a wiping process. In the method of manufacturing a printing plate in which an image portion is formed by irradiating light to the original plate, a structural change observed by SEM of a cross section of the original plate caused by irradiating light is reduced by 0.5 μm from the surface of the irradiated portion. A method for producing a printing plate for lithographic printing, characterized in that it is limited to a region within the range of:
[0012]
Further, a lithographic printing plate manufactured by the above method is provided.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the method for producing a printing plate for lithographic printing according to the present invention will be described in detail.
The printing plate for lithographic printing of the present invention comprises at least a substrate provided with a photosensitive layer made of a water-insoluble hydrophilic resin. Specific examples of the substrate used at this time include a metal plate such as an aluminum plate, a steel plate, a stainless steel plate, and a copper plate; a plastic film or paper such as polyester, nylon, polyethylene, polypropylene, polycarbonate, and ABS resin; an aluminum foil laminated paper; Evaporated paper, plastic film laminated paper and the like can be mentioned. The thickness of these substrates is not particularly limited, but is usually about 100 to 400 μm. These substrates may be subjected to a surface treatment such as an oxidation treatment, a chromate treatment, a sand blast treatment, a corona discharge treatment or the like in order to improve the adhesion.
[0014]
Next, the photosensitive layer comprising a hydrophilic resin insoluble in water of the present invention will be described in detail. The printing plate for lithographic printing of the present invention is a printing plate which does not require a post-process such as development for offset printing using fountain solution or a wiping operation, and becomes a non-image portion except for the light-irradiated portion of the photosensitive layer. Therefore, the photosensitive layer of the present invention needs to be hydrophilic and not soluble in water. In the printing plate of the present invention, the portion of the photosensitive layer irradiated with light changes from hydrophilic to ink-philic in the vicinity of the surface. Therefore, the printing plate of the present invention does not require development, wiping, or the like after light irradiation.
[0015]
In order to realize the above-described change in the properties, the photosensitive layer of the present invention is a photosensitive resin composition containing a hydrophilic polymer, a crosslinking agent and a light absorber, or a hydrophilic polymer, a crosslinking agent, It is obtained by crosslinking a photosensitive resin composition containing a hydrophobic polymer and a light absorber. The hydrophilic polymer becomes insoluble in water by crosslinking.
[0016]
The hydrophilic polymer used in the photosensitive layer of the present invention is a polymer having a hydrophilic group and a functional group that reacts with a crosslinking agent (crosslinking functional group). Examples of the hydrophilic group of the hydrophilic polymer include, for example, a hydroxyl group, an amide group, an amino group, a sulfonamide group, an oxymethylene group, an oxyethylene group, and an acid group such as a carboxyl group, a sulfonic acid group, and a phosphonic acid group. Examples thereof include alkali metal salts and amine salts of acidic groups.
[0017]
Examples of the crosslinking functional group include a hydroxyl group, an amide group, an amino group, an isocyanate group, a glycidyl group, an oxazoline group, a methylol group, and a methoxymethyl group and a butoxymethyl group in which a methylol group is condensed with an alcohol such as methanol or butanol. And acidic groups such as a carboxyl group, a sulfonic acid group and a phosphonic acid group, and alkali metal salts and amine salts of these acidic groups.
[0018]
More specific examples of the hydrophilic polymer include the following water-soluble polymers. That is, polymers obtained by polymerizing and copolymerizing celluloses, gelatin, unsaturated acids having the above-mentioned hydrophilic groups or cross-linking functional groups and derivatives thereof, N-vinylacetamide, N-vinylformamide, vinyl acetate, vinyl ether and the like. And a hydrolyzed polymer of this polymer.
[0019]
Specific examples of the above-described unsaturated acid having a hydrophilic group or a cross-linking functional group and derivatives thereof include hydroxyethyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, and hydroxypropyl. (Meth) acrylate, polypropylene glycol mono (meth) acrylate, hydroxybutyl (meth) acrylate, methylol (meth) acrylamide, and methoxymethyl (meth) which is a condensate of methylol (meth) acrylamide with methyl alcohol or butyl alcohol Acrylamide, butoxymethyl (meth) acrylamide and the like can be mentioned.
[0020]
Examples of the unsaturated acid derivative having an amide group include unsubstituted or substituted (meth) acrylamide, unsubstituted or substituted itaconic amide, unsubstituted or substituted fumaric amide, unsubstituted or substituted phthalamide, N-vinylacetamide, N- And vinylformamide. More specific examples of unsubstituted or substituted (meth) acrylamide include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, diacetone (meth) acrylamide And methylol (meth) acrylamide, methoxymethyl (meth) acrylamide, butoxymethyl (meth) acrylamide, propyl sulfonate (meth) acrylamide, and the like. In the case of a dibasic acid amide such as the aforementioned itaconic acid amide, a monoamide in which one carboxyl group is amidated may be used, or a diamide in which both carboxyl groups are amidated. Further, examples of unsaturated acid derivatives having a glycidyl group include glycidyl (meth) acrylate, paravinylphenyl glycidyl ether and the like.
[0021]
Examples of the unsaturated acid having a carboxyl group include monobasic unsaturated acids such as (meth) acrylic acid, dibasic unsaturated acids such as itaconic acid, fumaric acid, maleic acid and anhydride thereof, and dibasic unsaturated acids such as Monoester, monoamide and the like can be mentioned.
[0022]
Examples of the unsaturated acid having a sulfonic acid group include sulfoethyl (meth) acrylate, (meth) acrylamidomethylpropanesulfonic acid, vinylsulfonic acid, vinylmethylsulfonic acid, isopropenylmethylsulfonic acid, and (meth) acrylic acid. Sulfuric acid esters of alcohols to which ethylene oxide or propylene oxide is added (for example, Eleminol RS-30 of Sanyo Chemical Industries, Ltd.), (meth) acryloyloxyethylsulfonic acid, monoalkylsulfosuccinate and a compound having an allyl group And the reaction products of monoalkylsulfosuccinates and glycidyl (meth) acrylate as the polymerizable unsaturated monomers having a phosphonic acid group include vinyl phosphoric acid and mono (2-hydroxyethyl) phosphate (meth). Ace relay , Mono phosphoric acid monoalkyl esters (2-hydroxyethyl) (meth) acrylate.
[0023]
These carboxyl groups, sulfonic groups and phosphonic groups may be neutralized with alkali metals, alkaline earth metals or amines. As the alkali metal used for neutralization, sodium, potassium, lithium, etc., as the alkaline earth metal, calcium, magnesium, etc., and as the amine, ammonia, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, Triethylamine, monoethanolamine, diethanolamine, triethanolamine and the like.
[0024]
Upon polymerization, a monomer copolymerizable with these unsaturated acids and their derivatives may be used in combination. Examples of the copolymerizable monomer include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, glycidyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, and diethylamino. Ethyl (meth) acrylate, phenoxyethyl (meth) acrylate, benzyl (meth) acrylate, isopolonyl (meth) acrylate, adamantyl (meth) acrylate, cyclohexyl (meth) acrylate, styrene, α-methylstyrene, acrylonitrile, methacrylonitrile, Vinyl acetate and the like. In the above description, (meth) acrylamide, (meth) acrylic acid, etc., (meth) acrylic, (meth) acryloyl, and further (meth) acrylate, etc. are acryl and methacryl, acryloyl and methacryloyl, respectively. Means acrylate and methacrylate.
[0025]
The crosslinking agent used to crosslink the hydrophilic polymer of the present invention improves the printing durability of the hydrophilic resin photosensitive layer by making the hydrophilic polymer insoluble in water by performing a crosslinking reaction with the hydrophilic polymer. Any known polyhydric alcohol compounds and polycarboxylic acids that can react with a hydroxyl group, a carboxyl group, a sulfonic group, a glycidyl group, and in some cases, an amide group, which are crosslinkable functional groups in a hydrophilic polymer, may be used. Examples include acid compounds and anhydrides thereof, polyglycidyl compounds, polyamines, polyisocyanate compounds and blocked isocyanate compounds, epoxy resins, oxazoline resins, amino resins and the like.
[0026]
In the present invention, among the crosslinking agents described above, from the balance between the curing speed and the stability at room temperature of the photosensitive resin composition and the hydrophilicity and printing durability of the photosensitive layer, various known aqueous epoxy resins, Known oxazoline resins, known amino resins, and aqueous blocked isocyanate compounds are preferred. Examples of the amino resin include known melamine resins, urea resins, benzoguanamine resins, glycoluril resins, and the like, and modified resins of these resins, for example, carboxy-modified melamine resins. In order to accelerate the crosslinking reaction, tertiary amines are used when the above-mentioned epoxy resin is used, and acidic compounds such as p-toluenesulfonic acid, alkylbenzenesulfonic acid, and ammonium chloride are used together when the amino resin is used. May be.
[0027]
The main role of the cross-linking agent is to cross-link the hydrophilic polymer to make the hydrophilic polymer insoluble in water.However, when the cross-linking agent has self-polymerizability, the cross-linking agent is used in the photosensitive layer. When an island phase is formed in the hydrophilic polymer and the light absorber absorbs light and converts light energy to heat energy in the vicinity of the surface in the photosensitive layer, the generated heat causes the island phase to foam or fuse, and This also includes changing the hydrophilicity of the surface of the irradiated portion to ink-philicity.
[0028]
In the photosensitive resin composition of the present invention, it is desirable to use a hydrophobic polymer so that the hydrophilicity near the surface of the irradiated portion is easily changed to ink-philicity by light irradiation. As the hydrophobic polymer, a water-dispersed hydrophobic resin having an average particle size of 0.005 to 0.5 μm measured by a dynamic light scattering method from the sensitivity of the plate, the ease of forming an ink-friendly ink when irradiated with light, or the like. A water-dispersed hydrophobic resin having an average particle diameter of 0.01 to 0.2 μm is more preferable. The water-dispersed hydrophobic resin means a hydrophobic polymer in which fine polymer particles and, if necessary, particles comprising a protective agent covering the particles are dispersed in an aqueous liquid, the unsaturated monomer is subjected to emulsion polymerization or suspension polymerization. A hydrophobic polymer, especially a hydrophobic polymer having an acidic group, or a polymer dispersed in water by adding a dispersion stabilizer to neutralize the acidic group, if necessary, or a solution of the polymer in an organic solvent. If necessary, a polymer dispersed in water by distilling off an organic solvent can be used. More specifically, examples of the water-dispersed hydrophobic resin include vinyl polymer-based latex, conjugated diene polymer-based latex, acrylic latex, water-dispersed polyurethane resin, water-dispersed polyester resin, and water-dispersed epoxy resin.
[0029]
The role of the hydrophobic polymer is that the hydrophobic polymer is formed as an island phase in the hydrophilic polymer in the photosensitive layer, and the light absorber near the surface in the photosensitive layer absorbs light and converts light energy to heat energy. In this case, it is presumed that the generated heat causes the hydrophobic polymer in the island phase to foam or fuse, thereby lowering the hydrophilicity of the surface of the light-irradiated portion and changing the surface to the ink-philicity. In order to efficiently perform the foaming or the fusion, the average particle diameter of the hydrophobic polymer is preferably 0.005 to 0.5 μm as described above. When the particle diameter is within the range, the generated heat easily causes the foaming or fusion of the hydrophobic polymer, and the sensitivity is excellent.
[0030]
When the above-mentioned hydrophobic polymer is used in the photosensitive layer of the present invention, it is preferable that the amount of the hydrophobic polymer is large from the viewpoint of morphological change. From this point, the amount of the hydrophobic polymer in the photosensitive resin composition according to the present invention is preferably 70% by weight or less in terms of solid content.
[0031]
The light absorbing agent used in the photosensitive layer of the present invention may be any as long as it absorbs light and generates heat. When irradiating light, light in the wavelength range that the light absorbing agent absorbs may be used as appropriate. Specific examples of the light absorber include a cyanine dye, a polymethine dye, a phthalocyanine dye, a naphthalocyanine dye, an anthocyanin dye, a porphyrin dye, an azo dye, a benzoquinone dye, a naphthoquinone dye, and a dithiol metal complex. , Metal complexes of diamines, various dyes such as nigrosine, and carbon black.
[0032]
Among these dyes, dyes that absorb light in the region of 750 to 1100 nm are preferable from the viewpoint of handleability in a bright room, output of a light source used in an exposure machine, and ease of use. The absorption wavelength range of the dye can be changed depending on the length of the substituent, the conjugated system of π electrons, and the like. These light absorbers may be dissolved or dispersed in an aqueous solution containing the photosensitive resin composition. Among the light absorbers described above, hydrophilic light absorbers are preferred in the present invention. More specifically, a cyanine dye represented by the following general formula (1) is preferable from the viewpoint of the absorption wavelength and hydrophilicity of the light absorber.
[0033]
Embedded image
Figure 2004255668
[Wherein, R 1 and R 2 are an alkyl group or an alkyl group partially substituted with another atom or atomic group, A is each independently a sulfonic acid group or a sulfonate, Y is a hydrogen atom, an alkyl group, A halogen atom or a functional group substituted with a halogen atom, Z represents a hydrogen atom or an alkylene group forming a cyclic structure, and a part thereof may be replaced by another atom or an atomic group. N and m each independently represent an integer of 0 to 6, o and p each independently represent 0 or 1, and the number of sulfonic acids or sulfonic acid salts in the molecule is m + n + o + p ≧ 1; X is a monovalent anion, but may not be present when N + of the naphtho fused ring and a sulfonic acid group form a salt in the molecule. ]
[0034]
Furthermore, it is desirable to add various surfactants to the photosensitive resin composition of the present invention in order to increase the stability under printing conditions. Examples of the surfactant include an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant. Further, in order to improve the applicability of the aqueous solution of the photosensitive resin composition, additives such as an anti-cissing agent and a leveling agent may be added.
[0035]
The photosensitive layer composed of a water-insoluble hydrophilic resin of the present invention is a solution containing a photosensitive resin composition containing a hydrophilic polymer, a crosslinking agent and a light absorber, or a hydrophilic polymer, a crosslinking agent, and a hydrophobic polymer. What is necessary is just to apply a solution containing the photosensitive resin composition containing the light absorbing agent to the substrate, and to dry and cure the solution. The method of coating varies depending on the viscosity of the solution to be coated, the coating speed, and the like. Usually, for example, a roll coater, a blade coater, a gravure coater, a curtain flow coater, a die coater, a spray method, or the like may be used. After applying the coating solution, the coating solution is heated to dry and crosslink the hydrophilic polymer. The heating temperature is usually about 50 to 200 ° C. The thickness of the photosensitive layer is not particularly limited, but is preferably about 0.5 to 10 μm.
[0036]
Further, the original plate used for the lithographic printing plate of the invention may have a surface layer on the photosensitive layer if necessary. In this case, the thickness of the surface layer is preferably 0.4 μm or less from the viewpoints of sensitivity and generation of decomposition products.
[0037]
When the original plate used for the lithographic printing plate of the present invention is irradiated with light in the absorption wavelength range of the light absorbing agent, the light absorbing agent near the surface absorbs the light and generates heat. Due to this heat generation, the light-irradiated portion of the photosensitive layer changes its state due to foaming or thermal fusion of the self-polymerized crosslinking agent or hydrophobic polymer. With this state change, ink-affinity occurs. Although the mechanism of making the ink-friendly is not clear, for example, in the case of foaming, an island phase composed of a crosslinker having self-polymerization foams, a hydrophobic crosslinker self-polymer is exposed on the surface, and a fractal structure is formed. It is considered that the ink-affinity is amplified by doing so. Further, in the case of heat fusion, it is considered that the hydrophobic polymer is melted by heat, and is fused to the surrounding cross-linked hydrophilic resin, thereby making the ink philic.
[0038]
In order to make the ink adhere to the light-irradiated portion by printing, the outermost layer only needs to be ink-philic. Therefore, the depth of the change in the cross section of the original plate caused by light irradiation is preferably shallower from the viewpoint of the power required for exposure and the exposure time, and is preferably within 0.5 μm from the surface. Here, the depth of the structural change of the cross section of the original plate is clearly defined when a portion of the original plate irradiated with light is cut vertically and the cross section is observed at 15,000 times by a scanning electron microscope (SEM). This is a numerical value obtained by measuring the depth at which the sea-island structure disappears due to foaming or thermal fusion of a self-polymerized crosslinking agent or hydrophobic polymer that can be identified. When the depth is changed beyond 0.5 μm, not only does the required energy of the irradiating light increase, but also the outermost layer becomes easily removed and ablated by decomposition, combustion, etc. May be scattered, so a wiping step is essential. In addition, the outermost layer that has been decomposed and burned has a poor ink-adhesive property, and such a situation must be avoided.
[0039]
However, if the depth is too shallow, good ink-adhesion properties can be obtained at the start of printing, but the surface layer may be shaved when tens of thousands of prints are repeated. Therefore, it is desirable that the depth of change from the surface is 0.03 μm or more.
[0040]
There are various methods for controlling the depth of change in the cross section of the original plate, but a method for controlling the amount of generated heat is simple. Specifically, it is only necessary to examine the cross section of the original plate irradiated with light and control the amount of light to be irradiated, or to control the amount of heat generated by optimizing the amount of the light absorber used.
[0041]
The wavelength of light used to irradiate the light of the lithographic printing plate precursor of the invention is not particularly limited, and light that matches the absorption wavelength range of the light absorber may be used. At the time of irradiation, it is preferable to scan convergent light at a high speed from the point of irradiation required time, it is easy to use, and a high-output light source is suitable. As light to be irradiated from this point, laser light, particularly 750 to 1100 nm A laser beam having an oscillation wavelength in a wavelength range is preferable. For example, a high-output semiconductor laser of 830 nm or a YAG laser of 1064 nm can be used. Exposure machines equipped with these lasers are already on the market as so-called thermal plate setters (exposure machines).
[0042]
The printing plate manufactured by the manufacturing method of the present invention is provided for various uses manufactured by lithographic printing. For example, in addition to printing catalogs and pamphlets, it can be used for proof printing, printing on films and the like, printing on wallpaper materials, and the like.
[0043]
【Example】
[Example 1]
(Synthesis of hydrophilic polymer P-1)
After 500 g of water was put into a 1000 cc flask, dissolved oxygen was removed by bubbling nitrogen, and the temperature was raised to 80 ° C. While flowing nitrogen gas into the flask, an aqueous solution of an initiator obtained by dissolving 140.2 g of acrylamide, 9.8 g of 2-hydroxyethyl acrylate and 150 g of water and 1.5 g of potassium persulfate in 100 g of water were added thereto. While maintaining the internal temperature at 80 ° C., the mixture was continuously dropped separately over 2 hours. After completion of the dropwise addition, polymerization was continued at 80 ° C. for 3 hours. Finally, 100 g of water was added to synthesize a 15% aqueous solution of the hydrophilic polymer P-1.
[0044]
(Preparation of lithographic printing plate)
The following composition (unit: mass) was applied to a 0.3 mm-thick aluminum plate to which a 2 μm-thick urethane resin (Superflex (registered trademark) 410, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was previously applied as a primer to improve the adhesiveness. Parts and wt%, the same applies hereinafter) containing a photosensitive resin composition, using a wire bar, and then drying at 120 ° C. for 10 minutes to form a photosensitive layer having a thickness of 2 μm. An original plate for lithographic printing was created.
[0045]
Composition of photosensitive resin composition Aqueous solution of the above-mentioned hydrophilic polymer P-1 (solid content 15%) 333 parts Methylated melamine resin (Mitsui Cytec Co., Ltd. Cymel (registered trademark) 350, solid content 80%) 50 parts cyanine Aqueous solution of dye (IR-125, manufactured by Nippon Kogaku Dyeing Co., Ltd., solid content: 5%) 186 parts Anionic surfactant (Neocol (registered trademark) YSK, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., solid content: 70%) 1 Department [0046]
(drawing)
The original plate was scanned and irradiated with a semiconductor laser beam having a wavelength of 830 nm while being focused so as to have an irradiation energy density of 300 mJ / cm 2 , and 200 lines / inch of image information was drawn. Observation of the cross section of this original plate by SEM revealed that the hydrophilic resin photosensitive layer had changed from the surface of the irradiated portion to a depth of 0.4 μm.
[0047]
(Print evaluation)
This printing plate was set on an offset printing machine (SPRINT26, manufactured by Komori Corporation) using a dampening solution without performing development and wiping operations, and as a dampening solution, H-liquid Astro manufactured by Niken Chemical Laboratory Co., Ltd. was used. Printing was performed using a 2% aqueous solution of Mark 3 and HiEcho (registered trademark) SOY manufactured by Toyo Ink Mfg. Co., Ltd. as ink. As a result, no ink was applied to the unirradiated portion of the light, while the ink was sufficiently attached to the irradiated portion, and the drawn image was reproduced on the printing paper. Even after printing 5,000 sheets, no ink was applied to the non-irradiated portions, and the ink adhesion to the irradiated portions was not impaired.
[0048]
[Example 2]
An original plate for lithographic printing was prepared in the same manner as in Example 1 except that the photosensitive resin composition of Example 1 was changed to the following composition.
Composition of photosensitive resin composition Aqueous solution of the above-mentioned hydrophilic polymer P-1 (solid content 15%) 213 parts Methylated melamine resin (Mitsui Cytec Co., Ltd. Cymel (registered trademark) 350, solid content 80%) 10 parts water Dispersed urethane resin (Superflex (registered trademark) 410, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., solid content: 40%) 125 parts of an aqueous solution of a cyanine dye (IR-125, manufactured by Nippon Kogaku Dyeing Co., Ltd., solid content: 5%) 200 1 part of anionic surfactant (Neocol (registered trademark) YSK, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., solid content 70%) 1 part
The original plate was scanned and irradiated with a semiconductor laser beam having a wavelength of 830 nm so as to have an irradiation energy density of 220 mJ / cm 2 , and 200 lines / inch of image information was drawn. Observation of the cross section of this original plate by SEM revealed that the hydrophilic resin photosensitive layer had changed from the surface of the irradiated portion to a depth of 0.2 μm. When the printing evaluation was performed in the same manner as in Example 1, no ink was applied to the unirradiated portion, while the ink was sufficiently attached to the irradiated portion, and the drawn image was reproduced on the printing paper. .
[0050]
[Example 3]
An original plate for lithographic printing was prepared in the same manner as in Example 1 except that the photosensitive resin composition of Example 1 was changed to the following composition.
Composition of photosensitive resin composition Aqueous solution of the above-mentioned hydrophilic polymer P-1 (solid content 15%) 333 parts Methylated melamine resin (Mitsui Cytec Co., Ltd. Cymel (registered trademark) 350, solid content 80%) 50 parts cyanine Aqueous solution of dye (IR-125, manufactured by Nippon Kogaku Dye Co., Ltd., solid content: 5%) 166 parts Anionic surfactant (Neocol (registered trademark) YSK, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., solid content: 70%) 1 Department [0051]
The original plate was scanned and irradiated with a semiconductor laser beam having a wavelength of 830 nm while being focused so as to have an irradiation energy density of 330 mJ / cm 2 , and image information of 200 lines / inch was drawn. Observation of the cross section of this original plate with a SEM revealed that the hydrophilic resin photosensitive layer had changed from the surface of the irradiated portion to a depth of 0.5 μm. When the printing evaluation was performed in the same manner as in Example 1, no ink was applied to the unirradiated portion, while the ink was sufficiently attached to the irradiated portion, and the drawn image was reproduced on the printing paper. .
[0052]
[Comparative Example 1]
The original plate of Example 2 was scanned and irradiated with a semiconductor laser beam having a wavelength of 830 nm so as to have an irradiation energy density of 450 mJ / cm 2 , and 200 lines / inch of image information was drawn. Observation of the cross section of this original plate by SEM revealed that the surface of the irradiated portion of the hydrophilic resin photosensitive layer changed up to 0.6 μm, and a part of the outermost layer was decomposed and debris thought to be decomposed products around. Was scattered. When the printing evaluation was performed, the ink-adhesion property of the irradiated portion was insufficient, and the drawn image was not reproduced on the printing paper.
[0053]
【The invention's effect】
According to the present invention, it is possible to provide a lithographic printing plate that can be directly drawn with a low-energy laser beam, has sufficient ink-adhesiveness, and uses a dampening solution that does not require a post-process such as development or wiping.

Claims (2)

親水性ポリマー、架橋剤及び光吸収剤を含有してなる感光性樹脂組成物、または、親水性ポリマー、架橋剤、疎水性ポリマー及び光吸収剤を含有してなる感光性樹脂組成物を架橋してなるものであって、光照射部が親水性から親インク性に変化する親水性樹脂感光層を少なくとも有し、現像処理または拭き取り処理が不要な平版印刷用の原版に、光を照射して画像部を形成する刷版の製造方法において、光を照射することにより生じる該原版断面のSEMで観察される構造変化を、照射部表面から深さ0.5μm以内の領域にとどめることを特徴とする平版印刷用の刷版の製造方法Cross-linking a photosensitive resin composition containing a hydrophilic polymer, a cross-linking agent and a light absorber, or a photosensitive resin composition containing a hydrophilic polymer, a cross-linking agent, a hydrophobic polymer and a light absorber. The light irradiation section has at least a hydrophilic resin photosensitive layer that changes from hydrophilic to ink-philic, and irradiates light to an original plate for lithographic printing that does not require development processing or wiping processing. In the method of manufacturing a printing plate for forming an image portion, a structural change observed by SEM of a cross section of the original plate caused by irradiating light is limited to a region within a depth of 0.5 μm from the surface of the irradiated portion. For producing lithographic printing plates 請求項1に記載の方法により製造された平版印刷用の刷版。A lithographic printing plate manufactured by the method according to claim 1.
JP2003047835A 2003-02-25 2003-02-25 Method for manufacturing printing plate for lithographic printing and printing plate manufactured by the method Pending JP2004255668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003047835A JP2004255668A (en) 2003-02-25 2003-02-25 Method for manufacturing printing plate for lithographic printing and printing plate manufactured by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003047835A JP2004255668A (en) 2003-02-25 2003-02-25 Method for manufacturing printing plate for lithographic printing and printing plate manufactured by the method

Publications (1)

Publication Number Publication Date
JP2004255668A true JP2004255668A (en) 2004-09-16

Family

ID=33113971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003047835A Pending JP2004255668A (en) 2003-02-25 2003-02-25 Method for manufacturing printing plate for lithographic printing and printing plate manufactured by the method

Country Status (1)

Country Link
JP (1) JP2004255668A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026491A1 (en) 2005-08-30 2007-03-08 Mitsui Chemicals, Inc. Original plate for lithography, and resin composition for photosensitive layer in original plate for lithography

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026491A1 (en) 2005-08-30 2007-03-08 Mitsui Chemicals, Inc. Original plate for lithography, and resin composition for photosensitive layer in original plate for lithography
EP1920942A1 (en) * 2005-08-30 2008-05-14 Mitsui Chemicals, Inc. Original plate for lithography, and resin composition for photosensitive layer in original plate for lithography
EP1920942A4 (en) * 2005-08-30 2009-11-25 Mitsui Chemicals Inc Original plate for lithography, and resin composition for photosensitive layer in original plate for lithography

Similar Documents

Publication Publication Date Title
JP2008149721A (en) Plate for planographic printing
KR100659572B1 (en) Photosensitive resin composition for lithographic printing forme and original forme for lithographic printing
JP2004255668A (en) Method for manufacturing printing plate for lithographic printing and printing plate manufactured by the method
JP2002049147A (en) Planographic printing plate
JP2002362052A (en) Plate for offset lithographic printing
JPWO2005063498A1 (en) Planographic printing plate and planographic printing plate
JP2006264093A (en) Manufacturing method of lithographic printing original plate and lithographic printing plate
JP2004276277A (en) Lithographic printing plate requiring no development process
JP2002370467A (en) Plate for offset lithographic printing
JP2004314525A (en) Original plate for lithographic printing
JP2004276276A (en) Lithographic printing plate requiring no development process
JP2004322575A (en) Printing plate for lithographic printing
JP2005219422A (en) Direct offset printing original plate, direct offset printing plate and their usage
JP2005014391A (en) Original plate for lithographic printing
JP2006231748A (en) Original plate for lithographic printing
JP2007168140A (en) Lithographic printing original plate
JP2007168139A (en) Lithographic printing original plate
JP2001033950A (en) Planographic printing plate and its production
JP4052954B2 (en) Direct offset printing master and direct offset printing plate
JP2004216885A (en) Original plate for lithographic printing
JP2006103107A (en) Lithographic printing original plate
JP2004276509A (en) Photosensitive resin composition and lithographic printing plate using it
JP2005014523A (en) Original plate for direct offset printing
JP2004358960A (en) Plate for lithographic printing
JP2005288930A (en) Lithographic printing original plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081007