JP2004255400A - Aluminum alloy difference thickness blank material manufacturing method - Google Patents

Aluminum alloy difference thickness blank material manufacturing method Download PDF

Info

Publication number
JP2004255400A
JP2004255400A JP2003047224A JP2003047224A JP2004255400A JP 2004255400 A JP2004255400 A JP 2004255400A JP 2003047224 A JP2003047224 A JP 2003047224A JP 2003047224 A JP2003047224 A JP 2003047224A JP 2004255400 A JP2004255400 A JP 2004255400A
Authority
JP
Japan
Prior art keywords
thickness
blank material
extruded
wall thickness
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003047224A
Other languages
Japanese (ja)
Other versions
JP4216617B2 (en
Inventor
Katsuya Matsumoto
松本克也
Toshiki Muramatsu
村松俊樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky KK
Original Assignee
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky KK filed Critical Furukawa Sky KK
Priority to JP2003047224A priority Critical patent/JP4216617B2/en
Publication of JP2004255400A publication Critical patent/JP2004255400A/en
Application granted granted Critical
Publication of JP4216617B2 publication Critical patent/JP4216617B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/065Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes starting from a specific blank, e.g. tailored blank
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/06Making sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/08Making wire, bars, tubes
    • B21C23/085Making tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C35/00Removing work or waste from extruding presses; Drawing-off extruded work; Cleaning dies, ducts, containers, or mandrels
    • B21C35/02Removing or drawing-off work
    • B21C35/023Work treatment directly following extrusion, e.g. further deformation or surface treatment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a difference thickness blank material manufacturing method of high productivity for manufacturing an aluminum alloy difference thickness blank material to be used for manufacturing a car body. <P>SOLUTION: The differential thickness blank material (a tailored blank) is obtained by developing in the width direction an extruded material having an extruded sectional shape of a wall thickness changing part with the width of a wall thickness transition area having a wall thickness gradient from t<SB>1</SB>to t<SB>2</SB>being ≥ 1.5 × t<SB>1</SB>and extruded in a bent condition at a cross-section in the wall thickness changing part consisting of wall thickness of t<SB>1</SB>and t<SB>2</SB>(where t<SB>1</SB>< t<SB>2</SB>). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は例えば自動車ボディーの製造などに用いられるアルミニウム合金差厚ブランク材の製造方法に関するもので、特に生産性の高い差厚ブランク材の製造方法に関するものである。
【0002】
【従来の技術】
軽量化を目的として鉄系合金からアルミニウム系合金への材料置換がなされる分野は多く、自動車ボディーもそのうちの一つとして挙げられる。
通常は均一板厚の板材のプレス加工及び各パーツの接合により自動車ボディーが製造されるが、軽量化、低コスト化などを可能とする技術として部位によって板厚の異なる差厚ブランク材(テーラードブランク材とも呼ばれる)を使用して、それをプレス成形によって特定の部材形状に加工するボディーの製造法がある。
このような差厚ブランク材を用いれば、高い強度が要求される部分のみに高強度材又は厚板を使用することにより、補強材を別途使用しなくても必要な強度及び剛性を確保することが可能になる。更に、肉厚配分を容易に最適化することができるので、必要な強度及び剛性を確保しつつ最も軽量な部材を得ることができるようにもなる。
このような差厚ブランク材の製造方法としては、複数の鋼板の端面を突合せて溶接で接合することにより1枚の鋼板を製造する技術が開示されている。(例えば、特許文献1、特許文献2参照)
【0003】
【特許文献1 】
特開平10−180470号公報
【特許文献2 】
特開2001 −122154号公報
【特許文献3 】
特開2002 −224858号公報
【0004】
【発明が解決しようとする課題】
差厚ブランク材を使った自動車ボディーの製造技術は鉄系材料では既に実用段階にあるが、アルミニウム系材料では活発な開発検討がなされるも適用には至っていない。これは、差厚ブランク材は一般に板厚の異なる複数部材の突合せ接合により製造されるが、アルミニウム合金では鉄系合金に比べて溶接性が劣ることが大きな障害となっているためである。
すなわちレーザー溶接、アーク溶接などの溶融溶接では、高温割れやポロシティを発生しやすい、熱影響部での軟化が不可避であるなど材料固有または接合法固有の問題がある。また、たとえばレーザー溶接の場合には突合せ面のギャップ裕度が小さく管理が難しいなど施工上の問題もある。こうした所に、安定した接合強度、成形性を得ることに対する難しさがあり、アルミニウム合金では実用化レベルに達していないといえる。
また突合せ接合により製造された差厚ブランク材では例えば溶融溶接でアンダーカット欠陥を作ってしまうと、ブランク材は作成できるもプレス加工時には同箇所への応力集中により成形性は極端に低下し破断に至るという問題もある。
以上のような溶融溶接での難点を解決すべく、摩擦攪拌接合法による差厚ブランク材の製造も考えられている(例えば特許文献3)。摩擦攪拌接合法は接合中の加熱による母材の最高到達温度が融点の8割程度の固相接合である為、高温割れやポロシティ欠陥の発生など溶融溶接固有の問題がなく、また機械的特性にも優れる。
しかし一方で、同接合法固有の問題として継手形状の設計に裕度が与え難いことが挙げられる。また摩擦攪拌接合法では、接合面に対するショルダーの押え付けによりメタルの排出を抑えなくてはならず、継手を滑らかな形状に仕上げるには工夫が必要であり、実質上、継手形状には設計限界がある。さらに普及し始めてから歴史が浅い接合法である為、所謂キッシングボンド欠陥の問題の様な技術的に不明な点も残している。
加えて、溶融溶接にせよ固相接合にせよ、複数部材の突合せ接合による製造方法では、部材数の増加に伴い接合工数が増加することになり、生産性の低下を免れない。
本発明は以上の事情を背景としてなされたもので、安定した成形性、強度を有し、かつ生産性の高いアルミニウム合金差厚ブランク材を提供することを目的としてなされたものである。
【0005】
【課題を解決するための手段】
本発明は上記目的に対してなされたもので、肉厚t、t(t<tとする)からなる肉厚変化部において、t〜tへの肉厚勾配を有する肉厚遷移領域の幅を1.5×t以上とした肉厚変化部の押出断面形状を持ち、横断面において屈曲させた状態で押出成形した押出形材を幅方向に展開加工することを特徴とする成形性及び強度の安定性に優れ、製造生産性の高いアルミニウム合金差厚ブランク材の製造方法である。
【0006】
【発明の実施の形態】
本発明で用いるアルミニウム合金は、押出加工、展開加工が可能なアルミニウム合金であればよく、例えば自動車ボディーへの適用を考えた場合には6000系合金が好適に使用される。
【0007】
・肉厚変化部の押出断面形状:
肉厚変化部の押出断面形状は、押出性が確保できる範囲内で任意の形状に設計できるが、極端な肉厚変化を避けた滑らかな肉厚勾配断面とすることが重要である。
まず、図1に示すように肉厚t、t(t<tとする)からなる肉厚変化部において、t〜tへの肉厚勾配を有する肉厚遷移領域の幅を1.5×t以上に規定した理由について説明する。
この値が1.5×t未満では成形時にt〜tへの肉厚遷移領域のt側止端部において応力集中を招き局部歪を生じる為、同箇所において破断に至る危険性がある。これに対し1.5×t以上とすることにより、得られたブランク材をプレス成形する際に肉厚変化部への応力集中がなく、良好な成形性が得られる。更に、肉厚変化部の押出断面形状の設計は表面性状の観点からも重要で、上記範囲から外れて極端な肉厚変化を有する形材を押出した際には、ダイラインが顕著に見られ表面性状を劣化させる事からも好ましくない。なお、展開加工による板厚変化はほとんど無いか肉厚遷移領域が伸びる方向であり、押出断面形状での肉厚遷移領域の幅を規定してあれば、展開後も上記の条件を満たす。
また、肉厚変化部の角部には(t−t)以上の曲げRをつけるのが好ましい。この曲げRをつけることにより、さらに肉厚変化部への応力集中を軽減することができる。
【0008】
・押出形材の横断面の屈曲形状:
自動車ボディーへの適用の場合など数百mmオーダーの広幅材が必要とされる部位は多いが、通常の押出法では以下に示す各種問題から広幅化には限界がある。
即ち、ビレットの大径化による広幅化では、
1)大容量の押出プレスが必要となる、
2)大型のダイスは製作費が高価である上に寿命が短かい、
3)薄肉材の作成が困難になる、
などの問題が伴う。スプレッダーダイスによるビレット径の大径化技術もあるが、これにも広幅化限界がある。
これに対し、本発明では横断面において屈曲させた状態で押出成形した後、この押出形材を幅方向に展開加工する方法であるため、容易に長尺な広幅材を得ることができる。この得られた長尺広幅材はそのままでも、あるいは必要なサイズに切断しても良い。
なお、本発明における横断面の屈曲形状は、得られた押出形材の展開加工が可能な範囲内で任意の形状に設計できるが、例えばらせん形状、コーナー部を円弧状として丸みを持たせたU字形状、V字形状、多角形状などの屈曲形状が好適に使用できる。
【0009】
・展開方法:
屈曲形状で押し出して得られた押出形材の展開加工方法としては、真空吸着や掴み治具により引張って展開する方法、ロールフォーミングにより展開する方法などが適用できる。
なお、展開加工により屈曲部近傍に局部的な残留歪を発生した差厚ブランク材ではプレス成形挙動の予測や管理が面倒になることから、展開加工は押出形材の強度がなるべく低い状態で行うのが好ましい。例えば6000系合金では押出後の室温放置によりMgSiを析出し強度が向上することから、押出加工後の室温放置は極力抑えて、押出し後すみやかに展開加工することが望ましい。
【0010】
【実施例】
以下に本発明の実施例を紹介する。
JIS6063合金ビレット(200mmφ)を鋳造後、均質化処理(510℃−6h)を施した後、ダイス、コンテナーなどを460℃に予熱して2.5m/minの速度で押出し、得られた押出形材をロールフォーミングにより展開加工を行い差厚ブランク材を得た。展開加工前後の押出形材の断面形状を図1及び図2に示す。
また比較例として、実施例1と同一条件にて作製した差厚ブランク材の展開加工前後の押出形材断面形状を図3及び図4に示す。
肉厚は実施例1、比較例1に共通してt=2mm、t=3mmとしたが、実施例1ではt〜tへの肉厚遷移領域の幅を4mm(≧1.5×2mm(t))とし、更に角部には2mmの曲げRをつけている。これに対し比較例1では肉厚遷移領域の幅を0mmの階段状とし、角部も曲げRをつけず直角に仕上げている。
得られた差厚ブランク材から、長手方向に対し一定間隔(0.5m)で8点(0mから3.5m)、長手方向に対して垂直方向にJIS5号引張試験片を切出し室温引張試験を行い、破断位置を調べた。尚、引張試験片は、肉厚変化部が平行部中心に位置するように切出した。
試験の結果、実施例1では破断位置は全て薄肉側の肉厚一定の箇所で起こっており、肉厚変化部やその端部での破断は見られなかった。これに対し、比較例1では全て肉厚変化部端部の段差部分、薄肉側エッジ部において破断し、伸びは実施例1の2/3程度であった。
また得られた差厚ブランク材を実際に金型にセットしプレス成形を施した。その結果、実施例1では破断すること無く成形が可能であったのに対して、比較例1では引張試験の結果と同様に肉厚段差部分の薄肉側エッジ部において破断を生じ、成形できなかった。
以上の結果から、本発明により製造したアルミニウム合金差厚ブランク材では、応力集中が無く、破断に対する強度が高く、実際のプレス成形に耐えることが確認できた。
【0011】
【発明の効果】
以上のように、本発明によれば肉厚遷移領域の幅を1.5×t以上に規定することによって、得られたブランク材をプレス成形する際に、肉厚変化部、特にその薄肉側止端部への応力集中がなく、従って同箇所に局部歪が生じて破断に至る危険性が無く、良好な成形性の差厚ブランク材が得られる。
さらに横断面において屈曲させた状態で押出成形した押出形材を幅方向に展開加工することにより、広幅で長尺の素材を容易に製造できることから製造生産性の高いアルミニウム合金差厚ブランク材の製造方法となっている。
特に本発明は、多段からなる肉厚形状(即ち、展開した時には多数の板厚差)を有する差厚ブランク材の作成において有効性が発揮できる。即ち、複数部材の突合せ接合による製造方法では部材数の増加に伴い接合工数が増加するのに対し、本発明法によれば一回の押出工程で多段肉厚形状を得ることが可能で、製造生産性の大幅な向上に寄与することができる。
【図面の簡単な説明】
【図1】実施例1の展開加工前の押出形材の断面形状を示す略解図である。
【図2】実施例1の展開加工後の押出形材の断面形状を示す略解図である。
【図3】比較例1の展開加工前の押出形材の断面形状を示す略解図である。
【図4】比較例1の展開加工後の押出形材の断面形状を示す略解図である。
【符号の説明】
t1 薄肉部の板厚
t2 厚肉部の板厚
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an aluminum alloy differential thickness blank used for manufacturing, for example, an automobile body, and more particularly to a method for manufacturing a differential thickness blank with high productivity.
[0002]
[Prior art]
There are many fields where material replacement from iron-based alloys to aluminum-based alloys is made for weight reduction, and automobile bodies are one of them.
Normally, an automobile body is manufactured by pressing a plate material with a uniform thickness and joining each part. However, as a technology that enables weight reduction and cost reduction, a difference thickness blank material (tailored blank) with different thickness depending on the part. There is a method of manufacturing a body that is processed into a specific member shape by press molding.
By using such a differential thickness blank material, the required strength and rigidity can be ensured by using a high-strength material or thick plate only for the parts where high strength is required, without using a reinforcing material separately. Is possible. Furthermore, since the thickness distribution can be easily optimized, the lightest member can be obtained while ensuring the necessary strength and rigidity.
As a manufacturing method of such a differential thickness blank material, a technique for manufacturing a single steel sheet by abutting end faces of a plurality of steel sheets and joining them by welding is disclosed. (For example, see Patent Document 1 and Patent Document 2)
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-180470 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2001-122154 [Patent Document 3]
Japanese Patent Laid-Open No. 2002-224858
[Problems to be solved by the invention]
The manufacturing technology for automobile bodies using differential thickness blanks is already in practical use for iron-based materials, but active development studies have been made for aluminum-based materials, but they have not been applied. This is because the difference thickness blank material is generally manufactured by butt joining of a plurality of members having different plate thicknesses, but inferior weldability in an aluminum alloy compared to an iron-based alloy is a major obstacle.
That is, in melt welding such as laser welding and arc welding, there are problems inherent to materials or bonding methods, such as high temperature cracking and porosity are likely to occur, and softening in the heat affected zone is inevitable. In addition, for example, in the case of laser welding, there is a construction problem such that the gap tolerance of the butt surface is small and management is difficult. In these places, there are difficulties in obtaining stable joint strength and formability, and it can be said that aluminum alloys have not reached the practical level.
For example, if an undercut defect is created by fusion welding, for example, if a difference thickness blank material manufactured by butt joining is used, the blank material can be created, but during press processing, the formability is extremely reduced due to stress concentration at the same location, resulting in fracture. There is also a problem of reaching.
In order to solve the above-described difficulties in fusion welding, production of a differential thickness blank material by a friction stir welding method is also considered (for example, Patent Document 3). The friction stir welding method is a solid-phase joining where the maximum temperature of the base metal due to heating during joining is about 80% of the melting point, so there are no problems inherent to fusion welding such as high temperature cracking and porosity defects, and mechanical properties. Also excellent.
However, on the other hand, it is difficult to give a margin to the joint shape design as a problem inherent to the joining method. Also, in the friction stir welding method, metal discharge must be suppressed by pressing the shoulder against the joint surface, and ingenuity is required to finish the joint into a smooth shape. There is. Further, since the bonding method has a short history since it started to spread, there are still technically unclear points such as a so-called Kissing bond defect problem.
In addition, in the manufacturing method based on the butt joining of a plurality of members, whether it is fusion welding or solid phase joining, the number of joining steps increases with the increase in the number of members, and a reduction in productivity is inevitable.
The present invention has been made with the above circumstances as a background, and has been made for the purpose of providing an aluminum alloy differential thickness blank material having stable formability and strength and high productivity.
[0005]
[Means for Solving the Problems]
The present invention has been made with respect to the object, the thickness changing portion consisting of wall thickness t 1, t 2 (and t 1 <t 2), the meat having a thickness gradient to t 1 ~t 2 It has an extruded cross-sectional shape of a wall thickness changing portion with a width of a thickness transition region of 1.5 × t 1 or more, and the extruded shape that has been extruded in a bent state in the cross-section is developed in the width direction. It is the manufacturing method of the aluminum alloy differential thickness blank material which is excellent in stability of formability and strength, and has high manufacturing productivity.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The aluminum alloy used in the present invention may be any aluminum alloy that can be extruded and developed. For example, when considering application to an automobile body, a 6000 series alloy is preferably used.
[0007]
-Extrusion cross-sectional shape of thickness change part:
The extrusion cross-sectional shape of the thickness change portion can be designed to an arbitrary shape within a range in which extrudability can be ensured, but it is important to have a smooth thickness gradient cross section that avoids an extreme change in thickness.
First, in the thickness changing portion consisting of thick t 1 as shown in FIG. 1, t 2 (and t 1 <t 2), the width of the thickness transition region having a thickness gradient to t 1 ~t 2 The reason why the value is defined as 1.5 × t 1 or more will be described.
Since this value to produce a local strain lead to stress concentration at t 1 side toe thick transition region to t 1 ~t 2 during molding is less than 1.5 × t 1, the risk to fracture at the location There is. With 1.5 × t 1 or contrast, no stress concentration on the thickness changing section when press-molding the resulting blank, good moldability is obtained. Furthermore, the design of the extruded cross-sectional shape of the wall thickness changing part is also important from the viewpoint of surface properties, and when extruding a shape having an extreme wall thickness deviation from the above range, the die line is noticeably seen and the surface It is also not preferable because the properties are deteriorated. It should be noted that there is almost no plate thickness change due to unfolding or the direction in which the wall thickness transition region extends, and if the width of the wall thickness transition region in the extruded cross-sectional shape is defined, the above condition is satisfied even after unfolding.
In addition, it is preferable that a bend R of (t 2 −t 1 ) or more is applied to the corner portion of the thickness change portion. By applying this bending R, it is possible to further reduce the stress concentration on the thickness change portion.
[0008]
-Bending shape of the cross section of the extruded profile:
There are many parts where a wide material of the order of several hundred mm is required, for example, when applied to an automobile body, but there is a limit to widening the conventional extrusion method due to various problems described below.
In other words, in widening by increasing the diameter of the billet,
1) A large capacity extrusion press is required.
2) Large dies have high production costs and short life.
3) Making thin materials difficult
With such problems. There is also a technology for increasing the billet diameter by means of a spreader die, but this also has a widening limit.
On the other hand, in the present invention, a method of developing the extruded shape member in the width direction after extruding in a bent state in the cross section, it is possible to easily obtain a long wide material. The obtained long and wide material may be used as it is or may be cut into a required size.
In addition, the bent shape of the cross section in the present invention can be designed to an arbitrary shape within a range in which the obtained extruded shape can be developed. For example, the spiral shape and the corner portion are arcuate and rounded. A bent shape such as a U shape, a V shape, or a polygonal shape can be suitably used.
[0009]
・ Deployment method:
As a method for developing the extruded shape obtained by extruding in a bent shape, a method of developing by pulling with vacuum suction or a holding jig, a method of developing by roll forming, or the like can be applied.
In addition, in the case of a differential thickness blank material in which local residual strain is generated in the vicinity of the bent part due to the unfolding process, it is troublesome to predict and manage the press forming behavior. Is preferred. For example, in the case of a 6000 series alloy, Mg 2 Si is precipitated when left at room temperature after extrusion and the strength is improved. Therefore, it is desirable that the room temperature standing after extrusion is suppressed as much as possible, and the unfolding process is performed immediately after extrusion.
[0010]
【Example】
Examples of the present invention are introduced below.
JIS6063 alloy billet (200mmφ) cast, homogenized (510 ℃ -6h), die, container, etc. are preheated to 460 ℃ and extruded at a speed of 2.5m / min. The material was developed by roll forming to obtain a differential thickness blank. The cross-sectional shape of the extruded profile before and after the unfolding process is shown in FIGS.
Moreover, as a comparative example, the cross-sectional shape of the extruded profile before and after the development of the differential thickness blank material produced under the same conditions as in Example 1 is shown in FIGS.
The wall thickness is t 1 = 2 mm and t 2 = 3 mm in common with Example 1 and Comparative Example 1. In Example 1, the width of the wall thickness transition region from t 1 to t 2 is 4 mm (≧ 1. 5 × 2 mm (t 1 )), and a corner portion has a bend R of 2 mm. On the other hand, in Comparative Example 1, the width of the thickness transition region is a stepped shape of 0 mm, and the corners are finished at right angles without bending R.
From the obtained differential thickness blank material, 8 points (0 m to 3.5 m) at a constant interval (0.5 m) in the longitudinal direction and JIS No. 5 tensile test pieces were cut in a direction perpendicular to the longitudinal direction, and a room temperature tensile test was conducted. The break position was checked. In addition, the tensile test piece was cut out so that the thickness change part was located at the center of the parallel part.
As a result of the test, in Example 1, all the breakage positions occurred at locations where the thickness was constant on the thin wall side, and no breakage was observed at the thickness change portion or at its end. On the other hand, in Comparative Example 1, all were broken at the stepped portion at the end of the thickness changing portion and the thin edge portion, and the elongation was about 2/3 that of Example 1.
Further, the obtained differential thickness blank was actually set in a mold and press-molded. As a result, in Example 1, it was possible to mold without breaking, whereas in Comparative Example 1, as with the result of the tensile test, fracture occurred at the thin edge portion of the thick step portion, and molding was not possible. It was.
From the above results, it was confirmed that the aluminum alloy differential thickness blank material manufactured according to the present invention has no stress concentration, high strength against breakage, and can withstand actual press forming.
[0011]
【The invention's effect】
As described above, according to the present invention, when the blank material obtained is press-molded by defining the width of the thickness transition region to 1.5 × t 1 or more, the thickness changing portion, particularly its thin wall There is no stress concentration at the side toe, and therefore there is no risk of local strain occurring at the same location, leading to fracture, and a differential thickness blank with good formability can be obtained.
In addition, it is possible to easily produce wide and long materials by expanding the extruded shape that has been extruded in a cross-sectionally bent state in the width direction. It has become a method.
In particular, the present invention can be effective in the production of a differential thickness blank having a multi-stage thickness shape (that is, a large number of plate thickness differences when unfolded). That is, in the manufacturing method by butt joining of a plurality of members, the number of joining man-hours increases as the number of members increases, but according to the method of the present invention, it is possible to obtain a multi-stage wall thickness shape by one extrusion process. This can contribute to a significant improvement in productivity.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a cross-sectional shape of an extruded shape member before unfolding in Example 1. FIG.
FIG. 2 is a schematic diagram showing a cross-sectional shape of an extruded profile after development processing in Example 1;
FIG. 3 is a schematic diagram showing a cross-sectional shape of an extruded profile before development processing in Comparative Example 1;
4 is a schematic diagram showing a cross-sectional shape of an extruded profile after development processing in Comparative Example 1. FIG.
[Explanation of symbols]
t1 Thin plate thickness t2 Thick plate thickness

Claims (1)

肉厚t、t(t<tとする)からなる肉厚変化部において、t〜tへの肉厚勾配を有する肉厚遷移領域の幅を1.5×t以上とした肉厚変化部の押出断面形状を持ち、横断面において屈曲させた状態で押出成形した押出形材を幅方向に展開加工することを特徴とする成形性及び強度の安定性に優れ、製造生産性の高いアルミニウム合金差厚ブランク材の製造方法。In the thickness change portion composed of the thicknesses t 1 and t 2 (t 1 <t 2 ), the width of the thickness transition region having the thickness gradient from t 1 to t 2 is set to 1.5 × t 1 or more. Excellent in formability and strength stability, characterized in that it has an extruded cross-sectional shape of the wall thickness changing part and is expanded in the width direction. A highly productive method for producing aluminum alloy differential thickness blanks.
JP2003047224A 2003-02-25 2003-02-25 Manufacturing method of aluminum alloy differential thickness blank Expired - Fee Related JP4216617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003047224A JP4216617B2 (en) 2003-02-25 2003-02-25 Manufacturing method of aluminum alloy differential thickness blank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003047224A JP4216617B2 (en) 2003-02-25 2003-02-25 Manufacturing method of aluminum alloy differential thickness blank

Publications (2)

Publication Number Publication Date
JP2004255400A true JP2004255400A (en) 2004-09-16
JP4216617B2 JP4216617B2 (en) 2009-01-28

Family

ID=33113525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003047224A Expired - Fee Related JP4216617B2 (en) 2003-02-25 2003-02-25 Manufacturing method of aluminum alloy differential thickness blank

Country Status (1)

Country Link
JP (1) JP4216617B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2469550A (en) * 2009-04-14 2010-10-20 Gm Global Tech Operations Inc Method for manufacturing a component of a vehicle structure
JP2011045923A (en) * 2009-08-28 2011-03-10 Sumitomo Metal Ind Ltd Different thickness metal plate and method of producing the same
JP2015074000A (en) * 2013-10-07 2015-04-20 株式会社神戸製鋼所 Differential thickness bracket
US20150107812A1 (en) * 2011-03-31 2015-04-23 Valeo Systemes Thermiques Heat Exchanger Tube, And Corresponding Heat Exchanger Production Method
WO2016012009A1 (en) * 2014-07-22 2016-01-28 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle component from an extruded aluminium profile
CN106994949A (en) * 2016-01-22 2017-08-01 本特勒尔汽车技术有限公司 Collision prevention girders and the method for manufacturing collision prevention girders
CN114669616A (en) * 2016-11-30 2022-06-28 爱信轻金属株式会社 Structural member

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2469550A (en) * 2009-04-14 2010-10-20 Gm Global Tech Operations Inc Method for manufacturing a component of a vehicle structure
GB2469550B (en) * 2009-04-14 2013-08-14 Gm Global Tech Operations Inc Method for manufacturing a structural component for a motor vehicle
JP2011045923A (en) * 2009-08-28 2011-03-10 Sumitomo Metal Ind Ltd Different thickness metal plate and method of producing the same
US20150107812A1 (en) * 2011-03-31 2015-04-23 Valeo Systemes Thermiques Heat Exchanger Tube, And Corresponding Heat Exchanger Production Method
US10989485B2 (en) * 2011-03-31 2021-04-27 Valeo Systemes Thermiques Heat exchanger tube, and corresponding heat exchanger production method
JP2015074000A (en) * 2013-10-07 2015-04-20 株式会社神戸製鋼所 Differential thickness bracket
CN106536076A (en) * 2014-07-22 2017-03-22 本特勒尔汽车技术有限公司 Method for producing motor vehicle component from extruded aluminium profile
US20170209909A1 (en) * 2014-07-22 2017-07-27 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle component from an extruded aluminum profile
US10875068B2 (en) * 2014-07-22 2020-12-29 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle component from an extruded aluminum profile
WO2016012009A1 (en) * 2014-07-22 2016-01-28 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle component from an extruded aluminium profile
CN106994949A (en) * 2016-01-22 2017-08-01 本特勒尔汽车技术有限公司 Collision prevention girders and the method for manufacturing collision prevention girders
CN106994949B (en) * 2016-01-22 2020-10-27 本特勒尔汽车技术有限公司 Impact beam and method for producing an impact beam
CN114669616A (en) * 2016-11-30 2022-06-28 爱信轻金属株式会社 Structural member

Also Published As

Publication number Publication date
JP4216617B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
US10456866B2 (en) Process for laser-assisted tool build and repair
WO2010128540A1 (en) Tailor welded blank material, and method for manufacture of structural member by using the same
KR101579028B1 (en) Method for manufacturing closed-structure part and apparatus for the same
JP4216617B2 (en) Manufacturing method of aluminum alloy differential thickness blank
JP2011062713A (en) Structural component with bent closed cross-section and manufacutring method thereof
JP2019093905A (en) Door beam
JP4789253B2 (en) Aluminum alloy bonding material excellent in formability and manufacturing method thereof
JP2007283341A (en) Press-forming die for butt-welded metal plate, and press-forming method
US20050016108A1 (en) Lightweight construction element and method for producing the same
JP2002178170A (en) Different thick blank, and manufacturing method thereof
US8151429B2 (en) Method for producing a heavy duty composite part
JP4437914B2 (en) Aluminum bonding material and method of pressing aluminum bonding material
KR102212592B1 (en) Manufacturing method of rear cross member for automobile using aluminum material
JP2016155165A (en) Clad plate material
JP4707317B2 (en) Aluminum blank for press molding
JP4201761B2 (en) Method for producing aluminum alloy member
JP4683900B2 (en) Manufacturing method of forged products
JP2020121336A (en) Method for manufacturing vehicle structure member
JP4038368B2 (en) Aluminum alloy welded joint
JP2001122154A (en) Differential thickness blank material
JP2001088504A (en) Two-piece aluminum alloy wheel for automobile and manufacturing method thereof
CN114669616A (en) Structural member
US11059268B2 (en) Adapter component, method for producing an adapter component and connection assembly having an adapter component
JP2002294381A (en) Aluminum alloy welded joint for forming
JP2006334658A (en) Aluminum alloy tailored blank for superplastic forming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081106

R150 Certificate of patent or registration of utility model

Ref document number: 4216617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141114

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees