JP2007283341A - Press-forming die for butt-welded metal plate, and press-forming method - Google Patents

Press-forming die for butt-welded metal plate, and press-forming method Download PDF

Info

Publication number
JP2007283341A
JP2007283341A JP2006112348A JP2006112348A JP2007283341A JP 2007283341 A JP2007283341 A JP 2007283341A JP 2006112348 A JP2006112348 A JP 2006112348A JP 2006112348 A JP2006112348 A JP 2006112348A JP 2007283341 A JP2007283341 A JP 2007283341A
Authority
JP
Japan
Prior art keywords
press
corner
strength
butt
tailored blank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006112348A
Other languages
Japanese (ja)
Inventor
Hiroo Ishibashi
博雄 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006112348A priority Critical patent/JP2007283341A/en
Publication of JP2007283341A publication Critical patent/JP2007283341A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the forming limit to the defective press-forming of a tailored blank, in particular, the breakage in the "stress rate-controlling mode" having no effective countermeasures therefore by using the friction between the tailored blank and a die. <P>SOLUTION: In a press-forming die for press-forming a plate formed by butt-welding metal plates different in one or both of the thickness and the strength, the roughness of a corner R part of a punch surface of the press die is ≥ 0.9 μm in terms of Ra. In a press-forming method, a portion having the roughness of the corner R part of the punch surface of the press die being ≥ 0.9 μm in terms of Ra is brought into contact with a high-strength metal plate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は複数の金属板をつき合わせ溶接した金属板の、プレス加工用金型およびブレス加工方法に関するものであり、更に詳しくは、金属板を接合して製造される金属板のうち、プレス等の塑性加工に供される所謂テーラードブランク材用のプレス加工用金型もしくはプレス加工方法に関するものである。   The present invention relates to a metal mold for press working and a brazing method for a metal plate obtained by welding a plurality of metal plates together, and more specifically, among metal plates produced by joining metal plates, a press or the like. The present invention relates to a press working die or a press working method for so-called tailored blank materials used for plastic working.

自動車用プレス部品は、工程簡素化、金型数削減などのため、2種以上の部品を一体成型する技術が広く取り入れられている。しかし、一体成型部品を素板(金属板)から生産する場合にはスクラップとなる部分が多くなることから、素板歩留まり向上のために同一・同材質の薄金属板類をレーザー溶接やマッシュシーム溶接、電子(レーザー)ビーム溶接、TIG溶接、アーク溶接などで連続溶接し、溶接金属板に一体プレス成型を行う手法が開発された。さらに、最近では衝突安全性の観点から、部品の一部に強度を持たせることが要求される場合には、部品の一部に必要な材料強度や板厚を変えた素板を連続溶接して用いる、所謂異材質テーラードブランク材が多く用いられるようになっている。   For press parts for automobiles, a technique for integrally molding two or more kinds of parts is widely adopted in order to simplify the process and reduce the number of dies. However, when producing an integrally molded part from a base plate (metal plate), there are many scrap parts, so that thin metal plates of the same and the same material are laser welded or mash seamed to improve the base plate yield. A technique has been developed in which continuous welding is performed by welding, electron (laser) beam welding, TIG welding, arc welding, and the like, and integrated press molding is performed on a welded metal plate. Furthermore, recently, from the viewpoint of collision safety, when it is required to give some parts strength, continuous welding is performed on base plates with different material strength and thickness required for some parts. The so-called dissimilar tailored blank material is often used.

図1はテーラードブランク材のレーザー突合せ溶接プロセスの俯瞰図である。   FIG. 1 is an overhead view of a laser butt welding process of a tailored blank material.

テーラードブランク材は、板厚や強度の異なる鋼板同士をレーザー突合せ溶接することによって製造されている。例えば、図1に示すように、突合せた鋼板1、鋼板2同士のギャップ部分にレーザートーチ3からレーザービーム5を溶接ゾーン7に照射し、レーザートーチを突合せ線に沿って溶接進行方向6に移動もしくは、固定されたレーザートーチに対し鋼板を溶接進行方向6に移動しながら、溶接ビード4を形成してテーラードブランク材とするものである。   Tailored blanks are manufactured by laser butt welding of steel plates with different thicknesses and strengths. For example, as shown in FIG. 1, a laser beam 5 is applied to the welding zone 7 from the laser torch 3 to the gap between the butt steel plates 1 and 2 and the laser torch is moved in the welding progress direction 6 along the butt line. Alternatively, the weld bead 4 is formed while the steel plate is moved in the welding progress direction 6 with respect to the fixed laser torch to obtain a tailored blank material.

これら溶接により結合されたテーラードブランク材は、強度等が異なる部品を製造する場合に、工程簡素化、金型数削減など経済的効果を有するが、連続溶接部分の材質劣化などにより、プレス成型時の成型不良が問題となっている。プレス成型時の成型不良の原因となる破断としては、溶接ビード部と平行に素板が延ばされたとき、材質劣化した溶接ビード部が破断に至る「延性律速モード」と、溶接ビードを挟んで素板が引き延ばされたとき、低強度側の素板の母材破断に至る「応力律速モード」に分けられる。   These tailored blanks joined by welding have economic effects such as simplifying the process and reducing the number of dies when manufacturing parts with different strengths, etc. The molding defect is a problem. Breaking that may cause molding failure during press molding includes a ductile rate limiting mode in which when the base plate is extended in parallel with the weld bead, the weld bead part that has deteriorated in material will break, and the weld bead is sandwiched between When the base plate is stretched, it is divided into “stress-controlled mode” which leads to the fracture of the base material of the base plate on the low strength side.

このような成型不良を防止するため、例えば、 異厚・異材質テーラードブランク材のプレス成型において、強度律速に起因する低強度(もしくは低板厚)材側での破断を回避することを目的として、高引張強さ側材料の加工硬化特性値(n1)と低引張強さ側材料の加工硬化特性値(n2)の比(n1/n2)を0.75以上3.8以下とすることを特徴とする成型性に優れたプレス成型用テーラードブランク材(例えば、特許文献1参照)や、レーザビーム、電子ビーム、プラズマアークなどの高密度エネルギービームによる溶接後にプレス成型を行なう場合に良好な成型性を示す極低炭素冷延鋼板として、2.6<f(C、Si、Mn、P、B)<12.5を満足する鋼板(但し、B≦0.0005%の場合は、f(C、Si、Mn、P、B)=100[%C]+[%Si]+2[%Mn]+50[%P]+9000[%B]、そして、B>0.0005%の場合は、f(C、Si、Mn、P、B)=100[%C]+[%Si]+2[%Mn]+50[%P]+1000([%B]−0.0005)+4.5)が発明されている(例えば、特許文献2参照)。   In order to prevent such molding defects, for example, in the press molding of different thickness and different material tailored blank materials, for the purpose of avoiding breakage on the low strength (or low plate thickness) material side due to strength rate limiting The ratio (n1 / n2) of the work hardening characteristic value (n1) of the high tensile strength side material to the work hardening characteristic value (n2) of the low tensile strength side material is set to 0.75 or more and 3.8 or less. Good molding when press molding is performed after welding with high density energy beam such as laser beam, electron beam, plasma arc, etc. Steel sheet satisfying 2.6 <f (C, Si, Mn, P, B) <12.5 as an ultra-low carbon cold-rolled steel sheet exhibiting properties (provided that, when B ≦ 0.0005%, f ( C, Si, Mn, P B) = 100 [% C] + [% Si] +2 [% Mn] +50 [% P] +9000 [% B], and when B> 0.0005%, f (C, Si, Mn, P, B) = 100 [% C] + [% Si] +2 [% Mn] +50 [% P] +1000 ([% B] −0.0005) +4.5) (for example, patent literature) 2).

しかし、このような材料の発明だけではプレス金型成型時の材料の破断を効果的に防止するには十分でない。例えば、極低炭素鋼板では昨今の高強度が要望される部材に必要な強度を満足できない場合があることと、溶接ビード部の特性向上により「延性律速モード」の破断に対しては効果が認められるが、「応力律速モード」の破断に対しては効果が低いことが判明した。   However, the invention of such a material alone is not sufficient to effectively prevent the material from being broken during the press die molding. For example, ultra-low carbon steel sheets may not be able to satisfy the required strength for members that require high strength in recent years, and the effect on ductile rate-limiting mode breakage due to improved weld bead properties. However, it has been found that the effect on the breakage of the “stress limited mode” is low.

この点について、応力律速モードの破断時のひずみ分布については従来知見(例えば、非特許文献1参照)により素板の強度比で2種以上の素板に加わるひずみ比が初等解析で求まることが知られている。即ち、2種類の材料の応力−ひずみ関係式を添字1:高強度材、添字2:低高強度材とすると、σ1=K1ε1n1、σ2=K2ε2n2で表せられる。接合部では力が釣り合っているために、σ1t1=σ2t2が成り立つ。よってこれらの式を解くと、低強度材側が破断限界に達したときの高強度材側のひずみ(ε1max)は、TS1、TS2の値から求めると下記(1)で与えられる。
ε1max=n1{(t2/t1)(TS2/TS1)}1/n1・・・・(1)
ここで、σ:引張応力[MPa]、K:塑性係数[MPa]、ε:対数塑性ひずみ、n:加工硬化指数、TS:最大引張強度[MPa]を意味する。
Regarding the strain distribution at the time of rupture in the stress-controlled mode, it is possible to obtain the strain ratio applied to two or more types of base plates by the primary analysis based on the conventional knowledge (for example, see Non-Patent Document 1). Are known. That is, if the stress-strain relational expressions of the two types of materials are subscript 1: high strength material and subscript 2: low high strength material, σ1 = K1ε1n1 and σ2 = K2ε2n2. Since forces are balanced at the joint, σ1t1 = σ2t2 holds. Accordingly, when these equations are solved, the strain (ε 1max ) on the high strength material side when the low strength material side reaches the fracture limit is given by the following (1) when calculated from the values of TS 1 and TS 2 .
ε 1max = n 1 {(t 2 / t 1 ) (TS 2 / TS 1 )} 1 / n 1 (1)
Here, σ: tensile stress [MPa], K: plastic coefficient [MPa], ε: logarithmic plastic strain, n: work hardening index, TS: maximum tensile strength [MPa].

しかし、高強度材側の最大ひずみは計算できても「応力律速モード」でのプレス成型時の破断を改善する方法については開示されていない。従ってプレス現場では、異材質テーラードブランク材での「応力律速モード」が生じた場合には、素板強度比を下げるために板厚比を低減するか、強度比を下げざるをえなかった。   However, although the maximum strain on the high-strength material side can be calculated, there is no disclosure about a method for improving the fracture during press molding in the “stress-controlled mode”. Therefore, at the press site, when the “stress rate-limiting mode” occurs in the different tailored blank material, the plate thickness ratio has to be reduced or the strength ratio has to be lowered in order to reduce the strength ratio of the base plate.

例えば、板厚の異なるテーラードブランク材のプレス成型方法について、図2および図3にテーラードブランク材のハットプレス成型時の断面図として示す。図2に示すように、板厚の異なるテーラードブランク材をハットプレス成型するには、パンチ8、ダイ9と板押え10とを備えたハットプレス成型装置を用いて、パンチ8上の中央部にテーラードブランク材12の溶接位置11が合うように板押え10でセットし、パンチ8を矢印方向に上昇させて成型を行う。成型時には、図3に示すように、溶接ビード方向と直角方向の引っ張りによる歪が成型の律速となってしまう。このため、高加工量のハットプレス成型では、引っ張り強度の低い板厚の薄い鋼板部分が、引っ張り強度の高い板厚の厚い鋼板よりも伸びることとなり、溶接位置11近傍の薄い鋼板部分に亀裂発生13が生じる。即ち、プレス中所謂「応力律速モード」の破断に至り、成型性を阻害するため、従来は低加工量の製品にしかテーラードブランク材を適用することが出来なかった。   For example, the press molding method of tailored blank materials with different plate thicknesses is shown in FIG. 2 and FIG. 3 as cross-sectional views at the time of hat press molding of tailored blank materials. As shown in FIG. 2, in order to perform hat press molding of tailored blank materials having different plate thicknesses, a hat press molding apparatus including a punch 8, a die 9 and a plate presser 10 is used. The tailored blank material 12 is set by the plate presser 10 so that the welding position 11 is matched, and the punch 8 is raised in the direction of the arrow to perform molding. At the time of molding, as shown in FIG. 3, strain due to pulling in a direction perpendicular to the weld bead direction becomes the rate-limiting factor for molding. For this reason, in high-capacity hat press molding, a thin steel plate portion with a low tensile strength extends more than a thick steel plate with a high tensile strength, and a crack occurs in the thin steel plate portion near the welding position 11. 13 is produced. In other words, a so-called “stress-controlled mode” breakage occurs during the press, and the moldability is hindered. Therefore, conventionally, tailored blank materials could only be applied to products with a low processing amount.

特開2000−309843号公報JP 2000-309843 A 特開平7−26346号公報JP-A-7-26346 池本公一ら、「塑性と加工」、Vol.32、No.370(1991)1383〜1390頁Koichi Ikemoto et al., “Plasticity and Processing”, Vol. 32, no. 370 (1991) 1383-1390.

本発明は、上記した従来のテーラードブランク材のプレス成型性についての欠点を解決し、優れたプレス成型性能を有するテーラードブランク材プレス加工用金型およびプレス加工方法を提供することを目的とする。   An object of the present invention is to solve the above-described drawbacks of press-formability of the conventional tailored blank material, and to provide a tailored blank material press-working die and a press-working method having excellent press-molding performance.

本発明者等は、テーラードブランク材に関するプレス成型不良、とりわけ今まで有効な対策をたてることができなかった「応力律速モード」の破断に対して、プレス金型との摩擦を利用して成型限界の向上を図ることが「応力律速モード」の破断に対して有効であることを見出して、本発明を完成した。   The present inventors have made use of friction with a press die for press molding defects related to tailored blank materials, especially for the break in the “stress rate-controlled mode” that has not been able to take effective measures until now. The present invention has been completed by finding that the improvement of the limit is effective for the fracture in the “stress-controlled mode”.

本発明の要旨は、次の通りである。   The gist of the present invention is as follows.

(1) 板厚又は強度の一方又は双方が異なる金属板を突合せ溶接した板材をプレス成型するプレス加工用金型において、プレス金型パンチ表面の角R部の粗度がRaで0.9μm以上である部分を持つことを特徴とする、プレス加工用金型。   (1) In a press mold for press forming a plate material in which metal plates having different thicknesses or strengths or both are butt welded, the roughness of the corner R portion of the press die punch surface is 0.9 μm or more in Ra A die for press working, characterized by having a part that is

(2) 板厚又は強度の一方又は双方が異なる鋼板を突合せ溶接した板材をプレス成型するプレス加工方法において、高強度側板材にプレス金型パンチ表面の角R部の粗度がRaで0.9μm以上である部分を接触させるようにすること特徴とする、プレス加工方法。   (2) In a press working method of press-molding a plate material obtained by butt-welding steel plates having different plate thicknesses or strengths, the roughness of the corner R portion of the press die punch surface on the high-strength side plate material is 0. A press working method, wherein a portion that is 9 μm or more is brought into contact.

(3) 板厚又は強度の一方又は双方が異なる鋼板を突合せ溶接した板材をプレス成型するプレス加工方法において、高強度側板材にプレス金型パンチ表面の角R部の粗度がRaで0.9μm以上である部分を接触させるようし、かつ該プレス金型パンチ表面の角R部の少なくとも一部に塗油粘度15mm2/S以下の油を塗油すること特徴とする、プレス加工方法。 (3) In a press working method in which a plate material obtained by butt welding steel plates having one or both of different plate thicknesses or strengths is press-molded, the roughness of the corner R portion on the surface of the press die punch on the high-strength side plate material is 0. A press working method, characterized in that an oil having a coating viscosity of 15 mm 2 / S or less is applied to at least a part of the corner R portion on the surface of the press die punch so that a portion of 9 μm or more is brought into contact.

(4) 板厚又は強度の一方又は双方が異なる鋼板を突合せ溶接した板材をプレス成型するプレス加工方法において、高強度側板材にプレス金型パンチ表面の角R部の粗度がRaで0.9μm以上である部分を接触させるようし、かつ該プレス金型パンチ表面の角R部のすくなくとも一部に塗油量0.3g/m2以下の油を塗油することを特徴とする、プレス加工方法。 (4) In a press working method of press-molding a plate material obtained by butt-welding steel plates having different plate thicknesses or strengths, the roughness of the corner R portion of the press die punch surface on the high-strength side plate material is 0. A press characterized in that a part having a size of 9 μm or more is brought into contact, and at least a part of the corner R part on the surface of the press die punch is coated with oil having an oil coating amount of 0.3 g / m 2 or less. Processing method.

(5)板厚又は強度の一方又は双方が異なる鋼板を突合せ溶接した板材をプレス成型するプレス加工方法において、高強度側板材にプレス金型パンチ表面の角R部の粗度がRaで0.9μm以上である部分を接触させるようし、かつ該プレス金型パンチ表面の角R部の少なくとも一部に塗油粘度15mm2/S以下、塗油量0.3g/m2以下の油を塗油することを特徴とする、プレス加工方法。 (5) In a press working method of press-molding a plate material obtained by butt-welding steel plates having one or both of different plate thicknesses or strengths, the roughness of the corner R portion of the press die punch surface on the high-strength side plate material is 0. A portion having a thickness of 9 μm or more is brought into contact, and an oil having a coating viscosity of 15 mm 2 / S or less and a coating amount of 0.3 g / m 2 or less is applied to at least a part of the corner R portion of the press die punch surface. A press working method characterized by oiling.

本発明によれば、テーラードブランク材のプレス加工時の「応力律速モード」の破断に対して、プレス金型との摩擦を利用して成型限界の向上を図ることがでるので、従来は成型品の設計変更等でしか解決できなかったテーラードブランク材の成型性を向上させることができるという顕著な効果を奏する。   According to the present invention, it is possible to improve the molding limit by utilizing friction with the press die against breakage of the “stress-controlled mode” at the time of press processing of the tailored blank material. There is a remarkable effect that it is possible to improve the moldability of the tailored blank material that can only be solved by a design change.

以下図を参酌して本発明を詳細に説明する。
テーラードブランク材をプレス用金型を用いてプレス成型する例について説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings.
An example in which a tailored blank material is press-molded using a press die will be described.

図4(a)〜(c)にテーラードブランク材のプレス加工時の断面図を示す。板厚の異なるテーラードブランク材をハットプレス成型するには、パンチ8、ダイ9と板押え10とを備えたハットプレス成型装置を用いて、パンチ8上の頂上部にテーラードブランク材12の低強度側材14と高強度側材13とを溶接した溶接位置11がくるように板押え10でセットし、パンチ8を矢印方向に上昇させて成型を行う。   4A to 4C are cross-sectional views of the tailored blank material during pressing. In order to perform press-molding of tailored blank materials having different plate thicknesses, a low strength of the tailored blank material 12 is formed on the top of the punch 8 by using a hat press molding apparatus including a punch 8, a die 9 and a plate presser 10. Setting is performed by the plate retainer 10 so that the welding position 11 where the side member 14 and the high-strength side member 13 are welded comes, and the punch 8 is raised in the direction of the arrow to perform molding.

プレス成型時には、このような場合、溶接ビード方向と直角方向の引っ張りによる歪が成型の律速となってしまう。プレス成型の加工量が大きくなると、プレス中所謂「応力律速モード」の破断に至り、成型性を阻害するため、従来は低加工量のプレス成型製品の製造にしかテーラードブランク材を適用することが出来なかった。例えば、板厚1.4mm、加工硬化指数n値0.25、最大引張強度400MPaの鋼板を引っ張ったときには、この材料は概ね25%の伸びを許容する。したがって例えば幅100mmの鋼板の両端を引っ張ったとき25mmの伸びを許容する。次に板厚は1.0mmであるが、n値0.25、最大引張強度400MPaの鋼板を引っ張ったときには、この材料も概ね25%の伸びを許容する。したがって例えば幅100mmの鋼板の両端を引っ張ったとき同様に25mmの伸びを許容する。   At the time of press molding, in such a case, distortion caused by pulling in a direction perpendicular to the weld bead direction becomes the rate-limiting factor of the molding. When the amount of press molding increases, the so-called “stress-controlled mode” breaks during pressing, which impairs moldability. Conventionally, tailored blanks have only been applied to the production of press-molded products with a low processing amount. I could not do it. For example, when a steel sheet having a thickness of 1.4 mm, a work hardening index n value of 0.25, and a maximum tensile strength of 400 MPa is pulled, this material allows an elongation of approximately 25%. Therefore, for example, when both ends of a steel plate having a width of 100 mm are pulled, an elongation of 25 mm is allowed. Next, the plate thickness is 1.0 mm, but when a steel plate having an n value of 0.25 and a maximum tensile strength of 400 MPa is pulled, this material also allows an elongation of approximately 25%. Therefore, for example, when both ends of a steel plate having a width of 100 mm are pulled, an elongation of 25 mm is allowed.

しかし、このような材料を突合せ溶接し、溶接線を中心に両側に幅50mmの場所を拘束した状態で引っ張りを実施した場合には、板厚1.0mmの材料が、限界の25%まで伸びたときに板厚1.4mmの材料は6〜7%しか伸びておらず、つまり1.0mmの材料は50mmの長さが12.5mm伸びるが、1.4mmの材料は50mmの長さが3.3mmしか伸びないため、つまり合計100mmの長さが16mmしか伸びないことになる。このとき板厚1.4mmの材料は未だ変形する余地を残すものの、すでに板厚1.0mmの材料は伸びの限界にまで達しており、これ以上引っ張ると板厚1.0mmの材料でワレが発生する。このように強度や板厚が異なる異材質同士を組み合わせたテーラードブランク材は、その母材に比して伸びが著しく減少し、したがってプレス成型時に十分な加工量の成型性を発揮することが出来なかった。   However, when such a material is butt welded and pulled in a state in which a place with a width of 50 mm is constrained on both sides around the weld line, the material with a plate thickness of 1.0 mm is stretched to 25% of the limit. The thickness of the 1.4 mm material is only 6-7%, that is, the 1.0 mm material is 12.5 mm longer than the 50 mm length, but the 1.4 mm material is 50 mm long. Since only 3.3 mm extends, that is, the total length of 100 mm extends only 16 mm. At this time, the material with a thickness of 1.4 mm still leaves room for deformation, but the material with a thickness of 1.0 mm has already reached the limit of elongation. appear. In this way, tailored blanks that combine dissimilar materials with different strengths and plate thicknesses have significantly reduced elongation compared to the base material, and therefore can exhibit sufficient formability during press molding. There wasn't.

本発明はテーラードブランク材のプレス成型限界付近でも、板厚若しくは強度の高い方の材料が未だ変形する余地を残していることに着目し、板厚若しくは強度の高い方の材料の変形を簡単な方法で促すことにより、成型性を高めるようにしたものである。具体的には金型と材料との間の摩擦力を応用し、板厚もしくは強度の高い方の材料の変形を促すことを特徴とする。   The present invention pays attention to the fact that the material with higher thickness or strength still leaves room for deformation even near the press molding limit of the tailored blank material, and the deformation of the material with higher thickness or strength is simplified. The moldability is enhanced by prompting with a method. Specifically, the friction force between the mold and the material is applied to promote the deformation of the material having the higher plate thickness or strength.

プレス成型において、材料と金型との摩擦は一般的に大きな技術課題であった。これまでプレス加工の世界においては、材料と金型との摩擦は加工歪を局所的に集中させることから有害な物として取り扱われ、深絞りプレス成型などの材料の加工性からも厳しい領域で成型性を向上させるためにはその摩擦をできるだけ小さくする手法がとられてきた。たとえば金型表面をできるだけ平滑に仕上げたり十分な潤滑油を塗布したり、場合によっては材料に特殊な焼き付け塗装を行うなどの手法がとられてきた。しかしこのような摩擦係数を単純に下げる工夫をおこなってテーラードブランク材のプレス加工時における摩擦による歪の均一化を図っても、強度・板厚の異なる異材質テーラードブランク材においては上記「応力律速モード」での破断を防ぎえることができず、その本質的な対策は何らとり得ていなかった。   In press molding, friction between a material and a mold is generally a big technical problem. Until now, in the world of press working, friction between material and mold is treated as harmful because it concentrates processing strain locally, and it is molded in strict areas due to workability of materials such as deep drawing press molding. In order to improve the property, a method of reducing the friction as much as possible has been taken. For example, techniques such as finishing the mold surface as smooth as possible, applying sufficient lubricating oil, and applying a special baking coating to the material in some cases have been taken. However, even if the friction coefficient during press processing of the tailored blank material is made uniform by reducing the friction coefficient, the above-mentioned “stress rate limiting” is applied to different material tailored blank materials with different strength and thickness. The failure in the “mode” could not be prevented, and no essential measures were taken.

図4(a)〜(c)に示すプレスにおける状況に基づいて説明する。この場合、成型性を改善するために金型表面の調整や塗油を十分におこない、材料と金型の摩擦係数を無視できるほど小さくした場合、材料トータルの伸びは前述したように母材それぞれが25%の伸び変形を許容するとしても、全体としてわずか14%しか伸びることができずそれに見合う分だけの張り出し量でしか成型することができなかった。その場合破断個所は薄手もしくは低強度側材料の溶接線付近で発生した。   Description will be made based on the situation in the press shown in FIGS. In this case, if the mold surface is sufficiently adjusted and oiled to improve the moldability, and the friction coefficient between the material and the mold is made small enough to be ignored, the total elongation of the material will be as described above. However, even if it allowed 25% elongation deformation, it was only able to stretch by only 14% as a whole, and it was possible to mold only with a protruding amount corresponding to that. In that case, the fracture occurred near the weld line of the thin or low-strength side material.

なお、材料と金型の摩擦がある場合には亀裂は低強度側材料のR止まり部で発生する。係数をそれぞれ図5のごとく規定し、それぞれの材料の巻きつけ角15をθとし、材料と金型との摩擦係数16をμとすれば低強度側材料が金型のR止まり部17で成型限界に達したときの高強度側材料のR止まり部17での到達歪は、下記式(1)の
ε1max=n1{(t2/t1)(TS2/TS1)exp(μ×θ)1/n1・ ・ ・(1)
であらわされることが分かった。ここで、t1、t2:板厚、TS1、TS2:引張り強度、μ:摩擦係数、θ:巻きつけ角を意味する。
In addition, when there is friction between the material and the mold, a crack is generated at the R stop portion of the low-strength side material. When the coefficients are defined as shown in FIG. 5, the winding angle 15 of each material is θ, and the coefficient of friction 16 between the material and the mold is μ, the low-strength side material is molded at the R-stop portion 17 of the mold. The ultimate strain at the R stop portion 17 of the high-strength side material when reaching the limit is ε 1max = n 1 {(t 2 / t 1 ) (TS 2 / TS 1 ) exp (μ × θ) 1 / n1 (1)
I understood that it was expressed. Here, t 1 , t 2 : plate thickness, TS 1 , TS 2 : tensile strength, μ: friction coefficient, θ: winding angle.

板厚もしくは強度の高い方の板の成型を促し、テーラードブランク材の成型性を確保するためには、低強度側材料が成型限界に達した段階での高強度側材料の到達歪すなわち上式のε1maxの値が大きいほどよい。すなわちμ(材料と金型との摩擦係数)が大きい程ε1maxが大きく成型性もよくなる。したがって単純に金型との摩擦係数を下げるという従来技術では実現し得なかった成型性向上が、本発明によれば、材料の組み合わせを変更することなく可能となった。このように母材と金型との摩擦係数を大きくすることで、母材の板厚比や強度比の組み合わせを変えることなくテーラードブランク材の成型性を向上させることが可能である。テーラードブランク材の成型性を向上させるためには、パンチ表面の角R部の粗度がRaで0.9μm以上である部分を持つことが必要である。パンチ表面の角R部の粗度がRaで0.9μm未満では、テーラードブランク材の成型性の向上に寄与しない。また、パンチ表面の角R部の粗度がRaの上限は特に限定するものではないが、表面粗度Raがあまりに大きくなると、金型の粗度が板材(材料)に転写され表面疵の原因ともなるので、Ra2.0μm程度を上限とすることが好ましい。なお、RaはJISによる。 In order to promote the molding of the plate with higher thickness or strength and ensure the moldability of the tailored blank material, the ultimate strain of the high-strength side material when the low-strength side material reaches the molding limit, that is, the above formula The larger the ε 1max value, the better. That is, the larger μ (coefficient of friction between the material and the mold), the larger ε 1max and the better the moldability. Therefore, according to the present invention, it is possible to improve the moldability, which cannot be realized by the prior art, by simply reducing the coefficient of friction with the mold, without changing the combination of materials. Thus, by increasing the friction coefficient between the base material and the mold, it is possible to improve the moldability of the tailored blank material without changing the combination of the thickness ratio and strength ratio of the base material. In order to improve the moldability of the tailored blank material, it is necessary to have a portion where the roughness of the corner R portion on the punch surface is 0.9 μm or more in Ra. When the roughness of the corner R portion on the punch surface is less than 0.9 μm in Ra, it does not contribute to the improvement of the moldability of the tailored blank material. Further, although the upper limit of the roughness Ra of the corner R portion of the punch surface is not particularly limited, if the surface roughness Ra becomes too large, the roughness of the mold is transferred to the plate material (material) and causes surface flaws. Therefore, it is preferable that the upper limit is about Ra 2.0 μm. Ra is based on JIS.

このように金属板表面と金型との摩擦係数を制御する方法としては、金型の表面粗度を変えることでなしうる。このような金型は、仕上げ切削・研削時の工具を適当に選択することで製造しうる。また場合によっては金型研削後の部分的な溶射やショットダル加工等にてなしうる。一般的には表面粗度が高いほど摩擦係数は大きくなる。   As described above, a method for controlling the friction coefficient between the metal plate surface and the mold can be achieved by changing the surface roughness of the mold. Such a mold can be manufactured by appropriately selecting a tool for finish cutting and grinding. In some cases, it can be performed by partial spraying after die grinding, shot dull processing, or the like. In general, the higher the surface roughness, the greater the friction coefficient.

また、金型表面への潤滑油塗布量を変え、プレス金型パンチ表面の角R部のすくなくとも一部の塗油量を、0.8g/m2以下とすることでもなしうる。例えばプレス工程以前の塗油工程において、油を金型に吹き付ける噴霧量を変える事で摩擦係数を変えうる。当然塗油の有無でも変えうる。なお、塗油量の下限は0.1g/m2程度でも良い。積極的には塗油しない無塗油状態にすればさらに効果は大きくなるが、連続プレス時の金型温度上昇による焼きつきを発生させることがある。 It is also possible to change the amount of the lubricating oil applied to the surface of the mold, and to set the amount of at least a portion of the corner R portion on the surface of the press mold punch to 0.8 g / m 2 or less. For example, in the oil coating process before the pressing process, the friction coefficient can be changed by changing the spray amount for spraying oil onto the mold. Of course, it can be changed with or without oiling. The lower limit of the oil coating amount may be about 0.1 g / m 2 . If the oil-free state in which oil is not actively applied is increased, the effect is further increased, but seizure may occur due to an increase in the mold temperature during continuous pressing.

また金型へ塗布した潤滑油の粘度を変え、プレス金型パンチ表面の角R部の少なくとも一部の塗油粘度を15mm2/S以下とすることでも摩擦係数を変えうる。粘度が低くなると摩擦係数は増加する。なお、粘度の下限は特に限定するものではないが5mm2/S程度とすることが好ましい。粘度は低い方が良く8mm2/sとすればさらに成形性は向上するが、一方3mm2/s以下の場合油幕切れによる焼きつきを起こす場合がある。油としては、特に限定するものではないが鉱物油や合成油等を使用することができる。 The friction coefficient can also be changed by changing the viscosity of the lubricating oil applied to the mold and setting the oil viscosity of at least a part of the corner R portion of the press mold punch surface to 15 mm 2 / S or less. As the viscosity decreases, the coefficient of friction increases. The lower limit of the viscosity is not particularly limited, but is preferably about 5 mm 2 / S. The viscosity should be low, and if it is 8 mm 2 / s, the moldability will be further improved. On the other hand, if it is 3 mm 2 / s or less, seizure may occur due to the oil curtain running out. Although it does not specifically limit as oil, Mineral oil, synthetic oil, etc. can be used.

このように本発明は、テーラードブランク材の成型においては、金型とテーラードブランク材との摩擦係数を高くするという、従来技術と完全に逆の全く新しい発想であり、本技術を用いれば従来は何ら対策を打てず、設計変更等による妥協をするしかなかったテーラードブランクの成型性を向上させることが可能である。   As described above, the present invention is a completely new idea of completely increasing the friction coefficient between the mold and the tailored blank material in molding of the tailored blank material. It is possible to improve the formability of tailored blanks that cannot be compromised by design changes without taking any measures.

以下実施例に基づいて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples.

引張り強度TSが400MPaで加工硬化指数n値が0.25と同一材質の鋼板であるが、板厚が1.4mmと1mmの異厚材料を組み合わせて溶接したテーラードブランク材について試験を行った。   A test was conducted on a tailored blank material which was a steel plate made of the same material having a tensile strength TS of 400 MPa and a work hardening index n value of 0.25, but was welded in combination with different thickness materials of 1.4 mm and 1 mm.

プレス試験としては、図4に示すようなプレス試験をおこなった。プレスの進展に伴い、図4(a)〜(c)に示すように、テーラードブランクの溶接位置(溶接線)は低強度側の材料(板厚1.1mmの鋼板)から高強度側の材料(板厚1.4mmの鋼板)の方向に、金型のパンチR部と相対的に移動した(この場合板厚1mmから1.4mmの材料の方向へ)。これは低強度材の伸びに比して高強度材の伸びが小さいために起きる現象である。金型のパンチR部の角度は90度であった。   As a press test, a press test as shown in FIG. 4 was performed. As the press progresses, as shown in FIGS. 4A to 4C, the welding position (welding line) of the tailored blank is changed from the material on the low strength side (steel plate having a thickness of 1.1 mm) to the material on the high strength side. It moved relative to the punch R portion of the mold in the direction of (steel plate with a thickness of 1.4 mm) (in this case, from a thickness of 1 mm to a material with a thickness of 1.4 mm). This is a phenomenon that occurs because the elongation of the high-strength material is smaller than the elongation of the low-strength material. The angle of the punch R portion of the mold was 90 degrees.

(比較例)
先ず金型表面のパンチR部の表面粗さをRaで0.1μmとし、表面に10mg/m2の量で、粘度200mm2/sの油を塗布し、低強度側材料にその金型のR部を接触させるようにしてプレス成型を行なった。このようなプレスを実施した際に、パンチ押し込み量を大きくしてゆくと板厚1mmの材料の溶接部近傍にて割れが発生した。テーラードブランク材の溶接部から、板厚1.4mm側および板厚1.0mm側の方向に100mmの所にプレス前にマーキングを施しておき、プレス割れが発生した時点で、その長さを測定して、プレス加工による材料の伸びを測定した。このとき板厚1mmの材料の伸びは元の長さの25%にまで伸びたが、そのとき板厚1.4mmの高強度側の材料は、元の長さの9%しか伸びておらず、テーラードブランクとしてはもとの長さの17%しか伸びなかった。
(Comparative example)
First, the surface roughness of the punch R portion on the mold surface is set to 0.1 μm Ra, and an oil with a viscosity of 200 mm 2 / s is applied to the surface in an amount of 10 mg / m 2 , and the mold is applied to the low-strength side material. Press molding was performed such that the R portion was brought into contact. When such pressing was performed, cracks occurred in the vicinity of the welded portion of the material having a plate thickness of 1 mm when the punching amount was increased. From the welded portion of the tailored blank material, marking is performed before pressing at a location of 100 mm in the direction of the plate thickness of 1.4 mm and the plate thickness of 1.0 mm, and the length is measured when a press crack occurs. Then, the elongation of the material by press working was measured. At this time, the material with a thickness of 1 mm grew to 25% of the original length. At that time, the material on the high strength side with a thickness of 1.4 mm grew only 9% of the original length. As a tailored blank, it grew only 17% of its original length.

(発明例1)
次に本発明に基づき金型の表面粗度Raを1.0μmとして摩擦係数を上げて高強度側材料に金型のR部を接触させるようにプレス成型する同様の実験をおこなったところ、板厚1mmの材料のワレ限界時に板厚1.4mmの材料は12%まで伸びており、テーラードブランクとしてはもとの長さの19%まで伸びることが出来た。このことにより、成型性の改善が可能となった。
(Invention Example 1)
Next, according to the present invention, when the surface roughness Ra of the mold was set to 1.0 μm, the friction coefficient was increased, and a similar experiment was performed in which press molding was performed so that the R portion of the mold was brought into contact with the high-strength side material. At the crack limit of the 1 mm thick material, the 1.4 mm thick material stretched to 12%, and as a tailored blank, it was able to stretch to 19% of the original length. This made it possible to improve moldability.

(発明例2)
次に本発明に基づき金型の表面粗度Raを0.1μmとし、金型に塗布する油の量を0.2g/m2として摩擦係数を上げて同様の実験をおこなったところ、板厚1mmの材料のワレ限界時に板厚1.4mmの材料は13%まで伸びており、テーラードブランクとしてはもとの長さの19%まで伸びることが出来た。このことにより、成型性の改善が可能となった。
(Invention Example 2)
Next, when the surface roughness Ra of the mold was set to 0.1 μm and the amount of oil applied to the mold was set to 0.2 g / m 2 and the friction coefficient was increased according to the present invention, the same experiment was conducted. At the crack limit of 1 mm material, the material with a thickness of 1.4 mm stretched to 13%, and as a tailored blank, it was able to stretch to 19% of the original length. This made it possible to improve moldability.

(発明例3)
次に本発明に基づき金型の表面粗度Raを0.1μmとし、金型に塗布する油の量を10g/m2とし、塗布する油の粘度を10mm2/Sとして摩擦係数を上げて同様の実験をおこなったところ、板厚1mmの材料のワレ限界時に板厚1.4mmの材料は11%まで伸びており、テーラードブランクとしてはもとの長さの19%まで伸びることが出来た。このことにより、成型性の改善が可能となった。
(Invention Example 3)
Next, according to the present invention, the surface roughness Ra of the mold is set to 0.1 μm, the amount of oil applied to the mold is set to 10 g / m 2, and the viscosity of the applied oil is set to 10 mm 2 / S to increase the friction coefficient. As a result of the same experiment, the material with a thickness of 1.4 mm stretched to 11% at the crack limit of the material with a thickness of 1 mm, and as a tailored blank, it was able to stretch to 19% of the original length. . This made it possible to improve moldability.

(発明例4)
次に本発明に基づき、金型表面の粗度Raを1.0μmとし、塗油量を0.2g/m2とし、その粘度を10m2/sとして摩擦係数を上げて同様の実験をおこなったところ、板厚1mmの材料のワレ限界時に板厚1.4mmの材料は14%まで伸びており、テーラードブランクとしてはもとの長さの20%まで伸びることが出来た。
(Invention Example 4)
Next, according to the present invention, the same experiment was conducted by increasing the friction coefficient by setting the roughness Ra of the mold surface to 1.0 μm, the amount of oil to be applied to 0.2 g / m 2 , and the viscosity to 10 m 2 / s. As a result, at the crack limit of a material with a thickness of 1 mm, the material with a thickness of 1.4 mm was extended to 14%, and as a tailored blank, it was possible to extend to 20% of the original length.

(発明例5)
さらに金型の表面粗度Raを1.0μmとし、無塗油状態で同様の実験を行ったところ、板厚1mmの材料のワレ限界時に板厚1.4mmの材料は23%まで伸びており、テーラードブランクとしてはもとの長さの24%まで伸びることが出来た。
(Invention Example 5)
Furthermore, when the surface roughness Ra of the mold was set to 1.0 μm and a similar experiment was conducted in an oil-free state, the material with a thickness of 1.4 mm was extended to 23% at the crack limit of the material with a thickness of 1 mm. As a tailored blank, it was able to extend to 24% of the original length.

これらの試験結果を表1にまとめて示す。表1から明らかなように、本発明例は比較例に比し発明例1〜3は成型性、改善比率が12%、発明例4は成型性・改善比率が18%、発明例5は成型性が41%改善していて、成型性が改善されていることが分かる。   These test results are summarized in Table 1. As is apparent from Table 1, the inventive examples 1 to 3 have a moldability and improvement ratio of 12%, the inventive example 4 has a moldability and improvement ratio of 18%, and the inventive example 5 has a molding compared to the comparative example. It can be seen that the moldability is improved by 41%, and the moldability is improved.

Figure 2007283341
Figure 2007283341

テーラードブランク材のレーザー突合せ溶接プロセスの俯瞰図である。It is an overhead view of the laser butt welding process of a tailored blank material. テーラードブランク材のハットプレス成型時の断面図を示す図である。It is a figure which shows sectional drawing at the time of hat press molding of a tailored blank material. テーラードブランク材のハットプレス成型時の断面図を示す図である。It is a figure which shows sectional drawing at the time of hat press molding of a tailored blank material. (a)〜(c)にテーラードブランク材のプレス加工時の断面図を示す。Sectional drawing at the time of the press work of a tailored blank material is shown to (a)-(c). プレス加工時の状態を示す図である。It is a figure which shows the state at the time of press work.

符号の説明Explanation of symbols

1 鋼板
2 鋼板
3 レーザートーチ
4 溶接ビード
5 レーザービーム
6 溶接進行方向
7 溶接ゾーン
8 パンチ
9 ダイ
10 板押え
11 溶接線位置
12 テーラードブランク材
13 高強度側材料
14 低強度側材料
15 巻き付き角度
16 材料と金型との摩擦係数
17 R止まり部
DESCRIPTION OF SYMBOLS 1 Steel plate 2 Steel plate 3 Laser torch 4 Weld bead 5 Laser beam 6 Welding direction 7 Weld zone 8 Punch 9 Die 10 Plate retainer 11 Weld line position 12 Tailored blank material 13 High strength side material 14 Low strength side material 15 Winding angle 16 Material Coefficient of friction between mold and die 17 R stop

Claims (5)

板厚又は強度の一方又は双方が異なる金属板を突合せ溶接した板材をプレス成型するプレス加工用金型において、プレス金型パンチ表面の角R部の粗度がRaで0.9μm以上である部分を持つことを特徴とする、プレス加工用金型。   In a press working mold for press molding a plate material in which metal plates having different thicknesses or strengths or both are butt welded, a portion where the roughness of the corner R portion on the press die punch surface is 0.9 μm or more in Ra Die for press working, characterized by having 板厚又は強度の一方又は双方が異なる鋼板を突合せ溶接した板材をプレス成型するプレス加工方法において、高強度側板材にプレス金型パンチ表面の角R部の粗度がRaで0.9μm以上である部分を接触させるようにすること特徴とする、プレス加工方法。   In a press processing method in which a plate material obtained by butt-welding steel plates having different thicknesses or strengths or both is press-molded, the roughness of the corner R portion of the press die punch surface on the high-strength side plate material is 0.9 μm or more in Ra. A press working method, characterized in that a certain part is brought into contact. 板厚又は強度の一方又は双方が異なる鋼板を突合せ溶接した板材をプレス成型するプレス加工方法において、高強度側板材にプレス金型パンチ表面の角R部の粗度がRaで0.9μm以上である部分を接触させるようし、かつ該プレス金型パンチ表面の角R部の少なくとも一部に塗油粘度15mm2/S以下の油を塗油すること特徴とする、プレス加工方法。 In a press processing method in which a plate material obtained by butt-welding steel plates having different thicknesses or strengths or both is press-molded, the roughness of the corner R portion of the press die punch surface on the high-strength side plate material is 0.9 μm or more in Ra. A press working method characterized in that an oil having a coating viscosity of 15 mm 2 / S or less is applied to at least a part of the corner R portion of the surface of the press die punch so as to contact a certain portion. 板厚又は強度の一方又は双方が異なる鋼板を突合せ溶接した板材をプレス成型するプレス加工方法において、高強度側板材にプレス金型パンチ表面の角R部の粗度がRaで0.9μm以上である部分を接触させるようし、かつ該プレス金型パンチ表面の角R部のすくなくとも一部に塗油量0.3g/m2以下の油を塗油することを特徴とする、プレス加工方法。 In a press processing method in which a plate material obtained by butt-welding steel plates having different thicknesses or strengths or both is press-molded, the roughness of the corner R portion of the press die punch surface on the high-strength side plate material is 0.9 μm or more in Ra. A press working method characterized in that a certain part is brought into contact and at least a part of the corner R part of the surface of the press die punch is coated with oil having an oil coating amount of 0.3 g / m 2 or less. 板厚又は強度の一方又は双方が異なる鋼板を突合せ溶接した板材をプレス成型するプレス加工方法において、高強度側板材にプレス金型パンチ表面の角R部の粗度がRaで0.9μm以上である部分を接触させるようし、かつ該プレス金型パンチ表面の角R部の少なくとも一部に塗油粘度15mm2/S以下、塗油量0.3g/m2以下の油を塗油することを特徴とする、プレス加工方法。
In a press processing method in which a plate material obtained by butt-welding steel plates having different thicknesses or strengths or both is press-molded, the roughness of the corner R portion of the press die punch surface on the high-strength side plate material is 0.9 μm or more in Ra. Applying an oil having an oil coating viscosity of 15 mm 2 / S or less and an oil coating amount of 0.3 g / m 2 or less to at least a part of the corner R portion of the surface of the press die punch so as to contact a certain part. A press working method.
JP2006112348A 2006-04-14 2006-04-14 Press-forming die for butt-welded metal plate, and press-forming method Withdrawn JP2007283341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006112348A JP2007283341A (en) 2006-04-14 2006-04-14 Press-forming die for butt-welded metal plate, and press-forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006112348A JP2007283341A (en) 2006-04-14 2006-04-14 Press-forming die for butt-welded metal plate, and press-forming method

Publications (1)

Publication Number Publication Date
JP2007283341A true JP2007283341A (en) 2007-11-01

Family

ID=38755583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006112348A Withdrawn JP2007283341A (en) 2006-04-14 2006-04-14 Press-forming die for butt-welded metal plate, and press-forming method

Country Status (1)

Country Link
JP (1) JP2007283341A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011020471A (en) * 2009-07-13 2011-02-03 Sumitomo Metal Ind Ltd Structural member for vehicle, and method of manufacturing the same
JP2014522729A (en) * 2011-07-11 2014-09-08 ヴィスコ ラーザーテクニーク ゲーエムベーハー Method and apparatus for manufacturing tailored sheet metal pieces
CN106862382A (en) * 2017-03-21 2017-06-20 领镒(江苏)精密电子制造有限公司 A kind of thick material thin-walled punching process
WO2019073614A1 (en) * 2017-10-12 2019-04-18 新日鐵住金株式会社 Method and device for manufacturing outer-plate panel having character line
WO2021186952A1 (en) * 2020-03-18 2021-09-23 トヨタ車体株式会社 Mold for press-forming, and press-forming method using same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011020471A (en) * 2009-07-13 2011-02-03 Sumitomo Metal Ind Ltd Structural member for vehicle, and method of manufacturing the same
JP2014522729A (en) * 2011-07-11 2014-09-08 ヴィスコ ラーザーテクニーク ゲーエムベーハー Method and apparatus for manufacturing tailored sheet metal pieces
CN106862382A (en) * 2017-03-21 2017-06-20 领镒(江苏)精密电子制造有限公司 A kind of thick material thin-walled punching process
CN106862382B (en) * 2017-03-21 2018-10-19 领镒(江苏)精密电子制造有限公司 A kind of thick material thin-walled punching process
WO2019073614A1 (en) * 2017-10-12 2019-04-18 新日鐵住金株式会社 Method and device for manufacturing outer-plate panel having character line
JPWO2019073614A1 (en) * 2017-10-12 2020-11-05 日本製鉄株式会社 Manufacturing method and manufacturing equipment for skin panels with character lines
JP7140132B2 (en) 2017-10-12 2022-09-22 日本製鉄株式会社 Manufacturing method and manufacturing apparatus for skin panel having character lines
US11684963B2 (en) 2017-10-12 2023-06-27 Nippon Steel Corporation Method and apparatus for producing outer panel having character line
WO2021186952A1 (en) * 2020-03-18 2021-09-23 トヨタ車体株式会社 Mold for press-forming, and press-forming method using same

Similar Documents

Publication Publication Date Title
JP5352995B2 (en) High-tensile cold-rolled steel sheet with excellent mold galling resistance and method for producing the same
CN108883458B (en) Mechanical scarf joint member and manufacturing method thereof
JP2007283341A (en) Press-forming die for butt-welded metal plate, and press-forming method
JP2011062713A (en) Structural component with bent closed cross-section and manufacutring method thereof
JP5206210B2 (en) Tailored blank press forming method
JP2006218501A (en) Press-forming die and forming method for butt-welded metallic sheet
GB2535576A (en) Metal sheet and method for its manufacture
WO2020209357A1 (en) Blank and structural member
JP2007289984A (en) Aluminum alloy joined material having excellent formability and its production method
JP4850570B2 (en) Butt weld metal plate
WO2020152789A1 (en) Steel plate, butt-welded member, hot-pressed molding, steel tube, hollow quench-formed molding, and steel plate production method
JP4520549B2 (en) Press forming method of different material tailored blanks with excellent formability
JP2007283340A (en) Method for press-forming butt-welded metal plate, and forming die
JPWO2020059804A1 (en) Tailored blanks, methods for manufacturing tailored blanks, press-molded products, and methods for manufacturing press-molded products.
JPH11192502A (en) Tailored steel strip for press forming and its manufacture
WO2022030641A1 (en) Steel plate
JP7363832B2 (en) Laser cutting method for steel strip, laser cutting equipment, cold rolling method, and method for manufacturing cold rolled steel strip
JP4546590B2 (en) Tailored blank material for press molding excellent in formability and manufacturing method thereof
JP2016155165A (en) Clad plate material
JP2006187811A (en) Method for laser-welding steel plate and combined plate material
WO2022172516A1 (en) Laser cutting method for steel strip, laser cutting equipment, cold rolling method, and manufacturing method of cold-rolled steel strip
WO2024063009A1 (en) Welded member and method for producing same
JP4038368B2 (en) Aluminum alloy welded joint
WO2020196701A1 (en) Steel sheet and member
JP2007283338A (en) Laser butt-welding method for thin metal plate, and its welded product

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090707