JP2004254923A - Warm shoe insole - Google Patents

Warm shoe insole Download PDF

Info

Publication number
JP2004254923A
JP2004254923A JP2003049049A JP2003049049A JP2004254923A JP 2004254923 A JP2004254923 A JP 2004254923A JP 2003049049 A JP2003049049 A JP 2003049049A JP 2003049049 A JP2003049049 A JP 2003049049A JP 2004254923 A JP2004254923 A JP 2004254923A
Authority
JP
Japan
Prior art keywords
heat
energy
polymer
energy loss
shoe insole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003049049A
Other languages
Japanese (ja)
Other versions
JP4154255B2 (en
Inventor
Toru Koga
徹 古賀
Hiroshi Yoshikawa
博 吉川
Hiroki Yamamura
博喜 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MoonStar Co
Original Assignee
MoonStar Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MoonStar Co filed Critical MoonStar Co
Priority to JP2003049049A priority Critical patent/JP4154255B2/en
Publication of JP2004254923A publication Critical patent/JP2004254923A/en
Application granted granted Critical
Publication of JP4154255B2 publication Critical patent/JP4154255B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shoe insole for converting kinetic energy into thermal energy in the case of walking with shoes on, so as to store heat, by solving the following problem that the shoe insole using the reaction heat of a heat generating composition consisting mainly of metal powder such as iron powder, with oxygen in the air loses a heat generating function after the end of the reaction, and has to be thrown out. <P>SOLUTION: A sea-island phase is formed of two contrary appearance mechanisms, i.e., the appearance mechanism of a spring characteristic and the appearance mechanism of energy loss to generate heat, in order to convert the repetitive kinetic energy in walking into the thermal energy. A sea phase having a spring appearance mechanism and an island phase having the appearance mechanism of energy loss to generate heat are formed. The constituent polymer of a low repulsion elastic composition body as the energy loss appearance mechanism is formed as a block copolymer with elastic polymer, or crosslinking with the constituent polymer of a high repulsion elastic composition body as the spring characteristic appearance mechanism. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、靴に挿入して使用する中敷きに関するものであり、特に歩行時の運動エネルギーを熱エネルギーに変換し蓄熱する機能を有するものである。
【0002】
【従来の技術】
第一に、発熱機能を有する靴中敷きとして、鉄粉等の金属紛を主成分とする発熱体組成物と空気中の酸素との反応熱を利用した靴の形状をした靴用カイロが使用されていたが、足の押圧力によってカイロが滑ったり、又発熱体組成物が漏れ出す事があった。その課題を解決し、滑らなく、漏れ出しをなくするために、カイロの収納袋を気密性袋内に封入し、滑り止め層を形成した発明が開示されている。(例えば、特許文献1参照。)
第二に、温度調整機能を持った中敷きが提案されている。カイロにより暖を取る方法は温度調節が出来ないため熱くなり過ぎることがあり、その解決を図ったものである。この方法は、中敷きに発熱体を納め、給電により発熱する方法である。(例えば、特許文献2参照)
【0003】
(特許文献1) 特再公表WO95/17864
(特許文献2) 特開2001−190306
【0004】
【発明が解決しようとする課題】
第一の方法は、鉄粉等の金属紛を主成分とする発熱体組成物と空気中の酸素との反応熱を利用したもので、反応が終了した後は発熱機能を失い、処分しなければならない。概ね有効な発熱時間は5〜6時間である。暖を取るには、毎日中敷きを新しい物と交換しなければならない。
【0005】
第二の方法は、給電により発熱する方法で、第一の方法みたいに中敷き本体を毎日交換する必要はないが、中敷きへの通電のために、電源となる電池を携帯する必要がある。又、概ね有効な発熱時間は電池の種類によるが7〜9時間である。
【0006】
本発明は、反応熱の利用による使い捨て中敷きではなく、又電池などの電源を必要とせず、靴を履いて歩く時の歩行時の運動エネルギーを熱エネルギーに変換し蓄熱する機能を有する中敷きを提供するものである。
【0007】
本発明は、歩行する上で確実に消費されるエネルギーを熱に変換しようとするものであり、無駄に捨てられているエネルギーを有用なものに転化することにある。
人間の歩行時の運動、即ち足の裏が靴底を踏みしめる運動と靴底が歩行に従って曲げ伸びする運動等の歩行時の運動エネルギーを熱エネルギーに変換するエネルギー変換層を中敷きに設け、こうして発生した熱エネルギーを蓄熱し、足裏を暖めようとするものである。
【0008】
歩行時の運動エネルギーを熱エネルギーに変換する方法として、弾性と粘性を併せ持つゴムの粘弾性の性質を利用する。
粘弾性体に周期的なひずみε=εcosωtを与えると、応力δは関係式:δ=ε(E′cosωt+E′′sinωt)で表わされる。ここで、E′、E′′はそれぞれ貯蔵弾性率及び損失弾性率である。この時一周期ごとに物体になされる仕事Hは関係式:H=πε E′′=πεσsinδで表わされる。つまり一周期ごとに関係式Hで表わされるエネルギー量が消費される。このエネルギー量は熱となって物体の温度上昇をもたらす。
【0009】
ここに、εは周期ごとの当初ひずみの振幅であり、σは周期ごとの応力の振幅であり、δは位相差である。
弾性体は位相差δ=0であり、粘性体は位相差δ=π/2であり、粘弾性体は位相差δが0<δ<π/2となる。
【0010】
歩行時の繰り返しの運動エネルギーを熱エネルギーに変換する場合、粘弾性体に働く応力は、概ね一定量と考えられる。
歩行時の運動エネルギーを熱エネルギーに変換し蓄積する機能を有するエネルギー変換層であるためには、繰り返しの周期毎にほぼ同じような仕事エネルギーが発生する必要が有る。
【0011】
仕事Hの関係式:H=πε E′′=πεσsinδから明らかなように、一周期のみであれば粘性体は位相差δ=π/2であるので発熱が最も大きいが、二周期目の粘性体はひずみεが全く回復しないのでひずみεがほぼゼロとなり発熱もほぼゼロとなる。
一方完全な弾性体は位相差δ=0であるので全く発熱しないが、ひずみεは完全に回復する。
繰り返しの発熱エネルギーを確保するには、損失弾性率(E′′)が大きく又サイクル毎のひずみεが当初の値にほぼ近いという相反する性質が求められる。損失弾性率(E′′)の温度依存性は損失正接(tanδ)と同じく、ある特定の温度においてピークを示すが、そのピーク温度は損失正接(tanδ)のピーク温度より若干低目に現われる。しかし、発熱の機能を有するポリマーの選定の目安は損失正接(tanδ)を用いても構わない。
【0012】
又、人が歩く歩調は小股歩行、自由歩行、大股歩行、男性、女性、年齢差等で異なってくるが、大まかに1.8〜2.4歩/秒と言われている。靴中敷きとして周波数に直すと0.9〜1.2Hzという極めて低周波数領域となる。1000Hz以上では損失正接(tanδ)が1.0以上を有するようなポリマーも0.9〜1.2Hzという低周波数領域ではほとんどのポリマーが0.2以下の小さい値となり発熱機能を失う。
現在損失正接(tanδ)の大きさを利用した種種の制振材が提供されているが低周波域の振動に有効な素材はほとんど無い。
【0013】
低反発弾性組成体を構成するポリマーが単にブレンドされている状況では0.9〜1.2Hzという極めて低周波数領域である歩行時において、繰り返し運動エネルギーを熱エネルギーに変換することはできない。
【0014】
【課題を解決するための手段】
本発明は冬場において暖かい中敷きを提供するものである。
歩行時の繰り返し運動エネルギーを熱エネルギーに変換するために、バネ特性の発現機構と、熱を発するためのエネルギー損失の発現機構という相反する二つの発現機構を海島相に形成してなり、バネ発現機構を有する海相と熱を発するためのエネルギー損失の発現機構を有する島相とを形成したことを特徴とする靴中敷きである。
【0015】
前記海島相において、エネルギー損失の発現機構としての低反発弾性組成体の構成ポリマーが弾性を有するポリマーとブロック共重合体を成しているか、又はバネ特性の発現機構としての高反発弾性組成体の構成ポリマーと共架橋を成していることを特徴とする靴中敷きである。
【0016】
バネ特性の発現機構としての高反発弾性組成体50超過〜80容量%と、エネルギー損失の発現機構としての低反発弾性組成体50未満〜20容量%とからなることを特徴とする靴中敷きである。
【0017】
前記高反発弾性組成体及び低反発弾性組成体が架橋してなる発泡体であり、前記発泡体の比重が0.08〜0.35であることを特徴とする靴中敷きである。
【0018】
バネ特性の発現機構を成すポリマーとしての特性は、損失正接(tanδ)のピークが−20℃以下に存在し、しかも損失正接の値が−10〜5℃において0.4以下であり、熱を発するためのエネルギー損失の発現機構を成すポリマーとしての特性は、損失正接(tanδ)のピークが−40〜5℃に存在し、しかも損失正接の値が−10〜5℃において0.5以上であるのが好ましい。
尚、損失正接(tanδ)の値は、110Hzの値であり、レオバイブロンDDV−3(オリエンテック社製)を使用。
【0019】
大きな発熱量を得るには低反発弾性組成体を可能な限り添加するのが有効である。そのため本発明において、高反発弾性組成体50超過〜80容量%となし、低反発弾性組成体50未満〜20容量%となしている。
又、発熱のためにひずみの振幅を大きくするのが好ましい。そのため発泡体であることが好適である。
【0020】
高反発弾性組成体としては、ジエン系ゴムである天然ゴム、ブタジエンゴム、低スチレン・ブタジエンゴム等を単独又は複数種を用いて組成される。
【0021】
又、低反発弾性組成体としては、大きな損失正接(tanδ)の値を示すポリマーが好適である。即ち、ビニルイソプレンである3,4結合イソプレン、1,2結合イソプレン及び塩素化ブチルゴム等が好適である。
【0022】
人が歩く歩調の周波数である0.9〜1.2Hzという極めて低周波数領域において低反発弾性組成体を構成するポリマーが単にブレンドされている状況では繰り返し運動エネルギーを熱エネルギーに変換することはできないが、弾性ポリマーと結合しておれば、発熱機能を発現できる。
それは、弾性ゴムに何らかの衝撃を与えた場合、変形による振動は1000Hz程度といわれている。弾性ゴムの歩行による変形は1000Hz程度の周波数領域にあると考えられる。低反発弾性組成体を構成するポリマーが弾性を有するポリマーとブロック共重合体を成すか又は共架橋を成しておれば、弾性ポリマーが有する高い周波数と共振し、発熱機能を発現できる。
【0023】
バネ特性の発現機構としての海相とエネルギー損失の発現機構としての島相は低反発弾性組成体を構成するポリマーが弾性を有するポリマーとブロック共重合体を成すか又は共架橋を成して結合していることが必要である。
3,4結合イソプレン、1,2結合イソプレンはポリマー構造において、側鎖に二重結合を有するのでジエン系ゴムとは共架橋を成すことが出来るが、通常のブチルゴムは架橋速度が極端に遅くジエン系ゴムとの共架橋が困難である。
一方塩素化ブチルゴムは架橋速度が速くジエン系ゴムとの共架橋ができる。
【0024】
クラレ(株)の製品で3,4結合イソプレンが主体を成し、弾性を有するポリスチレンと共重合体をなしている「ハイブラー」は、3,4結合イソプレンが二重結合を有しているのでジエン系ゴムとの共架橋が出来、3,4結合イソプレンが弾性ポリマーと強固な結合を形成することが出来るので本発明には好適である。
【0025】
発熱量を増すためにひずみの振幅が大きい程好ましい。そのためには海島相は共架橋と同時に発泡体と成すことが好適であり、前記発泡体の比重が0.08〜0.35であることが好ましい。比重が0.08以下では機械的強度が弱く又、ひずみεの回復も悪く発熱が少ない。
又、比重が0.35以上では歩行時の発泡体に掛かる応力に対するひずみεが少なく発熱が少ない。
【0026】
【発明の実施の形態】
本発明の実施例は、ジエン系ゴムとして天然ゴムを使用し、ビニルイソプレンである3,4結合イソプレンとしてポリスチレンと共重合体を成しているハイブラーVS−3(クラレ(株)製)を使用した。ハイブラーVS−3はビニル結合量55%で、tanδのピーク温度が−3℃でその値が1.3である。
天然ゴムとハイブラーVS−3をブレンドした後、充填剤、プロセスオイル、石油系樹脂、加硫剤、加硫助剤、発泡剤を添加し、加熱・加圧による架橋にて発泡体を作成した。
【0027】
【実施例】
まず「天然ゴム」50部と「ハイブラーVS−3」50部との ポリマーブレンド体をバンバリーミキサーを用いて作成した。これはハイブラーVS−3の分散を良くするためである。「天然ゴム」50部と「ハイブラーVS−3」50部の重量の割合は、「ハイブラーVS−3」に含まれる低反発弾性体の割合が55%であるので容量比が「高反発弾性組成体」/「低反発弾性体」=73/27となる。
次に、前記ポリマーブレンド体100部に対し、ステアリン酸3部、酸化亜鉛5部、架橋助剤2部、充填剤30部、石油系樹脂10部、プロセスオイル10部をバンバリーミキサーにて混合しマスターバッチと成し、架橋剤2.5部、発泡剤8部をロール練りしコンパウンドとした。
【0028】
このコンパウンドを160℃×10分の加熱・加圧による架橋で発泡体を得た。前記発泡体の比重は0.21であった。
【0029】
前記発泡体と市販のゴムスポンジ、ウレタンスポンシ、EVAスポンジとの熱蓄積の比較テストを行なった。尚、前記発泡体は以後、熱蓄積スポンジと称す。
【0030】
テスト方法は、各スポンジを3mmの厚みに揃え、55mm×65mmに裁断した。各スポンジは同一のものを重ね合わし、6mmのサンプルとし、その中央に熱センサーを挿入した。
【0031】
このサンプルを繰り返し圧縮試験機に載置し、繰り返しの荷重による各サンプルの熱的変化を測定した。
繰り返し圧縮試験機は、直径80mmのエアーシリンダーを備え、圧縮端子は直径50mmの金属片である。サンプルの乗せ台は汎用ゴムである。
エアーシリンダー圧力2kg/cmのサイクル60回/分でテストした。外気温度は0℃であった。
【0032】
テスト結果を図1に示す。蓄熱の大きさの順番は、熱蓄積スポンジがずば抜けて大きく、ついでEVAスポンジ、ウレタンスポンジ、ゴムスポンジの順であった。
【0033】
【図1】

Figure 2004254923
【0034】
次に、前記熱蓄積スポンジを用い靴中敷きを作成した。上布はポリエステル系綿状体よりなる布帛とした。従来の靴中敷きを左の靴に設置し、本発明品を右の靴に設置して外気温度が3℃の町並みを歩いたところ本発明品を設置した靴が暖かった。
【0035】
【発明の効果】
本発明は、歩行する上で確実に消費されるエネルギーを熱に変換するものであり、無駄に捨てられていたエネルギーを有用なものに転化することにある。歩行時の運動、即ち足の裏が靴底を踏みしめる運動と靴底が歩行に従って曲げ伸びする運動等のエネルギーを熱エネルギーに変換するエネルギー変換層を中敷きに設け、こうして発生した熱エネルギーを蓄熱し、足裏を暖めることが出来、冬場の靴中敷きとして最適なものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an insole to be used by being inserted into a shoe, and particularly has a function of converting kinetic energy during walking into heat energy and storing the heat.
[0002]
[Prior art]
First, as a shoe insole having a heat-generating function, a shoe warmer in the shape of a shoe using the heat of reaction between a heating element composition mainly composed of metal powder such as iron powder and oxygen in the air is used. However, there was a case where the body warmed due to the pressing force of the foot or the heating element composition leaked out. In order to solve the problem and prevent slippage and leakage, there is disclosed an invention in which a storage bag for a warmer is sealed in an airtight bag to form a non-slip layer. (For example, refer to Patent Document 1.)
Second, an insole with a temperature adjustment function has been proposed. The method of taking warmth with a cairo may be too hot because the temperature cannot be adjusted, and this is a solution. In this method, a heating element is placed in an insole, and heat is generated by power supply. (For example, see Patent Document 2)
[0003]
(Patent Document 1) Japanese Patent Publication WO95 / 17864
(Patent Document 2) JP-A-2001-190306
[0004]
[Problems to be solved by the invention]
The first method utilizes the heat of reaction between a heating element composition mainly composed of metal powder such as iron powder and oxygen in the air, and after the reaction is completed, loses the heat-generating function and must be disposed of. Must. Generally, the effective heat generation time is 5 to 6 hours. To keep warm, the insoles must be replaced every day with new ones.
[0005]
The second method is a method in which heat is generated by power supply, and it is not necessary to replace the insole main body every day as in the first method, but it is necessary to carry a battery serving as a power supply to energize the insole. The effective heat generation time is generally 7 to 9 hours, depending on the type of the battery.
[0006]
The present invention provides an insole that is not a disposable insole using reaction heat, does not require a power source such as a battery, and has a function of converting kinetic energy during walking when walking with shoes into heat energy and storing heat. Is what you do.
[0007]
An object of the present invention is to convert energy that is surely consumed in walking into heat, and to convert energy that has been wasted to useful energy.
An energy conversion layer that converts kinetic energy during walking into heat energy, such as the movement of a human when walking, that is, the sole of the foot stepping on the sole and the movement of the sole bending and stretching as walking, is generated in the insole. It is intended to store the heat energy and warm the soles of the feet.
[0008]
As a method of converting kinetic energy during walking into heat energy, the viscoelastic properties of rubber having both elasticity and viscosity are used.
When a periodic strain ε = ε 0 cosωt is given to the viscoelastic body, the stress δ is expressed by a relational expression: δ = ε 0 (E′cosωt + E ″ sinωt). Here, E ′ and E ″ are a storage modulus and a loss modulus, respectively. At this time, the work H performed on the object for each period is represented by a relational expression: H = πε 0 2 E ″ = πε 0 σ sin δ. That is, the energy amount represented by the relational expression H is consumed for each cycle. This amount of energy becomes heat and causes the temperature of the object to rise.
[0009]
Here, ε 0 is the amplitude of the initial strain for each cycle, σ is the amplitude of the stress for each cycle, and δ is the phase difference.
An elastic body has a phase difference δ = 0, a viscous body has a phase difference δ = π / 2, and a viscoelastic body has a phase difference δ of 0 <δ <π / 2.
[0010]
When converting the repetitive kinetic energy during walking into thermal energy, the stress acting on the viscoelastic body is considered to be approximately constant.
In order for the energy conversion layer to have a function of converting kinetic energy during walking into heat energy and storing the heat energy, it is necessary to generate substantially the same work energy in each repetition cycle.
[0011]
As is clear from the relational expression of the work H: H = πε 0 2 E ″ = πε 0 σ sin δ, if only one period, the viscous body has the largest phase difference δ = π / 2, but the heat generation is the largest. Since the strain ε 0 does not recover at all in the viscous body in the cycle, the strain ε 0 becomes almost zero and the heat generation becomes almost zero.
On the other hand, a perfect elastic body does not generate any heat because the phase difference δ = 0, but the strain ε 0 is completely recovered.
In order to secure repetitive heat generation energy, contradictory properties are required such that the loss elastic modulus (E '') is large and the strain ε 0 per cycle is almost close to the initial value. The temperature dependency of the loss elastic modulus (E '') shows a peak at a specific temperature like the loss tangent (tan δ), but the peak temperature appears slightly lower than the peak temperature of the loss tangent (tan δ). However, the loss tangent (tan δ) may be used as a guide for selecting a polymer having a heat generating function.
[0012]
The walking pace of a person varies depending on walking in a short leg, walking in a free leg, walking in a long leg, men, women, age differences, and the like, but is generally said to be 1.8 to 2.4 steps / sec. When converted to a frequency as a shoe insole, it becomes an extremely low frequency range of 0.9 to 1.2 Hz. In the low frequency region of 0.9 to 1.2 Hz, most of the polymers having a loss tangent (tan δ) of 1.0 or more at 1000 Hz or more have a small value of 0.2 or less and lose the heat generating function.
At present, various damping materials utilizing the magnitude of the loss tangent (tan δ) are provided, but there are few materials effective for vibration in a low frequency range.
[0013]
In a situation where the polymer constituting the low rebound resilience composition is simply blended, it is not possible to repeatedly convert kinetic energy into heat energy during walking in an extremely low frequency range of 0.9 to 1.2 Hz.
[0014]
[Means for Solving the Problems]
The present invention provides a warm insole in winter.
In order to convert repetitive kinetic energy during walking into thermal energy, two contradictory mechanisms are formed in the sea-island phase: a mechanism of generating spring characteristics and a mechanism of generating energy loss to generate heat. A shoe insole characterized by forming a sea phase having a mechanism and an island phase having a mechanism of generating energy loss for generating heat.
[0015]
In the sea-island phase, the constituent polymer of the low-rebound resilience composition as a mechanism for expressing energy loss is formed of a block copolymer with a polymer having elasticity, or a high-rebound resilience composition as a mechanism for developing spring characteristics. A shoe insole characterized by being co-crosslinked with a constituent polymer.
[0016]
A shoe insole comprising a high resilience composition exceeding 50 to 80% by volume as a mechanism for developing spring characteristics and a low resilience composition less than 50 to 20% by volume as a mechanism for developing energy loss. .
[0017]
A foam in which the high resilience composition and the low resilience composition are crosslinked, and the specific gravity of the foam is 0.08 to 0.35.
[0018]
The properties of the polymer that forms the mechanism of manifesting the spring characteristics are as follows: the peak of the loss tangent (tan δ) exists at −20 ° C. or less, and the value of the loss tangent is 0.4 or less at −10 to 5 ° C. The properties of the polymer which constitutes the mechanism of the energy loss for the emission are as follows: a loss tangent (tan δ) peak is present at -40 to 5 ° C., and the value of the loss tangent is ≧ 0.5 at -10 to 5 ° C. Preferably it is.
The value of the loss tangent (tan δ) is a value at 110 Hz, and Leo Vibron DDV-3 (manufactured by Orientec) is used.
[0019]
In order to obtain a large calorific value, it is effective to add the low rebound resilience composition as much as possible. For this reason, in the present invention, the high rebound resilience composition is defined as exceeding 50 to 80% by volume, and the low rebound resilience composition is defined as less than 50 to 20% by volume.
Also, it is preferable to increase the amplitude of the strain due to heat generation. Therefore, it is preferable that it is a foam.
[0020]
As the high rebound resilience composition, a natural rubber, a butadiene rubber, a low styrene / butadiene rubber, or the like, which is a diene rubber, is used alone or in combination.
[0021]
As the low rebound resilience composition, a polymer exhibiting a large value of loss tangent (tan δ) is preferable. That is, vinyl isoprene such as 3,4-bonded isoprene, 1,2-bonded isoprene, and chlorinated butyl rubber are preferred.
[0022]
In the extremely low frequency range of 0.9 to 1.2 Hz, which is the frequency of a human walking pace, it is not possible to repeatedly convert kinetic energy into heat energy in a situation where the polymer constituting the low-elasticity resilient composition is simply blended. However, if it is bonded to an elastic polymer, a heat generating function can be exhibited.
It is said that when some impact is given to the elastic rubber, the vibration due to the deformation is about 1000 Hz. It is considered that the deformation of the elastic rubber due to walking is in a frequency range of about 1000 Hz. When the polymer constituting the low-elasticity resilient composition forms a block copolymer or co-crosslinks with the polymer having elasticity, it resonates with the high frequency of the elastic polymer and can exhibit a heat generating function.
[0023]
The sea phase as a mechanism for developing spring characteristics and the island phase as a mechanism for generating energy loss combine the polymer constituting the low-rebound resilience composition with a polymer having elasticity by forming a block copolymer or co-crosslinking. It is necessary to do.
3,4-bonded isoprene and 1,2-bonded isoprene have a double bond in the side chain in the polymer structure, so that they can be co-crosslinked with diene rubber, but ordinary butyl rubber has an extremely slow crosslinking speed with diene rubber. It is difficult to co-crosslink with the base rubber.
On the other hand, chlorinated butyl rubber has a high crosslinking speed and can be co-crosslinked with a diene rubber.
[0024]
"HIBLER", a product of Kuraray Co., Ltd., mainly composed of 3,4-bonded isoprene and forming a copolymer with elastic polystyrene, has a 3,4-bonded isoprene having a double bond. Co-crosslinking with a diene rubber is possible, and the 3,4-bonded isoprene can form a strong bond with the elastic polymer, which is suitable for the present invention.
[0025]
It is preferable that the amplitude of the strain is large in order to increase the heat generation. For this purpose, the sea-island phase is preferably formed into a foam at the same time as co-crosslinking, and the specific gravity of the foam is preferably 0.08 to 0.35. When the specific gravity is 0.08 or less, the mechanical strength is weak, the recovery of the strain ε is poor, and the heat generation is small.
When the specific gravity is 0.35 or more, the strain ε with respect to the stress applied to the foam during walking is small, and the heat generation is small.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
In the embodiment of the present invention, natural rubber is used as the diene rubber, and Hibler VS-3 (manufactured by Kuraray Co., Ltd.), which is a copolymer with polystyrene, is used as the 3,4-bonded isoprene which is vinyl isoprene. did. Hybler VS-3 has a vinyl bond content of 55%, a peak temperature of tan δ of -3 ° C and a value of 1.3.
After blending natural rubber and Hybler VS-3, filler, process oil, petroleum-based resin, vulcanizing agent, vulcanizing aid, and foaming agent were added, and a foam was formed by crosslinking by heating and pressing. .
[0027]
【Example】
First, a polymer blend of 50 parts of "natural rubber" and 50 parts of "HIBLER VS-3" was prepared using a Banbury mixer. This is for improving the dispersion of the high blur VS-3. The ratio of the weight of 50 parts of “natural rubber” to 50 parts of “Hybler VS-3” is such that the ratio of the low-rebound resilience contained in “Hybler VS-3” is 55%, so that the capacity ratio is “high resilience composition”. "Body" / "low rebound resilience" = 73/27.
Next, 3 parts of stearic acid, 5 parts of zinc oxide, 2 parts of a crosslinking aid, 30 parts of filler, 10 parts of petroleum resin, and 10 parts of process oil were mixed with 100 parts of the polymer blend using a Banbury mixer. A master batch was formed, and 2.5 parts of a crosslinking agent and 8 parts of a foaming agent were kneaded with a roll to obtain a compound.
[0028]
This compound was crosslinked by heating and pressing at 160 ° C. for 10 minutes to obtain a foam. The specific gravity of the foam was 0.21.
[0029]
A comparison test of heat accumulation between the foam and a commercially available rubber sponge, urethane sponge, or EVA sponge was performed. In addition, the said foam body is hereafter called a heat storage sponge.
[0030]
In the test method, each sponge was adjusted to a thickness of 3 mm and cut into 55 mm × 65 mm. The same sponge was overlapped to form a 6 mm sample, and a heat sensor was inserted at the center.
[0031]
This sample was repeatedly placed on a compression tester, and the thermal change of each sample due to the repeated load was measured.
The repetitive compression tester has an air cylinder with a diameter of 80 mm, and the compression terminal is a metal piece with a diameter of 50 mm. The sample platform is a general purpose rubber.
The test was performed at a cycle of 60 times / min with an air cylinder pressure of 2 kg / cm 2 . The outside air temperature was 0 ° C.
[0032]
The test results are shown in FIG. The order of the magnitude of the heat storage was by far the largest heat storage sponge, followed by the EVA sponge, urethane sponge, and rubber sponge.
[0033]
FIG.
Figure 2004254923
[0034]
Next, a shoe insole was prepared using the heat accumulation sponge. The upper cloth was a cloth made of a polyester-based floc. When the conventional shoe insole was set on the left shoe, the product of the present invention was set on the right shoe, and the person walked in a street with an outside air temperature of 3 ° C., the shoes with the product of the present invention were warm.
[0035]
【The invention's effect】
An object of the present invention is to convert energy that is surely consumed in walking into heat, and to convert energy that has been wasted to useful one. An energy conversion layer is provided on the insole to convert energy such as exercise during walking, i.e., the sole of the foot stepping on the sole and the exercise of the sole bending and elongating as the person walks, into thermal energy, and accumulate the generated thermal energy. It can warm the soles and is ideal for insoles in winter.

Claims (4)

歩行時の繰り返し運動エネルギーを熱エネルギーに変換するために、バネ特性の発現機構と、熱を発するためのエネルギー損失の発現機構という相反する二つの発現機構を海島相に形成してなり、バネ発現機構を有する海相と熱を発するためのエネルギー損失の発現機構を有する島相とを形成したことを特徴とする靴中敷き。In order to convert the repetitive kinetic energy during walking into heat energy, the sea-island phase is formed with two contradictory mechanisms, a mechanism of spring characteristics and a mechanism of energy loss to generate heat. A shoe insole characterized by forming a sea phase having a mechanism and an island phase having a mechanism of generating energy loss for generating heat. 前記海島相において、エネルギー損失の発現機構としての低反発弾性組成体の構成ポリマーが弾性を有するポリマーとブロック共重合体を成しているか、又はバネ特性の発現機構としての高反発弾性組成体の構成ポリマーと共架橋を成していることを特徴とする請求項1記載の靴中敷き。In the sea-island phase, the constituent polymer of the low-rebound resilience composition as a mechanism for expressing energy loss is formed of a block copolymer with a polymer having elasticity, or a high-rebound resilience composition as a mechanism for developing spring characteristics. 2. The shoe insole according to claim 1, which is co-crosslinked with a constituent polymer. バネ特性の発現機構としての高反発弾性組成体50超過〜80容量%と、エネルギー損失の発現機構としての低反発弾性組成体50未満〜20容量%とからなることを特徴とする請求項1及び請求項2記載の靴中敷き。The high rebound resilience composition as a mechanism for exhibiting a spring characteristic is composed of more than 50 to 80% by volume, and the low resilience composition as a mechanism for developing an energy loss is less than 50 to 20% by volume. The shoe insole according to claim 2. 前記高反発弾性組成体及び低反発弾性組成体が架橋してなる発泡体であり、前記発泡体の比重が0.08〜0.35であることを特徴とする請求項1〜請求項3記載の靴中敷き。4. The foam formed by crosslinking the high resilience composition and the low resilience composition, and the specific gravity of the foam is 0.08 to 0.35. 5. Shoes insole.
JP2003049049A 2003-02-26 2003-02-26 Warm insoles Expired - Lifetime JP4154255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049049A JP4154255B2 (en) 2003-02-26 2003-02-26 Warm insoles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049049A JP4154255B2 (en) 2003-02-26 2003-02-26 Warm insoles

Publications (2)

Publication Number Publication Date
JP2004254923A true JP2004254923A (en) 2004-09-16
JP4154255B2 JP4154255B2 (en) 2008-09-24

Family

ID=33114849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049049A Expired - Lifetime JP4154255B2 (en) 2003-02-26 2003-02-26 Warm insoles

Country Status (1)

Country Link
JP (1) JP4154255B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045353A1 (en) * 2012-09-19 2014-03-27 富士通株式会社 Power generation device, measurement device, and measurement system
JP2016163632A (en) * 2015-03-06 2016-09-08 株式会社ムーンスター Exothermic rubber
JP2020105256A (en) * 2018-12-26 2020-07-09 ライオン株式会社 Elastomer foam for supporter, and supporter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045353A1 (en) * 2012-09-19 2014-03-27 富士通株式会社 Power generation device, measurement device, and measurement system
JP5928599B2 (en) * 2012-09-19 2016-06-01 富士通株式会社 Power generation device, measuring device and measuring system
US9816874B2 (en) 2012-09-19 2017-11-14 Fujitsu Limited Power generation device, measurement device, and measurement system for generating power by increasing heat quantity due to vibration
JP2016163632A (en) * 2015-03-06 2016-09-08 株式会社ムーンスター Exothermic rubber
JP2020105256A (en) * 2018-12-26 2020-07-09 ライオン株式会社 Elastomer foam for supporter, and supporter

Also Published As

Publication number Publication date
JP4154255B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
AU2012381265A1 (en) Molded foam article, foamed sole, and shoe
CN111286110A (en) High-comfort cushioning foaming insole material, preparation method thereof and sports shoes
KR20110124836A (en) Ethylene vinyl acetate resin composition for masai sensor
US20160021981A1 (en) Cleat Assembly For An Athletic Shoe And An Athletic Shoe Comprising Same
JP2004254923A (en) Warm shoe insole
KR200440262Y1 (en) Socks adhered cushion pad
JP6279822B1 (en) Outsole and shoes
JP2004337262A (en) Shoe
JP2864493B2 (en) Insole for shoes
JP3851921B1 (en) Foot sole shape forming method for footwear and foot sole shape forming method for cup insole
JP2022181152A (en) Composite insole structure
CN103703267A (en) Device for damping of impacts
JP2004344298A (en) Shoe sole material and shoe sole
CN203234130U (en) Comfortable high-heeled shoe sole
CN109943005B (en) Elastic particles, and preparation method and application thereof
CN220384390U (en) Anti-deformation sole
CN202697922U (en) Novel sole
CN204363092U (en) A kind of functional insole
JPH05311005A (en) Improved elastomer and insole and footwear using the same
CN207897993U (en) A kind of elastic force arch of foot insole
CN109043724A (en) A kind of anti-puncture insulated shoes
CN211581754U (en) Sole structure with arch integral air cushion
CN215423096U (en) Tourist shoe sole with good wear resistance
CN217906510U (en) Honeycomb structure sole
JPH08112105A (en) Spike shoes for golf

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080707

R150 Certificate of patent or registration of utility model

Ref document number: 4154255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term