JP2004254751A - Biological tissue prosthesis material, production method of biological tissue prosthesis, container used therefor, and biological tissue prosthesis - Google Patents

Biological tissue prosthesis material, production method of biological tissue prosthesis, container used therefor, and biological tissue prosthesis Download PDF

Info

Publication number
JP2004254751A
JP2004254751A JP2003045987A JP2003045987A JP2004254751A JP 2004254751 A JP2004254751 A JP 2004254751A JP 2003045987 A JP2003045987 A JP 2003045987A JP 2003045987 A JP2003045987 A JP 2003045987A JP 2004254751 A JP2004254751 A JP 2004254751A
Authority
JP
Japan
Prior art keywords
hole
living tissue
cells
biological tissue
tissue prosthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003045987A
Other languages
Japanese (ja)
Other versions
JP4175917B2 (en
Inventor
Katsuya Sadamori
克也 貞森
Hiroshi Fukuda
宏 福田
Hiroki Hibino
浩樹 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003045987A priority Critical patent/JP4175917B2/en
Publication of JP2004254751A publication Critical patent/JP2004254751A/en
Application granted granted Critical
Publication of JP4175917B2 publication Critical patent/JP4175917B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biological tissue prosthesis material, a production method of the biological prosthesis and a container used therefor which enable an even and sufficient remodelling by growing the cells without fault even when a relatively large defect part is filled. <P>SOLUTION: A block-shaped biological tissue prosthesis material 1 has a through-hole 2 and a fluid restriction part 2b disposed at the through-hole 2 to restrict the stream of the cells flowing therein. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、生体組織補填材、生体組織補填体の製造方法およびこれに用いる容器に関するものである。
【0002】
【従来の技術】
近年、骨腫瘍摘出や外傷等により生じた骨の欠損部に、骨補填材を補填することにより、骨を再生させて欠損部を修復することが可能になってきている。骨補填材としては、ハイドロキシアパタイト(HAP)やリン酸三カルシウム(TCP)が知られているが、体内に異物を残さないとする考え方から、例えば、β−TCPのようなリン酸カルシウム多孔体からなる足場材が使用される。β−TCPを骨欠損部の骨細胞に接触させておくと、破骨細胞がβ−TCPを食べ、骨芽細胞が新しい骨を形成する、いわゆるリモデリングが行われる。すなわち、骨欠損部に補填された骨補填材は、経時的に自家骨に置換されていくことになる。
【0003】
一方、術後の骨欠損部の修復速度を高めるために、患者から採取した骨髄間葉系細胞を骨補填材とともに培養することにより製造される培養骨を使用することが提案されている。培養されることにより骨補填材を足場にして増殖した多くの骨髄間葉系細胞を含む培養骨を骨欠損部に補填するので、手術後に体内で細胞を増殖させる方法と比較すると、自家骨に置換されるまでの日数を大幅に短縮することができる(例えば、非特許文献1参照。)。
【0004】
このような培養骨は、一般に、患者から採取した骨髄細胞をフラスコ内で一次培養して必要細胞数まで増加させた後に、トリプシンのような蛋白質分解酵素を用いて細胞をフラスコから剥離する。そして、これを骨補填材に付着させて骨形成培地内に留置して二次培養を行うことにより製造される(例えば、非特許文献2参照。)。
【0005】
【非特許文献1】
植村他2名,「生分解性β−TCP多孔材料を用いた骨におけるティッシュエンジニアリング−生体内で強度を増す新しい材料オスフェリオン−」,メディカル朝日,朝日新聞社,2001年10月1日,第30巻,第10号,p.46−49
【非特許文献2】
吉川,「骨髄間葉系細胞による培養真皮、培養骨−骨髄間葉系細胞による再生医療−」,バイオインダストリー,株式会社シーエムシー出版,2001年,第18巻,第7号,p.46−53
【0006】
【発明が解決しようとする課題】
骨補填材のような生体組織補填材は、一般に、立方体のブロック状に形成されており、補填すべき生体組織の欠損部の大きさに適合する大きさのものが選択される。したがって、特に、補填すべき欠損部が大きい場合には、比較的大きなブロック状の生体組織補填材が使用される。
しかしながら、生体組織補填材が大きくなると、外面に播種された細胞が内部まで浸透せず、その結果、生体組織の欠損部内に補填されても、十分なリモデリングが行われない不都合が考えられる。
【0007】
この発明は、上述した事情に鑑みてなされたものであって、比較的大きな欠損部に補填されても、細胞を健全に成長させ、均一かつ十分なリモデリングを行うことができる生体組織補填材、生体組織補填体の製造方法およびこれに用いる容器を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記目的を達成するために、この発明は、以下の手段を提供する。
請求項1に係る発明は、ブロック状の生体組織補填材であって、貫通孔を備え、該貫通孔に、流入される細胞の流れを制限する流動制限部が設けられている生体組織補填材を提供する。
【0009】
この発明によれば、貫通孔を備える生体組織補填材に細胞を含む液体を滴下すると、液体が生体組織補填材の表面から貫通孔を伝って流下させられる。この場合に、貫通孔には流動制限部が設けられているので、細胞の流れが制限され、貫通孔内に留まることになる。その結果、播種された細胞が貫通孔を通過して流れ出てしまうことなく、生体組織補填材の内部に定着させられることになる。
【0010】
請求項2に係る発明は、請求項1に記載の生体組織補填材において、前記流動制限部が、貫通孔の口径を部分的に小さくした小径部により構成されている生体組織補填材を提供する。
この発明によれば、小径部により簡易に流動制限部を構成できる。すなわち、貫通孔に流入した細胞は小径部によりそれ以上の流動を妨げられる。また、細胞以外の液体は小径部を通じて外部に流出させられる。したがって、液体が貫通孔内に溜まることがなく、細胞の貫通孔内への流入が妨げられないので、効率よく細胞を播種することが可能となる。
【0011】
請求項3に係る発明は、貫通孔を備えるブロック状の生体組織補填材を、貫通孔が上下方向に沿うように配置するとともに、貫通孔の下端を栓体により不完全に閉栓した状態で、貫通孔の上方から細胞を含有した液体を流下させる生体組織補填体の製造方法を提供する。
この発明によれば、貫通孔の下端を栓体により不完全に閉栓することにより、細胞の流動を制限しながら細胞以外の液体の流動を可能にすることができる。その結果、播種された細胞を生体組織補填材の内部に留まらせ、効率的に生体組織補填体を製造することが可能となる。
【0012】
請求項5に係る発明は、請求項3に記載の生体組織補填体の製造方法に用いる容器であって、底面に、生体組織補填材に形成された貫通孔に一致する位置に設けられた突起を備え、該突起の径寸法が、上端において前記貫通孔の口径より小さく、下端において前記貫通孔の口径より大きく形成されている容器を提供する。
【0013】
この発明によれば、容器に設けられた突起に、貫通孔を一致させるように容器上に生体組織補填材を載置することにより、突起により貫通孔の下端が閉栓される。突起は、貫通孔の口径より小さい上端径寸法を有しているので、貫通孔内にその上端を挿入される。一方、突起は、貫通孔の口径より大きな下端径寸法を有しているので、長さ方向の途中位置まで貫通孔に挿入される。これにより、突起上に載置された生体組織補填材の下面と容器の底面との間には隙間が形成され、貫通孔と突起との間から流出した液体がその隙間を通して流動することができる。
【0014】
【発明の実施の形態】
この発明の第1の実施形態に係る生体組織補填材について、図1を参照して以下に説明する。
本実施形態に係る生体組織補填材1は、例えば、骨等の生体組織に形成された欠損部に補填するための補填材であって、気孔率約70%のβ−TCP多孔体により直方体または立法体のブロック状に構成されている。この生体組織補填材1には、その一面1aからその対向面1bまで貫通する貫通孔2が設けられている。
【0015】
この貫通孔2は、長手方向に隣接する口径の大きな大径部2aと、それよりも口径の小さな小径部2b(流動制限部)とを有する段差付きの貫通孔2である。大径部2aと小径部2bとの間の段差は、生体組織補填材1のほぼ中央位置に配置されている。
【0016】
このように構成された 本実施形態に係る生体組織補填材1を用いて生体組織補填体を製造する場合について、以下に説明する。
図2に示されるように、小径部2bを下側に大径部2aを上側にして、貫通孔2を上下方向に配した状態に、生体組織補填材1を適当な容器3内に配置する。そして、生体組織補填材1の上方から細胞、例えば、間葉系幹細胞を含有する液体(以下、細胞含有液Aとも言う。)を滴下する。符号4は、例えば、電動ピペットを示している。
【0017】
細胞含有液Aは、生体組織補填材1の上面1aに滴下されることにより、含有されている細胞を生体組織補填材1の表面に付着させられる。細胞含有液Aを貫通孔2内に滴下すると、この貫通孔2内を伝って下降する間に、細胞含有液A内の細胞が、貫通孔2の内壁に付着させられる。
【0018】
この場合において、本実施形態に係る生体組織補填材1では、貫通孔2に段差が設けられているので、図3に示されるように、貫通孔2内に流入した細胞含有液Aが貫通孔2をそのまま通過することなく、段差において一旦堰き止められる。すなわち、段差によって、生体組織補填材1の内部で細胞含有液Aの流動が制限される。
そして、細胞含有液Aの流動が制限されることにより、細胞が貫通孔2の内壁に付着させられ易くなる。
【0019】
また、細胞以外の液体は小径部2bを介して外部に流出させられる。したがって、細胞含有液Aが貫通孔2内に溜まってしまうことによる流入の制限が防止され、新たな細胞を順次貫通孔2内に流入させることが可能となる。
【0020】
このようにして、本実施形態に係る生体組織補填材1によれば、貫通孔2内において細胞含有液Aを一旦滞留させることにより、貫通孔2内壁への細胞の付着を促進することができるので、効率よく生体組織補填体を製造することができる。また、細胞を付着させた生体組織補填材1を培養する場合においても、貫通孔2内に培養液を流動させ、細胞からの老廃物を貫通孔2から排出することができる。その際に、貫通孔2内に設けられた段差によって、培養液の流れにより細胞が貫通孔2から流出してしまうことが防止される。
【0021】
したがって、本実施形態に係る生体組織補填材1によれば、付着させた細胞を培養する場合においても、細胞の流出を防止しつつ、細胞への十分な栄養分の供給と、細胞からの老廃物の排出を円滑に行って、細胞の成長を促進することができる。
【0022】
なお、本実施形態に係る生体組織補填材1においては、大径部2aと小径部2bとからなる段差付きの貫通孔2を有するものを例示したが、これに代えて、図4に示されるように、中央部に、大径部2aよりさらに大きな径寸法の空洞部2cを有する貫通孔2を設けることにしてもよい。
また、生体組織補填材1の大きさによって、細胞が十分に生体組織補填材1の内部まで入り込まない場合があるので、上面1aに対して大径部2aが小さい場合、複数の貫通孔2を生体組織補填材1に設けてもよい。
このようにすることで、流入される細胞が、さらに生体組織補填材1内に滞留し易くなり、細胞の付着性を高めることができる。
【0023】
このように、生体組織補填材1の内部に大きな径寸法を有する空洞部2cを設ける場合には、外部からの加工が困難であるため、図5に示されるように、生体組織補填材1を2つ割に構成して別々に加工した後に、これらを合わせて、任意の接着剤等により接着させることにしてもよい。
また、生体組織補填材1の外形も、立方体状に限定されるものではなく、円柱等の柱状でもよい。また、大径部2aと小径部2bとを有する貫通孔2であれば、例えば、図6に示されるような貫通孔2の形状でもよい。
【0024】
次に、この発明の一実施形態に係る生体組織補填体の製造用容器について、図面を参照して以下に説明する。
本実施形態に係る製造用容器10は、図7に示されるように、培地等を貯留可能なシャーレ状に形成されるとともに、底部10a内面に複数の突起11を備えている。
これらの突起11は、図8に示されるように、それぞれ略半球形に形成されており、所定のピッチpをあけて配列されている。
【0025】
突起11のピッチpは、使用される生体組織補填材12に合わせて形成されている。すなわち、本実施形態に係る製造用容器10を用いて生体組織補填体を製造するには、図8に示すように、複数の貫通孔13を有するブロック状の生体組織補填材12を用意する。各貫通孔13は、同一の一定の円形横断面を有しており、前記突起11のピッチpと同じピッチpで平行に形成されている。
【0026】
前記突起11の半径寸法は、前記貫通孔13の半径寸法よりも若干大きく形成されている。これにより、図8に示されるように、突起11は、該突起11に貫通孔13を一致させて生体組織補填材12が容器10上に載置されたときに、貫通孔13内にその途中位置まで挿入された状態とされ、それによって、生体組織補填材12を容器10の底面10aから若干浮かせた状態に保持するようになっている。このとき、各突起11は貫通孔13の下部開口13aをほぼ閉栓する栓体として機能するが、生体組織補填材12が多孔体により構成されているために、下部開口13aは完全に閉鎖されないようになっている。
【0027】
このように構成された本実施形態に係る製造用容器10の作用について以下に説明する。
本実施形態に係る製造用容器10を用いて生体組織補填体を製造するには、上述したように、複数の貫通孔13を有する生体組織補填材12を製造用容器10の突起11上に保持させた状態で、上方から間葉系幹細胞等の細胞含有液Aを滴下する。
【0028】
滴下された細胞含有液Aは、生体組織補填材12の外表面に付着するとともに、複数の貫通孔13内に流入して下降する。この場合において、本実施形態に係る製造用容器10によれば、生体組織補填材12に設けられた貫通孔13の下部開口13aを突起11によってほぼ閉栓するので、貫通孔13内に流入した細胞含有液Aは、一旦、貫通孔13内に留められることになる。これにより、細胞含有液A内の細胞が貫通孔13内において滞留することで、貫通孔13の内壁に付着しやすくなり、効率的に播種されることになる。
【0029】
また、多孔体からなる生体組織補填材12に設けた貫通孔13の下部開口13aと、これを閉栓する突起11との間には、微細な隙間が形成されているので、貫通孔13内に流入させられた細胞含有液Aの内細胞以外の液体は、その隙間から貫通孔13外部に漏れ出すようになっている。したがって、細胞含有液A内の細胞が貫通孔13内に捕獲されることになる。
【0030】
しかも、生体組織補填材12は突起11によって容器10の底面10aから若干浮かせた状態に保持されているので、貫通孔13から漏れ出る液体の流動が妨げられることがない。したがって、貫通孔13内に新たな細胞含有液Aを順次滴下していくことができる。
また、このようにして細胞が付着させられた生体組織補填材12においては、製造用容器10内に所定の培地を貯留させ、所定の培養条件下に配されることにより、細胞が培養される。これにより、生体組織補填材12の外表面のみならず貫通孔13内に付着した細胞が生体組織補填材12を足場として成長し、内部においても十分に成長した細胞を有する生体組織補填体が製造されることになる。
また、容器10の底面10aから生体組織補填材12を若干浮かせた状態にして培地内に配置できるので、生体組織補填材12の下面においても細胞を成長させることができる。
【0031】
このように、貫通孔13を備えるブロック状の生体組織補填材12を、貫通孔13が上下方向に沿うように配置するとともに、貫通孔13の下端を突起11のような栓体により透き間を空けて不完全に閉栓した状態で、貫通孔13の上方から細胞を含有した液体Aを流下させる生体組織補填体の製造方法によれば、上記実施形態に係る段差付の生体組織補填材1を用いた場合と同様にして、細胞の効率的な播種と成長とを図ることができる。
【0032】
なお、上記実施形態に係る製造用容器10においては、複数の半球形の突起11を容器10の底面10aに配置したが、これに代えて、貫通孔13の下部開口13aよりも若干小さい上部横断面と若干大きい下部横断面とを備える形状であれば、例えば、図10に示すように、円錐形や円錐台形のような錐形の突起11を採用してもよい。
【0033】
また、図11に示されるように、特殊な容器10ではなく市販のシャーレのような底面が平坦な容器14を使用する場合には、貫通孔13の下端付近における生体組織補填材15の孔径を小さくするような絞り部15aを設けて、細胞を貫通孔13内に留まらせ、容器14の底面と生体組織補填材15の底面との間にある程度できる隙間Aを利用して、培養液流入や細胞からの老廃物交換を行うようにしてもよい。この場合、生体組織補填材15に設ける貫通孔13のピッチp1,p2は異なっていてもよい。
【0034】
また、生体組織補填材1,12,15としては、β−TCP多孔体からなるものを例に挙げて説明したが、これに代えて、ハイドロキシアパタイトなどの他のリン酸カルシウム、コラーゲンやキチンなどの天然高分子材料、ポリ乳酸やε−カプロラクタンのような合成高分子材料、チタン合金、タンタル合金やステンレス鋼316のような金属材料や金属繊維およびこれらの材料の少なくとも2種類以上の複合材などを採用してもよい。
【0035】
また、生体組織補填材1,12,15に生着させる細胞としては骨髄細胞に含まれる間葉系幹細胞の他、末梢血、臍帯血から分離した間葉系幹細胞を用いてもよい。また、間葉系幹細胞に代えて、ES細胞、体性幹細胞、骨細胞、軟骨細胞あるいは神経細胞等を採用してもよい。
さらに、生体組織として骨組織を例に挙げて説明したが、これに代えて、骨以外の軟骨細胞や表皮細胞、真皮細胞、角膜細胞、消化管上皮や内皮細胞、神経細胞等を対象としてもよい。
【0036】
本実施形態において、生体組織補填材1,12,15には細胞増殖を促進するために、BMP(骨形成タンパク質)、BDGF(骨由来の成長因子)、TGF(トランスホーミング成長因子)、FGF(繊維芽細胞増殖因子)、PDGF(血小板由来増殖因子)、サイトカイン類等の細胞増殖因子を予め染み込ませておいてもよい。
【0037】
【発明の効果】
以上説明したように、この発明に係る生体組織補填材、生体組織補填体の製造方法および容器によれば、生体組織補填材に形成した貫通孔内に細胞を効率よく付着させることができるとともに、培養中の細胞への栄養分の供給や細胞からの老廃物の排出を円滑に行うことができるという効果を奏する。したがって、生体組織補填材の内部においても細胞を均一かつ健全に成長させ、生体組織の欠損部に補填された後には、迅速かつ十分なリモデリングを行うことができる生体組織補填体を製造することができる。
【図面の簡単な説明】
【図1】この発明の一実施形態に係る生体組織補填材を示す縦断面図である。
【図2】図1の生体組織補填材を使用した生体組織補填体の製造方法を説明する図である。
【図3】図1の生体組織補填材の貫通孔内に細胞含有液が滴下された状態を示す縦断面図である。
【図4】図1の生体組織補填材の変形例を示す縦断面図である。
【図5】図4の生体組織補填材を示す斜視図である。
【図6】図1の生体組織補填材の他の変形例を示す縦断面図である。
【図7】この発明の一実施形態に係る容器を示す斜視図である。
【図8】図7の容器を示す縦断面図である。
【図9】図7の容器の底面に形成された突起を示す縦断面図である。
【図10】突起の変形例を示す縦断面図である。
【図11】図8の変形例を示す縦断面図である。
【符号の説明】
1,12,15 生体組織補填材
2,13 貫通孔
2b 小径部(流動制限部)
10,14 容器
10a 底面
11 突起(流動制限部)
15a 絞り部(流動制限部)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a living tissue filling material, a method for producing a living tissue filling, and a container used for the same.
[0002]
[Prior art]
2. Description of the Related Art In recent years, it has become possible to regenerate bone and repair the defect by replenishing a bone replacement material into a defect in the bone caused by removal of a bone tumor or trauma. Hydroxyapatite (HAP) and tricalcium phosphate (TCP) are known as bone replacement materials. However, from the viewpoint that foreign substances are not left in the body, for example, a calcium phosphate porous material such as β-TCP is used. Scaffolding is used. When β-TCP is brought into contact with bone cells in a bone defect, so-called remodeling is performed in which osteoclasts eat β-TCP and osteoblasts form new bone. That is, the bone replacement material that has been repaired in the bone defect part is replaced with autologous bone over time.
[0003]
On the other hand, it has been proposed to use cultured bone produced by culturing bone marrow mesenchymal cells collected from a patient together with a bone filling material in order to increase the repair speed of a bone defect after surgery. The cultured bone containing many bone marrow mesenchymal cells that grew using the bone filling material as a scaffold by culturing is filled in the bone defect, so that compared to the method of growing cells in the body after surgery, it becomes more autologous. The number of days until replacement is significantly reduced (for example, see Non-Patent Document 1).
[0004]
Such cultured bone is generally obtained by primary culture of bone marrow cells collected from a patient in a flask to increase the required number of cells, and then exfoliating the cells from the flask using a protease such as trypsin. Then, it is produced by attaching it to a bone filling material, placing it in an osteogenic medium, and performing secondary culture (for example, see Non-Patent Document 2).
[0005]
[Non-patent document 1]
Uemura et al., “Tissue Engineering in Bone Using Biodegradable β-TCP Porous Material-Ospherion, a New Material that Increases Strength in the Living Body”, Medical Asahi, Asahi Shimbun, October 1, 2001, No. 30 Vol. 10, No. 10, p. 46-49
[Non-patent document 2]
Yoshikawa, "Cultured dermis and cultured bone using bone marrow mesenchymal cells-regenerative medicine using bone marrow mesenchymal cells-", Bioindustry, CMC Publishing Co., Ltd., 2001, Vol. 18, No. 7, p. 46-53
[0006]
[Problems to be solved by the invention]
The biological tissue replacement material such as a bone replacement material is generally formed in a cubic block shape, and a material having a size suitable for the size of a defect portion of the biological tissue to be repaired is selected. Therefore, especially when the defect to be filled is large, a relatively large block-shaped living tissue filling material is used.
However, when the living tissue filling material becomes large, the cells seeded on the outer surface do not penetrate to the inside, and as a result, even if the cells are filled in the defective part of the living tissue, there may be a disadvantage that sufficient remodeling is not performed.
[0007]
The present invention has been made in view of the above-mentioned circumstances, and even when a relatively large defect is filled, a living tissue filling material capable of growing cells healthy and performing uniform and sufficient remodeling. It is an object of the present invention to provide a method for producing a body tissue complement and a container used for the method.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides the following means.
The invention according to claim 1 is a block-shaped living tissue replenishing material, comprising a through-hole, wherein the through-hole is provided with a flow restricting portion for restricting a flow of cells to be flowed. I will provide a.
[0009]
According to the present invention, when the liquid containing cells is dropped on the living tissue filling material having the through hole, the liquid flows down from the surface of the living tissue filling material through the through hole. In this case, since the flow restricting portion is provided in the through hole, the flow of the cells is restricted, and the cell stays in the through hole. As a result, the seeded cells do not flow out through the through-holes, but are fixed inside the living tissue filling material.
[0010]
According to a second aspect of the present invention, there is provided the living tissue replacement material according to the first aspect, wherein the flow restricting portion is constituted by a small diameter portion in which a diameter of a through hole is partially reduced. .
According to the present invention, the flow restricting portion can be easily constituted by the small diameter portion. That is, the cells that have flowed into the through-hole are prevented from flowing further by the small diameter portion. In addition, the liquid other than the cells flows out through the small diameter portion. Therefore, the liquid does not accumulate in the through-hole and the inflow of cells into the through-hole is not hindered, so that the cells can be seeded efficiently.
[0011]
The invention according to claim 3 is a state in which the block-shaped living tissue replacement material having a through-hole is arranged so that the through-hole extends along the up-down direction, and the lower end of the through-hole is incompletely closed by a plug, Provided is a method for producing a biological tissue replacement in which a liquid containing cells flows down from above a through hole.
According to the present invention, by incompletely closing the lower end of the through hole with the stopper, it is possible to allow the flow of liquid other than cells while restricting the flow of cells. As a result, the seeded cells can be kept inside the living tissue filling material, and the living tissue filling material can be manufactured efficiently.
[0012]
According to a fifth aspect of the present invention, there is provided a container for use in the method for producing a living tissue replacement according to the third aspect, wherein the projection is provided on a bottom surface at a position corresponding to a through hole formed in the living tissue replacement material. Wherein the diameter of the projection is smaller than the diameter of the through hole at the upper end and larger than the diameter of the through hole at the lower end.
[0013]
According to the present invention, the lower end of the through hole is closed by the projection by placing the living tissue replacement material on the container such that the through hole matches the projection provided on the container. Since the projection has an upper end diameter smaller than the diameter of the through hole, the upper end is inserted into the through hole. On the other hand, since the projection has a lower end diameter larger than the diameter of the through hole, the projection is inserted into the through hole up to a middle position in the length direction. Thereby, a gap is formed between the lower surface of the living tissue replacement material placed on the protrusion and the bottom surface of the container, and the liquid flowing out between the through hole and the protrusion can flow through the gap. .
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
A living tissue replacement according to a first embodiment of the present invention will be described below with reference to FIG.
The living tissue filling material 1 according to the present embodiment is a filling material for filling a defect formed in a living tissue such as a bone, for example, and is a rectangular parallelepiped or a β-TCP porous material having a porosity of about 70%. It is configured as a cubic block. The living tissue filling material 1 is provided with a through-hole 2 penetrating from one surface 1a to the opposite surface 1b.
[0015]
The through-hole 2 is a stepped through-hole 2 having a large-diameter portion 2a having a large diameter and a small-diameter portion 2b (flow restriction portion) having a smaller diameter than the large-diameter portion 2a. The step between the large-diameter portion 2a and the small-diameter portion 2b is arranged at a substantially central position of the living tissue filling material 1.
[0016]
A case where a living tissue replacement is manufactured using the living tissue replacement 1 according to the present embodiment configured as described above will be described below.
As shown in FIG. 2, the living tissue replacement 1 is placed in an appropriate container 3 with the through-holes 2 arranged vertically with the small-diameter portion 2 b on the lower side and the large-diameter portion 2 a on the upper side. . Then, a liquid containing cells, for example, a mesenchymal stem cell (hereinafter, also referred to as a cell-containing liquid A) is dropped from above the living tissue filling material 1. Reference numeral 4 indicates, for example, an electric pipette.
[0017]
The cell-containing liquid A is dropped on the upper surface 1a of the living tissue replenishing material 1 to cause the contained cells to adhere to the surface of the living tissue replenishing material 1. When the cell-containing liquid A is dropped into the through-hole 2, the cells in the cell-containing liquid A adhere to the inner wall of the through-hole 2 while descending along the through-hole 2.
[0018]
In this case, in the biological tissue replenishing material 1 according to the present embodiment, since the step is provided in the through-hole 2, the cell-containing liquid A flowing into the through-hole 2 flows through the through-hole 2 as shown in FIG. 2 and is once blocked at the step without passing through. That is, the flow of the cell-containing liquid A inside the living tissue replacement material 1 is restricted by the step.
And, by restricting the flow of the cell-containing liquid A, the cells can be easily attached to the inner wall of the through-hole 2.
[0019]
In addition, the liquid other than the cells is caused to flow out through the small diameter portion 2b. Therefore, the restriction of inflow due to the accumulation of the cell-containing liquid A in the through-hole 2 is prevented, and it becomes possible to cause new cells to sequentially flow into the through-hole 2.
[0020]
In this way, according to the living tissue replenishing material 1 according to the present embodiment, the cell-containing liquid A is temporarily retained in the through-hole 2, so that the attachment of cells to the inner wall of the through-hole 2 can be promoted. Therefore, it is possible to efficiently manufacture the body tissue complement. Also, when culturing the living tissue supplement 1 to which cells are attached, the culture solution can be flowed into the through-holes 2 and waste products from the cells can be discharged from the through-holes 2. At this time, the step provided in the through hole 2 prevents the cells from flowing out of the through hole 2 due to the flow of the culture solution.
[0021]
Therefore, according to the living tissue filling material 1 according to the present embodiment, even when culturing the adhered cells, sufficient nutrient supply to the cells and waste products from the cells are prevented while preventing the cells from flowing out. Can be smoothly excreted to promote cell growth.
[0022]
In addition, in the biological tissue replenishing material 1 according to the present embodiment, the material having the stepped through hole 2 including the large diameter portion 2a and the small diameter portion 2b is illustrated, but is shown in FIG. 4 instead. As described above, the through-hole 2 having the hollow portion 2c having a larger diameter than the large-diameter portion 2a may be provided at the center.
Also, depending on the size of the living tissue filler 1, the cells may not sufficiently enter the inside of the living tissue filler 1, so if the large diameter portion 2a is smaller than the upper surface 1a, a plurality of through holes 2 are required. It may be provided in the living tissue filling material 1.
This makes it easier for the inflowing cells to stay in the living tissue replenishing material 1 and enhances the cell adhesion.
[0023]
As described above, when the hollow portion 2c having a large diameter is provided inside the living tissue replenishing material 1, it is difficult to process from the outside. Therefore, as shown in FIG. After being divided into two parts and processed separately, they may be combined and adhered with an arbitrary adhesive or the like.
Further, the outer shape of the living tissue replacement material 1 is not limited to a cubic shape, but may be a columnar shape such as a column. Further, as long as the through hole 2 has the large diameter portion 2a and the small diameter portion 2b, the shape of the through hole 2 as shown in FIG. 6 may be used.
[0024]
Next, a container for producing a biological tissue complement according to an embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 7, the manufacturing container 10 according to the present embodiment is formed in a petri dish shape capable of storing a culture medium and the like, and includes a plurality of protrusions 11 on the inner surface of the bottom 10a.
As shown in FIG. 8, these projections 11 are each formed in a substantially hemispherical shape, and are arranged at a predetermined pitch p.
[0025]
The pitch p of the protrusion 11 is formed in accordance with the living tissue replacement 12 to be used. That is, in order to manufacture a living tissue replacement using the manufacturing container 10 according to the present embodiment, a block-shaped living tissue replacement 12 having a plurality of through holes 13 is prepared as shown in FIG. Each through hole 13 has the same constant circular cross section, and is formed in parallel with the pitch p of the protrusion 11.
[0026]
The radius of the projection 11 is formed slightly larger than the radius of the through hole 13. As a result, as shown in FIG. 8, when the living tissue replacement material 12 is placed on the container 10 with the through hole 13 aligned with the protrusion 11, the protrusion 11 In this state, the living tissue replacement 12 is slightly lifted from the bottom surface 10 a of the container 10. At this time, each projection 11 functions as a plug that substantially closes the lower opening 13a of the through-hole 13. However, since the living tissue filler 12 is formed of a porous body, the lower opening 13a is not completely closed. It has become.
[0027]
The operation of the thus-configured manufacturing container 10 according to the present embodiment will be described below.
In order to manufacture a living tissue replacement using the manufacturing container 10 according to the present embodiment, as described above, the living tissue replacement 12 having a plurality of through holes 13 is held on the projection 11 of the manufacturing container 10. In this state, a cell-containing solution A such as mesenchymal stem cells is dropped from above.
[0028]
The dropped cell-containing liquid A adheres to the outer surface of the living tissue filling material 12 and flows into the plurality of through holes 13 to descend. In this case, according to the manufacturing container 10 according to the present embodiment, since the lower opening 13a of the through hole 13 provided in the living tissue replenishing material 12 is substantially closed by the protrusion 11, the cells flowing into the through hole 13 are formed. The contained liquid A is temporarily retained in the through hole 13. Thereby, the cells in the cell-containing liquid A stay in the through-hole 13, so that the cells easily adhere to the inner wall of the through-hole 13 and are seeded efficiently.
[0029]
Further, since a minute gap is formed between the lower opening 13a of the through hole 13 provided in the biological tissue filler 12 made of a porous body and the projection 11 for closing the same, the inside of the through hole 13 is formed. The liquid other than the inner cells of the cell-containing liquid A that has flowed in leaks out of the through-hole 13 through the gap. Therefore, the cells in the cell-containing liquid A are captured in the through holes 13.
[0030]
In addition, since the living tissue replenishing material 12 is held in a state of being slightly lifted from the bottom surface 10a of the container 10 by the projection 11, the flow of the liquid leaking from the through hole 13 is not hindered. Therefore, a new cell-containing liquid A can be sequentially dropped into the through-hole 13.
Further, in the living tissue replenishing material 12 to which the cells have been attached in this manner, the cells are cultured by storing a predetermined medium in the manufacturing container 10 and distributing the cells under predetermined culture conditions. . As a result, cells attached not only to the outer surface of the living tissue replacement material 12 but also to the through holes 13 grow using the living tissue replacement material 12 as a scaffold, and a living tissue replacement body having sufficiently grown cells inside is produced. Will be done.
Further, since the living tissue filler 12 can be placed in the culture medium with the living tissue filler 12 slightly floating from the bottom surface 10a of the container 10, cells can be grown on the lower surface of the biological tissue filler 12 as well.
[0031]
In this way, the block-shaped living tissue replenishing material 12 having the through-holes 13 is arranged so that the through-holes 13 extend in the up-down direction, and the lower end of the through-holes 13 is separated by a plug such as the projection 11 so as to be transparent. According to the method for producing a living tissue replacement body in which the liquid A containing cells flows down from above the through hole 13 in a state where the stopper is incompletely closed, the stepped living tissue replacement material 1 according to the above embodiment is used. In the same manner as in the above case, efficient seeding and growth of cells can be achieved.
[0032]
In the manufacturing container 10 according to the embodiment, the plurality of hemispherical projections 11 are arranged on the bottom surface 10 a of the container 10, but instead, the upper traverse is slightly smaller than the lower opening 13 a of the through hole 13. As long as the shape has a surface and a slightly larger lower cross section, for example, as shown in FIG. 10, a conical or frusto-conical projection 11 having a cone shape may be employed.
[0033]
In addition, as shown in FIG. 11, when a container 14 having a flat bottom such as a commercially available petri dish is used instead of the special container 10, the hole diameter of the living tissue replenishing material 15 near the lower end of the through hole 13 is changed. By providing a narrowed portion 15a to make the cell smaller, the cells stay in the through-hole 13, and by utilizing a gap A formed to some extent between the bottom surface of the container 14 and the bottom surface of the living tissue replenishing material 15, the flow of the culture solution can be reduced. Waste cells may be exchanged from the cells. In this case, the pitches p1 and p2 of the through holes 13 provided in the living tissue filler 15 may be different.
[0034]
In addition, as the living tissue replacement materials 1, 12, and 15, a material made of a β-TCP porous material has been described as an example. Adopt polymer materials, synthetic polymer materials such as polylactic acid and ε-caprolactan, metal materials and metal fibers such as titanium alloy, tantalum alloy and stainless steel 316, and composite materials of at least two or more of these materials May be.
[0035]
In addition, as the cells to be engrafted in the living tissue supplements 1, 12, and 15, other than mesenchymal stem cells contained in bone marrow cells, mesenchymal stem cells separated from peripheral blood and umbilical cord blood may be used. In addition, instead of mesenchymal stem cells, ES cells, somatic stem cells, bone cells, chondrocytes, nerve cells, or the like may be used.
Furthermore, although bone tissue has been described as an example of a living tissue, instead of this, chondrocytes other than bone, epidermal cells, dermal cells, corneal cells, gastrointestinal epithelium, endothelial cells, nerve cells, etc. Good.
[0036]
In this embodiment, BMP (bone morphogenetic protein), BDGF (bone-derived growth factor), TGF (transforming growth factor), FGF ( Cell growth factors such as fibroblast growth factor), PDGF (platelet-derived growth factor), and cytokines may be impregnated in advance.
[0037]
【The invention's effect】
As described above, according to the biological tissue replenishing material of the present invention, the method and the container for producing a biological tissue replenishing material, cells can be efficiently attached to the through holes formed in the biological tissue replenishing material, This has the effect that nutrients can be supplied to the cells during culture and waste products can be smoothly discharged from the cells. Therefore, it is necessary to produce a living tissue filling material that allows cells to grow uniformly and sound even inside the living tissue filling material and that can be rapidly and sufficiently remodeled after being filled in a defect of the living tissue. Can be.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a living tissue replacement according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating a method of manufacturing a living tissue replacement using the living tissue replacement of FIG. 1;
FIG. 3 is a longitudinal sectional view showing a state in which a cell-containing liquid has been dropped into a through-hole of the living tissue filling material of FIG. 1;
FIG. 4 is a longitudinal sectional view showing a modified example of the living tissue filling material of FIG. 1;
FIG. 5 is a perspective view showing the living tissue filling material of FIG. 4;
FIG. 6 is a longitudinal sectional view showing another modified example of the living tissue filling material of FIG. 1;
FIG. 7 is a perspective view showing a container according to an embodiment of the present invention.
8 is a longitudinal sectional view showing the container of FIG.
9 is a vertical sectional view showing a protrusion formed on the bottom surface of the container of FIG.
FIG. 10 is a longitudinal sectional view showing a modification of the projection.
FIG. 11 is a longitudinal sectional view showing a modification of FIG. 8;
[Explanation of symbols]
1,12,15 Living tissue filling material 2,13 Through hole 2b Small diameter part (flow restriction part)
10, 14 Container 10a Bottom surface 11 Projection (flow restriction part)
15a Restriction part (flow restriction part)

Claims (4)

ブロック状の生体組織補填材であって、貫通孔を備え、
該貫通孔に、流入される細胞の流れを制限する流動制限部が設けられている生体組織補填材。
A block-shaped living tissue replacement material, comprising a through-hole,
A living tissue filling material provided with a flow restricting portion for restricting the flow of cells flowing into the through hole.
前記流動制限部が、貫通孔の口径を部分的に小さくした小径部により構成されている請求項1に記載の生体組織補填材。The living tissue replacement material according to claim 1, wherein the flow restricting portion is configured by a small diameter portion in which the diameter of the through hole is partially reduced. 貫通孔を備えるブロック状の生体組織補填材を、貫通孔が上下方向に沿うように配置するとともに、貫通孔の下端を栓体により不完全に閉栓した状態で、貫通孔の上方から細胞を含有した液体を流下させる生体組織補填体の製造方法。A block-shaped living tissue replenishing material having a through-hole is arranged so that the through-hole extends along the vertical direction, and the lower end of the through-hole is incompletely closed with a stopper, and contains cells from above the through-hole. A method for producing a biological tissue replacement body in which a drained liquid flows down. 請求項3に記載の生体組織補填体の製造方法に用いる容器であって、
底面に、生体組織補填材に形成された貫通孔に一致する位置に設けられた突起を備え、
該突起の径寸法が、上端において前記貫通孔の口径より小さく、下端において前記貫通孔の口径より大きく形成されている容器。
It is a container used for the manufacturing method of the living body tissue complement according to claim 3,
On the bottom surface, provided with a projection provided at a position corresponding to the through-hole formed in the living tissue replacement material,
A container wherein the diameter of the projection is formed at an upper end smaller than the diameter of the through hole and at a lower end larger than the diameter of the through hole.
JP2003045987A 2003-02-24 2003-02-24 Biological tissue filling material, method for producing biological tissue filling material, container and biological tissue filling material used therefor Expired - Fee Related JP4175917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003045987A JP4175917B2 (en) 2003-02-24 2003-02-24 Biological tissue filling material, method for producing biological tissue filling material, container and biological tissue filling material used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003045987A JP4175917B2 (en) 2003-02-24 2003-02-24 Biological tissue filling material, method for producing biological tissue filling material, container and biological tissue filling material used therefor

Publications (2)

Publication Number Publication Date
JP2004254751A true JP2004254751A (en) 2004-09-16
JP4175917B2 JP4175917B2 (en) 2008-11-05

Family

ID=33112655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003045987A Expired - Fee Related JP4175917B2 (en) 2003-02-24 2003-02-24 Biological tissue filling material, method for producing biological tissue filling material, container and biological tissue filling material used therefor

Country Status (1)

Country Link
JP (1) JP4175917B2 (en)

Also Published As

Publication number Publication date
JP4175917B2 (en) 2008-11-05

Similar Documents

Publication Publication Date Title
Rumpler et al. The effect of geometry on three-dimensional tissue growth
Mellor et al. Fabrication and evaluation of electrospun, 3D-bioplotted, and combination of electrospun/3D-bioplotted scaffolds for tissue engineering applications
JP4504418B2 (en) Method of manufacturing bioactive prosthetic device for bone tissue regeneration and prosthetic device
JP4406283B2 (en) Tissue regeneration substrate, transplant material, and production method thereof
Ochoa et al. An overview of the pathology and approaches to tissue engineering
CN110302428B (en) Cartilage-bone-marrow composite tissue structure and method based on living cell 3D printing
Ducheyne et al. Effect of bioadctive glass templates on osteoblast proliferation and in vitro synthesis of bone‐like tissue
CN110101914A (en) A kind of Prevascularized two-phase artificial bone scaffold and preparation method thereof
JP7026640B2 (en) Surface topography to change the physiological function of living cells
JP2005160669A (en) Manufacturing method of biological tissue prosthesis
US20170342373A1 (en) Technique for formation and assembly of 3d cellular structures
CN112791239A (en) Preparation method of super-bionic soft and hard tissue composite scaffold
JP2004008437A (en) Cultural bone
RU2449755C2 (en) Method of eliminating bone defects with restoration of bone tissue in them
JP2006230817A (en) Biological tissue compensation material, and method of manufacturing the same
JP2004254751A (en) Biological tissue prosthesis material, production method of biological tissue prosthesis, container used therefor, and biological tissue prosthesis
JP2004298407A (en) Living tissue filling material and method of manufacturing the same
WO2022144905A1 (en) Auricular reconstruction using 3d printed autologous cartilage tissue
JP2005110709A (en) Biotissue filler
JP2004261511A (en) Living body tissue filling material and living body tissue filling body
JP3931134B2 (en) Implant for living tissue regeneration and method for producing the same
GB2560484A (en) Foil structure
JP2004154308A (en) Living tissue filling material
JP2006230687A (en) Transplant material for living tissue regeneration and its manufacturing method
Pan A Novel Bioprinting Platform and Its Applications in Bone Tissue Engineering and Vascularization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Effective date: 20080630

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080812

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20080819

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110829

LAPS Cancellation because of no payment of annual fees