JP2004254200A - Polyhedral super diversity digital radio receiving apparatus - Google Patents

Polyhedral super diversity digital radio receiving apparatus Download PDF

Info

Publication number
JP2004254200A
JP2004254200A JP2003044466A JP2003044466A JP2004254200A JP 2004254200 A JP2004254200 A JP 2004254200A JP 2003044466 A JP2003044466 A JP 2003044466A JP 2003044466 A JP2003044466 A JP 2003044466A JP 2004254200 A JP2004254200 A JP 2004254200A
Authority
JP
Japan
Prior art keywords
phase
synchronous
phase difference
eps
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003044466A
Other languages
Japanese (ja)
Other versions
JP4192624B2 (en
Inventor
Hiroaki Nakajima
裕明 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2003044466A priority Critical patent/JP4192624B2/en
Publication of JP2004254200A publication Critical patent/JP2004254200A/en
Application granted granted Critical
Publication of JP4192624B2 publication Critical patent/JP4192624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radio Transmission System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make circuit constitution simple and easy when synchronously composing received signals of a plurality of antennas while cascade connecting a plurality of synchronous composing parts. <P>SOLUTION: A phase difference detecting circuit 22 of each synchronous composing part 2 detects a phase difference of signals inputted to a composer 21 and sends phase difference data Dp to an EPS control part 3. The EPS control part 3 selects the phase difference data Dp of the synchronous composing parts 2 in a fixed cycle, in order and in a time division manner and newly generates phase control data Dc so that a phase difference can be "0" with the phase control data Dc which are sent to the relevant synchronous composing part 2 the last time, as an initial value. The generated phase control data Dc are latched and sent to an EPS (infinite phase shifter) 23 of the relevant synchronous composing part 2. The EPS (infinite phase shifter) 23 of each synchronous composing part 2 performs phase control operation in accordance with the phase control data Dc. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は多面スペースダイバーシティー形ディジタル無線受信装置に関し、特に入力する2信号を同期合成する同期合成部を複数従属接続して複数のアンテナの受信信号を同期合成する手段に関する。
【0002】
【従来の技術】
図4は、従来の多面スペースダイバーシティー形ディジタル無線受信装置の一例を示すブロック図である。
【0003】
ここでは、2つの入力信号を同期合成する(n−1)個の同期合成部5−1,5−2,……,5−(n−1)を従属接続して、n面のアンテナ1−1,1−2,……,1−nの受信信号S1,S2,……,Snを順次同期合成する。
【0004】
まず、第1の同期合成部5−1が第1のアンテナ1−1の受信信号S1と第2のアンテナ1−2の受信信号S2とを同期合成し、次に第2の同期合成部5−2が第1の同期合成部2−1の合成出力信号と第3のアンテナ1−3の受信信号S3とを同期合成する。以下同様に順次同期合成を繰り返すことにより、最後の同期合成部5−(n−1)がn面のアンテナの受信信号S1,S2,……,Snを全て合成した信号を出力する。
【0005】
また、各同期合成部5は、2つの信号を合成する合成器51と、合成器51に入力する2つの信号の位相差を検出する位相差検出回路52と、一方の入力信号の位相を調整するEPS(無限移相器)53と、位相差検出回路52により検出された位相差が0となるようにEPS(無限移相器)53を制御するEPS制御回路54とをそれぞれ有している。(例えば、特許文献1参照。)
【特許文献1】
特開平2−246528(第3図)
【0006】
【発明が解決しようとする課題】
しかし上述した従来例では、各同期合成部のEPS(無限移相器)を同相点に収束するように制御するためには、前段の同期合成部よりも後段の同期合成部の制御速度を高速にする必要がある。このため、各同期合成部のEPS制御部をそれぞれ異なるクロック周波数で動作させる必要があり、同じ回路構成であっても動作速度の異なるEPS制御回路や周波数の異なるクロック生成回路を必要とし、回路規模が増大するという問題点を有している。
【0007】
本発明の目的は、複数の同期合成部のEPS制御回路を単一のクロック周波数で動作させることができ、EPS制御回路やクロック生成用の発振回路等を共通化でき、スペースダイバーシティーの多面化による回路構成の簡素化、簡易化を実現できる多面スペースダイバーシティー形ディジタル無線受信装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明の第1の多面スペースダイバーシティー形ディジタル無線受信装置は、合成する2つの信号の位相差が0になるようにEPS(無限移相器)により調整して合成する同期合成手段を複数従属接続して複数のアンテナの受信信号を同期合成する多面スペースダイバーシティー形ディジタル無線受信装置において、複数の前記同期合成手段における前記2つの信号の位相差を示すデータをそれぞれ受けて複数の前記同期合成手段の前記EPS(無限移相器)を時分割多重制御するEPS制御手段を備える。
【0009】
具体的には、入力する2信号を同期合成する同期合成部を複数従属接続して複数のアンテナの受信信号を同期合成する多面スペースダイバーシティー形ディジタル無線受信装置において、複数の前記同期合成部は、2つの入力信号を合成する合成器と、この合成器に入力する2つの信号の位相差を検出して位相差データをEPS制御部へ送出する位相差検出回路と、前記EPS制御部から供給される位相制御データに応じて一方の入力信号の位相を調整するEPS(無限移相器)とをそれぞれ有し、前記EPS制御部は、複数の前記同期合成部からそれぞれ送出されてくる前記位相差データに基づき前記位相制御データをそれぞれ生成して複数の前記同期合成部のEPS(無限移相器)を時分割多重制御する。
【0010】
また、前記EPS制御部は、複数の前記同期合成部からそれぞれ送出されてくる前記位相差データを一定周期で順番に時分割で選択して前記位相制御データをそれぞれ生成し、生成した位相制御データをそれぞれラッチして該当同期合成部へそれぞれ送出する手段を有している。
【0011】
すなわち、複数の前記同期合成部からそれぞれ送出されてくる前記位相差データを時分割で選択すると共に前記位相制御データをラッチしてそれぞれ送出するスイッチと、送出する位相制御データを一時保存するメモリと、今回受信した位相差データおよび前記メモリに保存された前回の位相制御データに基づき新たに位相制御データを生成する位相制御データ生成回路と、動作クロック信号を生成するクロック生成回路と、前記動作クロック信号に基づき前記スイッチの切替動作を制御する切替制御回路とを有している。
【0012】
本発明の第2の多面スペースダイバーシティー形ディジタル無線受信装置は、入力する2信号を同期合成する同期合成部を複数従属接続して複数のアンテナの受信信号を同期合成する多面スペースダイバーシティー形ディジタル無線受信装置において、複数の前記同期合成部の内の第1の同期合成部が、共通の局部発振信号を生成する局部発振回路と、2つの受信信号をそれぞれ中間周波信号に変換する2つのミキサと、これら2つのミキサが出力する2つの中間周波信号を合成して後段の同期合成部へ送出する合成器と、この合成器に入力する前記2つの中間周波信号の位相差を検出して前記位相差データを前記EPS制御部へ送出する位相差検出回路と、前記EPS制御部から供給される位相制御データに応じて前記2つのミキサの一方へ供給する前記共通の局部発振信号の位相を調整するEPS(無限移相器)とを有している。
【0013】
また、前記第1の同期合成部以外の同期合成部は、受信信号を中間周波信号に変換するミキサと、このミキサの出力する中間周波信号および前段の同期合成部からの中間周波信号を合成する合成器と、この合成器に入力する2つの中間周波信号の位相差を検出して位相差データをEPS制御部へ送出する位相差検出回路と、前記EPS制御部から供給される位相制御データに応じて前記共通の局部発振信号の位相を調整して前記ミキサへ供給するEPS(無限移相器)とをそれぞれ有し、前記EPS制御部が、複数の前記同期合成部からそれぞれ送出されてくる前記位相差データに基づき前記位相制御データをそれぞれ生成して複数の前記同期合成部のEPS(無限移相器)を時分割多重制御する。
【0014】
【発明の実施の形態】
次に本発明について図面を参照して説明する。
【0015】
図1は、本発明の一実施形態を示すブロック図であり、n面のアンテナ1−1,1−2,……,1−nの受信信号S1,S2,……,Snを順次同期合成するn−1個の同期合成部2−1,2−2,……,2−(n−1)と、各同期合成部2の位相差検出回路22から位相差データDpをそれぞれ受けて位相制御データDcを生成し各同期合成部のEPS(無限移相器)23を時分割多重制御するEPS制御部3とを備えている。
【0016】
ここで、第1の同期合成部2−1が第1のアンテナ1−1の受信信号S1と第2のアンテナ1−2の受信信号S2とを同期合成し、次に第2の同期合成部2−2が第1の同期合成部2−1の合成出力信号と第3のアンテナ1−3の受信信号S3とを同期合成し、以下同様に順次同期合成を繰り返すことにより、最後の同期合成部2−(n−1)がn面のアンテナの受信信号S1,S2,……,Snを全て合成した信号を出力する。
【0017】
各同期合成部2は、2つの入力信号を合成する合成器21と、合成器21に入力する2つの信号の位相差を検出して位相差データDpをEPS制御部3へ送出する位相差検出回路22と、EPS制御部3から供給される位相制御データDcに応じて一方の入力信号の位相を調整するEPS(無限移相器)23とをそれぞれ有している。 図2はEPS制御部3の一例を示すブロック図である。
【0018】
EPS制御部3は、各同期合成部2−1,2−2,……,2−(n−1)からそれぞれ送出されてくる位相差データDp1,Dp2,……,Dp(n−1)を時分割で選択すると共に、位相制御データ生成回路33により生成された位相制御データDc1,Dc2,……,Dc(n−1)をそれぞれラッチして送出するスイッチ31と、送出した位相制御データDcを一時保存するメモリ32と、今回受信した位相差データDpおよび前回送出した位相制御データDpに基づき新たに位相制御データDcを生成する位相制御データ生成回路33と、動作クロック信号Scを生成するクロック生成回路34と、動作クロック信号Scに基づきスイッチ31の切替動作を制御する切替制御信号Ssを生成する切替制御回路35とを有している。
【0019】
ここで、切替制御信号Ssは、各同期合成部2−1,2−2,……,2−(n−1)を時分割多重制御する制御タイミングに基づき生成され、スイッチ31および位相制御データ生成回路33へ供給される。
【0020】
スイッチ31は、各同期合成部2−1,2−2,……,2−(n−1)からそれぞれ送出されてくる位相差データDp1,Dp2,……,Dp(n−1)を、切替制御信号Ssに応じて一定周期で順番に時分割で選択すると共に、位相制御データ生成回路33により生成された位相制御データDc1,Dc2,……,Dc(n−1)をそれぞれラッチし、ラッチ出力を該当同期合成部へ常時それぞれ送出する。
【0021】
次に動作を説明する。
【0022】
n面のアンテナ1−1,1−2,……,1−nは、空間伝搬特性に相関のない位置にそれぞれ配置され、受信信号S1,S2,……,Snを同期合成部2−1,2−2,……,2−(n−1)へ出力する。
【0023】
ここで、同期合成部2−1において、アンテナ1−1,1−2の受信信号S1,S2が同期合成され、次に同期合成部2−2において、アンテナ1−3の受信信号S3と同期合成部2−1の合成出力信号とが同期合成され、以下同様に順次同期合成を繰り返し、同期合成部2−(n−1)において、アンテナ1−nの受信信号Snと同期合成部2−(n−2)の合成出力信号とが合成されることにより、n面のアンテナの受信信号S1,S2,……,Snのを全てが合成される。
【0024】
ところで、各同期合成部2−1,2−2,……,2−(n−1)の位相差検出回路22は、合成器21に入力する信号の位相差を検出して位相差データDp1,Dp2,……,Dp(n−1)をEPS制御部3へそれぞれ送出する。
【0025】
EPS制御部3の位相制御データ生成回路33は、スイッチ31により時分割受信された位相差データDpを受け、時分割で割当てられた所定の制御時間内に、該当同期合成部2へ前回の送出した位相制御データDcをメモリ32から読み出し、この前回送信した位相制御データDcを初期値として、受信された位相差データDpに基づき位相差が0となるように新たに位相制御データDcを生成する。そして、新たに生成された位相制御データDcをメモリ32に保存する共にスイッチ31へ送出する。
【0026】
ところで、スイッチ31は、新たに生成された位相制御データDcを受けてラッチして該当同期合成部2のEPS(無限移相器)23へ送出するので、次の位相制御データDcが生成されるまでは、ラッチされた位相制御データDcが継続して該当同期合成部2のEPS(無限移相器)23へ送出される。
【0027】
各同期合成部2のEPS(無限移相器)23は、スイッチ31にラッチされて送出されてくる位相制御データDcを受けて位相制御動作を行う。
【0028】
このように、EPS制御部3が、各同期合成部2−1,2−2,……,2−(n−1)から位相差データDp1,Dp2,……,Dp(n−1)をスイッチ31を介して一定周期で順番に時分割で受信し、この位相差データに基づき位相制御データDc1,Dc2,……,Dc(n−1)を生成し、スイッチ31にそれぞれラッチさせて該当同期合成部2のEPS(無限移相器)23へ送出することにより、複数の同期合成部の各無限位相器の制御を一つのEPS制御部で共通化でき、また、各同期合成部の無限位相器の制御速度を変えることなく、各無限位相器を同相点に収束させることが可能となる。
【0029】
図3は、本発明の他の実施形態を示すブロック図である。
【0030】
ここで、図1に示した構成との相違点は、n面のアンテナ1−1,1−2,……,1−nの受信信号S1,S2,……,Snを中間周波信号に変換して順次同期合成するように構成している点である。
【0031】
第1の同期合成部4−1は、受信信号を中間周波数信号に変換するための共通の局部発振信号Soを生成する局部発振回路41と、受信信号S1,S2を中間周波信号にそれぞれ変換するためのミキサ42,43と、2つの中間周波信号を合成する合成器44と、合成器44に入力する2つの中間周波信号の位相差を検出して位相差データDp1をEPS制御部3へ送出する位相差検出回路45と、EPS制御部3から供給される位相制御データDc1に応じて一方のミキサ43へ供給する局部発振信号Soの位相を調整するEPS(無限移相器)46とを有している。 また、第1の同期合成部4−1以外の同期合成部4−2,……,4−(n−1)は、全て同じ構成であり、第1の同期合成部4−1から供給される共通の局部発振信号Soを受けて受信信号を中間周波信号に変換するミキサ43と、2つの中間周波信号を合成する合成器44と、合成器44に入力する2つの中間周波信号の位相差を検出して位相差データDpをEPS制御部3へ送出する位相差検出回路45と、EPS制御部3から供給される位相制御データDcに応じてミキサ43へ供給する局部発振信号Soの位相を調整するEPS(無限移相器)46とをそれぞれ有している。 EPS制御部3は、図2に示したように、各同期合成部からそれぞれ送出されてくる位相差データDp1,Dp2,……,Dp(n−1)を時分割で選択すると共に、位相制御データ生成回路33により生成された位相制御データDc1,Dc2,……,Dc(n−1)をそれぞれラッチして送出するスイッチ31と、送出する位相制御データDcを一時保持するメモリ32と、今回受信した位相差データDpおよび前回送出した位相制御データDpに基づき新たに位相制御データDcを生成する位相制御データ生成回路33と、動作クロック信号Scを生成するクロック生成回路34と、動作クロック信号Scに基づきスイッチ31の切替制御信号Ssを生成する切替制御回路35とを有いている。
【0032】
このように構成することにより、各同期合成部において、第1の同期合成部4−1の局部発振信号Soを共用して受信信号を中間周波信号に変換して同期合成でき、また、一つのEPS制御部3により複数の同期合成部の無限位相器を制御できる。
【0033】
【発明の効果】
以上説明したように本発明によれば、複数のアンテナの受信信号を複数の同期合成部により順次同期合成する多面スペースダイバーシティー形ディジタル無線受信装置の受信部において、一つのEPS制御部を設け、このEPS制御部が、複数の同期合成部からそれぞれ出力される位相差データを一定周期で順番に切替えて時分割受信すると共に、受信した位相差データに基づき位相差が0となるように制御する位相制御データ生成して該当同期合成部へ送信することにより、複数の同期合成部の無限位相器を一つのEPS制御部で時分割多重制御でき、各同期合成部の部品点数の削除や回路構成を簡素化できる。
【0034】
また、各同期合成部の無限位相器の制御速度を変えることなく単一の周波数で動作させても、無限位相器を同相点に収束させることが可能となり、スペースダイバーシティーの多面化による回路構成の簡素化、簡易化を実現できる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示すブロック図である。
【図2】図1に示したEPS制御部3の一例を示すブロック図である。
【図3】本発明の他の実施形態を示すブロック図である。
【図4】従来例を示すブロック図である。
【符号の説明】
1 アンテナ
2,4 同期合成部
3 EPS制御部
21,44 合成器
22,45 位相差検出回路
23,46 EPS(無限移相器)
31 スイッチ
32 メモリ
33 位相制御データ生成回路
34 クロック生成回路
35 切替制御回路
41 局部発振回路
42,43 ミキサ
Dc 位相制御データ
Dp 位相差データ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multi-plane space diversity digital radio receiving apparatus, and more particularly to a means for cascading a plurality of synchronous combining sections for synchronously combining two input signals to synchronously combine received signals of a plurality of antennas.
[0002]
[Prior art]
FIG. 4 is a block diagram showing an example of a conventional multi-plane space diversity type digital wireless receiver.
[0003]
Here, (n-1) synchronous synthesizing units 5-1, 5-2,..., 5- (n-1) for synchronizing and synthesizing the two input signals are connected in cascade to form an n-plane antenna 1 , 1-2,..., 1-n are sequentially and synchronously combined.
[0004]
First, the first synchronization synthesizing unit 5-1 synchronously synthesizes the reception signal S1 of the first antenna 1-1 and the reception signal S2 of the second antenna 1-2, and then the second synchronization synthesis unit 5-1. -2 synchronously combines the combined output signal of the first synchronous combining section 2-1 with the received signal S3 of the third antenna 1-3. In the same manner, by sequentially repeating the synchronizing in the same manner, the last synthesizing unit 5- (n-1) outputs a signal obtained by synthesizing all the reception signals S1, S2,..., Sn of the n-plane antenna.
[0005]
Further, each synchronous synthesizing unit 5 adjusts the phase of one of the input signals, a synthesizer 51 that synthesizes the two signals, a phase difference detection circuit 52 that detects the phase difference between the two signals input to the synthesizer 51. (Infinite phase shifter) 53 and an EPS control circuit 54 that controls the EPS (infinite phase shifter) 53 so that the phase difference detected by the phase difference detection circuit 52 becomes zero. . (For example, refer to Patent Document 1.)
[Patent Document 1]
JP-A-2-246528 (FIG. 3)
[0006]
[Problems to be solved by the invention]
However, in the above-described conventional example, in order to control the EPS (infinite phase shifter) of each synchronous synthesizing unit so as to converge to the in-phase point, the control speed of the synchronous synthesizing unit in the subsequent stage is higher than that of the synchronous synthesizing unit in the preceding stage. Need to be For this reason, it is necessary to operate the EPS control units of the respective synthesizing units at different clock frequencies, and even with the same circuit configuration, an EPS control circuit having a different operation speed and a clock generation circuit having a different frequency are required. Is increased.
[0007]
SUMMARY OF THE INVENTION An object of the present invention is to enable the EPS control circuits of a plurality of synchronous synthesizing units to operate at a single clock frequency, to share an EPS control circuit, an oscillation circuit for clock generation, and the like, and to increase space diversity. It is an object of the present invention to provide a multi-faceted space diversity type digital radio receiving apparatus capable of realizing the simplification and simplification of the circuit configuration by the method.
[0008]
[Means for Solving the Problems]
The first multi-plane space diversity type digital radio receiving apparatus according to the present invention is provided with a plurality of synchronous synthesizing means for adjusting and synthesizing by an EPS (infinite phase shifter) so that the phase difference between two signals to be synthesized becomes zero. In a multi-plane space diversity type digital radio receiving apparatus for connecting and synchronizing reception signals of a plurality of antennas, a plurality of the synthesizing units receive data indicating a phase difference between the two signals in a plurality of the synchronizing units. EPS control means for performing time division multiplexing control of the EPS (infinite phase shifter) of the means.
[0009]
More specifically, in a multi-plane space diversity type digital radio receiving apparatus that cascade-connects a plurality of synchronous combining sections for synchronously combining two input signals and synchronously combines received signals from a plurality of antennas, the plurality of synchronous combining sections are A combiner that combines two input signals, a phase difference detection circuit that detects a phase difference between the two signals input to the combiner and sends phase difference data to an EPS control unit, and a phase difference detection circuit that supplies the phase difference data to the EPS control unit. And an EPS (infinite phase shifter) that adjusts the phase of one of the input signals in accordance with the phase control data to be transmitted. The phase control data is generated based on the phase difference data, and time-division multiplexing control is performed on the EPSs (infinite phase shifters) of the plurality of synchronous synthesis units.
[0010]
The EPS control unit generates the phase control data by selecting the phase difference data sent from each of the plurality of synchronous synthesis units in a time-division order in a fixed cycle, and generates the phase control data. Are respectively latched and sent to the corresponding synthesizing unit.
[0011]
That is, a switch for selecting the phase difference data transmitted from each of the plurality of synchronous synthesizing units in a time-division manner, latching the phase control data and transmitting each, and a memory for temporarily storing the transmitted phase control data. A phase control data generation circuit for generating new phase control data based on the currently received phase difference data and the previous phase control data stored in the memory, a clock generation circuit for generating an operation clock signal, and the operation clock A switching control circuit for controlling the switching operation of the switch based on the signal.
[0012]
A second multi-faceted space diversity type digital radio receiving apparatus according to the present invention is a multi-faceted space diversity type digital radio receiver for synchronizing and synthesizing received signals of a plurality of antennas by cascade-connecting a plurality of synchronous synthesizing units for synchronizing two input signals. In the wireless receiving apparatus, a first synthesizing unit among the plurality of synchronizing units is a local oscillation circuit that generates a common local oscillation signal, and two mixers that convert each of the two received signals into an intermediate frequency signal. A synthesizer for synthesizing the two intermediate frequency signals output from the two mixers and sending the synthesized signal to a synchronous synthesizing unit at a subsequent stage, and detecting a phase difference between the two intermediate frequency signals input to the synthesizer to detect the phase difference. A phase difference detection circuit for transmitting phase difference data to the EPS control unit, and one of the two mixers according to the phase control data supplied from the EPS control unit And a EPS for adjusting the phase of said common local oscillation signal supplied (infinite phase shifter).
[0013]
In addition, a synchronous synthesizing section other than the first synthesizing synthesizing section synthesizes a mixer for converting a received signal into an intermediate frequency signal, an intermediate frequency signal output from the mixer, and an intermediate frequency signal from a preceding-stage synchronous synthesizing section. A synthesizer, a phase difference detection circuit that detects a phase difference between two intermediate frequency signals input to the synthesizer and sends phase difference data to an EPS control unit, and a phase control data supplied from the EPS control unit. And an EPS (infinite phase shifter) that adjusts the phase of the common local oscillation signal and supplies the adjusted local oscillation signal to the mixer. The EPS control unit is transmitted from each of the plurality of synchronous synthesis units. The phase control data is respectively generated based on the phase difference data, and time-division multiplexing control is performed on a plurality of EPSs (infinite phase shifters) of the synthesizing unit.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described with reference to the drawings.
[0015]
FIG. 1 is a block diagram showing an embodiment of the present invention, in which received signals S1, S2,..., Sn of antennas 1-1, 1-2,. , 2-2,..., 2- (n-1), and receives the phase difference data Dp from the phase difference detection circuit 22 of each of the synchronous synthesis sections 2 to perform phase adjustment. An EPS control unit 3 that generates control data Dc and controls the EPS (infinite phase shifter) 23 of each synchronous synthesizing unit in a time-division multiplex manner.
[0016]
Here, the first synchronization synthesizing unit 2-1 synchronously synthesizes the reception signal S1 of the first antenna 1-1 and the reception signal S2 of the second antenna 1-2, and then synthesizes the second synchronization synthesis unit. 2-2 synchronously combines the combined output signal of the first synchronous combining section 2-1 and the received signal S3 of the third antenna 1-3, and repeats synchronous combining in the same manner as described above, thereby obtaining the final synchronous combined. The section 2- (n-1) outputs a signal obtained by synthesizing all the received signals S1, S2,..., Sn of the n-plane antenna.
[0017]
Each synchronous synthesizing unit 2 synthesizes two input signals, and detects a phase difference between the two signals input to the synthesizer 21 and sends a phase difference data Dp to the EPS control unit 3. It has a circuit 22 and an EPS (infinite phase shifter) 23 that adjusts the phase of one input signal according to the phase control data Dc supplied from the EPS control unit 3. FIG. 2 is a block diagram illustrating an example of the EPS control unit 3.
[0018]
The EPS control unit 3 transmits the phase difference data Dp1, Dp2,..., Dp (n-1) respectively transmitted from the synchronous synthesis units 2-1, 2-2,..., 2- (n-1). , Dc (n-1) generated by the phase control data generating circuit 33, and a switch 31 for latching and transmitting the phase control data Dc1, Dc2,..., Dc (n-1). A memory 32 for temporarily storing Dc, a phase control data generating circuit 33 for generating new phase control data Dc based on the phase difference data Dp received this time and the phase control data Dp transmitted last time, and an operation clock signal Sc. It has a clock generation circuit 34 and a switching control circuit 35 that generates a switching control signal Ss for controlling the switching operation of the switch 31 based on the operation clock signal Sc.
[0019]
Here, the switching control signal Ss is generated based on control timing for time-division multiplexing control of each of the synthesizing units 2-1, 2-2,..., 2- (n-1), It is supplied to the generation circuit 33.
[0020]
The switch 31 converts the phase difference data Dp1, Dp2,..., Dp (n-1) sent from each of the synthesizing units 2-1 to 2-2,. .., Dc (n-1) generated by the phase control data generation circuit 33 are latched, respectively, in a time-division manner in a predetermined cycle in accordance with the switching control signal Ss. The latch output is always sent to the corresponding synthesizing unit.
[0021]
Next, the operation will be described.
[0022]
, 1-n on the n-plane are respectively arranged at positions that have no correlation with the spatial propagation characteristics, and synchronize the received signals S1, S2, ..., Sn with the synchronous synthesis unit 2-1. , 2-2,..., 2- (n-1).
[0023]
Here, the received signals S1 and S2 of the antennas 1-1 and 1-2 are synchronously combined in the synchronous synthesizing unit 2-1. The synthesized output signal of the synthesizing unit 2-1 is synchronously synthesized, and thereafter, the synchronizing synthesizing unit 2- (n-1) repeats the synchronizing synthesis sequentially. By combining the (n-2) combined output signal, all of the reception signals S1, S2,..., Sn of the n-plane antenna are combined.
[0024]
By the way, the phase difference detection circuit 22 of each of the synthesizing units 2-1, 2-2,..., 2- (n−1) detects the phase difference of the signal input to the synthesizer 21 and obtains the phase difference data Dp1. , Dp2, ..., Dp (n-1) to the EPS control unit 3, respectively.
[0025]
The phase control data generating circuit 33 of the EPS control unit 3 receives the phase difference data Dp received by the switch 31 in a time-division manner, and sends the phase difference data Dp to the corresponding synthesizing unit 2 within a predetermined control time allocated in a time-division manner. The phase control data Dc read out from the memory 32, and the phase control data Dc transmitted last time is used as an initial value, and the phase control data Dc is newly generated based on the received phase difference data Dp so that the phase difference becomes zero. . Then, the newly generated phase control data Dc is stored in the memory 32 and sent to the switch 31.
[0026]
By the way, the switch 31 receives the newly generated phase control data Dc, latches it, and sends it to the EPS (infinite phase shifter) 23 of the corresponding synthesizing unit 2, so that the next phase control data Dc is generated. Until the above, the latched phase control data Dc is continuously sent to the EPS (infinite phase shifter) 23 of the synchronous synthesizing unit 2.
[0027]
The EPS (infinite phase shifter) 23 of each synchronous synthesizing unit 2 performs a phase control operation by receiving the phase control data Dc latched by the switch 31 and transmitted.
[0028]
In this way, the EPS control unit 3 converts the phase difference data Dp1, Dp2,..., Dp (n-1) from each of the synchronizing synthesis units 2-1, 2-2,. .., Dc (n-1) are generated based on the phase difference data, and are latched by the switch 31 respectively. By transmitting the signals to the EPS (infinite phase shifter) 23 of the synchronous synthesizing unit 2, the control of each infinite phase shifter of the plurality of synchronous synthesizing units can be shared by one EPS control unit. Each infinite phase shifter can be converged to the in-phase point without changing the control speed of the phase shifter.
[0029]
FIG. 3 is a block diagram showing another embodiment of the present invention.
[0030]
Here, the difference from the configuration shown in FIG. 1 is that the reception signals S1, S2,..., Sn of the antennas 1-1, 1-2,. In that they are sequentially synthesized synchronously.
[0031]
The first synchronization synthesizing unit 4-1 converts a local oscillation circuit 41 that generates a common local oscillation signal So for converting a received signal into an intermediate frequency signal, and converts the received signals S1 and S2 into an intermediate frequency signal. For synthesizing the two intermediate frequency signals, detecting the phase difference between the two intermediate frequency signals input to the synthesizer 44, and transmitting the phase difference data Dp1 to the EPS control unit 3. And an EPS (infinite phase shifter) 46 for adjusting the phase of the local oscillation signal So supplied to one of the mixers 43 according to the phase control data Dc1 supplied from the EPS control unit 3. are doing. .., 4- (n-1) other than the first synthesizing unit 4-1 have the same configuration, and are supplied from the first synthesizing unit 4-1. A mixer 43 that receives a common local oscillation signal So and converts a received signal into an intermediate frequency signal, a combiner 44 that combines two intermediate frequency signals, and a phase difference between the two intermediate frequency signals input to the combiner 44 And the phase difference detection circuit 45 that sends the phase difference data Dp to the EPS control unit 3 and the phase of the local oscillation signal So supplied to the mixer 43 according to the phase control data Dc supplied from the EPS control unit 3. And an EPS (infinite phase shifter) 46 for adjustment. As shown in FIG. 2, the EPS control unit 3 selects the phase difference data Dp1, Dp2,..., Dp (n-1) respectively transmitted from the respective synthesizing units in a time-division manner, and performs phase control. .., Dc (n−1) generated by the data generation circuit 33, and a switch 31 for latching and transmitting the phase control data Dc, a memory 32 for temporarily storing the transmitted phase control data Dc, A phase control data generation circuit 33 for generating new phase control data Dc based on the received phase difference data Dp and the previously transmitted phase control data Dp, a clock generation circuit 34 for generating an operation clock signal Sc, and an operation clock signal Sc And a switching control circuit 35 that generates a switching control signal Ss for the switch 31 based on the
[0032]
With this configuration, each synchronous synthesizing unit can convert the received signal into an intermediate frequency signal by using the local oscillation signal So of the first synchronous synthesizing unit 4-1, and perform synchronous synthesizing. The EPS control unit 3 can control the infinite phase shifters of the plurality of synchronous synthesis units.
[0033]
【The invention's effect】
As described above, according to the present invention, one EPS control unit is provided in a receiving unit of a multi-plane space diversity type digital wireless receiving device that sequentially and synchronously combines received signals of a plurality of antennas by a plurality of synchronous combining units, The EPS control unit performs time-division reception while sequentially switching the phase difference data output from each of the plurality of synchronous synthesis units at a fixed period, and controls the phase difference to be 0 based on the received phase difference data. By generating the phase control data and transmitting it to the corresponding synthesizing unit, the infinite phase shifters of the plurality of synthesizing units can be time-division multiplexed and controlled by one EPS control unit. Can be simplified.
[0034]
In addition, even if the synchronous synthesizer is operated at a single frequency without changing the control speed of the infinite phase shifter, it is possible to converge the infinite phase shifter to the in-phase point, and the circuit configuration is based on multi-faceted space diversity. Simplification and simplification can be realized.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of the present invention.
FIG. 2 is a block diagram showing an example of an EPS control unit 3 shown in FIG.
FIG. 3 is a block diagram showing another embodiment of the present invention.
FIG. 4 is a block diagram showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Antenna 2, 4 Synchronization synthesis part 3 EPS control part 21, 44 Synthesizer 22, 45 Phase difference detection circuit 23, 46 EPS (infinite phase shifter)
31 switch 32 memory 33 phase control data generation circuit 34 clock generation circuit 35 switching control circuit 41 local oscillation circuits 42 and 43 mixer Dc phase control data Dp phase difference data

Claims (6)

合成する2つの信号の位相差が0になるようにEPS(無限移相器)により調整して合成する同期合成手段を複数従属接続して複数のアンテナの受信信号を同期合成する多面スペースダイバーシティー形ディジタル無線受信装置において、複数の前記同期合成手段における前記2つの信号の位相差を示すデータをそれぞれ受けて複数の前記同期合成手段の前記EPS(無限移相器)を時分割多重制御するEPS制御手段を備えることを特徴とする多面スペースダイバーシティー形ディジタル無線受信装置。A multi-plane space diversity that cascade-connects a plurality of synchronous combining means that adjusts and combines by an EPS (infinite phase shifter) so that the phase difference between the two signals to be combined becomes zero, and synchronously combines received signals from a plurality of antennas. And a time-division multiplexing control of the EPS (infinite phase shifter) of the plurality of synchronous synthesizing means by receiving data indicating the phase difference between the two signals in the plurality of synchronous synthesizing means. A multi-plane space diversity type digital radio receiving apparatus comprising control means. 入力する2信号を同期合成する同期合成部を複数従属接続して複数のアンテナの受信信号を同期合成する多面スペースダイバーシティー形ディジタル無線受信装置において、複数の前記同期合成部は、2つの入力信号を合成する合成器と、この合成器に入力する2つの信号の位相差を検出して位相差データをEPS制御部へ送出する位相差検出回路と、前記EPS制御部から供給される位相制御データに応じて一方の入力信号の位相を調整するEPS(無限移相器)とをそれぞれ有し、前記EPS制御部は、複数の前記同期合成部からそれぞれ送出されてくる前記位相差データに基づき前記位相制御データをそれぞれ生成して複数の前記同期合成部のEPS(無限移相器)を時分割多重制御することを特徴とする多面スペースダイバーシティー形ディジタル無線受信装置。In a multi-plane space diversity type digital radio receiving apparatus for synchronously combining received signals from a plurality of antennas by cascade-connecting a plurality of synchronous combining sections for synchronously combining two input signals, the plurality of synchronous combining sections include two input signals. , A phase difference detection circuit that detects a phase difference between two signals input to the combiner and sends phase difference data to the EPS control unit, and a phase control data supplied from the EPS control unit. And an EPS (infinite phase shifter) that adjusts the phase of one of the input signals in accordance with the phase difference data. A multi-plane space diversity, wherein phase control data are respectively generated and time-division multiplexing control is performed on a plurality of EPSs (infinite phase shifters) of the synchronous synthesizing units. Form digital radio receiver. 前記EPS制御部は、複数の前記同期合成部からそれぞれ送出されてくる前記位相差データを一定周期で順番に時分割で選択して前記位相制御データをそれぞれ生成し、生成した位相制御データをそれぞれラッチして該当同期合成部へそれぞれ送出する手段を有していることを特徴とする請求項2記載の多面スペースダイバーシティー形ディジタル無線受信装置。The EPS control unit generates the phase control data by selecting the phase difference data transmitted from each of the plurality of synchronous synthesis units in a time-division order in a fixed cycle and generates the phase control data, respectively. 3. The multi-plane space diversity type digital radio receiving apparatus according to claim 2, further comprising means for latching and transmitting the signals to the respective synchronous synthesizing units. 前記EPS制御部は、複数の前記同期合成部からそれぞれ送出されてくる前記位相差データを時分割で選択すると共に前記位相制御データをラッチしてそれぞれ送出するスイッチと、送出する位相制御データを一時保存するメモリと、今回受信した位相差データおよび前記メモリに保存された前回の位相制御データに基づき新たに位相制御データを生成する位相制御データ生成回路と、動作クロック信号を生成するクロック生成回路と、前記動作クロック信号に基づき前記スイッチの切替動作を制御する切替制御回路とを有していることを特徴とする請求項3記載の多面スペースダイバーシティー形ディジタル無線受信装置。The EPS control unit selects the phase difference data transmitted from each of the plurality of synchronous synthesizing units in a time-division manner, latches the phase control data and transmits the data, and temporarily stores the phase control data to be transmitted. A memory for storing, a phase control data generation circuit for newly generating phase control data based on the currently received phase difference data and the previous phase control data stored in the memory, and a clock generation circuit for generating an operation clock signal. 4. A multi-plane space diversity type digital radio receiving apparatus according to claim 3, further comprising a switching control circuit for controlling a switching operation of said switch based on said operation clock signal. 入力する2信号を同期合成する同期合成部を複数従属接続して複数のアンテナの受信信号を同期合成する多面スペースダイバーシティー形ディジタル無線受信装置において、複数の前記同期合成部の内の第1の同期合成部が、共通の局部発振信号を生成する局部発振回路と、2つの受信信号をそれぞれ中間周波信号に変換する2つのミキサと、これら2つのミキサが出力する2つの中間周波信号を合成して後段の同期合成部へ送出する合成器と、この合成器に入力する前記2つの中間周波信号の位相差を検出して前記位相差データを前記EPS制御部へ送出する位相差検出回路と、前記EPS制御部から供給される位相制御データに応じて前記2つのミキサの一方へ供給する前記共通の局部発振信号の位相を調整するEPS(無限移相器)とを有していることを特徴とする多面スペースダイバーシティー形ディジタル無線受信装置。In a multi-plane space diversity type digital radio receiving apparatus which cascade-connects a plurality of synchronous combining sections for synchronously combining two input signals and synchronously combines received signals from a plurality of antennas, the first of the plurality of synchronous combining sections is provided. A synchronous synthesizing unit synthesizes a local oscillation circuit that generates a common local oscillation signal, two mixers that convert two received signals into intermediate frequency signals, and two intermediate frequency signals output from the two mixers. A synthesizing unit for transmitting to the subsequent synthesizing unit, a phase difference detecting circuit for detecting a phase difference between the two intermediate frequency signals input to the synthesizing unit, and transmitting the phase difference data to the EPS control unit; An EPS (infinite phase shifter) for adjusting the phase of the common local oscillation signal supplied to one of the two mixers according to the phase control data supplied from the EPS control unit; It has been multifaceted space diversity type digital radio receiver and wherein the are. 前記第1の同期合成部以外の同期合成部は、受信信号を中間周波信号に変換するミキサと、このミキサの出力する中間周波信号および前段の同期合成部からの中間周波信号を合成する合成器と、この合成器に入力する2つの中間周波信号の位相差を検出して位相差データをEPS制御部へ送出する位相差検出回路と、前記EPS制御部から供給される位相制御データに応じて前記共通の局部発振信号の位相を調整して前記ミキサへ供給するEPS(無限移相器)とをそれぞれ有し、前記EPS制御部が、複数の前記同期合成部からそれぞれ送出されてくる前記位相差データに基づき前記位相制御データをそれぞれ生成して複数の前記同期合成部のEPS(無限移相器)を時分割多重制御することを特徴とする請求項5記載の多面スペースダイバーシティー形ディジタル無線受信装置。A synchronous synthesizing unit other than the first synchronous synthesizing unit includes a mixer for converting a received signal into an intermediate frequency signal, and a synthesizer for synthesizing the intermediate frequency signal output from the mixer and the intermediate frequency signal from the preceding-stage synchronous synthesizing unit. A phase difference detection circuit for detecting a phase difference between the two intermediate frequency signals input to the synthesizer and sending the phase difference data to the EPS control unit; and a phase control data supplied from the EPS control unit. And an EPS (infinite phase shifter) that adjusts the phase of the common local oscillation signal and supplies the adjusted local oscillation signal to the mixer. 6. The multi-plane space die according to claim 5, wherein the phase control data is generated based on the phase difference data, and a plurality of EPS (infinite phase shifters) of the synchronous synthesizing unit are time-division multiplexed. Over City type digital radio receiver.
JP2003044466A 2003-02-21 2003-02-21 Multi-space diversity digital radio receiver Expired - Fee Related JP4192624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003044466A JP4192624B2 (en) 2003-02-21 2003-02-21 Multi-space diversity digital radio receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003044466A JP4192624B2 (en) 2003-02-21 2003-02-21 Multi-space diversity digital radio receiver

Publications (2)

Publication Number Publication Date
JP2004254200A true JP2004254200A (en) 2004-09-09
JP4192624B2 JP4192624B2 (en) 2008-12-10

Family

ID=33027158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003044466A Expired - Fee Related JP4192624B2 (en) 2003-02-21 2003-02-21 Multi-space diversity digital radio receiver

Country Status (1)

Country Link
JP (1) JP4192624B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006311541A (en) * 2005-04-25 2006-11-09 Thomson Licensing Wideband phase shift device
KR100842683B1 (en) 2006-12-05 2008-07-01 한국전자통신연구원 Method for generating timming synchronize signal on the radio channel measurement system by using multi antennas
JP2010074430A (en) * 2008-09-17 2010-04-02 Toyota Central R&D Labs Inc Infinite phase shifter array
US9112482B2 (en) 2013-02-27 2015-08-18 Panasonic Corporation Receiver

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006311541A (en) * 2005-04-25 2006-11-09 Thomson Licensing Wideband phase shift device
KR101233763B1 (en) * 2005-04-25 2013-02-18 톰슨 라이센싱 Wideband phase shift device
KR100842683B1 (en) 2006-12-05 2008-07-01 한국전자통신연구원 Method for generating timming synchronize signal on the radio channel measurement system by using multi antennas
JP2010074430A (en) * 2008-09-17 2010-04-02 Toyota Central R&D Labs Inc Infinite phase shifter array
US9112482B2 (en) 2013-02-27 2015-08-18 Panasonic Corporation Receiver

Also Published As

Publication number Publication date
JP4192624B2 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
JP5377750B2 (en) Array antenna device
KR101829974B1 (en) System and method for high-speed analog beamforming
US7453970B2 (en) Clock signal selecting apparatus and method that guarantee continuity of output clock signal
TW201112225A (en) Data transmission apparatus
US7180343B2 (en) Apparatus for synchronizing clock using source synchronous clock in optical transmission system
JP2004254200A (en) Polyhedral super diversity digital radio receiving apparatus
KR100802273B1 (en) Diversity receiving apparatus, controlling method of the same, and computer-readable medium containing program therefor
JPS622742B2 (en)
JP3709357B2 (en) Active phased array antenna
KR100400318B1 (en) Clock synchronization device
JP3251464B2 (en) Clock recovery circuit
JP4226199B2 (en) Phase synthesis circuit
EP1220481B1 (en) Transmission circuit
KR20020020559A (en) Apparatus for frame phase alignment in Synchronous Optical Transmission system
JPH01295540A (en) Code division multiple access system
JP2754993B2 (en) In-phase combined space diversity receiver
JP3259025B2 (en) Wireless communication device
JPH07322344A (en) Phase synchronization system for digital cordless system
JPH06350550A (en) Frame synchronizing multiplexer
JPWO2021132430A5 (en)
WO2005039071A1 (en) Apparatus and method for generating the beacon signal of time sharing multi-carrier
JP2002181920A (en) Radar device
JP2008017226A (en) Radio relay apparatus and system switching method
JPH05129995A (en) Reception sd system and receiver
JPH0695668B2 (en) Line switching device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees