JP2004253211A - Induction cooker - Google Patents

Induction cooker Download PDF

Info

Publication number
JP2004253211A
JP2004253211A JP2003041111A JP2003041111A JP2004253211A JP 2004253211 A JP2004253211 A JP 2004253211A JP 2003041111 A JP2003041111 A JP 2003041111A JP 2003041111 A JP2003041111 A JP 2003041111A JP 2004253211 A JP2004253211 A JP 2004253211A
Authority
JP
Japan
Prior art keywords
temperature
heated
pot
function
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003041111A
Other languages
Japanese (ja)
Other versions
JP3997925B2 (en
Inventor
Atsushi Asaue
淳 麻植
Hidesato Kawanishi
英賢 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003041111A priority Critical patent/JP3997925B2/en
Publication of JP2004253211A publication Critical patent/JP2004253211A/en
Application granted granted Critical
Publication of JP3997925B2 publication Critical patent/JP3997925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an induction cooker capable of cooking with sufficiently high heating power and at high temperatures while securing safety against abnormal heating or the like. <P>SOLUTION: This induction cooker has a control circuit 4. When a temperature-sensing pan having a self-temperature-control function to which the Curie temperature of magnetic shunt alloys is applied is used as an object to be heated, the control circuit 4 detects that the object to be heated is a temperature-sensing pan based on changes in the current supply state before the temperature of the cooking surface of the object 3 reaches a predetermined Curie temperature, and accordingly, the circuit 4 changes settings of operating conditions of "small object detecting function", "continuous power supply preventing function", and "excessive temperature rise preventing function". This allows cooking at sufficiently high heating power and high temperatures. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は自己温度制御機能を有する被加熱物に対応した誘導加熱調理器に関するものである。
【0002】
【従来の技術】
近年、誘導加熱調理器はその安全性や使いやすさ、高熱効率という優れた特徴が理解され、一般家庭に普及されつつある。
【0003】
誘導加熱調理器は、図8に示すように、トッププレート11の下部に配置された加熱コイル12に高周波電流を印加することにより発生する高周波磁束により、トッププレート上に置かれた鉄やステンレス製の被加熱物13(鍋)に渦電流を発生させ、鍋自身が直接発熱するように制御回路14で制御したものである。このような加熱メカニズムであるため、異常加熱にならないよう加熱状態を電気的に制御しやすい特徴がある。
【0004】
また誘導加熱調理器のトッププレート下部には、鍋の温度を検知する温度センサー15も標準的に装備され、検知する温度に応じて加熱を停止または段階的に抑制する「温度過昇防止機能」を備えることにより安全に使用することが可能である。
【0005】
また、ステンレス製のナイフやフォークのように、誘導加熱が可能な金属小物製品がトッププレートの上に置かれても加熱されないよう、消費電力が一定量以下の場合は、強制的に加熱を中止する「小物検知機能」も標準的に備えられている。
【0006】
更に最近では、従来よりも1.5倍ほどの消費電力である3kWまで加熱できる製品も開発されてきている。この火力になると鍋の昇温スピードや調理の所要時間も極めて早くなる為、従来よりも早い時間で焦げ付いたり、空焚きになり危険である。このような危険な状態にならないように、高火力での連続通電時間を制限する「連続通電防止機能」を備えているものもある。
【0007】
一般的な安全機能として基本的な3つの機能について説明したが、これらの機能が作動するための設定条件については、様々な使用条件に対して安全性を確保する必要性から、いずれもより安全側に設定されている。具体的には、「温度過昇防止機能」の作動温度は低めに、「小物検知機能」の加熱を中止する消費電力は高めに、「連続通電防止機能」の通電停止時間は短めに、という具合である。
【0008】
これらの機能は、いずれも鍋および調理物の温度が極端に上昇するのを防止する機能であるが、先のような安全側の設定になっているため、「温度過昇防止機能」に対しては早く作動しすぎて火力感がない、「小物検知機能」に対しては、調理の途中で通電がON/OFFし、その表示がわずらわしい、また「連続通電防止機能」に対しては、調理の途中で通電が停止又は火力が低下してしまうといった実用上の不具合が発生することがあった。
【0009】
一方、近年、鍋に使用する金属として、実調理に使用する温度付近にキュリー点を有する金属、いわゆる整磁合金を用いることが提案されている。金属はキュリー点以上では磁性が無くなる為、誘導加熱では加熱しないという特徴がある。この特徴を活かして、鍋自身の温度がキュリー点以上に加熱されない鍋、すなわち自己温度制御機能を有する鍋(以下「感温鍋」と称する)としての展開が可能である。この整磁金属は非磁性金属と一体化して用いることにより、より磁性の変化がシャープになるため、一般的にはこのような組み合わせで使用されている(例えば、特許文献1参照)。
【0010】
ここで感温鍋の自己温度制御機能について詳細に説明する。例えばキュリー温度が310℃の材料を用いた感温鍋の場合、鍋の温度に対する磁性の変化としては、270〜280℃程度から徐々に低下し、310℃のキュリー温度付近でさらに急激に低下し、以降0に近づいていく。消費電力の変化も基本的には磁性変化と同じである。実使用時における鍋での温度変化は、鍋の温度が270〜280℃程度から、徐々に低下する消費電力に合わせて温度の上昇が押さえられ、310℃付近以上温度が上がらなくなる。この温度付近では鍋に入力される消費電力により発熱するエネルギー量と、鍋から大気中等に放射されるエネルギー量が平衡に達するため、これ以上温度が上がらなくなるのである。このようにして感温鍋は自己温度制御機能を実現する。
【0011】
被加熱物として感温鍋を用いた場合、先に説明した鍋及び調理物の異常温度上昇を防止する3つの安全機能は、いずれも必要でないか、設けたとしてもそれぞれ実用上の不具合が発生しない条件に設定することが可能である。しかし実際の製品では感温鍋以外も使用されるため、先程の安全側の設定にしているのが現状である。すなわち、感温鍋を用いた場合でも、誘導加熱調理器の温度制御方式が同じである為、感温鍋で設定した温度以下で前記温度過昇防止機能が作動することもあり、調理上の不具合が発生するとともに、感温鍋の特徴を十分に活かしきれていないという課題もあった。
【0012】
さらに鍋を空焚きされた場合でも、前記温度過昇防止機能を応用して、空焚きを検知し、その旨の表示や通電の停止を行なっているが、温度センサーの追従性の限界から、検知に時間がかかるという課題もあった。
【0013】
【特許文献1】
特許第3079573号公報
【0014】
【発明が解決しようとする課題】
このような従来の問題点に鑑み本発明が解決しようとする課題は、異常加熱等に対する安全性を確保した上で、十分な高火力、高温で調理できる誘導加熱調理器を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記課題を解決するために本発明は、被加熱物を設置するトッププレートと、本体内部に配置され前記被加熱物を誘導加熱する加熱コイルと、被加熱物の温度を検知する温度センサーと、被加熱物への通電状態と前記温度センサーの温度に応じて前記加熱コイルへ供給する高周波電力を制御する制御回路とを備え、前記制御回路は、前記被加熱物の構成が、所定のキュリー温度を有する整磁合金を前記整磁合金よりも線膨張係数の大きな非磁性金属の少なくとも外側に一体化させた自己温度制御機能を有する誘導加熱調理器用鍋であるかどうかを前記被加熱物の調理面温度がキュリー温度に到達するまでの通電状態変化により検知し、この検知に応じて制御動作の設定条件を所定の条件に変更する誘導加熱調理器とするものである。このような構成にすることにより、被加熱物の加熱特性に応じた制御が可能となり、自ら異常加熱等に対する安全性を確保する自己温度制御機能を有する鍋に於いて、十分な高火力、高温で調理することができる。
【0016】
【発明の実施の形態】
上記課題を解決する為に請求項1記載の発明は、被加熱物を設置するトッププレートと、本体内部に配置され前記被加熱物を誘導加熱する加熱コイルと、被加熱物の温度を検知する温度センサーと、被加熱物への通電状態と前記温度センサーの温度に応じて前記加熱コイルへ供給する高周波電力を制御する制御回路とを備え、前記制御回路は、前記被加熱物の構成が、所定のキュリー温度を有する整磁合金を前記整磁合金よりも線膨張係数の大きな非磁性金属の少なくとも外側に一体化させた自己温度制御機能を有する誘導加熱調理器用鍋であるかどうかを前記被加熱物の調理面温度がキュリー温度に到達するまでの通電状態変化により検知し、この検知に応じて制御動作の設定条件を所定の条件に変更するようにしたことにより、自ら異常加熱等に対する安全性を確保する自己温度制御機能を有する感温鍋に於いてもこれを検出し設定を加熱の条件や設定を変更することで、十分な高火力、高温で調理することができる。被加熱物の加熱特性に応じた制御が可能とするものである。
【0017】
先にも述べたように、感温鍋を加熱していくと、設定したキュリー温度より手前から徐々に消費電力の低下が始まる。その変化を検知して感温鍋と判断し、制御動作の設定を変更する方法についてはこれまでにも提案されている。しかしこの検知タイミングでは既に感温鍋の温度も上がっており、また誘導加熱調理器のバラツキを含めて考えると、設定の変更が間に合わない場合もあった。特に最近主流になりつつある高火力タイプの誘導加熱調理器に於いてはこの傾向が顕著であった。
【0018】
そこで本発明では、被加熱物の調理温度がキュリー温度に到達するまでの初期の通電状態変化より、感温鍋がどうかを検知して、感温鍋であればそれに応じた設定に変更するようにしている。
【0019】
ここで通電初期に感温鍋であることを検知する方法について説明する。感温鍋は必要最低限の構成として、加熱面下側から整磁合金材料/非磁性金属材料の順に構成されている。このような構成の感温鍋に通電したときの消費電力及び底面温度の経時変化を図9に示す。これは整磁合金材料としてキュリー温度が310である42%Ni/Fe合金を、非磁性金属材料としてアルミニウムを用いた例である。一方通常の磁性金属のみからなる鍋に於ける同様の挙動を図10に示す。これは通常の磁性金属としてSUS430を用いた例である。
【0020】
これらの図を見れば明らかなように、通常の磁性金属を用いた場合は、通電初期から徐々に消費電力が低下している。これは一般的に金属材料は温度が上昇するにつれて磁性が低下する特性に伴ったものである。これに対して感温鍋を用いた場合は、通電開始直後に一度消費電力が大きく下がり、再び上昇に転じた後、もう一度消費電力が下がっている。いわゆる消費電力のピークが2つできており、この変化も通電開始から1分間程度の初期に発生している。特に最初のピーク発生時の調理面温度は200℃前後であり整磁合金の磁性変化が始まる温度よりははるかに低くなっている。
【0021】
ここで感温鍋においてのみ通電初期に消費電力のピークが2つできる理由の一つを説明する。
【0022】
最初のピークは、整治合金の加熱コイルに対向する部分が局部的に温度上昇し、一般的な金属材料と同様の磁性低下により発生していると考えられる。このときの消費電力の低下はSUS430の場合と比較して大きくなっているが、これは整磁合金の磁性変化が大きいことと、非磁性金属と一体化していることが要因と考えられる。具体的には整磁合金の温度上昇に伴い渦電流の浸透深さが深くなり、整磁合金の厚み以上に深くなると、渦電流の一部がアルミニウムにも流れ始める。アルミニウムは表皮抵抗が小さいため、感温鍋としての消費電力は低下する。この為、感温鍋の消費電力低下は、SUS430よりも大きくなると考えられる。
【0023】
一方、感温鍋底面の温度上昇に伴い、底面の反りが発生する。これは一体化している整磁合金と非磁性金属の線膨張率の差が大きい為である。例えば両者の線膨張率は整磁合金(42%Ni/Fe)が4.5〜5.3×10−6/℃、アルミニウムが23.1×10−6/℃とアルミニウムの方がはるかに大きくなっている。
【0024】
また熱伝導率も整磁合金(42%Ni/Fe)が0.036cal/cm/sec/degに対して、アルミニウムが0.487cal/cm/sec/degであり、大きく異なる。誘導加熱により整磁合金の加熱コイルに対向する部分で発生した熱エネルギーは、熱伝導率の低い整磁合金で伝導するよりも先に、アルミニウムに伝導する。アルミニウムは熱伝導性がよい為、アルミニウム全体に熱が分散する。このように加熱初期に於いては、整磁金属とアルミニウムの温度差が大きくなる傾向がある。従って加熱初期の反りは図9にも示すように、非常に大きくなる。やがて、アルミニウムを介して整磁合金全体にも熱が伝導し、すなわち整磁合金とアルミニウムの温度差が小さくなり、加熱初期よりも反りが小さくなった時点で安定する。
【0025】
ここで加熱初期の反りの変化に着目すると、アルミニウムの温度上昇による膨張に伴い、アルミニウムが引っ張り上げる形で反りが発生している。この時、整磁合金とアルミニウムの界面はミクロ的には離れる方向に変化している。このような状態になると、一部アルミニウムに流れかけていた渦電流が、アルミニウムに流れにくくなり、その分整磁合金に流れることになる。その結果一時的に消費電流が上昇する。最終的に感温鍋全体の温度がキュリー温度付近に近づくと、整磁合金トータルとしての磁性の低下が顕著になり、消費電力が大きく低下する。
【0026】
このように、感温鍋の調理面温度がキュリー温度に到達するまでの通電初期に、消費電力のピークが2つ現れるのは、整磁合金と非磁性金属を組み合わせた感温鍋特有の現象であり、この現象を検知して誘導加熱調理器の制御動作の設定を変更することにより、感温鍋のキュリー温度付近での消費電力低下を検知する従来の提案よりも早く感温鍋の有無の判定ができるので、従来の提案での課題も解決することができる。
【0027】
また請求項2記載の発明は、被加熱物を加熱するための消費電力が所定の値より小さい場合には、加熱コイルへの高周波電力の供給を抑制または停止する小物検知機能を備え、制御回路が被加熱物の自己温度制御機能を有していると検知した場合、小物検知作動電力の設定を変更する制御機能を備えることによりなされるものである。
【0028】
本来の小物検知機能の目的は、ステンレス製のナイフやフォークのように、誘導加熱が可能な金属小物製品がトッププレートの上に置かれても加熱されないよう、消費電力が一定量以下の場合は、強制的に加熱を中止する為である。しかし感温鍋を使用した場合、現実的には鍋の温度がキュリー温度に到達する以前に、徐々に消費電力が低下していき、やがて小物検知機能が作動するところまで低下する。例えばキュリー温度を260℃に設定した感温鍋の場合、鍋の温度に対する磁性の変化としては、220〜230℃程度から徐々に低下し、260℃のキュリー温度付近でさらに急激に低下する。
【0029】
例えば調理面の温度を高温にして調理するステーキで、特に調理物が小さい場合は、調理物を投入した後でも鍋底面の温度がキュリー温度付近まで上昇する場合がある。この時、消費電力が徐々に低下し、場合によっては小物検知機能が作動する事がある。鍋調理面の温度としては220〜260℃程度である。一般的にはこの程度の温度まで上昇していれば、調理に対しては十分であるが、小物検知機能が作動すると、通常本体表示部等にそれと分かる表示、例えば点滅表示等がされるため、使用者が誤動作や故障では無いかと勘違いされる可能性がある。
【0030】
感温鍋の場合は、鍋自身の自己温度制御機能により温度の異常上昇を防止することができるので、小物検知の作動温度設定を高くして、上述のような調理に対しても、小物検知機能が作動しないようにするか、或いは作動しても表示方法を通常とは変える、(例えば「自己温度制御機能作動中」の表示を行う)ことにより、使用者の勘違いを防ぎ、使い勝手を向上させることができる。
【0031】
また請求項3及び4記載の発明は、高火力での連続通電時間を制限する連続通電防止機能を備え、制御回路が被加熱物の自己温度制御機能を有していると検知した場合、連続通電防止機能の設定を変更する制御機能を備えることにより、また温度センサーの温度に応じて加熱コイルへの高周波電力の供給を制限する温度過昇防止機能を備え、制御回路が被加熱物の自己温度制御機能を検知した場合、連続通電防止機能の連続通電時間や、温度過昇防止機能の作動温度の設定を変更する制御機能を備えることによりなされるものである。
【0032】
自己温度制御機能を有する感温鍋を被加熱物として用いた場合、高火力での連続通電により空焼き等がされた場合でも、鍋のキュリー温度以上には上がらないため安全である。そのため高火力での連続通電時間の制限を長めに変更することや、温度過昇防止機能の作動温度を通常より高くする制御機能に変更することにより、先に述べたような実用上の不具合を解消することができる。
【0033】
また請求項5記載の発明は、被加熱物の調理面温度が所定のキュリー温度に到達するまでの通電状態変化検知を、誘導加熱調理器用鍋に於ける消費電力変化又は入力電流変化で行う制御機能を備えることにより、感温鍋の加熱初期の通電状態変化を容易に検知することが可能である。
【0034】
また請求項6記載の発明は、鍋の調理面温度が所定のキュリー温度に到達するまでの消費電力変化に於いて、複数のピークを示したことを検知した場合、被加熱物が所定の自己温度制御機能を有する鍋と判断する制御機能を備えたことによりなされるものである。
【0035】
整磁合金と被磁性合金を一体化した感温鍋において、その構成の特徴として、加熱初期の消費電力変化に於いて複数のピークを示すので、その挙動を検知することにより、容易に感温鍋と判断することができる為、回路構成等も最小限の変更で済ますことができる。
【0036】
【実施例】
以下本発明の実施例について図面を参照して説明する。
【0037】
(実施例1)
図1において、トッププレート1の下部にドーナツ状の加熱コイル2が配置され、このトッププレート1の上に置かれた被加熱物である感温鍋3を加熱するようになっている。
【0038】
ここで感温鍋3には整磁合金3a及び熱良導体で非磁性金属である、アルミニウム3bをクラッド化した物を用いた。
【0039】
また加熱コイル2の中心部には、感温鍋3の温度を検知してその検知信号を制御回路4に出力する温度センサー5が、トッププレート1の下面に接するように配置されている。加熱コイル2は制御回路4で制御される。
【0040】
ここで誘導加熱装置本体として、従来品Aと本発明品Bの2種類を準備した。Bは加熱初期に被加熱物が自己温度制御機能を有する感温鍋の場合はそのことを検知し、小物検知作動電力の設定を800Wまで低下させるようにプログラムされている。ちなみに従来品Aの小物検知作動電力は900Wであった。
【0041】
それぞれの本体で感温鍋を加熱したときの、経過時間に対する消費電力の経時変化を図2及び図3に示す。図2が従来品、図3が発明品で、それぞれ実線が消費電力、点線が底面温度を示している。図からも明らかなように、従来品では感温鍋の消費電力が低下して約900Wになった時点で、小物検知機能が作動した。以降繰り返し小物検知機能が作動した。従来品では小物検知が作動すると、使用者に小物を置いた旨を知らせるために、表示部全体が点滅する設定になっているが、今回の感温鍋の場合でもこの点滅表示が繰り返し行われ、故障したかのように感じ、使用者に不安感を与えた。また底面の温度も結果的に設定のキュリー温度よりも低い温度になってしまった。
【0042】
一方、発明品Bでは、感温鍋の自己温度制御機能により、消費電力が低下してきても、小物検知動作に入ることなく、安定した調理面温度を得られることができた。また小物検知の作動を知らせる表示部の点滅も起こらず、また小物検知作動による調理面温度の低下や揺らぎも発生しないので、違和感無く使用することができた。
【0043】
ここでは発明品としては、小物検知作動電力を低下させる設定であったが、もちろんこれに限られるものではなく、感温鍋の場合は小物検知機能が作動しても表示が点滅しないような設定であったり、小物検知機能作動時は別の表示(例えば自己温度制御機能が作動している旨を示す表示等)を行う設定でもよい。
【0044】
(実施例2)
実施例1と同様に、誘導加熱装置本体として、従来品Cと本発明品Dの2種類を準備した。従来品Cは連続通電防止機能として、高火力での通電時間が10分になると、自動的に火力が半分になるように設定されている。これに対して本発明品Dは、加熱初期に被加熱物が自己温度制御機能を有する感温鍋の場合はそのことを検知し、連続通電防止機能における高火力での通電時間に制限を設けないようにプログラムされている。
【0045】
それぞれの本体で、感温鍋を用いて5Lのお湯を沸かす実験を行った。その時の消費電力と湯温の変化を図4、5に示す。図4が従来品C、図5が本発明品Dである。図からも明らかなように、従来品Cの場合は、通電開始後10分以降は消費電力が半分に低下するため、最終的な湧き上がり時間は13分であった。一方発明品Dの場合は、途中で商品電力が低下することもなく、従来品よりも1.5分早い。11.5分で湧き上がった。またそれぞれの条件で家族5人分のスパゲティを茹でる実験も行った。従来品Cでは茹でている間の消費電力が弱いので、所定時間茹でても芯が残っており、上手くいかなかった。一方、本発明品Dで同様の調理を行ったところ、茹でている間の火力も十分に強く、所定の時間で上手に茹で上げることができた。
【0046】
ここでは発明品としては、感温鍋の場合は通電時間の制限を設けない設定としたが、もちろんこれに限られるものではなく、通電時間制限の作動時間を変更したり、通電制限時の消費電力を変更したりする対応も可能である。
【0047】
(実施例3)
実施例1と同様に、誘導加熱装置本体として、従来品Eと本発明品Fの2種類を準備した。従来品Eは温度過昇防止機能として、センサーの温度が200℃を超えると、被加熱物の温度が上昇しすぎたと判断して、火力を段階的に低下させる機能が設定されている。これに対して本発明品Fは、加熱初期に被加熱物が自己温度制御機能を有する感温鍋の場合はそのことを検知し、温度過昇防止機能における作動温度を撤廃するようにプログラムされている。
【0048】
それぞれの本体で感温鍋を加熱したときの、経過時間に対する消費電力の経時変化を図6及び図7に示す。図6が従来品、図7が発明品で、それぞれ実線が消費電力、点線が底面温度を示している。図からも明らかなように、従来品では通電開始から約5分後で、センサー温度が200℃まで達し(図示せず)、以降温度過昇防止機能による消費電力低下が発生している。これに伴い、感温鍋の底面温度も200〜250の間で、大きく変化している。
【0049】
これに対して発明品Fでは、感温鍋の自己温度制御機能により、消費電力が低下してきても、温度過昇防止機能による消費電力の低下は発生せず、調理面の温度はキュリー点による設定温度まで上昇し、以降その温度を安定してキープすることができた。
【0050】
ここでは発明品としては、感温鍋の場合は温度過昇防止機能に於ける作動温度を撤廃するようにしているが、もちろんこれに限られるものではなく、作動温度を変更したり、作動後の消費電力の設定を変更したりする対応も可能である。
【0051】
またいずれの実施例に於いても、被加熱物が感温鍋かどうかを、消費電力の変化により検知しているが、もちろんこれに限られることはなく、電流変化、加熱コイルやインバーター回路等への電流、電圧変化等、加熱初期の鍋としての消費電力変化がわかる指標であれば、それで判定すれば良い。
【0052】
【発明の効果】
上記実施例から明らかなように、請求項1〜6記載の発明によれば、加熱初期に於いて被加熱物が自己温度制御機能を有する感温鍋であることを検知し、それに応じて鍋の異常温度上昇に対応した制御機能の作動条件設定を変更するので、異常加熱に対する安全性を確保した上で、十分な高火力、高温で調理できる誘導加熱調理器を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示す誘導過熱調理器の略断面図
【図2】従来品の温度の特性を示すグラフ
【図3】第1の実施例における温度の特性を示すグラフ
【図4】従来品の温度の特性を示すグラフ
【図5】第2の実施例における温度の特性を示すグラフ
【図6】従来品の温度特性を示すグラフ
【図7】第3の実施例における温度特性を示すグラフ
【図8】従来の誘導加熱調理器を示す略断面図
【図9】誘導加熱調理器にて感温鍋を加熱したときの特性を示すグラフ
【図10】誘導加熱調理器にて通常の磁性金属のみからなる鍋を加熱したときの特性を示すグラフ
【符号の説明】
1 トッププレート
2 加熱コイル
3 被加熱物
4 制御回路
5 温度センサー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an induction heating cooker having a self-temperature control function and corresponding to an object to be heated.
[0002]
[Prior art]
In recent years, induction heating cookers have been recognized for their excellent features such as safety, ease of use, and high thermal efficiency, and are being widely used in ordinary households.
[0003]
As shown in FIG. 8, the induction heating cooker is made of iron or stainless steel placed on the top plate by high-frequency magnetic flux generated by applying a high-frequency current to a heating coil 12 arranged below the top plate 11. An eddy current is generated in the object 13 (pan) to be heated, and is controlled by the control circuit 14 so that the pan itself directly generates heat. Because of such a heating mechanism, there is a feature that the heating state can be easily electrically controlled so as not to cause abnormal heating.
[0004]
In addition, a temperature sensor 15 for detecting the temperature of the pot is provided as a standard component below the top plate of the induction heating cooker, and the heating is stopped or gradually suppressed according to the detected temperature. It is possible to use safely by providing.
[0005]
In addition, if the power consumption is less than a certain amount, heating is forcibly stopped, so that small metal products that can be induction heated, such as stainless steel knives and forks, are not heated even if they are placed on the top plate. "Small object detection function" is also provided as standard.
[0006]
More recently, products have been developed that can heat up to 3 kW, which is 1.5 times the power consumption of conventional products. With this thermal power, the temperature rise speed of the pot and the time required for cooking become extremely fast, and it is dangerous to burn in a shorter time than in the past, or to fire empty. In order to prevent such a dangerous state, some apparatuses have a "continuous energization preventing function" for limiting the continuous energizing time at a high thermal power.
[0007]
Although three basic functions have been described as general safety functions, the setting conditions for the operation of these functions are all more secure because it is necessary to ensure safety under various use conditions. Side is set. Specifically, the operating temperature of the "overheating prevention function" is lower, the power consumption for stopping the heating of the "small object detection function" is higher, and the power interruption time of the "continuous conduction prevention function" is shorter. It is.
[0008]
All of these functions are to prevent the temperature of the pot and the food from rising excessively, but because of the safety setting described above, For the "small object detection function", the energization is turned ON / OFF during cooking, and the display is troublesome, and for the "continuous energization prevention function", Practical problems such as the stop of energization or a decrease in thermal power during cooking may occur.
[0009]
On the other hand, in recent years, it has been proposed to use a metal having a Curie point near the temperature used in actual cooking, a so-called magnetic shunt alloy, as a metal used for a pot. Since a metal loses magnetism above the Curie point, it is not heated by induction heating. Taking advantage of this feature, it is possible to develop a pot in which the temperature of the pot itself is not heated above the Curie point, that is, a pot having a self-temperature control function (hereinafter, referred to as a “temperature-sensitive pot”). When the magnetic shunt metal is used in combination with a non-magnetic metal, the change in magnetism becomes sharper. Therefore, such a magnetic shunt metal is generally used in such a combination (for example, see Patent Document 1).
[0010]
Here, the self-temperature control function of the thermosensitive pan will be described in detail. For example, in the case of a temperature-sensitive pot using a material having a Curie temperature of 310 ° C., the change in magnetism with respect to the temperature of the pot gradually decreases from about 270 to 280 ° C., and decreases more rapidly near the Curie temperature of 310 ° C. , And thereafter approaches zero. The change in power consumption is basically the same as the change in magnetism. As for the temperature change in the pot during actual use, the temperature of the pot is suppressed from about 270 to 280 ° C. in accordance with the gradually decreasing power consumption, and the temperature does not rise above about 310 ° C. In the vicinity of this temperature, the amount of energy generated by the power consumption input to the pan and the amount of energy radiated from the pan into the atmosphere reach equilibrium, so that the temperature does not rise any more. In this way, the thermosensitive pot realizes a self-temperature control function.
[0011]
When a thermo-sensing pan is used as the object to be heated, none of the three safety functions described above for preventing the abnormal temperature rise of the pan and the cooking object are required, or even if they are provided, a practical problem occurs. It is possible to set conditions that do not. However, since the actual product uses something other than a heat-sensitive pot, the current situation is to set it on the safe side. In other words, even when using a temperature-sensitive pot, since the temperature control method of the induction heating cooker is the same, the temperature overheating prevention function may be activated at a temperature equal to or lower than the temperature set in the temperature-sensitive pot, and the A problem occurred, and there was also a problem that the characteristics of the temperature-sensitive pot were not fully utilized.
[0012]
Furthermore, even when the pot is cooked empty, the above-mentioned overheating prevention function is applied to detect the empty heating, and the indication and the stop of the power supply are performed, but from the limit of the followability of the temperature sensor, There is also a problem that detection takes time.
[0013]
[Patent Document 1]
Japanese Patent No. 3079573
[Problems to be solved by the invention]
In view of such conventional problems, an object of the present invention is to provide an induction heating cooker that can cook at a sufficiently high heating power and high temperature while securing safety against abnormal heating and the like. And
[0015]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a top plate on which an object to be heated is installed, a heating coil disposed inside the main body for induction heating the object to be heated, and a temperature sensor for detecting the temperature of the object to be heated. A control circuit for controlling high-frequency power to be supplied to the heating coil in accordance with a state of energization of the object to be heated and a temperature of the temperature sensor, wherein the control circuit has a configuration in which the object to be heated has a predetermined Curie temperature Cooking of the object to be heated by the induction heating cooker having a self-temperature control function in which a magnetic shunt alloy having a function of integrating a magnetic shunt alloy having at least a non-magnetic metal having a larger linear expansion coefficient than the magnetic shunt alloy is integrated. The induction heating cooker detects by detecting a change in the energization state until the surface temperature reaches the Curie temperature, and changes the setting condition of the control operation to a predetermined condition according to the detection. By adopting such a configuration, it becomes possible to perform control according to the heating characteristics of the object to be heated, and in a pot having a self-temperature control function for ensuring safety against abnormal heating or the like, a sufficiently high heating power and high temperature Can be cooked.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to solve the above problem, the invention according to claim 1 detects a top plate on which an object to be heated is installed, a heating coil arranged inside the main body for induction heating the object to be heated, and detecting a temperature of the object to be heated. Temperature sensor, comprising a control circuit for controlling the high-frequency power supplied to the heating coil according to the state of electricity to the object to be heated and the temperature of the temperature sensor, the control circuit, the configuration of the object to be heated, Whether the pot is an induction heating cooker pot having a self-temperature control function in which a magnetic shunt alloy having a predetermined Curie temperature is integrated at least outside a non-magnetic metal having a larger linear expansion coefficient than the magnetic shunt alloy, Detected by a change in the energization state until the cooking surface temperature of the heated object reaches the Curie temperature, and changed the setting conditions of the control operation to predetermined conditions in response to this detection. Even in a temperature-sensitive pot that has a self-temperature control function that ensures safety against heat, etc., it is possible to cook at a sufficiently high heat and high temperature by detecting this and changing the setting and heating conditions. . This enables control according to the heating characteristics of the object to be heated.
[0017]
As described above, when the thermosensitive pot is heated, the power consumption gradually starts to decrease from the set Curie temperature. A method of detecting the change, determining that the pan is a temperature sensitive pan, and changing the setting of the control operation has been proposed so far. However, at this detection timing, the temperature of the thermosensitive pot has already risen, and in consideration of the variation of the induction heating cooker, the setting may not be changed in some cases. In particular, this tendency was remarkable in a high heat type induction heating cooker which is becoming mainstream recently.
[0018]
Therefore, in the present invention, it is detected whether or not the thermo-sensing pot is used, based on the change in the initial energization state until the cooking temperature of the object to be heated reaches the Curie temperature, and if the thermo-sensing pot is used, the setting is changed to a corresponding setting. I have to.
[0019]
Here, a method of detecting that the pot is a thermosensitive pot at the beginning of energization will be described. As a minimum required configuration, the thermosensitive pot is configured in the order of the magnetic shunt alloy material / non-magnetic metal material from below the heating surface. FIG. 9 shows changes over time in the power consumption and the bottom surface temperature when power is supplied to the thermosensitive pot having such a configuration. This is an example in which a 42% Ni / Fe alloy having a Curie temperature of 310 is used as a magnetic shunt alloy material and aluminum is used as a nonmagnetic metal material. On the other hand, FIG. 10 shows a similar behavior in a pot made of only a normal magnetic metal. This is an example in which SUS430 is used as a normal magnetic metal.
[0020]
As is apparent from these figures, when a normal magnetic metal is used, the power consumption gradually decreases from the beginning of energization. This is generally accompanied by the property that the magnetic properties of a metal material decrease as the temperature increases. On the other hand, when the thermo-sensing pan is used, the power consumption drops once immediately after the start of energization, starts to rise again, and then drops again. There are two so-called power consumption peaks, and this change also occurs at the beginning of about one minute from the start of energization. In particular, the cooking surface temperature when the first peak occurs is around 200 ° C., which is much lower than the temperature at which the magnetic change of the magnetic shunt alloy starts.
[0021]
Here, one of the reasons why two peaks in power consumption can be generated in the initial stage of energization only in the thermosensitive pot will be described.
[0022]
It is considered that the first peak is caused by local temperature rise in the part of the trimming alloy facing the heating coil, which is caused by magnetic drop similar to that of a general metal material. The decrease in power consumption at this time is larger than that in the case of SUS430, which is considered to be due to the large magnetic change of the magnetic shunt alloy and the fact that it is integrated with the nonmagnetic metal. Specifically, as the temperature of the magnetic shunt alloy rises, the penetration depth of the eddy current becomes deeper. When the eddy current becomes deeper than the thickness of the magnetic shunt alloy, part of the eddy current starts to flow to aluminum. Since aluminum has a small skin resistance, the power consumption as a thermo-sensing pot decreases. For this reason, it is considered that the reduction in power consumption of the thermosensitive pot is larger than that of SUS430.
[0023]
On the other hand, as the temperature of the bottom of the thermosensitive pot rises, the bottom is warped. This is because the difference between the linear expansion coefficients of the integrated magnetic shunt alloy and the non-magnetic metal is large. For example, the linear expansion coefficients of both are 4.5 to 5.3 × 10 −6 / ° C. for the magnetic shunt alloy (42% Ni / Fe) and 23.1 × 10 −6 / ° C. for aluminum, which is much higher for aluminum. It is getting bigger.
[0024]
Also, the thermal conductivity is significantly different, with the magnetic shunt alloy (42% Ni / Fe) being 0.036 cal / cm / sec / deg and the aluminum being 0.487 cal / cm / sec / deg. The thermal energy generated in the portion of the magnetic shunt alloy facing the heating coil by the induction heating is transmitted to aluminum before being transmitted to the magnetic shunt alloy having low thermal conductivity. Since aluminum has good thermal conductivity, heat is dispersed throughout the aluminum. Thus, in the early stage of heating, the temperature difference between the magnetic shunt metal and aluminum tends to increase. Therefore, the warpage at the initial stage of heating becomes very large as shown in FIG. Eventually, heat is also conducted to the entire magnetic shunt alloy via aluminum, that is, the temperature difference between the magnetic shunt alloy and aluminum becomes small, and it becomes stable when warpage becomes smaller than in the initial stage of heating.
[0025]
Here, when attention is paid to the change in the warpage at the initial stage of the heating, the warp occurs in a form in which the aluminum is pulled up with the expansion due to the temperature rise of the aluminum. At this time, the interface between the magnetic shunt alloy and the aluminum is changing in a direction that separates microscopically. In such a state, the eddy current partially flowing to the aluminum becomes difficult to flow to the aluminum and accordingly flows to the magnetic shunt alloy. As a result, the current consumption increases temporarily. Eventually, when the temperature of the entire thermosensitive pot approaches the Curie temperature, the magnetism of the magnetic shunt alloy as a whole is significantly reduced, and the power consumption is greatly reduced.
[0026]
As described above, two peaks of power consumption appear in the initial stage of power application until the cooking surface temperature of the thermosensitive pot reaches the Curie temperature because of a phenomenon peculiar to the thermostatic pan combining the magnetic shunt alloy and the non-magnetic metal. By detecting this phenomenon and changing the setting of the control operation of the induction heating cooker, the presence or absence of a heating pot is earlier than the conventional proposal for detecting a decrease in power consumption near the Curie temperature of the heating pot. Can be determined, so that the problem in the conventional proposal can be solved.
[0027]
Further, the invention according to claim 2 has a small object detection function for suppressing or stopping the supply of high frequency power to the heating coil when the power consumption for heating the object to be heated is smaller than a predetermined value, Is provided by providing a control function for changing the setting of the small object detection operation power when it detects that the object has the self-temperature control function of the object to be heated.
[0028]
The purpose of the original small object detection function is to use a small metal product that can be heated by induction, such as a knife or fork made of stainless steel, if the power consumption is less than a certain amount so that it will not be heated even if it is placed on the top plate. This is for forcibly stopping the heating. However, in the case of using a thermo-sensing pan, actually, the power consumption gradually decreases before the temperature of the pan reaches the Curie temperature, and eventually decreases to a point where the accessory detection function is activated. For example, in the case of a thermosensitive pot in which the Curie temperature is set to 260 ° C., the change in magnetism with respect to the temperature of the pot gradually decreases from about 220 to 230 ° C., and decreases more rapidly near the Curie temperature of 260 ° C.
[0029]
For example, a steak cooked at a high cooking surface temperature, particularly when the food is small, the temperature of the bottom of the pot may rise to near the Curie temperature even after the food is put. At this time, the power consumption gradually decreases, and in some cases, the accessory detection function may be activated. The temperature of the pot cooking surface is about 220 to 260 ° C. Generally, if the temperature has risen to this level, it is sufficient for cooking, but when the accessory detection function is activated, a display that can be recognized normally, such as a blinking display, is displayed on the main body display unit or the like. The user may be mistaken for malfunction or failure.
[0030]
In the case of a temperature-sensitive pot, the temperature rise can be prevented by the pot's own temperature control function. Prevent the user from misunderstanding and improve the usability by preventing the function from operating or by changing the display method from normal to the normal operation (for example, displaying "self-temperature control function in operation"). Can be done.
[0031]
The invention according to claims 3 and 4 is provided with a continuous energization preventing function for limiting the continuous energization time at high heating power, and when the control circuit detects that it has a self-temperature control function of the object to be heated, By providing a control function to change the setting of the power-supply prevention function, and by providing an over-temperature prevention function to limit the supply of high-frequency power to the heating coil according to the temperature of the temperature sensor, When the temperature control function is detected, a control function for changing the setting of the continuous energization time of the continuous energization prevention function and the operating temperature of the overheating prevention function is provided.
[0032]
When a temperature-sensitive pot having a self-temperature control function is used as an object to be heated, the temperature is not higher than the Curie temperature of the pot, even if the baking or the like is performed by continuous energization at a high heating power. Therefore, by changing the restriction of the continuous energization time at high heat power to a longer time or by changing the control function to raise the operating temperature of the over-temperature prevention function higher than usual, the above-mentioned practical problems are solved. Can be eliminated.
[0033]
According to a fifth aspect of the present invention, the control for detecting a change in the energization state until the cooking surface temperature of the object to be heated reaches a predetermined Curie temperature by a change in power consumption or a change in input current in the induction heating cooker pan. By providing the function, it is possible to easily detect a change in the energization state at the beginning of heating of the thermosensitive pot.
[0034]
The invention according to claim 6 is characterized in that, when it is detected that a plurality of peaks are detected in a change in power consumption until the cooking surface temperature of the pot reaches a predetermined Curie temperature, the object to be heated has a predetermined self This is achieved by providing a control function for determining that the pot has a temperature control function.
[0035]
As a characteristic of the configuration of the temperature-sensitive pan in which the magnetic shunt alloy and the magnetic alloy are integrated, there are multiple peaks in the change in power consumption at the initial stage of heating. Since it can be determined to be a pot, the circuit configuration etc. can be changed with minimal changes.
[0036]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0037]
(Example 1)
In FIG. 1, a donut-shaped heating coil 2 is arranged below a top plate 1 so as to heat a temperature-sensitive pot 3 which is an object to be heated placed on the top plate 1.
[0038]
Here, the thermosensitive pan 3 was made of a magnetic shunt alloy 3a and an aluminum 3b clad with a non-magnetic metal which is a good conductor of heat.
[0039]
At the center of the heating coil 2, a temperature sensor 5 for detecting the temperature of the thermosensitive pan 3 and outputting a detection signal to the control circuit 4 is arranged so as to be in contact with the lower surface of the top plate 1. The heating coil 2 is controlled by a control circuit 4.
[0040]
Here, two types of a conventional product A and a product B of the present invention were prepared as induction heating device bodies. B is programmed to detect the fact that the object to be heated is a temperature-sensitive pot having a self-temperature control function at the beginning of heating, and to reduce the setting of the accessory detection operation power to 800 W. Incidentally, the accessory detection operating power of the conventional product A was 900 W.
[0041]
FIG. 2 and FIG. 3 show changes over time in power consumption with respect to elapsed time when the thermosensitive pot is heated by each main body. FIG. 2 shows a conventional product, and FIG. 3 shows an invention product. The solid line shows the power consumption and the dotted line shows the bottom surface temperature. As is clear from the figure, the small item detection function was activated when the power consumption of the thermosensitive pot decreased to about 900 W in the conventional product. Thereafter, the accessory detection function was repeatedly activated. In the conventional product, when the accessory detection is activated, the entire display is set to blink to notify the user that the accessory has been placed, but this blinking display is repeated even in the case of the current thermos pot It felt as if it had broken down, giving the user anxiety. Also, the temperature of the bottom surface was lower than the set Curie temperature as a result.
[0042]
On the other hand, in the case of Invention B, a stable cooking surface temperature could be obtained without entering the accessory detection operation even if the power consumption was reduced due to the self-temperature control function of the thermosensitive pot. In addition, the display for notifying the operation of the accessory detection does not blink, and the cooking surface temperature does not decrease or fluctuate due to the accessory detection operation.
[0043]
Here, the invention was set to reduce the small object detection operation power, but of course the invention is not limited to this, and in the case of a temperature sensitive pan, the setting is such that the display does not blink even if the small object detection function is activated. Alternatively, another display (for example, a display indicating that the self-temperature control function is operating) when the accessory detection function is operating may be set.
[0044]
(Example 2)
In the same manner as in Example 1, two types of a conventional product C and a product D of the present invention were prepared as induction heating device bodies. The conventional product C is set as a continuous energization preventing function so that when the energization time at a high thermal power becomes 10 minutes, the thermal power is automatically halved. In contrast, the product D of the present invention detects the fact that the object to be heated is a temperature-sensitive pot having a self-temperature control function in the initial stage of heating, and sets a limit on the energization time at a high heating power in the continuous energization prevention function. Not programmed.
[0045]
An experiment was conducted in each of the main units, in which 5 L of hot water was boiled using a temperature-sensitive pot. Changes in power consumption and hot water temperature at that time are shown in FIGS. 4 shows a conventional product C, and FIG. 5 shows a product D of the present invention. As is apparent from the figure, in the case of the conventional product C, the power consumption is reduced by half after 10 minutes from the start of energization, and the final springing time is 13 minutes. On the other hand, in the case of the invention product D, the commercial power does not decrease in the middle, and is 1.5 minutes earlier than the conventional product. It grew in 11.5 minutes. In addition, an experiment was conducted in which spaghetti for five family members was boiled under each condition. In the conventional product C, the power consumption during boiling was weak, so that the core remained even after boiling for a predetermined time, which did not work well. On the other hand, when the same cooking was performed with the product D of the present invention, the heating power during the boiling was sufficiently strong, and it was possible to boil well in a predetermined time.
[0046]
Here, the invention was set so as not to limit the energizing time in the case of the thermo-sensing pan, but of course the invention is not limited to this. It is also possible to change the power.
[0047]
(Example 3)
In the same manner as in Example 1, two types of a conventional product E and a product F of the present invention were prepared as induction heating device bodies. The conventional product E is provided with a function to prevent the temperature of the object to be heated from being excessively increased when the temperature of the sensor exceeds 200 ° C., and to reduce the thermal power in a stepwise manner. On the other hand, the product F of the present invention is programmed to detect the fact that the object to be heated is a temperature-sensitive pot having a self-temperature control function at the initial stage of heating and to eliminate the operating temperature in the overheat prevention function. ing.
[0048]
FIG. 6 and FIG. 7 show changes over time in power consumption with respect to elapsed time when the temperature-sensitive pot is heated by each body. FIG. 6 shows a conventional product, and FIG. 7 shows an invention product. The solid line shows the power consumption and the dotted line shows the bottom surface temperature. As is apparent from the figure, in the conventional product, the sensor temperature reaches 200 ° C. (not shown) about 5 minutes after the start of energization, and thereafter, the power consumption is reduced due to the excessive temperature rise prevention function. Along with this, the bottom surface temperature of the thermo-sensing pot also varies greatly between 200 and 250.
[0049]
On the other hand, in the invention product F, even if the power consumption is reduced by the self-temperature control function of the thermosensitive pot, the power consumption is not reduced by the overheating prevention function, and the temperature of the cooking surface depends on the Curie point. The temperature rose to the set temperature, and the temperature was kept stable thereafter.
[0050]
Here, as an invention product, in the case of a temperature-sensitive pot, the operating temperature in the overheating prevention function is eliminated, but it is not limited to this, and the operating temperature can be changed or It is also possible to change the setting of the power consumption.
[0051]
In each of the embodiments, whether or not the object to be heated is a temperature-sensitive pot is detected based on a change in power consumption. However, the present invention is not limited to this. If it is an index that indicates a change in power consumption of the pot at the initial stage of heating, such as a change in current or voltage, the determination may be made based on the index.
[0052]
【The invention's effect】
As is apparent from the above embodiment, according to the first to sixth aspects of the present invention, it is detected that the object to be heated is a temperature-sensitive pot having a self-temperature control function at an early stage of heating, and the pot is accordingly set. Since the operation condition setting of the control function corresponding to the abnormal temperature rise is changed, it is possible to provide an induction heating cooker capable of cooking at a sufficiently high heating power and high temperature while securing safety against abnormal heating.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of an induction heating cooker showing a first embodiment of the present invention. FIG. 2 is a graph showing temperature characteristics of a conventional product. FIG. 3 is a graph showing temperature characteristics in the first embodiment. FIG. 4 is a graph showing temperature characteristics of a conventional product. FIG. 5 is a graph showing temperature characteristics in a second embodiment. FIG. 6 is a graph showing temperature characteristics of a conventional product. FIG. 7 is a third embodiment. FIG. 8 is a schematic cross-sectional view illustrating a conventional induction heating cooker. FIG. 9 is a graph illustrating characteristics when a thermosensitive pot is heated by the induction heating cooker. FIG. 10 is an induction heating. Graph showing the characteristics when a pan made of only ordinary magnetic metal is heated in a cooker [Explanation of symbols]
1 Top plate 2 Heating coil 3 Heated object 4 Control circuit 5 Temperature sensor

Claims (6)

被加熱物を設置するトッププレートと、本体内部に配置され前記被加熱物を誘導加熱する加熱コイルと、被加熱物の温度を検知する温度センサーと、被加熱物への通電状態と前記温度センサーの温度に応じて前記加熱コイルへ供給する高周波電力を制御する制御回路とを備え、前記制御回路は、前記被加熱物の構成が、所定のキュリー温度を有する整磁合金を前記整磁合金よりも線膨張係数の大きな非磁性金属の少なくとも外側に一体化させた自己温度制御機能を有する誘導加熱調理器用鍋であるかどうかを前記被加熱物の調理面温度がキュリー温度に到達するまでの通電状態変化により検知し、この検知に応じて制御動作の設定条件を所定の条件に変更する誘導加熱調理器。A top plate for installing the object to be heated, a heating coil arranged inside the main body for induction heating the object to be heated, a temperature sensor for detecting the temperature of the object to be heated, a state of energizing the object to be heated, and the temperature sensor A control circuit for controlling high-frequency power supplied to the heating coil according to the temperature of the heating coil, wherein the configuration of the object to be heated is a magnetic shunt alloy having a predetermined Curie temperature by the magnetic shunt alloy. Whether the pot is an induction heating cooker having a self-temperature control function integrated at least on the outside of a non-magnetic metal having a large linear expansion coefficient and whether the cooking surface temperature of the object to be heated reaches the Curie temperature or not. An induction heating cooker that detects a state change and changes a set condition of a control operation to a predetermined condition according to the detection. 被加熱物を加熱するための消費電力が所定の値より小さいと加熱コイルへの高周波電力の供給を抑制または停止する小物検知機能を備え、制御回路は、被加熱物の自己温度制御機能を有していると検知した場合前記小物検知作動電力の設定を変更する請求項1に記載の誘導加熱調理器。If the power consumption for heating the object to be heated is smaller than a predetermined value, a small object detection function for suppressing or stopping the supply of high frequency power to the heating coil is provided, and the control circuit has a self-temperature control function for the object to be heated. 2. The induction heating cooker according to claim 1, wherein the setting of the accessory detection operation power is changed when the operation is detected. 高火力での連続通電時間を制限する連続通電防止機能を備え、制御回路は、被加熱物の自己温度制御機能を有していると検知した場合前記連続通電防止機能の設定を変更する請求項1または2に記載の誘導加熱調理器。A continuous power supply prevention function for limiting a continuous power supply time at a high heating power, wherein the control circuit changes a setting of the continuous power supply prevention function when detecting that the control circuit has a self-temperature control function of the object to be heated. 3. The induction heating cooker according to 1 or 2. 温度センサーの温度に応じて加熱コイルへの高周波電力の供給を制限する温度過昇防止機能を備え、制御回路は、被加熱物の自己温度制御機能を有していると検知した場合前記温度過昇防止機能の作動温度の設定を変更する請求項1〜3のいずれか1項に記載の誘導加熱調理器。An overheating prevention function is provided to limit the supply of high-frequency power to the heating coil in accordance with the temperature of the temperature sensor. When the control circuit detects that the heating object has a self-temperature control function, The induction heating cooker according to any one of claims 1 to 3, wherein a setting of an operation temperature of the rise prevention function is changed. 制御回路は、通電状態変化検知を消費電力変化又は入力電流変化で行う請求項1〜4のいずれか1項に記載の誘導加熱調理器。The induction heating cooker according to any one of claims 1 to 4, wherein the control circuit detects the energization state change by a power consumption change or an input current change. 制御回路は、鍋の調理面温度が所定のキュリー温度に到達するまでの消費電力変化に複数のピークを検出すると被加熱物が所定の自己温度制御機能を有する鍋と判断する請求項1〜5のいずれか1項に記載の誘導加熱調理器。The control circuit determines that the object to be heated is a pot having a predetermined self-temperature control function when detecting a plurality of peaks in a change in power consumption until the cooking surface temperature of the pot reaches a predetermined Curie temperature. The induction heating cooker according to any one of the above.
JP2003041111A 2003-02-19 2003-02-19 Induction heating cooker Expired - Fee Related JP3997925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003041111A JP3997925B2 (en) 2003-02-19 2003-02-19 Induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003041111A JP3997925B2 (en) 2003-02-19 2003-02-19 Induction heating cooker

Publications (2)

Publication Number Publication Date
JP2004253211A true JP2004253211A (en) 2004-09-09
JP3997925B2 JP3997925B2 (en) 2007-10-24

Family

ID=33024793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003041111A Expired - Fee Related JP3997925B2 (en) 2003-02-19 2003-02-19 Induction heating cooker

Country Status (1)

Country Link
JP (1) JP3997925B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059565A (en) * 2007-08-31 2009-03-19 Panasonic Corp Induction-heating cooker
WO2012026137A1 (en) * 2010-08-23 2012-03-01 三菱電機株式会社 Heat cooking device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248287A (en) * 1991-01-24 1992-09-03 Matsushita Electric Ind Co Ltd Pot for induction heating cooker
JP2001018075A (en) * 1999-07-02 2001-01-23 Sumitomo Special Metals Co Ltd Clad material for induction heating and manufacture thereof
JP2001110558A (en) * 1999-10-04 2001-04-20 Micron Corp Heater and heating apparatus and heating procedure
JP2001155846A (en) * 1999-09-13 2001-06-08 Fuji Electric Co Ltd Apparatus of controlling temperature of heating cooker container in electromagnetic cooker
JP2001257066A (en) * 2000-03-14 2001-09-21 Oki Ceramic:Kk Electromagnetic cooker
JP2003017235A (en) * 2001-06-27 2003-01-17 Matsushita Electric Ind Co Ltd Induction heating cooker
JP2003243143A (en) * 2002-02-14 2003-08-29 Matsushita Electric Ind Co Ltd Induction heating cooker

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248287A (en) * 1991-01-24 1992-09-03 Matsushita Electric Ind Co Ltd Pot for induction heating cooker
JP2001018075A (en) * 1999-07-02 2001-01-23 Sumitomo Special Metals Co Ltd Clad material for induction heating and manufacture thereof
JP2001155846A (en) * 1999-09-13 2001-06-08 Fuji Electric Co Ltd Apparatus of controlling temperature of heating cooker container in electromagnetic cooker
JP2001110558A (en) * 1999-10-04 2001-04-20 Micron Corp Heater and heating apparatus and heating procedure
JP2001257066A (en) * 2000-03-14 2001-09-21 Oki Ceramic:Kk Electromagnetic cooker
JP2003017235A (en) * 2001-06-27 2003-01-17 Matsushita Electric Ind Co Ltd Induction heating cooker
JP2003243143A (en) * 2002-02-14 2003-08-29 Matsushita Electric Ind Co Ltd Induction heating cooker

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059565A (en) * 2007-08-31 2009-03-19 Panasonic Corp Induction-heating cooker
WO2012026137A1 (en) * 2010-08-23 2012-03-01 三菱電機株式会社 Heat cooking device
CN103081563A (en) * 2010-08-23 2013-05-01 三菱电机株式会社 Heat cooking device
JP5414901B2 (en) * 2010-08-23 2014-02-12 三菱電機株式会社 Cooker
CN103081563B (en) * 2010-08-23 2015-04-22 三菱电机株式会社 Heat cooking device

Also Published As

Publication number Publication date
JP3997925B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
JP4892872B2 (en) Induction heating cooker
JP5655777B2 (en) Induction heating cooker
JP2009218140A (en) Induction heating cooking appliance
JP5211878B2 (en) Induction heating cooker
JP3997925B2 (en) Induction heating cooker
JP4075648B2 (en) Electric rice cooker and how to determine the amount of rice cooked
JP4114484B2 (en) Cooker
JP4887786B2 (en) Induction heating cooker
JP5591029B2 (en) Induction heating cooker
JP2003187953A (en) Induction heating cooker
JP2009043587A (en) Induction heating cooker
JP2008226750A (en) Electromagnetic cooker
JP4102258B2 (en) Induction heating cooker
JP2007141746A (en) Induction heating cooker
JP2005319066A (en) Electromagnetic induction type fryer
JP2932703B2 (en) Pot for induction heating cooker
JP3826809B2 (en) Induction heating cooker
JP5045650B2 (en) Induction heating cooker
JP5040133B2 (en) Induction heating cooker
JP4810888B2 (en) Induction heating cooker
JP2004146275A (en) Electromagnetic cooking device
JP2008135201A5 (en)
JP2004022251A (en) Electromagnetic induction cooker
JP2009134918A (en) Heating cooker
JP2917526B2 (en) Pot for induction heating cooker

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees