JP2917526B2 - Pot for induction heating cooker - Google Patents

Pot for induction heating cooker

Info

Publication number
JP2917526B2
JP2917526B2 JP40414190A JP40414190A JP2917526B2 JP 2917526 B2 JP2917526 B2 JP 2917526B2 JP 40414190 A JP40414190 A JP 40414190A JP 40414190 A JP40414190 A JP 40414190A JP 2917526 B2 JP2917526 B2 JP 2917526B2
Authority
JP
Japan
Prior art keywords
temperature
pot
metal material
magnetic metal
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP40414190A
Other languages
Japanese (ja)
Other versions
JPH04220990A (en
Inventor
芳生 荻野
英賢 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP40414190A priority Critical patent/JP2917526B2/en
Publication of JPH04220990A publication Critical patent/JPH04220990A/en
Application granted granted Critical
Publication of JP2917526B2 publication Critical patent/JP2917526B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、誘導加熱調理器用鍋に
関し、特に自己温度制御機能を有する鍋に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pot for an induction heating cooker, and more particularly to a pot having a self-temperature control function.

【0002】[0002]

【従来の技術】誘導加熱調理器はトッププレートの下側
に加熱コイルを配置し、前記加熱コイルで生じた磁力線
によりトップフレート上の誘導加熱調理器用鍋の底面内
に渦電流出を起こし発熱させるようになっている。
2. Description of the Related Art In an induction heating cooker, a heating coil is disposed below a top plate, and eddy currents are generated in the bottom surface of the induction heating cooker on the top plate by lines of magnetic force generated by the heating coil to generate heat. It has become.

【0003】このような誘導加熱調理器用鍋としては、
従来、ガスなどで使用されていた一般の鍋のうち金属製
のものが加熱に供されていた。しかしその場合、通常調
理において鍋の電気的特性は一定であるため、一定の火
力で加熱が続けられ、過熱防止や自動温度調節のために
はトッププレートを介して配置された温度検知手段(サ
ーミスタやバイメタルサーモスタットなど)の出力で誘
導加熱出力を増減して制御していた。
[0003] Such induction heating cooker pots include:
Conventionally, metal pots have been used for heating among general pots used for gas and the like. However, in this case, since the electric characteristics of the pot are constant during normal cooking, heating is continued with a constant heating power, and temperature detection means (thermistor) disposed via a top plate to prevent overheating and automatic temperature control. Or bimetal thermostat) to control the induction heating output.

【0004】[0004]

【発明が解決しようとする課題】しかし、このような加
熱出力制御方法では、トッププレートに使用されている
結晶化ガラスを介して鍋の温度を検知しているため、調
理用鍋の実際の温度とサーミスターの感受温度との温度
差が大きく熱応答性や検知精度が悪かった。そのため空
炊きなど異常使用状態では完全に温度制御することがで
きず、鍋中の油が発火したり、金属材料を使用した鍋で
は底面の著しいソリや変形などの問題が発生していた。
However, in such a heating power control method, since the temperature of the pot is detected through the crystallized glass used for the top plate, the actual temperature of the cooking pot is controlled. The temperature difference between the temperature and the temperature sensed by the thermistor was large, resulting in poor thermal response and detection accuracy. As a result, the temperature cannot be completely controlled in an abnormal use state such as empty cooking, and oil in the pot ignites, and a problem such as remarkable warpage or deformation of the bottom of a pot using a metal material occurs.

【0005】また、従来の温度検知では鍋底の一部分の
温度を検知するので、鍋の置き方や調理材料を偏って入
れた場合などでは検知精度が悪くなっていた。さらに、
空炊き時の鍋底の温度上昇と通常調理での温度上昇は鍋
底の部位により大きく変動するので、各種の使用条件で
常に精度良く鍋温度を検知することは極めて困難であっ
た。
Further, in the conventional temperature detection, since the temperature of a part of the bottom of the pot is detected, the accuracy of detection is poor when the pot is placed or when the cooking material is imbalanced. further,
Since the rise in the temperature of the pot bottom during empty cooking and the rise in the temperature during normal cooking vary greatly depending on the location of the pot bottom, it has been extremely difficult to always accurately detect the pot temperature under various use conditions.

【0006】本発明は上記従来の課題を解決しようとす
るもので、鍋そのものが自己温度制御機能を有する誘導
加熱調理器用鍋の実現により、常に高い安全性と高精度
な温度調節を提供するものである。
SUMMARY OF THE INVENTION The present invention is to solve the above-mentioned conventional problems, and always provides high safety and high-precision temperature control by realizing a pot for an induction heating cooker in which the pot itself has a self-temperature control function. It is.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明の誘導加熱調理器用鍋は、調理に使用される温
度にキュリー温度を設定し、キュリー温度の前後で鍋の
高周波電気抵抗が変化する温度依存性磁性金属材料と非
磁性金属材料を一体形成し、かつ、常温磁性金属の厚み
がキュリー温度以下での渦電流の浸透深さ以上でかつキ
ュリー温度以上での浸透深さ以下である鍋とすることに
より、所望の温度を越えないよう自動制御する鍋を実現
したものである。
In order to achieve the above object, a pot for an induction heating cooker according to the present invention sets a Curie temperature at a temperature used for cooking, and a high-frequency electric resistance of the pot before and after the Curie temperature. The temperature-dependent magnetic metal material and the non-magnetic metal material that change are integrally formed, and the thickness of the room-temperature magnetic metal
Is greater than the eddy current penetration depth below the Curie temperature and
To a pot that is below the penetration depth above the temperature
Thus, a pot that is automatically controlled so as not to exceed a desired temperature is realized.

【0008】[0008]

【作用】本発明では誘導加熱調理器に供される鍋の材質
にキュリー温度を有する磁性金属材料を使用し、キュリ
ー温度以下では磁性金属材料に渦電流が流れ、渦電流損
により発熱させる。
According to the present invention, a magnetic metal material having a Curie temperature is used as a material of a pot provided for an induction heating cooker. At a temperature lower than the Curie temperature, an eddy current flows through the magnetic metal material and heat is generated by eddy current loss.

【0009】このとき鍋底に流れる渦電流は加熱コイル
に近い表面に集中し、金属の中にいくにつれて電流が流
れにくくなる性質を持ち、表面電流に対し一定の値に減
少する時の表面からの深さを浸透深さと言い次式で表さ
れる。
At this time, the eddy current flowing in the bottom of the pot concentrates on the surface near the heating coil, and has a property that the current hardly flows as it goes into the metal. The depth is called penetration depth and is expressed by the following equation.

【0010】[0010]

【数1】 (Equation 1)

【0011】 浸透深さ以上の点では渦電流が少ないので交番磁界の
影響も少なく、浸透深さ以上の厚みを持つ金属の内側に
別の金属があっても全体の動作に大きく影響を与えな
い。
[0011] Since the eddy current is small at a point higher than the penetration depth, the influence of the alternating magnetic field is also small. Even if another metal exists inside the metal having a thickness larger than the penetration depth, the overall operation is not significantly affected.

【0012】一方、浸透深さ以下の金属ではその内側に
も磁界の影響があるので、内側にある金属の影響が全体
の誘導加熱に影響を与える。
On the other hand, metals below the penetration depth are also affected by the magnetic field inside, so that the effects of the metals inside affect the overall induction heating.

【0013】本発明の構成の鍋において、鍋の温度がキ
ュリー温度以下では加熱コイルから放射された超可超周
波数交番磁束は外側の磁性金属材料に流れているが、そ
の透磁率が高いので交番磁束により誘起された渦電流は
表皮効果により鍋の底側に集中する。
In the pot of the present invention, when the temperature of the pot is lower than the Curie temperature, the super-ultra-frequency alternating magnetic flux radiated from the heating coil flows to the outer magnetic metal material, but the alternating magnetic flux has a high magnetic permeability. The eddy current induced by the magnetic flux is concentrated on the bottom side of the pot due to the skin effect.

【0014】この結果、渦電流は磁性金属材料の表面
(鍋の底側)に集中的に流れるので鍋の電気抵抗は等価
的に大きくなり、渦電流によって発生するジュール熱が
大きく、誘導加熱の発熱量は大きくなる。このとき磁性
金属材料の厚みは常温での浸透深さ以上なければ通常で
も非磁性金属材料の影響を受けて十分な誘導加熱出力が
得られない。
As a result, the eddy current flows intensively on the surface (bottom side of the pan) of the magnetic metal material, so that the electric resistance of the pan becomes equivalently large, the Joule heat generated by the eddy current is large, and The calorific value increases. At this time, if the thickness of the magnetic metal material is not more than the penetration depth at room temperature, a sufficient induction heating output cannot be obtained due to the influence of the non-magnetic metal material even under normal conditions.

【0015】一方、キュリー温度以上では磁性金属材料
は磁性を失うので、透磁率が低くなり渦電流の浸透深さ
(表面電流が一定率に下がるまでの表面からの深さ)が
深くなる。このため、磁性金属材料の底側表面にのみ流
れていた渦電流は磁性金属材料(キュリー温度を越えて
いるので磁性は失っているが)のさらに内部に流れるよ
うになり、その結果、電気抵抗値が大幅に低下するので
ジュール熱も大幅に低下する。この様にキュリー温度前
後での誘導加熱出力を制御することができる。
On the other hand, when the temperature is higher than the Curie temperature, the magnetic metal material loses magnetism, so that the magnetic permeability decreases and the penetration depth of the eddy current (the depth from the surface until the surface current decreases to a certain rate) increases. As a result, the eddy current flowing only on the bottom surface of the magnetic metal material flows further inside the magnetic metal material (although the magnetism has been lost because the temperature has exceeded the Curie temperature). Since the value is greatly reduced, Joule heat is also significantly reduced. In this way, the induction heating output before and after the Curie temperature can be controlled.

【0016】さらに、磁性金属材料の厚みがキュリー温
度以上での浸透深さより薄い場合には、キュリー温度を
越えたときに磁束が磁性金属材料を貫通して非磁性金属
材料に到達するので、電気抵抗の少ない非磁性金属材料
によりジュール熱の発生はさらに低下し、キュリー温度
前後での発熱量の変化がさらに大きくなって制御上好都
合である。
Further, when the thickness of the magnetic metal material is thinner than the penetration depth above the Curie temperature, the magnetic flux penetrates the magnetic metal material and reaches the non-magnetic metal material when the temperature exceeds the Curie temperature. The generation of Joule heat is further reduced by the non-magnetic metal material having a small resistance, and the change in the calorific value before and after the Curie temperature is further increased, which is convenient for control.

【0017】磁性の変化による電気抵抗値の変化の様子
を試験に供した感温ステンレスの場合で説明する。
The state of the change in the electric resistance value due to the change in the magnetism will be described in the case of a temperature-sensitive stainless steel subjected to a test.

【0018】[0018]

【表1】 [Table 1]

【0019】(表1)で分かるように、同じ特性の金属
であっても磁性体か否かでは電気抵抗が10分の1に低
下する。換言すれば、鍋底に発生するジュール熱は電気
抵抗に比例するので、磁性を失うことにより発生する熱
量は10分の1に低下する。ここで、磁性金属材料の厚
みが浸透深さより薄いと常温時に交番磁束が磁性金属材
料を大量に貫通し非磁性金属材料へ到達するので、キュ
リー温度を越えたときの出力との差が狭くなり火力の制
御幅が小さくなり、磁性金属材料の厚みは常温時の浸透
深さ以上の厚さが必要である。
As can be seen from Table 1, even if the metals have the same characteristics, the electrical resistance is reduced to one-tenth depending on whether they are magnetic or not. In other words, since the Joule heat generated at the bottom of the pot is proportional to the electric resistance, the amount of heat generated by losing magnetism is reduced to one tenth. Here, if the thickness of the magnetic metal material is thinner than the penetration depth, the alternating magnetic flux penetrates the magnetic metal material in large quantities at room temperature and reaches the non-magnetic metal material, so the difference from the output when the Curie temperature is exceeded is narrowed. The control range of the thermal power becomes small, and the thickness of the magnetic metal material needs to be greater than the penetration depth at room temperature.

【0020】さらに、磁性金属材料の厚みを高温時の浸
透深さ以下にするとキュリー温度以上では非磁性金属材
料にも磁束が到達するためジュール熱が大きく低下し制
御範囲を広くすることが可能である。
Further, when the thickness of the magnetic metal material is set to be equal to or less than the penetration depth at a high temperature, the magnetic flux reaches the nonmagnetic metal material at a temperature higher than the Curie temperature, so that Joule heat is greatly reduced and the control range can be widened. is there.

【0021】ここで加熱動作の変化の様子を順を追って
説明する。 まず、常温から加熱を開始するとキュリー
温度になるまでは大きな発熱量で加熱し、その結果、鍋
がキュリー温度に達すると鍋自体が自動的に特性を変化
し発生する発熱量が少なくなる。そして、鍋の温度が低
下しキュリー温度以下になると、金属材料が再び磁性を
取り戻し、大きな発熱量での加熱を再開する。
Here, the state of the change of the heating operation will be described step by step. First, when heating is started from room temperature, heating is performed with a large amount of heat until the Curie temperature is reached. As a result, when the pot reaches the Curie temperature, the pot itself changes its characteristics automatically and the amount of generated heat decreases. Then, when the temperature of the pot falls and becomes equal to or lower than the Curie temperature, the metal material regains magnetism and restarts heating with a large calorific value.

【0022】ここで、鍋の磁性金属材料のキュリー温度
を所望の設定温度に選ぶと、上述した動作により発熱量
のコントロールを鍋自身が自動的に行なうことができ、
このような理由によりキュリー温度を制御したい温度に
精度良く制御することが可能となる。
Here, when the Curie temperature of the magnetic metal material of the pan is selected to a desired set temperature, the pan itself can automatically control the calorific value by the operation described above.
For this reason, the Curie temperature can be accurately controlled to a desired temperature.

【0023】特に油を使用する鍋として用いる場合は高
温調理温度である180〜280℃程度のキュリー温度
を持つ磁性金属材料が最適である。この温度は材料の組
成を調節することによって自在に設定できるので、調理
メニューにより適切に選べる。その一例として、キュリ
ー温度を100℃に選べば水が沸騰したら自動的に加熱
を中断し、沸騰後の水の無駄な蒸発を防止するやかんが
実現できる。
Particularly when used as a pot using oil, a magnetic metal material having a Curie temperature of about 180 to 280 ° C., which is a high-temperature cooking temperature, is optimal. This temperature can be freely set by adjusting the composition of the material, so that it can be appropriately selected in the cooking menu. As an example, if the Curie temperature is selected to be 100 ° C., heating is automatically interrupted when water boils, and a kettle that prevents wasteful evaporation of water after boiling can be realized.

【0024】また、キュリー温度を有する磁性金属材料
としてニッケル合金、鉄クロム系合金がキュリー温度を
自由に変えることができると共に発熱量を決定する表皮
抵抗が大きいため最適であり、非磁性金属材料としては
アルミ、銅や鏡等の材料及びそれらの合金が熱伝導率が
高い上に調理容器としての要素を備えてており、本発明
に適用する上でも適切である。
Further, nickel alloys and iron-chromium alloys as magnetic metal materials having a Curie temperature are optimal because they can freely change the Curie temperature and have a large skin resistance which determines the calorific value. Since materials such as aluminum, copper, mirrors, and alloys thereof have high thermal conductivity and are provided with an element as a cooking vessel, they are suitable for application to the present invention.

【0025】[0025]

【実施例】以下、本発明の具体的な実施例について添付
図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described with reference to the accompanying drawings.

【0026】図1は本発明の誘導加熱調理器用鍋の一実
施例の断面図である。1は耐熱性絶縁物3の上に載置さ
れた板厚3mmの誘導加熱調理器用鍋であり、円盤状の加
熱コイル2に対向して置かれる。鍋1は非磁性金属材料
であり、熱伝導のよいアルミで構成された本体部分1a
と180度のキュリー温度を有するニッケル合金である
常温磁性金属材料1bで構成されている。一般に磁性金
属材料は熱伝導率が低いために、調理容器としては温度
むらにつながるが、本発明では熱伝導のよい非磁性金属
材料の本体部分1aを一体形成しているため温度の均一
化が図られている。
FIG. 1 is a cross-sectional view of an embodiment of the induction cooking pot of the present invention. Reference numeral 1 denotes a 3 mm-thick induction heating cooker placed on a heat-resistant insulator 3, which is placed opposite to a disk-shaped heating coil 2. The pot 1 is a non-magnetic metal material, and a main body 1a made of aluminum having good heat conductivity.
And a room temperature magnetic metal material 1b which is a nickel alloy having a Curie temperature of 180 degrees. Generally, a magnetic metal material has a low thermal conductivity, which leads to temperature unevenness as a cooking vessel. However, in the present invention, since the main body portion 1a of a non-magnetic metal material having good heat conductivity is integrally formed, the temperature can be made uniform. It is planned.

【0027】実施例での構成は磁性金属材料1bは厚み
0.5mmで、Ni40パーセント、Cr 8パーセン
ト、Fe 52パーセントのNi合金であり、非磁性金
属材料1aは2.5mmの厚みのアルミニウムである。従
って、作用にて既述の様に常温での浸透深さは約0.2
8mmでキュリー温度を越えると2.75mmに変化し、磁
性金属材料の厚みは常温での浸透深さの約2倍で高温時
の浸透深さの約0.2倍である。
In the embodiment, the magnetic metal material 1b has a thickness of 0.5 mm and is a Ni alloy of 40% Ni, 8% Cr and 52% Fe, and the non-magnetic metal material 1a is 2.5 mm thick aluminum. is there. Therefore, as described above, the depth of penetration at room temperature is about 0.2.
When it exceeds the Curie temperature at 8 mm, it changes to 2.75 mm, and the thickness of the magnetic metal material is about twice the penetration depth at normal temperature and about 0.2 times the penetration depth at high temperature.

【0028】本発明の誘導加熱調理器用鍋1の評価をす
るために、本発明の誘導加熱調理器用鍋1に油を入れ、
これを誘導加熱調理器のトッププレート2の上に置きて
んぷら調理を行った。このときの状態を図2にしたがっ
て説明する。aのタイミングで油を入れた鍋1の常温磁
性金属材料1bを誘導加熱し始める。常温磁性金属材料
1bで発生した熱は本体部分1aに伝導し油を加熱す
る。そのときの誘導加熱の出力は1200Wである。そ
の後、一定した火力で継続加熱されるので油温はほぼ直
線的に上昇し、鍋温度が予め設定された180℃のキュ
リー温度に達すると、鍋1は急速に非磁性体に変化し、
誘導加熱の出力は250Wに低下する。低下したときの
出力値(この場合は250W)は、磁性金属材料の本体
部分1aの材質や厚み・形状などで可変する事が可能で
ある。鍋1がキュリー温度に達した後は火力が大幅に低
下するので油温は徐々に175℃(c点)まで低下し続
ける。このとき常温磁性金属材料1bが再び磁性を復活
するので、火力は再び1200Wに自動的に上昇し油温
は急速にキュリー温度の180℃に向かって上昇する。
油の中にてんぷら等の食材を投入して鍋の温度が175
℃に低下した場合も同様に火力が自動的に入・切され、
油温を一定に保つ。
In order to evaluate the induction cooking pot 1 of the present invention, oil is put into the induction cooking pot 1 of the present invention.
This was placed on the top plate 2 of the induction heating cooker to perform tempura cooking. The state at this time will be described with reference to FIG. At the timing a, the induction heating of the room-temperature magnetic metal material 1b of the pot 1 containing the oil is started. The heat generated by the room-temperature magnetic metal material 1b is conducted to the main body 1a to heat the oil. The output of induction heating at that time is 1200 W. Then, the oil temperature rises almost linearly because it is continuously heated with a constant heating power, and when the pan temperature reaches the preset Curie temperature of 180 ° C., the pan 1 rapidly changes to a non-magnetic material,
The output of induction heating drops to 250W. The output value when reduced (250 W in this case) can be changed by the material, thickness, shape, etc. of the main body portion 1a of the magnetic metal material. After the pot 1 has reached the Curie temperature, the thermal power is greatly reduced, so that the oil temperature gradually decreases to 175 ° C (point c). At this time, since the room-temperature magnetic metal material 1b regains magnetism again, the thermal power automatically rises again to 1200 W and the oil temperature rapidly rises toward the Curie temperature of 180 ° C.
Add ingredients such as tempura in oil and let the temperature of the pot rise to 175
Similarly, when the temperature drops to ℃, the thermal power is automatically turned on and off,
Keep oil temperature constant.

【0029】なお、一般的に誘導加熱調理器には小物発
熱防止が施されており、通常の鍋に対して入力値が大幅
に少ない場合は加熱を自動的に停止する。上記実施例で
キュリー温度を越えた場合の入力が小物検知レベルより
少なかった場合には、一旦加熱を中止するが所定時間
(通常1〜3秒)経過後には自動的に再起動し鍋温度が
175℃以下であれば1200Wで加熱を自動的に開始
する。また、鍋温度が175℃に低下していない場合
は、入力が少ないので再度小物検知により加熱が中断さ
れる。従って、鍋の特性でキュリー温度を越えたときの
入力が変化するが、小物検知レベルより高くても低くて
も鍋温度の自動制御が可能である。
In general, the induction heating cooker is provided with heat prevention for small items, and when the input value is much smaller than that of a normal pot, heating is automatically stopped. In the above embodiment, if the input when the temperature exceeds the Curie temperature is less than the small object detection level, the heating is temporarily stopped, but after a predetermined time (usually 1 to 3 seconds) has elapsed, the heating is automatically restarted and the pot temperature is reduced. If it is 175 ° C. or lower, heating is automatically started at 1200 W. If the temperature of the pot has not dropped to 175 ° C., the input is small and the heating is interrupted again by detecting the small object. Therefore, the input when the temperature exceeds the Curie temperature changes due to the characteristics of the pan, but the pan temperature can be automatically controlled whether it is higher or lower than the accessory detection level.

【0030】図1の実施例では非磁性金属材料と磁性金
属材料を一体形成したクラッド板を絞って加工した構造
の鍋に基づいて説明したが、図3に示すようにアルミ製
の鍋4aの底部分(加熱コイルに対抗する部分)に磁性
金属材料4bを装着あるいは爆着により一体形成して鍋
4を構成してもよく、図1と全く同様の働きが得られ
る。この実施例では、鍋底の強度が高いので空炊きなど
でも底が常にフラットであり、トッププレートに載せて
も安定している上に鍋の計量化が図れるので極めて好都
合である。
The embodiment of FIG. 1 has been described based on a pot having a structure formed by squeezing and processing a clad plate in which a non-magnetic metal material and a magnetic metal material are integrally formed. However, as shown in FIG. The pan 4 may be formed by attaching or bombarding the magnetic metal material 4b to the bottom portion (the portion opposing the heating coil), and the same operation as in FIG. 1 is obtained. In this embodiment, the bottom of the pot is high in strength, so that the bottom is always flat even in empty cooking, and is stable even when placed on the top plate.

【0031】このように本発明の誘導加熱調理器用鍋は
自己温度制御機能を有し、調理性能を高めたり、油の発
火などの安全性を高めることに加えて温度分布が少なく
なるなど安全性と調理性能の著しい効果が期待出来る。
As described above, the pot for the induction heating cooker of the present invention has a self-temperature control function, and in addition to enhancing cooking performance and safety such as ignition of oil, the temperature distribution is reduced and the safety is reduced. And the remarkable effect of cooking performance can be expected.

【0032】また、キュリー温度を有する磁性金属材料
としてニッケル合金を使用したがこれに限定されるもの
ではなく、設定温度や機械的強度・加工性などにより適
宜選ぶことができる。
Although a nickel alloy was used as the magnetic metal material having a Curie temperature, the present invention is not limited to this, and it can be appropriately selected according to the set temperature, mechanical strength, workability, and the like.

【0033】さらにキュリー温度として180度につい
て説明したがこれについても特にこの温度に限定される
ものでなく、例えばやかん用には100℃であったり鉄
板焼用には260℃のキュリー温度にするなど調理上要
求される所望の温度を選べばよい。
Further, the description has been given of a 180 ° Curie temperature, but this is not particularly limited to this temperature. For example, a cooking temperature of 100 ° C. for kettles and a Curie temperature of 260 ° C. for teppanyaki are used. What is necessary is just to select the desired temperature required above.

【0034】[0034]

【発明の効果】以上の説明から明かなように、本発明の
誘導加熱調理器用鍋によれば以下の効果がある。
As is apparent from the above description, the pot for an induction heating cooker according to the present invention has the following effects.

【0035】(1)設定された温度に達するまでは最大
出力で加熱するので立ち上がり時間(予熱時間)を最短
にできる。
(1) Since heating is performed at the maximum output until the set temperature is reached, the rise time (preheating time) can be minimized.

【0036】(2)誘導加熱であるので熱容量がないの
で、設定温度に達した後の鍋温度にオーバーシュートが
ない。
(2) Since there is no heat capacity due to induction heating, there is no overshoot in the pot temperature after reaching the set temperature.

【0037】(3)食材の投入などで鍋温度が急激に低
下しても、時間遅れなく最大火力で加熱が自動的に開始
され温度精度が極めて良い。
(3) Even if the temperature of the pot suddenly drops due to the input of foodstuffs, heating is automatically started at the maximum heating power with no time delay, and the temperature accuracy is extremely good.

【0038】(4)誘導加熱調理器本体の温度検知精度
に依存しないので、鍋と本体の組合せが自由である。
(調理器本体が変わっても一定の温度精度が得られる) (5)鍋底の平均温度で作用するので、鍋の置き方や材
料の偏り等により精度や動作が影響されない。
(4) Since it does not depend on the accuracy of detecting the temperature of the induction heating cooker main body, the combination of the pot and the main body is free.
(Constant temperature accuracy can be obtained even if the cooking device body is changed.) (5) Since the operation is performed at the average temperature at the bottom of the pan, the accuracy and operation are not affected by the way of placing the pan or the bias of the material.

【0039】(6)非磁性金属材料は熱伝導が良いの
で、調理物への温度むらが少ない。
(6) Since the non-magnetic metal material has good heat conduction, there is little unevenness in the temperature of the food.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の誘導加熱調理器用鍋の断面
FIG. 1 is a cross-sectional view of an induction cooking pot according to one embodiment of the present invention.

【図2】同動作の説明図FIG. 2 is an explanatory diagram of the operation.

【図3】他の実施例を示す誘導加熱調理器用鍋の断面図FIG. 3 is a cross-sectional view of a pot for an induction heating cooker showing another embodiment.

【符号の説明】[Explanation of symbols]

1,4 誘導加熱調理器用鍋 1a,4a 本体部分(非磁性金属材料) 1b,4b 常温磁性金属材料 2 加熱コイル 3 耐熱性絶縁材料 1,4 Induction cooker pot 1a, 4a Main body (non-magnetic metal material) 1b, 4b Room temperature magnetic metal material 2 Heating coil 3 Heat resistant insulating material

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H05B 6/12 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H05B 6/12

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 非磁性の良熱伝導性金属で構成された調
理用容器の外側の、少なくとも加熱コイルに対向した部
分に所定のキュリー温度を有した常温磁性金属を一体形
成し、前記常温磁性金属の厚みがキュリー温度以下での
渦電流の浸透深さ以上でかつキュリー温度以上での浸透
深さ以下である誘導加熱調理器用鍋。
1. A room-temperature magnetic metal having a predetermined Curie temperature is integrally formed at least in a portion facing a heating coil outside a cooking container made of a nonmagnetic good heat conductive metal, A pot for an induction heating cooker, wherein the thickness of the metal is not less than the penetration depth of the eddy current below the Curie temperature and less than the penetration depth above the Curie temperature.
JP40414190A 1990-12-20 1990-12-20 Pot for induction heating cooker Expired - Lifetime JP2917526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40414190A JP2917526B2 (en) 1990-12-20 1990-12-20 Pot for induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40414190A JP2917526B2 (en) 1990-12-20 1990-12-20 Pot for induction heating cooker

Publications (2)

Publication Number Publication Date
JPH04220990A JPH04220990A (en) 1992-08-11
JP2917526B2 true JP2917526B2 (en) 1999-07-12

Family

ID=18513834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40414190A Expired - Lifetime JP2917526B2 (en) 1990-12-20 1990-12-20 Pot for induction heating cooker

Country Status (1)

Country Link
JP (1) JP2917526B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167157A (en) * 2004-12-16 2006-06-29 Matsushita Electric Ind Co Ltd Pot for ih cooking heater
JP5630495B2 (en) * 2012-12-26 2014-11-26 東芝ホームテクノ株式会社 Cooker

Also Published As

Publication number Publication date
JPH04220990A (en) 1992-08-11

Similar Documents

Publication Publication Date Title
US4044348A (en) Circuit energization indicator with thermal timing means to maintain the indication for a predetermined time after de-energization
TW200414789A (en) Sheathed heating element with positive temperature coefficient
JP2917526B2 (en) Pot for induction heating cooker
EP3979768B1 (en) Smart and safe cookware and cooking system
US3267256A (en) Portable electric heating device
JP2932703B2 (en) Pot for induction heating cooker
JPH04242093A (en) Pan for induction heating cooker
JP3698116B2 (en) Heating plate and pan for induction heating cooker
JPS6023722A (en) Temperature controlling device for heater for cooking
JP2001155846A (en) Apparatus of controlling temperature of heating cooker container in electromagnetic cooker
JP3956900B2 (en) Clad material for induction heating and manufacturing method thereof
JP3997925B2 (en) Induction heating cooker
JPH0665141B2 (en) Induction heating cooker
JPH04220989A (en) Deep pan for induction heating cooking apparatus
JPH0211759Y2 (en)
JPH0380813A (en) Cooker
JP2001252183A (en) Cooking container for induction heating cooker and method of manufacturing the same
JPH0243965B2 (en)
JPH0570914B2 (en)
JP2006344452A (en) Induction heating cooker
JP2893841B2 (en) Cooker
JPS61233988A (en) Induction heating cooker
JP3052287U (en) Electric water heater
CN115429093A (en) Cooking device
JPH10261479A (en) Egg frying pan for electromagnetic cooker

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 12