JP2004251316A - Rolling bearing with rotation sensor - Google Patents

Rolling bearing with rotation sensor Download PDF

Info

Publication number
JP2004251316A
JP2004251316A JP2003039674A JP2003039674A JP2004251316A JP 2004251316 A JP2004251316 A JP 2004251316A JP 2003039674 A JP2003039674 A JP 2003039674A JP 2003039674 A JP2003039674 A JP 2003039674A JP 2004251316 A JP2004251316 A JP 2004251316A
Authority
JP
Japan
Prior art keywords
outer ring
bearing
ring
core
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003039674A
Other languages
Japanese (ja)
Other versions
JP4208599B2 (en
Inventor
Shoichi Hioki
章一 日置
Hiroyoshi Ito
浩義 伊藤
Keiji Yanagida
圭治 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2003039674A priority Critical patent/JP4208599B2/en
Publication of JP2004251316A publication Critical patent/JP2004251316A/en
Application granted granted Critical
Publication of JP4208599B2 publication Critical patent/JP4208599B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/04Ball or roller bearings, e.g. with resilient rolling bodies
    • F16C27/045Ball or roller bearings, e.g. with resilient rolling bodies with a fluid film, e.g. squeeze film damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/10Force connections, e.g. clamping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/30Material joints
    • F16C2226/36Material joints by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/067Fixing them in a housing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent extraction of a magnetic encoder fitted to an outer ring in an outer ring rotating type rolling bearing with a rotation sensor, and to prevent creep between the outer ring of a bearing and a bearing housing to cause disconnection of a sensor cable. <P>SOLUTION: A core 7 of a magnetic encoder 8 is press-fitted in an outer ring 1. The core 7 is fixed to an end face of the outer ring 1 at a welded part 9 by laser beam welding or electronic beam welding. Viscous lubricant 26 is sealed between the outer ring and a bearing housing 23 by using two ring-shaped annular bodies 25. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、回転センサ付き軸受に関し、主として回転センサ付き転がり軸受に関するものである。
【0002】
【従来の技術】
各種回転装置の回転数を検出するために、軸受に磁気エンコーダと磁気センサとからなる回転センサを装着することが従来から知られている。軸受として転がり軸受を使用する場合、一般的には、その軸受を内輪回転型として用い、回転側の内輪に環状の磁気エンコーダを取付けるとともに、固定側の外輪にその磁気エンコーダに所要のすき間をおいて磁気センサが取付けられる(特許文献1又は2参照)。
【0003】
前記の磁気エンコーダを内輪に固定する手段としては、標準軸受に取付ける場合は、幅方向のスペースが極めて狭く、かつ同芯度を確保するために、その芯金を内輪の外径面に圧入することにより固定する手段が採用される。この場合、内輪の内径面に軸が貫通されているので、繰返し荷重が負荷されても、磁気エンコーダが内輪を介して軸によりバックアップされるため、変形のおそれはなく、したがって内輪から磁気エンコーダが外れるおそれがない。
【0004】
なお、特許文献1には、磁気センサ側の金属支持部材(芯金)を固定側である外輪の端面に溶接することが記載されている。
【0005】
一方、軸受一般の技術として、軸受外輪が軸受箱に正のスキマで嵌合されているときに外輪に回転荷重が加わると、いわゆるクリープが発生することが従来から知られている。そのクリープの有効な防止手段として、外輪の外周面と軸受箱との間に2本のリング状環体を介在し、その2本のリング状環体の間の密封空間にグリース等の粘性潤滑剤を付着させる軸受支持構造が知られている(特許文献3参照)。この構造は、軸受の使用時において、外輪に荷重が加わり外輪が軸受箱に対して荷重の方向に偏芯させられた際に、2本のリング状環体間に粘性潤滑剤の高圧流体薄膜を形成させ、その流体薄膜を介して外輪を支持することにより、クリープを防止するようにしたものである。上記の軸受支持構造は、後述のようにこの出願の発明の従来技術となる。
【0006】
【特許文献1】
特開平10−300516号公報(図3、段落0020)
【特許文献2】
特開2002−295465号公報(図1、段落0003)
【特許文献3】
実公昭52−8896号公報(第6図と実施例の説明)
【0007】
【発明が解決しようとする課題】
前記の特許文献1及び2の場合とは逆に、内輪を固定側、外輪を回転側とした外輪回転型の回転センサ付き軸受の場合は、磁気エンコーダは外輪側に取付けられ、磁気センサは内輪側に取付けられる。この場合、従来の取付け手段と同様に、磁気エンコーダを外輪の内径面に圧入固定することにより取付けたとすると、軸受組込み時の打撃、荷重負荷時の外輪に対する繰返し曲げ変形等による抜け出しが発生するおそれがある。また、脱落防止のカシメなど他の固定方法を併用するにはスペースが狭く、併用は不可能である。
【0008】
前記の繰返し曲げ変形が発生する構造は次のようなものである。即ち、回転する外輪の外径面に半径方向内向きの荷重が作用した場合、その荷重が転動体の部分に作用するときの外輪の内方への弾性変形は該転動体に支えられるため小さいが、荷重が転動体相互間に作用した場合は外輪の内方への弾性変形が前者に比べて大きくなる。このような状態で外輪が回転すると外輪に繰返し曲げ変形が発生するのである。このような繰返し曲げ変形の発生により、所要の締めしろをもって圧入した磁気エンコーダが軸方向に抜け出ることがある。ちなみに、内輪回転の場合は、内輪側に軸が嵌っているので、このような現象は生じない。
【0009】
上述のように、外輪回転・外輪回転荷重の条件下で使用される回転センサ付き軸受においては、外輪に取付ける磁気エンコーダを単に外輪に対し圧入固定するだけでは、組込み時や使用時において抜け出すおそれがあることにかんがみ、この発明は、外輪に対し磁気エンコーダを確実に取付け、その抜け出しを防止した外輪回転型の回転センサ付き軸受を提供することを第一の課題とする。
【0010】
一方、外輪回転・外輪回転荷重の条件下で使用される回転センサ付き軸受においては、内輪と軸との間に配線された磁気センサの信号を出力するケーブルの断線を避けるため、両者が相対的に回転する構造は採用できない。このため、軸と内輪はタイトにはめ合わせる必要があるが、クリープ防止の観点からは外輪も軸受箱に対してタイトにはめ合わせる必要がある。しかし、内外輪共にタイトにはめ合わせることは軸受の組込み上困難である。
【0011】
そこで、この発明は、前述の第一の課題と併せ、ケーブルの断線を防止すると共に組付けの容易な構造をもった回転センサ付き軸受を提供することを第二の課題とする。
【0012】
【課題を解決するための手段】
上記の第一の課題を解決するために、この発明は、外輪に芯金を介してエンコーダを取付け、そのエンコーダに対し所要のすき間をおいて対向したセンサを内輪に取付け、前記内輪を固定側、外輪を回転側として使用する外輪回転型の回転センサ付き軸受において、前記エンコーダの芯金を外輪に対して圧入するとともに、その芯金を外輪に対しレーザ溶接又は電子ビーム溶接により固定した構成を採用した。
【0013】
芯金と外輪との溶接方法としては、芯金(例えば、SPCC)と外輪(例えば、SUJ2)が異種材料であること、磁気エンコーダがゴム磁石を用いており熱に弱いこと、外輪が焼き入れされており非常に割れ易い材料であることから、レーザ溶接又は電子ビーム溶接が有効である。
【0014】
また、溶接位置を、外輪の曲げの圧縮応力と引張り応力の中心線上又はその近傍とすることが望ましい。溶接部への負荷を減少させるためである。溶接は芯金の全周又は数点において行う。
【0015】
前記の第二の課題を達成するために、この発明は、前述の回転センサ付き軸受において、その外輪の外周面と軸受箱との間に少なくとも2本のリング状環体を介在し、そのリング状環体の間に粘性潤滑剤を付着させた構成を採用したのである。この構成によると、外輪のクリープが防止されるとともに、外輪と軸受箱のはめ合わせはルーズであるので、軸と内輪とのはめ合わせをタイトにした場合でも外輪側の組込みに支障を来たすことがない。
【0016】
【発明の実施の形態】
以下、この発明の実施形態を添付図面に基づいて説明する。図1及び図2に示した第1実施例は外輪回転型の転がり軸受であり、外輪1と内輪2の各軌道溝3、4間に保持器5により一定間隔に保持された転動体としてのボール6を介在している。
【0017】
前記外輪1の一方の端面に環状の芯金7に支持された磁気エンコーダ8が取付けられる。磁気エンコーダ8はゴム磁石でなり、周方向に一定間隔で交互に異極に磁化されたものである。芯金7は、小径円筒部7a、円盤部7b、大径円筒部7cからなり、その小径円筒部7aを外輪1の内径面端部に圧入するとともに、円盤部7bを外輪1の端面に当てて取付けられる。大径円筒部7cは、外輪1の曲げ変形の中立線N上にある。円盤部7bと大径円筒部7cとの間の屈曲部は中立線N上にあり、中立線Nにおいて溶接が施される(溶接部9参照)。好ましい溶接法として、レーザ溶接又は電子ビーム溶接を採用することができる。溶接位置は、図2に示すように、数点において点状に溶接した場合を示しているが、全周に施してもよい。
【0018】
前記の芯金7は小径円筒部7a、円盤部7bがあることにより、大径円筒部7cを直接溶接する場合に比べ溶接時の位置決めとなり、高精度に溶接でき、また溶接による変形(倒れ)もない。また、溶接部9の位置を中立線N上に設定することにより、溶接部9における外輪1の曲げは理論上ゼロであり、溶接部9に繰返しせん断力は作用しない。
【0019】
固定側となる内輪2においては、前記の磁気エンコーダ8側の端部外径面に環状のハウジング芯金11が取付けられ、そのハウジング芯金11に樹脂モールドによるセンサハウジング12が一体に設けられる。ハウジング芯金11は大径円筒部11a、円盤部11b及び小径円筒部11cを有し、その大径円筒部11aが内輪2に圧入固定される。また、小径円筒部11c端縁の全周数ヶ所に外径方向への切り起こし13が設けられ、センサハウジング12の抜け止めを図っている。センサハウジング12の外周縁は、その断面形状から分かるように、外輪1の中立線N程度に達しており、また、その外周部内面に全周にわたり軸方向と径方向に切り欠かれたL形の段部14が形成され、その段部14に前記の磁気エンコーダ8が所定のすき間をおいて対向している。
【0020】
前記センサハウジング12の一部分において、周方向に長い凹部15が設けられ、その凹部15内に電気回路基板16に支持された磁気センサ17が収納される。磁気センサ17は前記段部14の軸方向の面から内径面に露出し、磁気エンコーダ8と所定のすき間をおいて径方向に対向する。また、電気回路基板16の部分において、センサハウジング12の内径方向に突き出してケーブル取出し部18が設けられる。このケーブル取出し部18は、内部にケーブル19を挿通した状態で樹脂モールドされる。ケーブル19の一端は電気回路基板16に接続され、また、他端は内輪2の内側に配置された保護チューブ21に挿通され、外部に引出される。
【0021】
なお、前記外輪1と内輪2の他方の端部間に通常のシール部材22が設けられる。
【0022】
図3は前記の第1実施例の実施品、即ち「溶接有り」(但し、溶接はレーザ溶接を採用)と、従来品、即ち「溶接なし」について、負荷荷重と外輪の繰返し変形に対する脱落までの変形回数の試験結果である。「溶接有り」の場合が約100倍の耐久性を発揮することが確認できた。また、レーザ溶接は熱影響が非常に狭いので、溶接前後の変形がなく、磁気エンコーダの脱磁も生じない。また、焼き入れ鋼の軸受材にもクラックを生じない。更に、防錆油の塗布状態での溶接が可能である。なお、電子ビーム溶接の場合も同様の効果が認められた。
【0023】
図4(a)(b)は、磁気エンコーダ8の芯金7の他の例を示す。いずれの場合も、外輪1の曲げ変形を小径円筒部7aから円盤部7bを介して溶接部9に伝播させないか又は伝播し難くするようにしたものである。図4(a)の場合は、芯金7の小径円筒部7aを外輪1の内径面にすき間嵌めしている。図4(b)の場合は小径円筒部7aの肉厚t1を他の部分の肉厚tの0.5〜0.8倍の大きさ、即ちt1=0.5〜0.8×tに設定している。
【0024】
次に、図5に示した第2実施例、図6に示した第3実施例は、いずれも軸受の構造は前記第1実施例のものと同一であるが、軸受箱23に対する外輪1の嵌合構造に前掲の特許文献3のクリープ防止構造を採用したものである。即ち、図5の第2実施例の場合は、外輪1の外周面に所要の間隔をおいて2条の周溝24、24を設け、各周溝24、24にリング状環体25、25(例えば、Oリング状ゴム)を装着し、これらのリング状環体25、25を軸受箱23の内周面に押し付ける。2本のリング状環体25、25間にグリース等の粘性潤滑剤26を付着させた密封空間が形成される。
【0025】
図6の第3実施形態の場合は、周溝24、24が軸受箱23の内周面に設けられ、その周溝24、24に装着された同様のリング状環体25、25を外輪1の外周面に押し付けている。2本のリング状環体25、25間にグリース等の粘性潤滑剤26を付着させた密封空間が形成される点は、第2実施例の場合と同様である。
【0026】
上記いずれの実施例の場合も、使用時において外輪1に荷重が加わり軸受箱23に対して荷重の方向に偏芯した際に、2本のリング状環体25、25間に粘性潤滑剤26による高圧流体薄膜が形成され、その流体薄膜を介して外輪1が支持される。リング状環体25、25は粘性潤滑剤26が漏れるのを防ぐとともに、前記薄膜によって浮いている外輪1が軸受の摩擦によって回転方向に回転することが防止されるので、クリープの発生が防止される。
【0027】
また、軸受を組付ける際に、その内輪2に対して軸をタイトにはめ合わせても、外輪1と軸受箱23との嵌合はリング状環体25、25の弾性によりルーズなはめ合いとなるので、軸受の組付け時の支障になることがなく、スムーズに組付けることができる。
【0028】
【発明の効果】
以上のように、この発明によれば、外輪回転型の軸受において、その外輪に取付けた磁気エンコーダの芯金の小径円筒部を外輪内径面に対し圧入するとともに、その芯金の円盤部と大径円筒部のコーナ部を外輪に溶接することにより、該芯金を外輪に固定するようにしたので、磁気エンコーダの外輪からの抜け出しを防止することができる。
【0029】
また、前記の溶接をレーザ溶接又は電子ビーム溶接により行うことにより、熱影響が少ないため、外輪の変形やクラックの発生がなく、また磁気エンコーダの脱磁を防止することができる。防錆油塗布状態での溶接も可能であるので、作業が簡便化できる。
【0030】
さらに、前記芯金の外輪に対する溶接位置を、外輪の曲げの圧縮応力と引張り応力の中心線上又はその近傍に定めることにより、溶接部への繰返しせん断力が作用することを防止することができる。
【0031】
なお、外輪の外周面と軸受箱との間に少なくとも2本のリング状環体を介在し、そのリング状環体の間に粘性潤滑剤を付着させたクリープ防止構造を採用すると、外輪の軸受箱に対する組付けが容易となるので内輪と軸とをタイトにはめ合せることができる。その結果、内輪と軸との相対的回転が防止され、ケーブルの断線を防止することができる。
【図面の簡単な説明】
【図1】実施形態の断面図
【図2】同上の正面図
【図3】同上実験結果のグラフ
【図4】(a)(b)同上の他の例の一部断面図
【図5】第2実施形態の一部拡大断面図
【図6】第3実施形態の一部拡大断面図
【符号の説明】
1 外輪
2 内輪
3 軌道
4 軌道
5 保持器
6 ボール
7 芯金
7a 小径円筒部
7b 円盤部
7c 大径円筒部
8 磁気エンコーダ
9 溶接部
11 ハウジング芯金
12 センサハウジング
13 切り起こし片
14 段部
15 凹部
16 電気回路基板
17 磁気センサ
18 ケーブル取出し部
19 ケーブル
21 保護チューブ
22 シール部材
23 軸受箱
24 周溝
25 リング状環体
26 粘性潤滑剤
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a bearing with a rotation sensor, and more particularly to a rolling bearing with a rotation sensor.
[0002]
[Prior art]
2. Description of the Related Art It is conventionally known to mount a rotation sensor including a magnetic encoder and a magnetic sensor on a bearing in order to detect the number of rotations of various types of rotating devices. When a rolling bearing is used as a bearing, generally, the bearing is used as an inner ring rotating type, and an annular magnetic encoder is mounted on the rotating inner ring, and a clearance required for the magnetic encoder is provided on the fixed outer ring. Then, a magnetic sensor is attached (see Patent Document 1 or 2).
[0003]
As means for fixing the magnetic encoder to the inner ring, when mounted on a standard bearing, the space in the width direction is extremely narrow, and in order to ensure concentricity, the core metal is pressed into the outer diameter surface of the inner ring. In this case, a fixing means is employed. In this case, since the shaft is penetrated through the inner surface of the inner ring, even if a repeated load is applied, the magnetic encoder is backed up by the shaft via the inner ring, so there is no risk of deformation, and therefore, the magnetic encoder is moved from the inner ring. There is no risk of coming off.
[0004]
Patent Document 1 describes that a metal support member (core metal) on the magnetic sensor side is welded to an end surface of an outer ring that is a fixed side.
[0005]
On the other hand, as a general technology of a bearing, it has been conventionally known that a so-called creep occurs when a rotational load is applied to the outer ring while the outer ring of the bearing is fitted to the bearing box with a positive clearance. As an effective means for preventing the creep, two ring-shaped rings are interposed between the outer peripheral surface of the outer ring and the bearing housing, and a viscous lubrication such as grease is provided in a sealed space between the two ring-shaped rings. A bearing support structure to which an agent is attached is known (see Patent Document 3). This structure uses a thin film of high-pressure fluid of viscous lubricant between two ring-shaped rings when a load is applied to the outer ring and the outer ring is eccentric in the direction of the load with respect to the bearing box during use of the bearing. Is formed, and the outer ring is supported via the fluid thin film to prevent creep. The above-described bearing support structure is a prior art of the invention of this application as described later.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. Hei 10-300516 (FIG. 3, paragraph 0020)
[Patent Document 2]
JP-A-2002-295465 (FIG. 1, paragraph 0003)
[Patent Document 3]
Japanese Utility Model Publication No. 52-8896 (FIG. 6 and description of the embodiment)
[0007]
[Problems to be solved by the invention]
Contrary to the case of Patent Documents 1 and 2, in the case of a bearing with a rotation sensor of an outer ring rotation type in which the inner ring is a fixed side and the outer ring is a rotation side, the magnetic encoder is mounted on the outer ring side, and the magnetic sensor is the inner ring. Mounted on the side. In this case, if the magnetic encoder is mounted by press-fitting and fixing to the inner diameter surface of the outer ring in the same manner as the conventional mounting means, there is a possibility that a breakage may occur due to a shock at the time of assembling the bearing or a repeated bending deformation to the outer ring at the time of load application. There is. Further, the space is too small to use other fixing methods such as caulking for preventing falling off, and it is impossible to use them together.
[0008]
The structure in which the above-described repeated bending deformation occurs is as follows. That is, when a radially inward load is applied to the outer diameter surface of the rotating outer ring, the inward elastic deformation of the outer ring when the load acts on the rolling element portion is small because the rolling element supports the inner ring. However, when a load acts between the rolling elements, the inward elastic deformation of the outer ring becomes larger than that of the former. When the outer ring rotates in such a state, the outer ring repeatedly undergoes bending deformation. Due to such repeated bending deformation, the magnetic encoder press-fitted with a required interference may come off in the axial direction. Incidentally, in the case of inner ring rotation, such a phenomenon does not occur because the shaft is fitted on the inner ring side.
[0009]
As described above, in a bearing with a rotation sensor used under conditions of outer ring rotation and outer ring rotation load, if the magnetic encoder attached to the outer ring is simply press-fitted and fixed to the outer ring, there is a risk that the magnetic encoder will come off during assembly or use. In view of the above, it is a first object of the present invention to provide a bearing with a rotation sensor of an outer ring rotation type, in which a magnetic encoder is securely attached to an outer ring and is prevented from coming off.
[0010]
On the other hand, in the case of bearings with rotation sensors used under the conditions of outer ring rotation and outer ring rotation load, in order to avoid disconnection of the cable that outputs the signal of the magnetic sensor wired between the inner ring and the shaft, the two are relatively Cannot be adopted. For this reason, the shaft and the inner ring must be tightly fitted, but from the viewpoint of preventing creep, the outer ring must also be tightly fitted to the bearing housing. However, it is difficult to fit the inner and outer rings tightly because of the incorporation of the bearing.
[0011]
Therefore, it is a second object of the present invention to provide a bearing with a rotation sensor that has a structure that prevents disconnection of a cable and is easy to assemble, in addition to the first problem described above.
[0012]
[Means for Solving the Problems]
In order to solve the first problem described above, the present invention provides an encoder which is mounted on an outer ring via a metal core, a sensor facing the encoder with a required gap is mounted on an inner ring, and the inner ring is fixed on a fixed side. In a bearing with a rotation sensor of an outer ring rotation type using the outer ring as a rotation side, a structure in which a core of the encoder is press-fitted to the outer ring and the core is fixed to the outer ring by laser welding or electron beam welding. Adopted.
[0013]
As a welding method of the core metal and the outer ring, the core metal (for example, SPCC) and the outer ring (for example, SUJ2) are made of different materials, the magnetic encoder uses a rubber magnet, is weak to heat, and the outer ring is hardened. Laser welding or electron beam welding is effective because it is made of a material that is very fragile.
[0014]
Further, it is desirable that the welding position is on or near the center line of the compressive stress and the tensile stress of the bending of the outer ring. This is to reduce the load on the weld. Welding is performed all around the core or at several points.
[0015]
In order to achieve the second object, the present invention provides the above-mentioned bearing with a rotation sensor, wherein at least two ring-shaped annular bodies are interposed between the outer peripheral surface of the outer ring and the bearing box, The structure employs a viscous lubricant adhered between the annular rings. According to this configuration, the outer ring is prevented from creeping, and the outer ring and the bearing box are loosely fitted, so that even when the shaft and the inner ring are tightly fitted, the outer ring side assembly may be hindered. Absent.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The first embodiment shown in FIGS. 1 and 2 is a rolling bearing of an outer ring rotating type, which is a rolling element which is held at regular intervals by a retainer 5 between respective raceway grooves 3 and 4 of an outer ring 1 and an inner ring 2. The ball 6 is interposed.
[0017]
A magnetic encoder 8 supported by an annular metal core 7 is attached to one end surface of the outer race 1. The magnetic encoder 8 is made of a rubber magnet, and is magnetized alternately at different intervals in the circumferential direction. The metal core 7 includes a small-diameter cylindrical portion 7a, a disk portion 7b, and a large-diameter cylindrical portion 7c. The small-diameter cylindrical portion 7a is press-fitted into the inner diameter end of the outer ring 1 and the disk portion 7b is brought into contact with the end surface of the outer ring 1. Mounted. The large-diameter cylindrical portion 7c is located on the neutral line N of the outer ring 1 in bending deformation. The bent portion between the disk portion 7b and the large-diameter cylindrical portion 7c is on the neutral line N, and welding is performed at the neutral line N (see the welded portion 9). As a preferable welding method, laser welding or electron beam welding can be adopted. As shown in FIG. 2, the welding position shows a case where welding is performed at several points in a point shape, but may be performed on the entire circumference.
[0018]
Since the core metal 7 has the small-diameter cylindrical portion 7a and the disk portion 7b, it is positioned at the time of welding as compared with the case where the large-diameter cylindrical portion 7c is directly welded, can be welded with high accuracy, and is deformed (falls) due to welding. Nor. In addition, by setting the position of the weld 9 on the neutral line N, the bending of the outer ring 1 at the weld 9 is theoretically zero, and no repeated shearing force acts on the weld 9.
[0019]
In the inner ring 2 on the fixed side, an annular housing core 11 is attached to the end outer diameter surface on the magnetic encoder 8 side, and the housing core 11 is integrally provided with a sensor housing 12 made of resin mold. The housing core 11 has a large-diameter cylindrical portion 11a, a disk portion 11b, and a small-diameter cylindrical portion 11c, and the large-diameter cylindrical portion 11a is press-fitted and fixed to the inner ring 2. Further, cut-and-raised portions 13 are provided in the outer circumferential direction at several locations around the edge of the small-diameter cylindrical portion 11c to prevent the sensor housing 12 from coming off. As can be seen from the cross-sectional shape, the outer peripheral edge of the sensor housing 12 reaches about the neutral line N of the outer ring 1, and has an L-shape in which the inner surface of the outer peripheral portion is cut out in the axial direction and the radial direction over the entire circumference. Is formed, and the magnetic encoder 8 is opposed to the step 14 with a predetermined gap.
[0020]
A part of the sensor housing 12 is provided with a concave part 15 which is long in the circumferential direction, and the magnetic sensor 17 supported by the electric circuit board 16 is accommodated in the concave part 15. The magnetic sensor 17 is exposed from the axial surface of the step portion 14 to the inner diameter surface, and faces the magnetic encoder 8 in a radial direction with a predetermined gap. Further, a cable extraction portion 18 is provided at the electric circuit board 16 so as to protrude in the inner diameter direction of the sensor housing 12. The cable take-out portion 18 is resin-molded with the cable 19 inserted therein. One end of the cable 19 is connected to the electric circuit board 16, and the other end is inserted through a protective tube 21 arranged inside the inner race 2 and pulled out.
[0021]
A normal seal member 22 is provided between the other ends of the outer ring 1 and the inner ring 2.
[0022]
FIG. 3 shows the products of the first embodiment, ie, “with welding” (however, welding is performed by laser welding) and the conventional product, that is, “without welding”, until the load is applied and the outer ring falls off due to repeated deformation. 5 is a test result of the number of deformation times. It was confirmed that "with welding" exhibited about 100 times the durability. Also, since laser welding has a very small thermal effect, there is no deformation before and after welding, and no demagnetization of the magnetic encoder occurs. Also, no cracks occur in the hardened steel bearing material. Further, welding can be performed in a state where the rust-preventive oil is applied. The same effect was observed in the case of electron beam welding.
[0023]
FIGS. 4A and 4B show another example of the core metal 7 of the magnetic encoder 8. In any case, the bending deformation of the outer race 1 is not propagated from the small-diameter cylindrical portion 7a to the welded portion 9 via the disk portion 7b or is difficult to propagate. In the case of FIG. 4A, the small-diameter cylindrical portion 7a of the cored bar 7 is fitted into the inner diameter surface of the outer ring 1 with a gap. In the case of FIG. 4B, the thickness t1 of the small-diameter cylindrical portion 7a is set to 0.5 to 0.8 times the thickness t of the other portions, that is, t1 = 0.5 to 0.8 × t. You have set.
[0024]
Next, in both the second embodiment shown in FIG. 5 and the third embodiment shown in FIG. 6, the structure of the bearing is the same as that of the first embodiment. This adopts the creep preventing structure of Patent Document 3 described above as the fitting structure. That is, in the case of the second embodiment shown in FIG. 5, two circumferential grooves 24, 24 are provided on the outer peripheral surface of the outer race 1 at a required interval, and ring-shaped annular bodies 25, 25 are provided in the respective circumferential grooves 24, 24. (For example, O-ring rubber), and these ring-shaped annular bodies 25 are pressed against the inner peripheral surface of the bearing box 23. A sealed space in which a viscous lubricant 26 such as grease is adhered is formed between the two ring-shaped annular bodies 25.
[0025]
In the case of the third embodiment shown in FIG. 6, the circumferential grooves 24, 24 are provided on the inner circumferential surface of the bearing housing 23, and the similar ring-shaped annular bodies 25, 25 mounted in the circumferential grooves 24, 24 are connected to the outer ring 1 Is pressed against the outer peripheral surface. The point that a sealed space in which a viscous lubricant 26 such as grease is adhered is formed between the two ring-shaped annular bodies 25, 25 as in the case of the second embodiment.
[0026]
In any of the above embodiments, when the load is applied to the outer ring 1 during use and the bearing ring 23 is eccentric in the direction of the load, the viscous lubricant 26 is interposed between the two ring-shaped rings 25, 25. To form a high-pressure fluid thin film, and the outer ring 1 is supported via the fluid thin film. The ring-shaped annular bodies 25, 25 prevent the viscous lubricant 26 from leaking, and prevent the outer ring 1 floating by the thin film from rotating in the rotational direction due to friction of the bearing, thereby preventing the occurrence of creep. You.
[0027]
Further, when the bearing is assembled, even if the shaft is tightly fitted to the inner ring 2, the fitting between the outer ring 1 and the bearing box 23 is a loose fit by the elasticity of the ring-shaped annular bodies 25, 25. Therefore, there is no problem in assembling the bearing, and the bearing can be assembled smoothly.
[0028]
【The invention's effect】
As described above, according to the present invention, in the outer ring rotating type bearing, the small-diameter cylindrical portion of the core metal of the magnetic encoder attached to the outer ring is press-fitted into the inner surface of the outer ring, and the disk portion of the core metal and the large-diameter disk portion are large. Since the core metal is fixed to the outer ring by welding the corner of the diameter cylindrical portion to the outer ring, it is possible to prevent the magnetic encoder from coming off from the outer ring.
[0029]
In addition, by performing the above-described welding by laser welding or electron beam welding, since there is little thermal influence, deformation and cracks of the outer ring do not occur, and demagnetization of the magnetic encoder can be prevented. Since welding can be performed in a state where rust-preventive oil is applied, the operation can be simplified.
[0030]
Further, by setting the welding position of the core metal to the outer ring on or near the center line of the compressive stress and the tensile stress of the bending of the outer ring, it is possible to prevent the repeated shearing force from acting on the welded portion.
[0031]
If a creep prevention structure is adopted in which at least two ring-shaped rings are interposed between the outer peripheral surface of the outer ring and the bearing box, and a viscous lubricant is adhered between the ring-shaped rings, the bearing of the outer ring may be used. Since the assembling to the box is facilitated, the inner ring and the shaft can be tightly fitted. As a result, relative rotation between the inner ring and the shaft is prevented, and disconnection of the cable can be prevented.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an embodiment; FIG. 2 is a front view of the same; FIG. 3 is a graph of experimental results of the same; FIG. 4 (a) and (b) are partial cross-sectional views of another example of the same; FIG. 6 is a partially enlarged sectional view of a second embodiment. FIG. 6 is a partially enlarged sectional view of a third embodiment.
DESCRIPTION OF SYMBOLS 1 Outer ring 2 Inner ring 3 Track 4 Track 5 Cage 6 Ball 7 Core metal 7a Small diameter cylindrical part 7b Disk part 7c Large diameter cylindrical part 8 Magnetic encoder 9 Welding part 11 Housing core metal 12 Sensor housing 13 Cut-and-raised piece 14 Step part 15 Recess Reference Signs List 16 Electric circuit board 17 Magnetic sensor 18 Cable take-out part 19 Cable 21 Protective tube 22 Seal member 23 Bearing box 24 Peripheral groove 25 Ring ring 26 Viscous lubricant

Claims (4)

外輪に芯金を介してエンコーダを取付け、そのエンコーダに対し所要のすき間をおいて対向したセンサを内輪に取付け、前記内輪を固定側、外輪を回転側として使用する外輪回転型の回転センサ付き軸受において、前記エンコーダの芯金を外輪に対して圧入するとともに、その芯金を外輪に対しレーザ溶接又は電子ビーム溶接により固定したことを特徴とする回転センサ付き軸受。An outer ring rotating type rotation sensor bearing in which an encoder is attached to an outer ring via a core bar, a sensor facing the encoder with a required clearance is attached to an inner ring, and the inner ring is used as a fixed side and the outer ring is used as a rotation side. 3. The bearing with a rotation sensor according to claim 1, wherein the core of the encoder is press-fitted into the outer ring, and the core is fixed to the outer ring by laser welding or electron beam welding. 前記芯金の外輪に対する溶接位置を、外輪の曲げの圧縮応力と引張り応力の中心線上又はその近傍に定めたことを特徴とする請求項1に記載の回転センサ付き軸受。The bearing with a rotation sensor according to claim 1, wherein a welding position of the core metal to the outer ring is set on or near a center line of the compressive stress and the tensile stress of bending of the outer ring. 前記の溶接を該芯金の全周又は数点において行うことを特徴とする請求項1又は2のいずれかに記載の回転センサ付き軸受。The bearing with a rotation sensor according to claim 1, wherein the welding is performed on the entire circumference or at several points of the metal core. 前記外輪の外周面と軸受箱との間に少なくとも2本のリング状環体を介在し、そのリング状環体の間に粘性潤滑剤を付着させたことを特徴とする請求項1から3のいずれかに記載の回転センサ付き軸受。4. The method according to claim 1, wherein at least two ring-shaped rings are interposed between the outer peripheral surface of the outer ring and the bearing housing, and a viscous lubricant is attached between the ring-shaped rings. A bearing with a rotation sensor according to any one of the above.
JP2003039674A 2003-02-18 2003-02-18 Bearing with rotation sensor Expired - Lifetime JP4208599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003039674A JP4208599B2 (en) 2003-02-18 2003-02-18 Bearing with rotation sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003039674A JP4208599B2 (en) 2003-02-18 2003-02-18 Bearing with rotation sensor

Publications (2)

Publication Number Publication Date
JP2004251316A true JP2004251316A (en) 2004-09-09
JP4208599B2 JP4208599B2 (en) 2009-01-14

Family

ID=33023787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003039674A Expired - Lifetime JP4208599B2 (en) 2003-02-18 2003-02-18 Bearing with rotation sensor

Country Status (1)

Country Link
JP (1) JP4208599B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021887A1 (en) * 2011-08-11 2013-02-14 Ntn株式会社 Tapered roller bearing and mounting structure therefor
US20150330449A1 (en) * 2014-05-15 2015-11-19 Aktiebolaget Skf Method for manufacturing a rolling bearing and rolling bearing manufactured according to such a method
DE102016218652A1 (en) 2015-10-27 2017-04-27 Schaeffler Technologies AG & Co. KG Bearing assembly with built-in electrical line to provide multiple operating voltages
WO2018219380A1 (en) * 2017-06-01 2018-12-06 Schaeffler Technologies AG & Co. KG Method for monitoring a bearing, bearing and bearing assembly
DE102020107956A1 (en) 2020-03-23 2021-09-23 Schaeffler Technologies AG & Co. KG Bearing designed to accommodate a sensor unit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021887A1 (en) * 2011-08-11 2013-02-14 Ntn株式会社 Tapered roller bearing and mounting structure therefor
JP2013036596A (en) * 2011-08-11 2013-02-21 Ntn Corp Tapered roller bearing and mounting structure therefor
CN103797258A (en) * 2011-08-11 2014-05-14 Ntn株式会社 Tapered roller bearing and mounting structure therefor
US20150330449A1 (en) * 2014-05-15 2015-11-19 Aktiebolaget Skf Method for manufacturing a rolling bearing and rolling bearing manufactured according to such a method
DE102016218652A1 (en) 2015-10-27 2017-04-27 Schaeffler Technologies AG & Co. KG Bearing assembly with built-in electrical line to provide multiple operating voltages
WO2017071702A1 (en) 2015-10-27 2017-05-04 Schaeffler Technologies AG & Co. KG Bearing assembly with incorporated electric line for providing multiple operating voltages
US11129289B2 (en) 2015-10-27 2021-09-21 Schaeffler Technologies AG & Co. KG Bearing assembly with incorporated electric line for providing multiple operating voltages
WO2018219380A1 (en) * 2017-06-01 2018-12-06 Schaeffler Technologies AG & Co. KG Method for monitoring a bearing, bearing and bearing assembly
DE102020107956A1 (en) 2020-03-23 2021-09-23 Schaeffler Technologies AG & Co. KG Bearing designed to accommodate a sensor unit

Also Published As

Publication number Publication date
JP4208599B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
JP5334287B2 (en) Bearing seal
JP4297658B2 (en) Wheel bearing device
JP2002543357A (en) Rolling bearing device
JP2014005897A (en) Rolling bearing and manufacturing method thereof
US6796713B2 (en) Instrumented antifriction bearing provided with a sealing device
JP2013053672A (en) Bearing sealing device
JP4208599B2 (en) Bearing with rotation sensor
EP0973241A2 (en) A spindle motor
JP2006132709A (en) Rolling bearing with sensor
JP2010002009A (en) Rolling device
JP2003278777A (en) Rolling bearing device
JP2009008213A (en) Roller bearing device and method for assembling same
JP2005226787A (en) Sealing device for bearing
JP2009024809A (en) Sealing device and rolling bearing device
JP2007010083A (en) Rolling bearing with rotary sensor
JP2008175573A (en) Bearing arrangement for wheel
JP4919161B2 (en) Wheel support device
JP2007040375A (en) Rolling bearing device with sensor
JP7116457B2 (en) sealing device
JP5223460B2 (en) Clutch release bearing
JP2008051304A (en) Rolling bearing
JP2009024804A (en) Sealing device
JP2006077881A (en) Creep preventing rolling bearing and creep preventing rolling bearing device
JP2024063987A (en) Wheel bearing device
JP5137247B2 (en) Bearing seal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081021

R150 Certificate of patent or registration of utility model

Ref document number: 4208599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term