JP2004251193A - Fuel system controlling equipment of internal combustion engine - Google Patents

Fuel system controlling equipment of internal combustion engine Download PDF

Info

Publication number
JP2004251193A
JP2004251193A JP2003042310A JP2003042310A JP2004251193A JP 2004251193 A JP2004251193 A JP 2004251193A JP 2003042310 A JP2003042310 A JP 2003042310A JP 2003042310 A JP2003042310 A JP 2003042310A JP 2004251193 A JP2004251193 A JP 2004251193A
Authority
JP
Japan
Prior art keywords
fuel
pressure
accumulator
capacity
fuel pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003042310A
Other languages
Japanese (ja)
Other versions
JP4019969B2 (en
Inventor
Naoki Yamamoto
直樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003042310A priority Critical patent/JP4019969B2/en
Publication of JP2004251193A publication Critical patent/JP2004251193A/en
Application granted granted Critical
Publication of JP4019969B2 publication Critical patent/JP4019969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the compliance of actual fuel pressure for a target fuel pressure at the time of fuel cut recovery in controlling the discharging amount of a high-pressure fuel pump 6 so as to obtain the target fuel pressure set up in accordance with an operating condition by detecting the fuel pressure inside the fuel accumulator 10, in a fuel control system provided with a fuel accumulator (high-pressure piping) 10 for storing high-pressure fuel from the high-pressure fuel pump 6 and a fuel injection valve 12 in which the high-pressure fuel in the fuel accumulator 10 is led. <P>SOLUTION: Part (10b) of the fuel accumulator 10 is blocked, and a solenoid valve 16 capable of reducing the volume of the fuel accumulator 10 (10a) is provided. At the time of the fuel cut recovery, the volume of the fuel accumulator room 10 (10a) is reduced by temporarily closing the electric valve 16. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の燃料系制御装置に関する。
【0002】
【従来の技術】
筒内直噴式内燃機関においては、高圧燃料ポンプからの高圧燃料を蓄える燃料蓄圧室と、燃料蓄圧室から導かれる高圧燃料を機関に噴射供給する燃料噴射弁とを備え、燃料蓄圧室の燃圧が機関運転条件(回転数及び負荷)に応じて設定される目標燃圧となるように、高圧燃料ポンプの吐出量を制御している。
【0003】
その一方、現在の内燃機関においては、燃費向上を目的とした制御の一つとして、一般的に高回転からの車両減速時に燃料カットを行う減速時燃料カット制御が採用されており、上記目標燃圧への制御を行う内燃機関では、燃料カット開始時(燃料カットイン時)の目標燃圧と、燃料カットリカバー時の目標燃圧とが異なる場合がある。
【0004】
しかし、高圧燃料ポンプの吐出量を制御して、燃料噴射量との流量収支により、高圧系の燃圧を制御するシステムでは、燃料カット中は燃料噴射量が0となるため、高圧燃料ポンプの作動を停止させても、燃圧が下がらず、燃料カットイン時の燃圧のまま保持される。
【0005】
このため、燃料カットリカバー直後に、目標燃圧に対して実燃圧のずれが発生し、このずれが大きい場合は、実燃圧が目標燃圧に到達するまでの時間が長くなり、その間、燃焼安定性が悪化して排気や運転性を悪化させてしまう。
【0006】
このため、特許文献1では、燃料カット要求条件成立後、燃料蓄圧室内の燃圧が燃料噴射によって燃料カットリカバー時の目標燃圧になるまで、燃料カットの開始を遅らせている。
【0007】
【特許文献1】特開2000−18067号公報
【0008】
【発明が解決しようとする課題】
しかしながら、燃料カットの開始を遅らせると、その分、燃費向上効果が得られなくなってしまう。
【0009】
また、予め燃料カットリカバー時の目標燃圧になるまで燃圧を低下させてしまうと、燃料カット遅れ時間中に運転者がアクセルを踏み込んで燃料カットをキャンセルする場合、若しくは燃料カット開始直後に運転者がアクセルを踏み込んでリカバー制御に入る場合、燃圧が低くなりすぎてしまっていて、やはり目標燃圧との乖離を生じてしまう。
【0010】
本発明は、このような実状に鑑み、減速時燃料カット制御に影響を与えることなく、燃料カットリカバー時の燃圧制御を迅速に行うことのできる燃料系制御装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
このため、本発明は、燃料蓄圧室の容量を変化させ得る容量可変手段を設け、燃料カットリカバー時に、一時的に、燃料蓄圧室の容量を低減する構成とする。
【0012】
【発明の効果】
本発明によれば、燃料カットリカバー時に目標燃圧と実燃圧とのずれが発生する場合でも、燃料蓄圧室の容量が小さくなっているために、燃圧フィードバック制御の応答速度を上げることができ、燃焼安定性を改善することができる。
【0013】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
図1は本発明の一実施形態として筒内直噴式内燃機関の燃料系の構成を示している。
【0014】
燃料タンク1内に、燃料タンク1内の燃料を圧送する電動式の低圧燃料ポンプ2と、その吐出側で燃料をろ過する燃料フィルタ3と、余剰燃料を燃料タンク1へ戻すことで吐出側圧力を一定圧力(通常0.3〜0.5MPa程度)に調整する低圧プレッシャレギュレータ4とが設けられている。
【0015】
低圧燃料ポンプ2により圧送される燃料は、低圧燃料通路(低圧配管)5により、高圧燃料ポンプ6へ供給される。
高圧燃料ポンプ6は、プランジャポンプ7と、その吸入側に設けられる電磁制御弁8と、吐出側に設けられるチェック弁9とを含んで構成されている。
【0016】
プランジャポンプ7は、エンジンカムシャフトに連結されているポンプ駆動カムにより駆動されるプランジャの往復動により吸入・吐出動作を行う。
電磁制御弁8は、エンジンコントロールユニット(ECU)20により、プランジャポンプ7の吸入行程において開弁し、吐出行程において閉弁するよう制御するが、更に、その閉弁時期を制御することで、高圧燃料ポンプ6(プランジャポンプ7)の吐出量を制御可能である。
【0017】
従って、高圧燃料ポンプ6においては、プランジャの下降時に吸入側の電磁制御弁8を介して燃料を吸入し、上昇時に電磁制御弁8が閉弁してから吐出側のチェック弁9を介して燃料を吐出する。
【0018】
高圧燃料ポンプ6の吐出側(チェック弁9側)は、燃料蓄圧室(高圧配管)10に接続されている。
燃料蓄圧室10には、これから分岐する各分岐管11を介して気筒数分の燃料噴射弁12が接続され、これらの燃料噴射弁12は図示しないエンジンの各気筒の燃焼室に臨んでいる。
【0019】
また、燃料蓄圧室10には、該蓄圧室10内の燃圧を検出する燃圧センサ13が取付けられ、その信号はECU20に入力されている。
更に、燃料蓄圧室10の端部には、リリーフ弁14が装着され、このリリーフ弁14を介して、燃料タンク1へのリターン配管15と接続されている。このリリーフ弁14は、燃料蓄圧室10内の燃圧が過大に上昇したときに開弁して圧力を逃がすためのものである。
【0020】
ここにおいて、燃料噴射弁11より噴射する燃料圧力を制御するため、燃料蓄圧室10内の燃圧を制御するが、この燃圧は、ECU20からの信号により、電磁制御弁8の閉弁時期を制御して、高圧燃料ポンプ6の吐出量を制御することにより、任意の目標燃圧(通常3〜15MPa程度)にフィードバック制御する。
【0021】
目標燃圧は、運転条件(エンジン回転数及び負荷)に応じて、例えば図2に示すように設定されている。
燃圧の制御は、目標燃圧と要求噴射パルス幅とから計算される実際の燃料噴射量に対し、高圧燃料ポンプ吐出量を可変に調整することで行っている。高圧燃料ポンプ吐出量と燃料噴射量が1:1の場合、流量収支がバランスし、燃圧は一定に保たれる。燃圧を上げる場合は、一時的に高圧燃料ポンプ吐出量を増加させ、目標燃圧に到達した時点で流量収支を1:1に戻すように吐出量を制御する。燃圧を下げる場合はその逆である。
【0022】
すなわち、本燃料系システムにおいては、高圧燃料ポンプ吐出量と燃料噴射量の流量収支で燃圧が制御されるため、燃圧制御の制御因子は、高圧燃料ポンプ吐出量となる。目標燃圧よりも実燃圧(燃圧センサ出力)が低い場合は、高圧燃料ポンプ吐出量を増やして目標燃圧となるまで燃圧を上げる方向に誘導し、目標燃圧よりも実燃圧が高い場合はこの逆となる。
【0023】
従って、ECU20では、運転条件に応じて設定される目標燃圧に基づいて、この目標燃圧と燃料噴射量とから高圧燃料ポンプ吐出量を計算し、これに基づいて電磁制御弁8の閉弁時期を定め、クランク角センサ信号(エンジン回転数)、気筒判別センサ信号(ポンプ駆動カム位相角)を参照しつつ、制御する。
【0024】
ところで、現在のエンジンにおいては、燃費向上を目的とした制御の一つとして、一般的に高回転からの車両減速時に燃料カットを行う減速時燃料カット制御が採用されている。
【0025】
この場合、図2に示すように、運転条件に応じて目標燃圧を設定しているエンジンでは、燃料カット開始時(燃料カットイン時)の目標燃圧と、燃料カットリカバー時の目標燃圧とが異なる場合がある。
【0026】
しかし、燃料噴射弁11の燃料噴射量に合わせて、高圧燃料ポンプ6の吐出量を可変に制御して、高圧系の燃圧を制御するシステムでは、燃料カット中は燃料噴射量が0になるため、電磁制御弁8を開弁状態に保持することで、高圧燃料ポンプ6の作動を停止させても、燃料蓄圧室(高圧配管)10内の燃圧は下がらず、燃料カットイン時の燃圧のまま保持される。
【0027】
従って、図3に示すように、燃料カットリカバー直後に、目標燃圧に対して実燃圧のずれが発生する場合があった。
また、本システムにおいては、燃料噴射量ばらつきを低減するため、一般的に燃料蓄圧室10の容量を大きくするなどして燃圧脈動を抑える必要があるが、この容量を大きくすると、逆に燃圧フィードバック制御の応答速度が低下するという問題があった。これは、燃料蓄圧室10内の燃圧を任意の燃圧幅だけ変化させるために必要な燃料量が増え、より多くのポンプ吐出量(昇圧時)や燃料噴射量(降圧時)が必要となるためである。
【0028】
特に、前述した燃料カットリカバー直後のように、目標燃圧に対して実燃圧が大きくずれる場合は、実燃圧が目標燃圧に到達するまでの時間が長くなり、その間、燃焼安定性が悪化して排気や運転性を悪化させてしまう。
【0029】
そこで本発明では、燃料蓄圧室(高圧配管)10の容量を変化させ得る容量可変手段を設け、燃料カットリカバー時に、一時的に、燃料蓄圧室10の容量を低減する。
【0030】
具体的には、図1に示してあるように、燃料蓄圧室(高圧配管)10を、燃料噴射弁11側の室10aと端部側の室10bとに2分し、両者の間に常開の電磁弁16を設けて、連通、遮断を制御可能としている。そして、この電磁弁16の開閉を、ECU20により行うようにしている。
【0031】
具体的な制御を図4のフローチャートに示す。
S1では、エンジン運転状態のモニタを行い、減速時燃料カット要求条件が成立したか否かを判定し、成立した場合に、S2へ進む。尚、減速時燃料カット要求条件は、例えば、エンジン回転数が所定の燃料カット回転数以上で、アクセル開度が0となったときに成立するものとする。
【0032】
S2では、減速時燃料カットのため、燃料噴射停止を行うと同時に、高圧燃料ポンプ作動停止(電磁制御弁8の開弁保持)と、燃圧フィードバック制御停止とを行う。これにより、燃料蓄圧室(高圧配管)内の燃圧が燃料カット開始時の燃圧に保持される。
【0033】
S3では、燃圧センサ13の出力に基づいて現在の燃圧Pを読込み、燃料カット開始時の実燃圧Pin=Pとして、その値をECUに格納する。
S4では、エンジン運転状態のモニタを行い、燃料カットリカバー要求条件が成立したか否かを判定し、成立した場合に、S5へ進む。尚、燃料カットリカバー要求条件は、燃料カット開始後、例えば、エンジン回転数が所定の燃料カットリカバー回転数を下回るか、アクセルが踏込まれたときに成立するものとする。
【0034】
S5では、現在の運転条件(エンジン回転数及び負荷)から図2のマップを参照して目標燃圧TPを読込み、燃料カットリカバー時の目標燃圧TPout =TPとして、その値をECUに格納する。
【0035】
S6では、燃料カット開始時の燃圧Pinと燃料カットリカバー時の目標燃圧TPout との差(|Pin−TPout |)が、予め定めた燃圧偏差Pw1を超えたか否かを判定する。Pw1は、燃料蓄圧室の容量制御を行わない場合でも、燃焼安定性が悪化しない燃圧偏差の限界値に基づいて予め決定されたROM値とする。
【0036】
|Pin−TPout |≦Pw1の場合は、目標燃圧と実燃圧のずれが小さいと判断し、燃圧フィードバック制御の応答性は問題ないため、電磁弁16の制御は行わずに(常開のままとして)、S12へ進み、燃料カットリカバーのため、燃料噴射開始を再開すると同時に、高圧燃料ポンプ作動と燃圧フィードバック制御とを再開し、処理を終了する。
【0037】
|Pin−TPout |>Pw1の場合は、目標燃圧と実燃圧のずれが大きいと判断し、S7へ進む。
S7では、燃圧フィードバック制御の応答性を向上させるため、電磁弁16をONにして、閉弁させ、燃料蓄圧室10の容量を低減する。すなわち、高圧燃料ポンプ6及び燃料噴射弁12とつながる燃料蓄圧室10を、10a部分のみとして、10b部分を遮断することにより、燃圧フィードバック制御の応答性を向上させる。
【0038】
その後、S8では、燃料カットリカバーのため、燃料噴射を再開すると同時に、高圧燃料ポンプ作動と燃圧フィードバック制御とを再開する。
そして、S9では、燃圧センサ13の出力に基づいて現在の燃圧Pを読込むと共に、現在の運転条件(エンジン回転数及び負荷)から図2のマップを参照して目標燃圧TPを読込み、実燃圧Pと目標燃圧TPとの偏差(|P−TP|)が予め定めた燃圧偏差Pw2より小さくなったか否かを判定する。Pw2は、実燃圧がフィードバック制御により安定したかを判定するための、予め決定されたROM値とする。
【0039】
|P−TP|<Tw2となった場合は、電磁弁16による燃料蓄圧室の容量低減制御を終了させるが、直ちに、電磁弁16をOFF(全開)にすると、燃料カットイン時の燃圧のまま保持されていた、燃料噴射弁11側でない方の室10bが開放されるため、電磁弁16前後の高圧配管内が一気に平均化されて、燃圧段差が発生し、目標燃圧に対して実燃圧のずれが起こる。この場合も、前述したように実燃圧が目標燃圧に到達するまでの時間が長くなり、燃焼安定性が悪化して排気や運転性を悪化させる恐れがある。
【0040】
そこで、この燃圧変化をできる限り緩和するため、先ずS10にて、所定時間、電磁弁16を断続的に開閉する。すなわち、OFF→ON→OFF→ON…と繰り返す。断続回数と周期は、燃圧が緩やかに低下するように実験等により予め決定しておく。
【0041】
その後、S11にて、電磁弁16をOFF(全開)として、全ての処理を終了させる。
以上説明したように、本実施形態によれば、燃料蓄圧室(高圧配管)10の容量を変化させ得る容量可変手段(電磁弁16)を設け、燃料カットリカバー時に、一時的に、燃料蓄圧室10の容量を低減することにより、燃料カットリカバー時に目標燃圧と実燃圧とのずれが発生する場合でも、燃料蓄圧室10の容量が小さくなっているために、燃圧フィードバック制御の応答速度を上げることができ、燃焼安定性を改善することができる(図5参照)。
【0042】
また、本実施形態によれば、燃料カット開始時の燃圧と燃料カットリカバー時の目標燃圧との差が所定値以上の場合に、燃料蓄圧室の容量を低減することにより、容量低減制御が不要な条件では制御が行われないため、システムの耐久性が向上する。
【0043】
また、本実施形態によれば、燃料カットリカバーに先立って、燃料蓄圧室の容量を低減することにより、燃料カットリカバーまでに燃料蓄圧室の容積を確実に小さくでき、燃料カットリカバー直後より燃圧フィードバック制御の応答性を確実に向上させることができる。この場合に、より確実性を向上させるため、燃料カット中、例えば図5に点線で示すように燃料カット開始直後より、電磁弁16をONにして、燃料蓄圧室の容量を低減しておくようにしてもよい。但し、容量低減制御の動作遅れが問題なければ、燃料カット開始直後より、燃料蓄圧室の容量を低減するようにしてもよい。
【0044】
また、本実施形態によれば、容量可変手段として、燃料蓄圧室10の一部を遮断可能な電磁弁16を用いることにより、比較的簡単な構成で実現可能となる。また、本実施形態によれば、燃料蓄圧室の容量の低減後に、該容量を回復させる時は、電磁弁16を断続的に開閉させることにより、段階的に電磁弁16前後の燃圧を平均化して、燃圧段差の発生を抑制し、燃圧段差による燃焼安定性悪化を防止できる(図5参照)。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す筒内直噴式内燃機関の燃料系の構成図
【図2】目標燃圧設定用マップを示す図
【図3】燃料カットイン〜燃料カットリカバー時の燃圧挙動説明図
【図4】制御フローチャート
【図5】制御タイムチャート
【符号の説明】
1 燃料タンク
2 低圧燃料ポンプ
6 高圧燃料ポンプ
10、10a、10b 燃料蓄圧室(高圧配管)
12 燃料噴射弁
13 燃圧センサ
14 リリーフ弁
16 電磁弁
20 ECU
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel system control device for an internal combustion engine.
[0002]
[Prior art]
The in-cylinder direct injection type internal combustion engine includes a fuel accumulator that stores high-pressure fuel from a high-pressure fuel pump, and a fuel injection valve that injects high-pressure fuel guided from the fuel accumulator into the engine. The discharge amount of the high-pressure fuel pump is controlled so that the target fuel pressure is set according to the engine operating conditions (the number of revolutions and the load).
[0003]
On the other hand, in the current internal combustion engine, as one of the controls for improving the fuel efficiency, generally, a deceleration fuel cut control for performing a fuel cut when the vehicle is decelerated from a high rotation speed is adopted. In an internal combustion engine that performs control to the target fuel pressure, the target fuel pressure at the start of fuel cut (at the time of fuel cut-in) may be different from the target fuel pressure at the time of fuel cut recovery.
[0004]
However, in a system in which the discharge amount of the high-pressure fuel pump is controlled and the fuel pressure of the high-pressure system is controlled based on the flow balance with the fuel injection amount, the fuel injection amount becomes zero during the fuel cut. Is stopped, the fuel pressure does not decrease and is maintained at the fuel pressure at the time of fuel cut-in.
[0005]
Therefore, immediately after the fuel cut recovery, there is a deviation of the actual fuel pressure from the target fuel pressure. If the deviation is large, the time until the actual fuel pressure reaches the target fuel pressure becomes longer, and during that time, the combustion stability is reduced. It worsens and exhaust and driving performance deteriorate.
[0006]
For this reason, in Patent Document 1, after the fuel cut request condition is satisfied, the start of the fuel cut is delayed until the fuel pressure in the fuel accumulator reaches the target fuel pressure at the time of fuel cut recovery by fuel injection.
[0007]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2000-18067
[Problems to be solved by the invention]
However, if the start of the fuel cut is delayed, the fuel efficiency improvement effect cannot be obtained.
[0009]
In addition, if the fuel pressure is reduced until the fuel pressure reaches the target fuel pressure at the time of fuel cut recovery, the driver may depress the accelerator during the fuel cut delay time to cancel the fuel cut, or the driver may immediately cancel the fuel cut. When the recovery control is started by depressing the accelerator, the fuel pressure has become too low, and a deviation from the target fuel pressure also occurs.
[0010]
The present invention has been made in view of the above circumstances, and has as its object to provide a fuel system control device that can quickly perform fuel pressure control during fuel cut recovery without affecting fuel deceleration control during deceleration.
[0011]
[Means for Solving the Problems]
For this reason, the present invention has a configuration in which a capacity variable means capable of changing the capacity of the fuel accumulator is provided, and the capacity of the fuel accumulator is temporarily reduced during fuel cut recovery.
[0012]
【The invention's effect】
According to the present invention, even when a difference between the target fuel pressure and the actual fuel pressure occurs at the time of fuel cut recovery, the response speed of the fuel pressure feedback control can be increased because the capacity of the fuel accumulator is small, and the combustion can be improved. Stability can be improved.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows the configuration of a fuel system of an in-cylinder direct injection internal combustion engine as one embodiment of the present invention.
[0014]
An electric low-pressure fuel pump 2 for pumping the fuel in the fuel tank 1 into the fuel tank 1, a fuel filter 3 for filtering the fuel on the discharge side thereof, and a discharge side pressure by returning excess fuel to the fuel tank 1. And a low pressure regulator 4 for adjusting the pressure to a constant pressure (usually about 0.3 to 0.5 MPa).
[0015]
The fuel pumped by the low-pressure fuel pump 2 is supplied to a high-pressure fuel pump 6 through a low-pressure fuel passage (low-pressure pipe) 5.
The high-pressure fuel pump 6 includes a plunger pump 7, an electromagnetic control valve 8 provided on a suction side thereof, and a check valve 9 provided on a discharge side.
[0016]
The plunger pump 7 performs a suction / discharge operation by reciprocating a plunger driven by a pump driving cam connected to an engine camshaft.
The electromagnetic control valve 8 is controlled by an engine control unit (ECU) 20 so as to open during the suction stroke of the plunger pump 7 and close during the discharge stroke. The discharge amount of the fuel pump 6 (plunger pump 7) can be controlled.
[0017]
Therefore, in the high-pressure fuel pump 6, when the plunger is lowered, fuel is sucked through the electromagnetic control valve 8 on the suction side, and when the plunger is raised, the fuel is sucked through the check valve 9 on the discharge side after the electromagnetic control valve 8 is closed. Is discharged.
[0018]
The discharge side (the check valve 9 side) of the high-pressure fuel pump 6 is connected to a fuel accumulator (high-pressure pipe) 10.
The fuel pressure accumulating chamber 10 is connected with fuel injection valves 12 for the number of cylinders via branch pipes 11 branching therefrom, and these fuel injection valves 12 face the combustion chambers of the respective cylinders of the engine (not shown).
[0019]
Further, a fuel pressure sensor 13 for detecting the fuel pressure in the pressure accumulating chamber 10 is attached to the fuel accumulating chamber 10, and its signal is input to the ECU 20.
Further, a relief valve 14 is attached to an end of the fuel accumulator 10, and is connected to a return pipe 15 to the fuel tank 1 via the relief valve 14. The relief valve 14 is opened to release the pressure when the fuel pressure in the fuel accumulator 10 rises excessively.
[0020]
Here, in order to control the fuel pressure injected from the fuel injection valve 11, the fuel pressure in the fuel storage chamber 10 is controlled. The fuel pressure controls the closing timing of the electromagnetic control valve 8 based on a signal from the ECU 20. By controlling the discharge amount of the high-pressure fuel pump 6, feedback control is performed to an arbitrary target fuel pressure (usually about 3 to 15 MPa).
[0021]
The target fuel pressure is set according to operating conditions (engine speed and load), for example, as shown in FIG.
The fuel pressure is controlled by variably adjusting the discharge amount of the high-pressure fuel pump with respect to the actual fuel injection amount calculated from the target fuel pressure and the required injection pulse width. When the high-pressure fuel pump discharge amount and the fuel injection amount are 1: 1, the flow balance is balanced, and the fuel pressure is kept constant. When increasing the fuel pressure, the discharge amount of the high-pressure fuel pump is temporarily increased, and the discharge amount is controlled so that the flow balance returns to 1: 1 when the target fuel pressure is reached. The opposite is true when lowering the fuel pressure.
[0022]
That is, in the present fuel system, since the fuel pressure is controlled by the flow balance between the high-pressure fuel pump discharge amount and the fuel injection amount, the control factor of the fuel pressure control is the high-pressure fuel pump discharge amount. When the actual fuel pressure (fuel pressure sensor output) is lower than the target fuel pressure, the discharge amount of the high-pressure fuel pump is increased and the fuel pressure is guided until the target fuel pressure is reached, and when the actual fuel pressure is higher than the target fuel pressure, the reverse is true. Become.
[0023]
Accordingly, the ECU 20 calculates the discharge amount of the high-pressure fuel pump from the target fuel pressure and the fuel injection amount based on the target fuel pressure set according to the operating conditions, and determines the closing timing of the electromagnetic control valve 8 based on this. The control is performed with reference to a crank angle sensor signal (engine speed) and a cylinder discrimination sensor signal (pump drive cam phase angle).
[0024]
By the way, in the current engine, as one of the controls for improving the fuel economy, generally, a deceleration fuel cut control for performing a fuel cut when the vehicle is decelerated from a high speed is adopted.
[0025]
In this case, as shown in FIG. 2, in the engine in which the target fuel pressure is set according to the operating conditions, the target fuel pressure at the start of fuel cut (at the time of fuel cut-in) is different from the target fuel pressure at the time of fuel cut recovery. There are cases.
[0026]
However, in a system in which the discharge amount of the high-pressure fuel pump 6 is variably controlled in accordance with the fuel injection amount of the fuel injection valve 11 to control the fuel pressure of the high-pressure system, the fuel injection amount becomes zero during fuel cut. By keeping the electromagnetic control valve 8 in the open state, even if the operation of the high-pressure fuel pump 6 is stopped, the fuel pressure in the fuel accumulator (high-pressure pipe) 10 does not decrease, and remains at the fuel pressure at the time of fuel cut-in. Will be retained.
[0027]
Therefore, as shown in FIG. 3, immediately after the fuel cut recovery, a deviation of the actual fuel pressure from the target fuel pressure may occur.
In addition, in the present system, in order to reduce the fuel injection amount variation, it is generally necessary to suppress the fuel pressure pulsation by increasing the capacity of the fuel accumulator 10 or the like. There is a problem that the response speed of control is reduced. This is because the amount of fuel required to change the fuel pressure in the fuel accumulator 10 by an arbitrary fuel pressure width increases, and a larger pump discharge amount (during pressure increase) and a fuel injection amount (during pressure reduction) are required. It is.
[0028]
In particular, when the actual fuel pressure greatly deviates from the target fuel pressure, such as immediately after the fuel cut recovery described above, the time required for the actual fuel pressure to reach the target fuel pressure becomes longer, and during that time, the combustion stability deteriorates and the exhaust And driving performance is deteriorated.
[0029]
Therefore, in the present invention, a capacity variable means capable of changing the capacity of the fuel accumulator (high-pressure pipe) 10 is provided, and the capacity of the fuel accumulator 10 is temporarily reduced during fuel cut recovery.
[0030]
Specifically, as shown in FIG. 1, the fuel pressure accumulating chamber (high-pressure pipe) 10 is divided into a chamber 10a on the side of the fuel injection valve 11 and a chamber 10b on the end side, and the fuel accumulating chamber (the high-pressure pipe) is always located between the two. An open solenoid valve 16 is provided so that communication and cutoff can be controlled. The opening and closing of the solenoid valve 16 is performed by the ECU 20.
[0031]
Specific control is shown in the flowchart of FIG.
In S1, the engine operation state is monitored, and it is determined whether or not the deceleration-time fuel cut request condition is satisfied. If the condition is satisfied, the process proceeds to S2. The deceleration-time fuel cut request condition is satisfied, for example, when the engine speed is equal to or higher than a predetermined fuel cut speed and the accelerator opening becomes zero.
[0032]
In S2, the fuel injection is stopped for the fuel cut during deceleration, and at the same time, the operation of the high-pressure fuel pump is stopped (the electromagnetic control valve 8 is kept open) and the fuel pressure feedback control is stopped. Thus, the fuel pressure in the fuel accumulator (high-pressure pipe) is maintained at the fuel pressure at the start of the fuel cut.
[0033]
In S3, the current fuel pressure P is read based on the output of the fuel pressure sensor 13, and the actual fuel pressure Pin = P at the start of the fuel cut is stored in the ECU.
In S4, the engine operation state is monitored, and it is determined whether or not the fuel cut recovery request condition is satisfied. If the condition is satisfied, the process proceeds to S5. It is assumed that the fuel cut recovery requirement condition is satisfied after the start of the fuel cut, for example, when the engine speed falls below a predetermined fuel cut recover speed or when the accelerator is depressed.
[0034]
In S5, the target fuel pressure TP is read from the current operating conditions (engine speed and load) with reference to the map in FIG. 2, and the target fuel pressure TPout = TPout at the time of fuel cut recovery is stored in the ECU.
[0035]
In S6, it is determined whether or not the difference (| Pin-TPout |) between the fuel pressure Pin at the start of fuel cut and the target fuel pressure TPout at the time of fuel cut recovery exceeds a predetermined fuel pressure deviation Pw1. Pw1 is a ROM value that is determined in advance based on the limit value of the fuel pressure deviation that does not deteriorate the combustion stability even when the capacity control of the fuel storage chamber is not performed.
[0036]
When | Pin−TPout | ≦ Pw1, it is determined that the difference between the target fuel pressure and the actual fuel pressure is small, and the responsiveness of the fuel pressure feedback control is not a problem. ), Proceeding to S12, restarting the fuel injection for fuel cut recovery, and at the same time, restarting the operation of the high pressure fuel pump and the fuel pressure feedback control and ending the processing.
[0037]
If | Pin-TPout |> Pw1, it is determined that the difference between the target fuel pressure and the actual fuel pressure is large, and the routine proceeds to S7.
In S7, in order to improve the responsiveness of the fuel pressure feedback control, the solenoid valve 16 is turned on to close the valve, and the capacity of the fuel accumulator 10 is reduced. That is, the responsiveness of the fuel pressure feedback control is improved by setting the fuel pressure accumulating chamber 10 connected to the high-pressure fuel pump 6 and the fuel injection valve 12 to only the portion 10a and cutting off the portion 10b.
[0038]
Thereafter, in S8, the fuel injection is restarted and the high-pressure fuel pump operation and the fuel pressure feedback control are restarted at the same time for fuel cut recovery.
In S9, the current fuel pressure P is read based on the output of the fuel pressure sensor 13, and the target fuel pressure TP is read from the current operating conditions (engine speed and load) with reference to the map in FIG. It is determined whether the deviation (| P-TP |) between P and the target fuel pressure TP has become smaller than a predetermined fuel pressure deviation Pw2. Pw2 is a ROM value determined in advance for determining whether the actual fuel pressure has been stabilized by feedback control.
[0039]
If | P−TP | <Tw2, the control for reducing the capacity of the fuel accumulator by the solenoid valve 16 is terminated. However, if the solenoid valve 16 is immediately turned OFF (fully opened), the fuel pressure at the time of fuel cut-in is maintained. Since the held chamber 10b on the side other than the fuel injection valve 11 side is opened, the inside of the high-pressure pipe before and after the solenoid valve 16 is averaged at a stretch, and a fuel pressure step is generated, and the actual fuel pressure becomes lower than the target fuel pressure. Misalignment occurs. Also in this case, as described above, the time until the actual fuel pressure reaches the target fuel pressure becomes longer, and the combustion stability may be deteriorated, and the exhaust and drivability may be deteriorated.
[0040]
Then, in order to reduce this fuel pressure change as much as possible, first, at S10, the electromagnetic valve 16 is opened and closed intermittently for a predetermined time. That is, the sequence is repeated from OFF → ON → OFF → ON. The number of cycles and the cycle are determined in advance by experiments or the like so that the fuel pressure gradually decreases.
[0041]
Thereafter, in S11, the electromagnetic valve 16 is turned off (fully opened), and all the processes are terminated.
As described above, according to the present embodiment, the capacity variable means (electromagnetic valve 16) capable of changing the capacity of the fuel pressure accumulating chamber (high-pressure pipe) 10 is provided, and the fuel pressure accumulating chamber is temporarily The response speed of the fuel pressure feedback control is increased by reducing the capacity of the fuel pressure feedback control by reducing the capacity of the fuel pressure storage chamber 10 even when a difference between the target fuel pressure and the actual fuel pressure occurs during the fuel cut recovery. And the combustion stability can be improved (see FIG. 5).
[0042]
Further, according to the present embodiment, when the difference between the fuel pressure at the start of fuel cut and the target fuel pressure at the time of fuel cut recovery is equal to or greater than a predetermined value, the capacity of the fuel pressure accumulating chamber is reduced, thereby eliminating the capacity reduction control. Since no control is performed under such conditions, the durability of the system is improved.
[0043]
Further, according to the present embodiment, by reducing the capacity of the fuel accumulator chamber prior to the fuel cut recovery, the volume of the fuel accumulator chamber can be reliably reduced before the fuel cut recovery, and the fuel pressure feedback can be performed immediately after the fuel cut recovery. Control responsiveness can be reliably improved. In this case, in order to further improve the certainty, the solenoid valve 16 is turned on during the fuel cut, for example, immediately after the start of the fuel cut as shown by a dotted line in FIG. 5 to reduce the capacity of the fuel accumulator. It may be. However, if there is no problem in the operation delay of the capacity reduction control, the capacity of the fuel accumulator may be reduced immediately after the start of the fuel cut.
[0044]
Further, according to the present embodiment, by using the electromagnetic valve 16 capable of shutting off a part of the fuel pressure accumulating chamber 10 as the variable capacity means, it is possible to realize the comparatively simple configuration. Further, according to the present embodiment, when the capacity of the fuel accumulator is reduced and then restored, the solenoid valve 16 is opened and closed intermittently to average the fuel pressure before and after the solenoid valve 16 stepwise. Thus, the occurrence of the fuel pressure step can be suppressed, and the deterioration of combustion stability due to the fuel pressure step can be prevented (see FIG. 5).
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a fuel system of a direct injection type internal combustion engine showing an embodiment of the present invention. FIG. 2 is a diagram showing a map for setting a target fuel pressure. FIG. 3 is a fuel pressure during fuel cut-in to fuel cut recovery. Behavior explanatory diagram [Fig. 4] Control flowchart [Fig. 5] Control time chart [Explanation of symbols]
Reference Signs List 1 fuel tank 2 low-pressure fuel pump 6 high-pressure fuel pump 10, 10a, 10b fuel accumulator (high-pressure pipe)
12 fuel injection valve 13 fuel pressure sensor 14 relief valve 16 solenoid valve 20 ECU

Claims (5)

高圧燃料ポンプからの高圧燃料を蓄える燃料蓄圧室と、燃料蓄圧室から導かれる高圧燃料を機関に噴射供給する燃料噴射弁と、燃料蓄圧室の燃圧を検出し、機関運転条件に応じて設定される目標燃圧となるように、高圧燃料ポンプの吐出量を制御する燃圧フィードバック制御手段とを備える一方、
機関の減速時に燃料噴射弁の燃料噴射を停止させて燃料カットを行う減速時燃料カット手段を備える内燃機関の燃料系制御装置において、
前記燃料蓄圧室の容量を変化させ得る容量可変手段を設け、燃料カットリカバー時に、一時的に、前記燃料蓄圧室の容量を低減することを特徴とする内燃機関の燃料系制御装置。
A fuel accumulator for storing high-pressure fuel from a high-pressure fuel pump, a fuel injection valve for injecting high-pressure fuel guided from the fuel accumulator into the engine, and a fuel pressure in the fuel accumulator which are set according to engine operating conditions. Fuel pressure feedback control means for controlling the discharge amount of the high pressure fuel pump so that the target fuel pressure is
In a fuel system control device for an internal combustion engine including deceleration-time fuel cut means for stopping fuel injection of a fuel injection valve at the time of engine deceleration and performing fuel cut,
A fuel system control device for an internal combustion engine, characterized in that a capacity variable means capable of changing the capacity of the fuel accumulator is provided, and the capacity of the fuel accumulator is temporarily reduced during fuel cut recovery.
燃料カット開始時の燃圧と燃料カットリカバー時の目標燃圧との差が所定値以上の場合に、前記燃料蓄圧室の容量を低減することを特徴とする請求項1記載の内燃機関の燃料系制御装置。2. The fuel system control for an internal combustion engine according to claim 1, wherein when the difference between the fuel pressure at the start of fuel cut and the target fuel pressure at the time of fuel cut recovery is equal to or more than a predetermined value, the capacity of the fuel accumulator is reduced. apparatus. 燃料カットリカバーに先立って、前記燃料蓄圧室の容量を低減することを特徴とする請求項1又は請求項2記載の内燃機関の燃料系制御装置。3. The fuel system control device for an internal combustion engine according to claim 1, wherein the capacity of the fuel pressure accumulating chamber is reduced prior to the fuel cut recovery. 前記容量可変手段は、前記燃料蓄圧室の一部を遮断可能な電磁弁であることを特徴とする請求項1〜請求項3のいずれか1つに記載の内燃機関の燃料系制御装置。The fuel system control device for an internal combustion engine according to any one of claims 1 to 3, wherein the capacity variable means is an electromagnetic valve capable of shutting off a part of the fuel pressure accumulation chamber. 前記燃料蓄圧室の容量の低減後に、該容量を回復させる時は、前記電磁弁を断続的に開閉させることを特徴とする請求項4記載の内燃機関の燃料系制御装置。5. The fuel system control device for an internal combustion engine according to claim 4, wherein when the capacity of the fuel accumulator is reduced after the capacity is reduced, the solenoid valve is opened and closed intermittently.
JP2003042310A 2003-02-20 2003-02-20 Fuel system control device for internal combustion engine Expired - Fee Related JP4019969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003042310A JP4019969B2 (en) 2003-02-20 2003-02-20 Fuel system control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003042310A JP4019969B2 (en) 2003-02-20 2003-02-20 Fuel system control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004251193A true JP2004251193A (en) 2004-09-09
JP4019969B2 JP4019969B2 (en) 2007-12-12

Family

ID=33025619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003042310A Expired - Fee Related JP4019969B2 (en) 2003-02-20 2003-02-20 Fuel system control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4019969B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528205A (en) * 2007-05-23 2010-08-19 インターロッキング ビルディングス ピーティーワイ リミテッド Manufacturing and installation method of high pressure liquid LPG fuel supply device and dual or mixed fuel supply system
JP2012232296A (en) * 2005-09-26 2012-11-29 Univ Of Leeds Apparatus and method for delivering medicine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012232296A (en) * 2005-09-26 2012-11-29 Univ Of Leeds Apparatus and method for delivering medicine
US8944173B2 (en) 2005-09-26 2015-02-03 University Of Leeds Apparatus and method of extinguishing a fire using a vapor explosion process
US8967494B2 (en) 2005-09-26 2015-03-03 University Of Leeds Fuel injector
US9072850B2 (en) 2005-09-26 2015-07-07 University Of Leeds Drug delivery
JP2010528205A (en) * 2007-05-23 2010-08-19 インターロッキング ビルディングス ピーティーワイ リミテッド Manufacturing and installation method of high pressure liquid LPG fuel supply device and dual or mixed fuel supply system
KR101498173B1 (en) * 2007-05-23 2015-03-03 인터록킹 빌딩스 피티와이 리미티드 A method of manufacturing and installation of high pressure liquid lpg fuel supply and dual or mixed fuel supply systems

Also Published As

Publication number Publication date
JP4019969B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
US7801672B2 (en) After-stop fuel pressure control device of direct injection engine
JP5282878B2 (en) In-cylinder injection internal combustion engine control device
JP4023020B2 (en) Fuel pressure control device for high pressure fuel injection system
JP2013113145A (en) Control device for internal combustion engine
JP4134216B2 (en) Internal combustion engine control device
JP2011127523A (en) Control device and control method of pressure accumulating type fuel injection device, and pressure accumulating type fuel injection device
JP3572937B2 (en) Fuel pressure control device for accumulator type fuel injection mechanism
JP2010196472A (en) Fuel supply control device for internal combustion engine
JP5278605B2 (en) Diesel engine control device
JP4322444B2 (en) Accumulated fuel injection system
JP5991268B2 (en) Fuel supply device for internal combustion engine
JP4019969B2 (en) Fuel system control device for internal combustion engine
JP2005147090A (en) Common rail fuel injection system
JP4509191B2 (en) Fuel injection control device for in-cylinder injection engine
JP4857372B2 (en) Fuel pressure control device
JP5310139B2 (en) Fuel injection device for internal combustion engine
JP5040692B2 (en) In-cylinder direct injection internal combustion engine fuel supply device
JP4670832B2 (en) Pressure control device and fuel injection control system
JP3632097B2 (en) Fuel injection control device for internal combustion engine
JP2001123913A (en) Fuel injection device for internal combustion engine
JP4281825B2 (en) Fuel pressure control device for high pressure fuel injection system
JP2008008298A (en) Fuel pressure control device
JP4075567B2 (en) Fuel supply device for internal combustion engine
JP2009185623A (en) Fuel supply device for internal combustion engine
JPH11125161A (en) Fuel feeding device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees