JP5040692B2 - In-cylinder direct injection internal combustion engine fuel supply device - Google Patents

In-cylinder direct injection internal combustion engine fuel supply device Download PDF

Info

Publication number
JP5040692B2
JP5040692B2 JP2008023806A JP2008023806A JP5040692B2 JP 5040692 B2 JP5040692 B2 JP 5040692B2 JP 2008023806 A JP2008023806 A JP 2008023806A JP 2008023806 A JP2008023806 A JP 2008023806A JP 5040692 B2 JP5040692 B2 JP 5040692B2
Authority
JP
Japan
Prior art keywords
fuel
solenoid
pressure
energization
way valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008023806A
Other languages
Japanese (ja)
Other versions
JP2009185622A (en
Inventor
忠樹 間野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008023806A priority Critical patent/JP5040692B2/en
Publication of JP2009185622A publication Critical patent/JP2009185622A/en
Application granted granted Critical
Publication of JP5040692B2 publication Critical patent/JP5040692B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

本発明は、筒内直噴式内燃機関の燃料供給装置に関し、特に高圧燃料ポンプでの圧損低減技術に関する。   The present invention relates to a fuel supply device for a direct injection type internal combustion engine, and particularly to a technique for reducing pressure loss in a high-pressure fuel pump.

従来、筒内直噴式内燃機関においては、燃料噴射弁(インジェクタ)への高圧燃料の供給のため、特許文献1に示されるような高圧燃料ポンプを使用している。
この高圧燃料ポンプは、カム駆動によるプランジャの往復動によりポンプ室の容積を変化させ、プランジャの吸入行程にて吸入側一方向弁を介してポンプ室に燃料を吸入し、プランジャの吐出行程にてポンプ室の燃料を吐出側一方向弁を介して吐出するプランジャポンプと、前記吸入側一方向弁に対し設けられ、通電により発生する電磁力によりポンプ室内の圧力にかかわらず前記吸入側一方向弁を開弁状態に保持することができるソレノイドと、を備えている。
Conventionally, in a direct injection type internal combustion engine, a high-pressure fuel pump as shown in Patent Document 1 is used for supplying high-pressure fuel to a fuel injection valve (injector).
This high-pressure fuel pump changes the volume of the pump chamber by the reciprocating movement of the plunger driven by a cam, sucks fuel into the pump chamber through the suction side one-way valve in the plunger suction stroke, and in the plunger discharge stroke. A plunger pump that discharges fuel in the pump chamber through a discharge-side one-way valve, and the suction-side one-way valve that is provided for the suction-side one-way valve, regardless of the pressure in the pump chamber due to electromagnetic force generated by energization And a solenoid capable of holding the valve in an open state.

そして、前記プランジャの吐出行程の任意の時期まで前記ソレノイドに通電して、前記吸入側一方向弁を開弁状態に保持し、前記ソレノイドへの通電終了後に前記吸入側一方向弁を閉弁させて、吐出動作を開始させるようにし、前記ソレノイドの通電終了時期の制御により、前記吸入側一方向弁の閉弁時期(吐出行程における閉弁期間)を制御することで、前記プランジャポンプの吐出量を制御するようにしている。
特開2007−032323号公報
Then, the solenoid is energized until an arbitrary timing of the discharge stroke of the plunger, the suction side one-way valve is kept open, and the suction side one-way valve is closed after the solenoid is energized. Thus, the discharge operation of the plunger pump is controlled by controlling the valve closing timing (the valve closing period in the discharge stroke) of the suction side one-way valve by controlling the solenoid energization end timing. To control.
JP 2007-032323 A

ところで、筒内直噴式内燃機関においては、燃料圧力が噴射許可燃圧に達するまで燃料噴射できないため、始動性向上のため、高圧燃料ポンプの昇圧特性を改善することが求められている。   By the way, in a direct injection type internal combustion engine, since fuel injection cannot be performed until the fuel pressure reaches the injection permission fuel pressure, it is required to improve the boosting characteristic of the high-pressure fuel pump in order to improve startability.

そこで、本発明では、従来の高圧燃料ポンプでは、プランジャの吸入行程にて、ポンプ室内の圧力低下により生じた吸引力により、吸入側一方向弁を開弁させつつ、燃料を吸入しており、吸入行程の間、一方向弁のスプリングのセット荷重の分の圧力損失を生じていることに着目し、この圧力損失を低減することにより、高圧燃料ポンプの昇圧特性を改善することを目的とする。   Therefore, in the present invention, in the conventional high-pressure fuel pump, the suction side one-way valve is opened by the suction force generated by the pressure drop in the pump chamber during the plunger suction stroke, and the fuel is sucked. Focusing on the fact that the pressure loss corresponding to the set load of the spring of the one-way valve occurs during the intake stroke, and aims to improve the boosting characteristic of the high-pressure fuel pump by reducing this pressure loss .

このため、本発明では、プランジャポンプの吐出量を制御するために、吸入側一方向弁に設けられているソレノイドの通電開始時期を、運転条件に応じ、吸入行程初期と吸入行程後期とに切換え、ソレノイドの通電開始時期を吸入行程初期とする運転条件を、少なくとも吐出側の燃料圧力が所定値より低いときとする構成とする。 Therefore, in the present invention, in order to control the discharge amount of the plunger pump, the energization start timing of the solenoid provided in the one-way valve on the suction side is switched between the initial stage of the intake stroke and the late stage of the intake stroke according to the operating conditions. The operation condition in which the energization start timing of the solenoid is set to the initial stage of the suction stroke is set so that at least the fuel pressure on the discharge side is lower than a predetermined value .

本発明によれば、吸入行程初期からソレノイドへの通電を開始して、吸入側一方向弁を開弁保持することにより、吸入行程において吸入側一方向弁をソレノイドにより開弁保持している間、電磁力で一方向弁のスプリングのセット荷重に対抗できるため、その分の圧力損失を低減できる。これにより、始動時の昇圧特性を改善できる他、ポンプ室内でのベーパ発生にも対処可能となる。   According to the present invention, energization of the solenoid is started from the beginning of the intake stroke, and the intake-side one-way valve is held open, so that the intake-side one-way valve is held open by the solenoid during the intake stroke. Since the electromagnetic force can counteract the set load of the spring of the one-way valve, the pressure loss can be reduced accordingly. As a result, it is possible to improve the boosting characteristics at the start, and to deal with the occurrence of vapor in the pump chamber.

以下に本発明の実施の形態を図面に基づいて説明する。
図1は本発明の一実施形態を示す筒内直噴式内燃機関の燃料供給装置の構成図である。
この内燃機関は、特に筒内直噴火花点火式内燃機関であり、運転モード(燃焼モード)には、均質運転モードと成層運転モードとがある。均質運転モードでは、吸気行程にて燃料噴射を行い、燃焼室の全体に均質な混合気を形成することで、ストイキ又はリーン空燃比(A/F=20〜30)での均質燃焼を行わせる。これに対し、成層運転モードでは、圧縮行程にて燃料噴射を行い、点火プラグの周囲に成層化された混合気塊を形成することで、全体として極めてリーンな空燃比(A/F=30〜40)で成層燃焼を行わせる。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a configuration diagram of a fuel supply device for a direct injection type internal combustion engine, showing an embodiment of the present invention.
This internal combustion engine is an in-cylinder direct injection spark ignition internal combustion engine, and there are a homogeneous operation mode and a stratified operation mode as operation modes (combustion modes). In the homogeneous operation mode, fuel is injected during the intake stroke, and a homogeneous air-fuel mixture is formed in the entire combustion chamber, thereby causing homogeneous combustion at a stoichiometric or lean air-fuel ratio (A / F = 20 to 30). . On the other hand, in the stratified operation mode, fuel injection is performed in the compression stroke, and a stratified air-fuel mixture is formed around the spark plug, so that the air / fuel ratio (A / F = 30 to In step 40), stratified combustion is performed.

この内燃機関への燃料供給装置について説明する。
燃料タンク1内に、低圧燃料ポンプ2が設けられている。詳しくは、燃料タンク1内の燃料を圧送する電動式の低圧燃料ポンプ2と、その吐出側で燃料をろ過する燃料フィルタ3と、余剰燃料を燃料タンク1へ戻すことで吐出側圧力を一定圧力(通常0.3〜0.5MPa程度)に調整する低圧プレッシャレギュレータ4とが設けられている。
A fuel supply device for the internal combustion engine will be described.
A low pressure fuel pump 2 is provided in the fuel tank 1. Specifically, the electric low-pressure fuel pump 2 that pumps the fuel in the fuel tank 1, the fuel filter 3 that filters the fuel on the discharge side thereof, and the discharge side pressure is kept constant by returning the surplus fuel to the fuel tank 1. A low-pressure pressure regulator 4 that is adjusted to (usually about 0.3 to 0.5 MPa) is provided.

低圧燃料ポンプ2により圧送される燃料は、低圧燃料通路5により、燃料フィルタ6及び燃料ダンパ7を介して、高圧燃料ポンプ8へ供給される。
高圧燃料ポンプ8は、主にプランジャポンプ9により構成されている。プランジャポンプ9は、カム10駆動によるプランジャ11の往復動によりポンプ室12の容積を変化させ、プランジャ11の吸入行程にて吸入側一方向弁13を介してポンプ室12に燃料を吸入し、プランジャ11の吐出行程にて吐出側一方向弁14を介してポンプ室12内の燃料を吐出する。尚、ポンプ駆動カム10はエンジンカムシャフトに連結されている。
The fuel pumped by the low pressure fuel pump 2 is supplied to the high pressure fuel pump 8 through the fuel filter 6 and the fuel damper 7 by the low pressure fuel passage 5.
The high-pressure fuel pump 8 is mainly composed of a plunger pump 9. The plunger pump 9 changes the volume of the pump chamber 12 by the reciprocating motion of the plunger 11 driven by the cam 10, and sucks fuel into the pump chamber 12 through the suction side one-way valve 13 in the intake stroke of the plunger 11. 11, the fuel in the pump chamber 12 is discharged through the discharge-side one-way valve 14 in the discharge stroke. The pump drive cam 10 is connected to the engine cam shaft.

高圧燃料ポンプ8は、更に、ソレノイド15を含んで構成されている。ソレノイド15は、吸入側一方向弁13に対し設けられ、通電により発生する電磁力により、ポンプ室12内の圧力にかかわらず、吸入側一方向弁13を開弁状態に保持することができる。   The high pressure fuel pump 8 further includes a solenoid 15. The solenoid 15 is provided for the suction-side one-way valve 13 and can hold the suction-side one-way valve 13 in an open state regardless of the pressure in the pump chamber 12 by electromagnetic force generated by energization.

図2は高圧燃料ポンプ8の具体的構造を示している。
吸入側吐出弁(その弁体)13は、プランジャポンプ9の吸入側通路に設けられて、スプリング13sにより閉弁方向に付勢され、ポンプ室12内の負圧によりスプリング13sに抗して開弁する一方、ソレノイド15への通電によりポンプ室12内の圧力にかかわらず開弁する構成となっている。すなわち、ソレノイド15への非通電時には吸入方向への一方向弁として機能し、ソレノイド15への通電時にはいずれの方向へも全開状態に保持される。
FIG. 2 shows a specific structure of the high-pressure fuel pump 8.
The suction side discharge valve (the valve body) 13 is provided in the suction side passage of the plunger pump 9 and is urged in the valve closing direction by the spring 13s, and is opened against the spring 13s by the negative pressure in the pump chamber 12. On the other hand, the solenoid 15 is energized to open regardless of the pressure in the pump chamber 12. That is, it functions as a one-way valve in the suction direction when the solenoid 15 is not energized, and is kept fully open in any direction when the solenoid 15 is energized.

吐出側一方向弁(その弁体)14は、プランジャポンプ9の吐出側通路に設けられて、スプリング14sにより閉弁方向に付勢され、ポンプ室12内の正圧によりスプリング14sに抗して開弁する構成となっている。すなわち、吐出方向への一方向弁として機能する。   The discharge-side one-way valve (the valve body) 14 is provided in the discharge-side passage of the plunger pump 9 and is urged in the valve closing direction by the spring 14s, and resists the spring 14s by the positive pressure in the pump chamber 12. It is configured to open. That is, it functions as a one-way valve in the discharge direction.

ここにおいて、プランジャ11の吐出行程の任意の時期までソレノイド15に通電して、吸入側一方向弁13を開弁状態に保持し、ソレノイド15への通電終了後に吸入側一方向弁13を閉弁させて、吐出動作を開始させるようにし、ソレノイド15の通電終了時期の制御により、吸入側一方向弁13の閉弁時期(吐出行程における閉弁期間)を制御することで、プランジャポンプ9の吐出量を制御するようにしている(図3(A)参照)。   Here, the solenoid 15 is energized until an arbitrary timing of the discharge stroke of the plunger 11, the suction side one-way valve 13 is held open, and the suction side one-way valve 13 is closed after the solenoid 15 is energized. Thus, the discharge operation is started, and the valve closing timing (the valve closing period in the discharge stroke) of the suction side one-way valve 13 is controlled by controlling the energization end timing of the solenoid 15. The amount is controlled (see FIG. 3A).

高圧燃料ポンプ8(プランジャポンプ9)の吐出側(吐出側一方向弁14の出口側)は、オリフィス付きの高圧燃料通路16により、燃料蓄圧室(コモンレール)17に接続されている。   The discharge side of the high-pressure fuel pump 8 (plunger pump 9) (the outlet side of the discharge-side one-way valve 14) is connected to a fuel pressure accumulation chamber (common rail) 17 by a high-pressure fuel passage 16 with an orifice.

燃料蓄圧室17には、これから分岐する分岐管18を介して気筒数分の燃料噴射弁19が接続され、これらの燃料噴射弁19はエンジンの各気筒の燃焼室に臨んでいる。
また、燃料蓄圧室17には、該蓄圧室17内の燃圧を検出する燃圧センサ20が取付けられ、その信号はECU100に入力されている。
The fuel pressure accumulating chamber 17 is connected to the fuel injection valves 19 corresponding to the number of cylinders via branch pipes 18 that branch from now on, and these fuel injection valves 19 face the combustion chambers of the cylinders of the engine.
In addition, a fuel pressure sensor 20 that detects the fuel pressure in the pressure accumulation chamber 17 is attached to the fuel pressure accumulation chamber 17, and a signal thereof is input to the ECU 100.

更に、燃料蓄圧室17との連通路21にリリーフ弁22の一端側を接続し、リリーフ弁22の他端側を、リターン通路23により、高圧燃料ポンプ8の吸入側の低圧燃料通路5に接続している。このリリーフ弁22は、燃料蓄圧室17内の燃圧が過大に上昇したときに開弁して圧力を逃がすためのものである(開弁圧は18MPa程度)。   Furthermore, one end side of the relief valve 22 is connected to the communication passage 21 with the fuel pressure accumulating chamber 17, and the other end side of the relief valve 22 is connected to the low pressure fuel passage 5 on the suction side of the high pressure fuel pump 8 by the return passage 23. is doing. The relief valve 22 is for opening the valve when the fuel pressure in the fuel pressure accumulation chamber 17 is excessively increased and releasing the pressure (the valve opening pressure is about 18 MPa).

ここにおいて、燃料噴射弁19より噴射する燃料圧力を制御するため、燃料蓄圧室17内の燃圧を制御するが、この燃圧は、ECU100からの信号により、ソレノイド15の通電終了時期(吐出行程における吸入側一方向弁13の閉弁時期)を制御して、高圧燃料ポンプ8(プランジャポンプ9)の吐出量を制御することにより、ポンプ吐出量と燃料噴射量との流量収支のバランスで、任意の目標燃圧(通常3〜15MPa程度)にフィードバック制御する。尚、目標燃圧は、運転条件(回転数及び負荷)に応じて、高回転・高負荷側ほど大きく、低回転・低負荷側ほど小さく、設定されている。   Here, in order to control the fuel pressure injected from the fuel injection valve 19, the fuel pressure in the fuel accumulator chamber 17 is controlled. This fuel pressure is determined by the signal from the ECU 100 at the end of energization of the solenoid 15 (suction in the discharge stroke). By controlling the discharge amount of the high-pressure fuel pump 8 (plunger pump 9) by controlling the closing timing of the side one-way valve 13), the balance of the flow rate balance between the pump discharge amount and the fuel injection amount is arbitrary. Feedback control is performed to the target fuel pressure (usually about 3 to 15 MPa). Note that the target fuel pressure is set to be larger at the high rotation / high load side and smaller at the low rotation / low load side according to the operating conditions (the number of rotations and the load).

次にソレノイド15の通電開始時期について図3(A)、(B)により説明する。
図3(A)は通常制御時のプランジャポンプの吸入・吐出動作(及びソレノイドの通電開始時期)を示している。
Next, the energization start timing of the solenoid 15 will be described with reference to FIGS.
FIG. 3A shows the suction / discharge operation of the plunger pump (and the energization start timing of the solenoid) during normal control.

プランジャ11が上死点(TDC)から下降する吸入行程においては、ポンプ室12内の負圧により、吸入側一方向弁13が開き、ポンプ室12内に燃料が吸入される。
その後、プランジャ11が下死点(BDC)に達する直前に、ソレノイドON信号を立ち上げ、ソレノイド15に通電する。これは、下死点(BDC)までに吸入側一方向弁13をポンプ室12内の圧力にかかわらず閉弁状態に保持するためである。従って、ソレノイド15の通電開始時期は、吸入行程後期で、遅くとも、電磁力により吸入側一方向弁13が下死点(BDC)までに開弁するようなタイミングである。これは従来より一般的に用いられていた通電開始時期である。
In the suction stroke in which the plunger 11 descends from the top dead center (TDC), the suction side one-way valve 13 is opened by the negative pressure in the pump chamber 12, and fuel is sucked into the pump chamber 12.
Thereafter, immediately before the plunger 11 reaches bottom dead center (BDC), the solenoid ON signal is raised and the solenoid 15 is energized. This is because the suction-side one-way valve 13 is held in the closed state by the bottom dead center (BDC) regardless of the pressure in the pump chamber 12. Therefore, the energization start timing of the solenoid 15 is late in the intake stroke, and at the latest, the intake side one-way valve 13 is opened to the bottom dead center (BDC) by electromagnetic force. This is an energization start time that has been generally used conventionally.

プランジャ11が下死点(BDC)に達した後、上昇して、吐出行程に入るが、ソレノイド15により吸入側一方向弁13が開状態に保持されているため、プランジャ11の上昇によりポンプ室12内の燃料は吸入側へ逆流し、その結果、ポンプ室12内の圧力は上昇せず、吐出側一方向弁14は閉弁状態に保持されたままで、吐出動作はなされない。   After the plunger 11 reaches the bottom dead center (BDC), it rises and enters the discharge stroke. However, since the suction side one-way valve 13 is held open by the solenoid 15, the plunger 11 is lifted to raise the pump chamber. The fuel in 12 flows backward to the suction side, and as a result, the pressure in the pump chamber 12 does not increase, and the discharge-side one-way valve 14 is kept closed and the discharge operation is not performed.

その後、吐出行程の任意の時期にソレノイドON信号を終了させて、ソレノイド15への通電を終了させる。すると、吸入側一方向弁13が閉じ、その後はプランジャ11の上昇によってポンプ室12内の圧力が上昇し、ポンプ室12内の燃料が吐出側一方向弁14を介して吐出する。従って、ソレノイド15への通電終了による吸入側一方向弁13の閉弁時期、詳しくは、吐出行程における吸入側一方向弁13の閉弁期間に対応した量の燃料が吐出される。   Thereafter, the solenoid ON signal is terminated at an arbitrary timing of the discharge stroke, and energization of the solenoid 15 is terminated. Then, the suction side one-way valve 13 is closed, and thereafter, the pressure in the pump chamber 12 rises due to the rise of the plunger 11, and the fuel in the pump chamber 12 is discharged through the discharge side one-way valve 14. Therefore, the amount of fuel corresponding to the closing timing of the suction-side one-way valve 13 due to the end of energization of the solenoid 15, specifically the closing period of the suction-side one-way valve 13 in the discharge stroke, is discharged.

図3(B)は圧損低減制御時のプランジャポンプの吸入・吐出動作(及びソレノイドの通電開始時期)を示している。
通常制御時と異なる点は、ソレノイド15の通電開始時期を吸入行程初期、特に上死点(TDC)とする。すなわち、吸入行程初期、特に上死点(TDC)にてソレノイドON信号を立ち上げ、ソレノイド15への通電を開始する。これより、吸入行程初期から吸入側一方向弁13が電磁力によって開弁状態に保持される。
FIG. 3B shows the suction / discharge operation of the plunger pump (and the start of energization of the solenoid) during the pressure loss reduction control.
The difference from the normal control is that the energization start timing of the solenoid 15 is the initial stage of the intake stroke, particularly the top dead center (TDC). That is, the solenoid ON signal is raised at the beginning of the intake stroke, particularly at top dead center (TDC), and energization of the solenoid 15 is started. As a result, the suction side one-way valve 13 is maintained in an open state by electromagnetic force from the beginning of the suction stroke.

このようにすると、プランジャ11の吸入行程の間、ソレノイド15の電磁力で吸入側一方向弁13を強制的に開くため、流体力により開弁するための圧力損失がなくなり、圧力損失を低減できる。   In this way, the suction-side one-way valve 13 is forcibly opened by the electromagnetic force of the solenoid 15 during the suction stroke of the plunger 11, so that there is no pressure loss for opening the valve by fluid force, and the pressure loss can be reduced. .

従って、図3(B)の通電開始時期が圧損低減のための通電開始時期である。但し、通電時間が長くなることから、消費電力が増大するので、運転条件により、圧損低減制御が特に必要なときに限って、図3(B)の圧損低減制御に切換え、それ以外は、図3(A)の通常制御とする。   Therefore, the energization start timing in FIG. 3B is the energization start timing for reducing the pressure loss. However, since the energization time becomes longer, the power consumption increases. Therefore, the pressure loss reduction control of FIG. 3B is switched only when the pressure loss reduction control is particularly necessary depending on the operating conditions. 3 (A) normal control.

図4は通常制御と圧損低減制御との切換制御のフローチャートである。
S1では、始動時か否か、すなわち、始動時か、それ以外の通常運転時かを判定する。
始動時の場合は、S2へ進み、極低温(−30〜−40℃程度)の均質始動時か否か、すなわち、極低温の均質始動時か、それ以外の成層始動時かを判定する。
FIG. 4 is a flowchart of switching control between normal control and pressure loss reduction control.
In S <b> 1, it is determined whether or not it is a start time, that is, whether it is a start time or other normal operation.
In the case of starting, the process proceeds to S2, and it is determined whether or not it is a homogeneous start at an extremely low temperature (about −30 to −40 ° C.), that is, whether it is a homogeneous start at an extremely low temperature or other stratified start.

尚、本実施形態の筒内直噴火花点火式内燃機関では、成層燃焼(圧縮行程噴射)にて始動するが、極低温時は成層燃焼での始動が困難となるため、極低温時のみ均質燃焼(吸気行程噴射)にて始動するようにしている。   In the in-cylinder direct injection spark ignition type internal combustion engine of the present embodiment, the engine is started by stratified combustion (compression stroke injection), but it is difficult to start by stratified combustion at extremely low temperatures, so it is homogeneous only at extremely low temperatures. The engine is started by combustion (intake stroke injection).

極低温の均質始動時は、S5へ進み、圧損低減制御とすべく、フラグF=1とする。極低温の均質始動時(吸気行程噴射時)は、要求噴射量が高圧燃料ポンプの最大吐出量を上回り、吐出行程の全域で吸入側一方向弁13を閉弁させて、低圧燃料ポンプ2からの低圧燃料をそのまま吐出させる状態となるので、高圧燃料ポンプでの吸入行程での圧損を極力低減することが望ましいからである。   At the time of homogenous starting at a very low temperature, the process proceeds to S5, and the flag F = 1 is set for pressure loss reduction control. At the very low temperature homogeneous start (intake stroke injection), the required injection amount exceeds the maximum discharge amount of the high pressure fuel pump, and the suction side one-way valve 13 is closed over the entire discharge stroke, so that the low pressure fuel pump 2 This is because it is desirable to reduce the pressure loss in the intake stroke of the high-pressure fuel pump as much as possible.

通常の成層始動時の場合は、S3へ進み、冷却水温度(水温)を検出し、第1の所定値(例えば110℃)以上か否かを判定する。これは、ホットリスタートで、燃料温度(燃温)がベーパ発生温度より高いか否かを、燃温の代わりにこれと相関のある水温を用いて判定している。   In the case of normal stratification start-up, the process proceeds to S3, where the cooling water temperature (water temperature) is detected, and it is determined whether or not the first predetermined value (for example, 110 ° C.) or higher. This is a hot restart, and determines whether the fuel temperature (fuel temperature) is higher than the vapor generation temperature using a water temperature correlated with this instead of the fuel temperature.

水温が110℃以上の場合は、ベーパの発生が考えられるため、S5へ進み、圧損低減制御とすべく、フラグF=1とする。ベーパの発生に対処し、圧力の下がり代を減らすためである。   When the water temperature is 110 ° C. or higher, it is considered that vapor is generated. Therefore, the process proceeds to S5, and the flag F = 1 is set for pressure loss reduction control. This is to cope with the generation of vapor and reduce the pressure drop.

水温が110℃未満の場合は、S4へ進み、燃料圧力(燃圧)を検出し、燃圧が成層始動(圧縮行程噴射)での噴射許可燃圧(例えば3MPa)より低いか否かを判定する。
燃圧が噴射許可燃圧より低い場合は、昇圧特性を向上させるため、S5へ進み、圧損低減制御とすべく、フラグF=1とする。より速やかな燃圧上昇を図り、より早期に噴射(圧縮行程噴射)を可能とするためである。
When the water temperature is less than 110 ° C., the process proceeds to S4, where the fuel pressure (fuel pressure) is detected, and it is determined whether or not the fuel pressure is lower than the injection permitted fuel pressure (for example, 3 MPa) at the stratified start (compression stroke injection).
When the fuel pressure is lower than the injection permission fuel pressure, the process proceeds to S5 in order to improve the boosting characteristic, and the flag F = 1 is set for pressure loss reduction control. This is because the fuel pressure can be increased more quickly and injection (compression stroke injection) can be performed earlier.

燃圧が噴射許可燃圧より高い場合(すなわち、成層始動時で、水温からベーパ発生の恐れもなく、燃圧が噴射許可燃圧より高い場合)は、S6へ進み、通常制御とすべく、フラグF=0とする。   If the fuel pressure is higher than the permitted fuel pressure for injection (ie, at the time of stratification start, there is no risk of vapor generation from the water temperature, and the fuel pressure is higher than the permitted fuel pressure for injection), the process proceeds to S6 and flag F = 0 for normal control. And

一方、S1での判定で、通常運転時の場合は、S7へ進む。
S7では、冷却水温度(水温)を検出し、第2の所定値(例えば100℃)以上か否かを判定する。これは、燃料温度(燃温)がベーパ発生温度より高いか否かを、燃温の代わりにこれと相関のある水温を用いて判定している。但し、水温と燃温との相関が始動時と通常運転時とで異なることから、始動時の判定水温(110℃)に比べ、通常運転時の判定水温(100℃)を低くしている。
On the other hand, if the determination at S1 is normal operation, the process proceeds to S7.
In S7, the cooling water temperature (water temperature) is detected, and it is determined whether or not it is equal to or higher than a second predetermined value (for example, 100 ° C.). This determines whether or not the fuel temperature (fuel temperature) is higher than the vapor generation temperature using a water temperature correlated with the fuel temperature instead of the fuel temperature. However, since the correlation between the water temperature and the fuel temperature is different between the start time and the normal operation, the determination water temperature (100 ° C.) during the normal operation is made lower than the determination water temperature (110 ° C.) at the start time.

水温が100℃以上の場合は、ベーパの発生が考えられるため、S8へ進み、圧損低減制御とすべく、フラグF=1とする。ベーパーの発生に対処し、圧力の下がり代を減らすためである。   When the water temperature is 100 ° C. or higher, it is considered that vapor is generated. Therefore, the process proceeds to S8, and flag F = 1 is set for pressure loss reduction control. This is to cope with the generation of vapor and reduce the pressure drop.

水温が100℃未満の場合は、S9へ進み、通常制御とすべく、フラグF=0とする。
図5はソレノイドの通電開始時期(通電開始角)及び通電終了時期(通電終了角)の制御のフローチャートである。
When the water temperature is less than 100 ° C., the process proceeds to S9, and flag F = 0 is set for normal control.
FIG. 5 is a flowchart of control of energization start timing (energization start angle) and energization end timing (energization end angle) of the solenoid.

S11では、フラグFの値を判定し、F=1(圧損低減制御要求有り)か否かを判定する。
F=0で、圧損低減制御要求無しの場合、すなわち通常制御の場合は、S12へ進み、エンジン回転数Neと要求燃料噴射量Qfとから、マップを参照し、通電開始角を設定する。ここで設定される通電開始角は、吸入行程後期で、遅くとも、電磁力により吸入側一方向弁13が下死点(BDC)までに開弁するようなタイミングである。
In S11, the value of the flag F is determined, and it is determined whether or not F = 1 (there is a pressure loss reduction control request).
When F = 0 and there is no pressure loss reduction control request, that is, in the case of normal control, the process proceeds to S12, and the energization start angle is set by referring to the map from the engine speed Ne and the required fuel injection amount Qf. The energization start angle set here is the timing at which the suction side one-way valve 13 is opened to the bottom dead center (BDC) by the electromagnetic force at the latest in the later stage of the suction stroke.

F=1で、圧損低減制御要求有りの場合、すなわち圧損低減制御の場合は、S13へ進み、通電開始角を吸入行程初期、特に上死点(TDC)とする。
S12又はS13で通電開始角を設定した後は、S14(1)〜(3)へ進む。
When F = 1 and there is a pressure loss reduction control request, that is, in the case of pressure loss reduction control, the process proceeds to S13, and the energization start angle is set to the initial stage of the intake stroke, particularly top dead center (TDC).
After the energization start angle is set in S12 or S13, the process proceeds to S14 (1) to (3).

S14(1)では、エンジン回転数Neと要求燃料噴射量Qfとから、マップを参照し、基本通電終了角(通電終了角の基本値)を設定する。
S14(2)では、目標燃圧と実燃圧との差分に所定のゲインGを乗じて、フィードバック分(FB分)を算出する。
In S14 (1), the basic energization end angle (basic value of the energization end angle) is set by referring to the map from the engine speed Ne and the required fuel injection amount Qf.
In S14 (2), the difference between the target fuel pressure and the actual fuel pressure is multiplied by a predetermined gain G to calculate a feedback amount (FB portion).

FB分=(目標燃圧−実燃圧)×G
S14(3)では、基本通電終了角とFB分とから、通電終了角を設定する。
通電終了角=基本通電終了角−FB分
通電開始角及び通電終了角が設定されると、これらに基づいて、ソレノイド15の通電が制御される。
FB minute = (target fuel pressure-actual fuel pressure) x G
In S14 (3), the energization end angle is set from the basic energization end angle and the FB portion.
Energization end angle = basic energization end angle−FB portion When the energization start angle and the energization end angle are set, the energization of the solenoid 15 is controlled based on these.

以上の説明から明らかなように、本実施形態によれば、吸入側一方向弁13に設けられているソレノイド15の通電開始時期を、吸入行程初期とすることにより、吸入側一方向弁13を電磁力で強制的に開くことで、吸入側一方向弁13の開弁のための圧損を低減でき、始動時の昇圧特性を改善できる他、ポンプ室12内でもバーパの発生にも対処可能となる。   As is clear from the above description, according to the present embodiment, the energization start timing of the solenoid 15 provided in the suction side one-way valve 13 is set to the initial stage of the suction stroke, whereby the suction side one-way valve 13 is changed. By forcibly opening with electromagnetic force, the pressure loss for opening the suction side one-way valve 13 can be reduced, the boosting characteristic at the time of starting can be improved, and the occurrence of a barper can be dealt with in the pump chamber 12 as well. Become.

また、本実施形態によれば、ソレノイド15の通電開始時期を、プランジャ11の上死点(TDC)とすることにより、吐出動作を阻害する恐れなく、吸入行程の全域で圧損を低減でき、最大限の圧損低減効果が得られる。   In addition, according to the present embodiment, by setting the energization start timing of the solenoid 15 to the top dead center (TDC) of the plunger 11, the pressure loss can be reduced in the entire suction stroke without fear of disturbing the discharge operation. The effect of reducing pressure loss is obtained.

また、本実施形態によれば、ソレノイド15の通電開始時期を、運転条件に応じ、吸入行程初期(TDC近傍)と、吸入行程後期(BDC近傍)とに切換えることにより、圧損低減と電力消費量低減とを両立させることが可能となる。   In addition, according to the present embodiment, by switching the energization start timing of the solenoid 15 between the initial stage of the intake stroke (near TDC) and the latter stage of the intake stroke (near BDC) according to the operating conditions, pressure loss reduction and power consumption It is possible to achieve both reduction.

また、本実施形態によれば、ソレノイド15の通電開始時期を吸入行程初期とする運転条件を、少なくとも、吐出側の燃圧が所定値(噴射許可燃圧)より低いときとすることにより、低燃圧時に、より速やかな燃圧上昇を図り、より早期に噴射可能とすることができる。   Further, according to the present embodiment, the operating condition in which the energization start timing of the solenoid 15 is set to the initial stage of the intake stroke is at least when the fuel pressure on the discharge side is lower than a predetermined value (injection permission fuel pressure), so Thus, it is possible to increase the fuel pressure more quickly and to enable injection earlier.

また、本実施形態によれば、ソレノイド15の通電開始時期を吸入行程初期とする運転条件を、少なくとも、成層燃焼による始動時で、かつ吐出側の燃圧が所定値(噴射許可燃圧)より低いときとすることにより、成層始動時に、より速やかな燃圧上昇を図り、より早期に噴射して始動可能とすることができる。   Further, according to the present embodiment, the operation condition in which the energization start timing of the solenoid 15 is the initial stage of the intake stroke is at least at the time of start by stratified combustion and when the fuel pressure on the discharge side is lower than a predetermined value (injection permission fuel pressure) By doing so, at the time of stratification start-up, the fuel pressure can be increased more quickly and can be started by injecting earlier.

また、本実施形態によれば、ソレノイド15の通電開始時期を吸入行程初期とする運転条件を、少なくとも、燃温が所定値(ベーパ発生温度)より高いときとすることにより、ベーパの発生に対処して、圧力の下がり代を減らすことができる。よって、ベーパ発生時の吐出量の減少を抑制できると共に、ベーパの発生自体も抑制できる。   Further, according to the present embodiment, it is possible to cope with the generation of vapor by setting the operating condition in which the energization start timing of the solenoid 15 is the initial stage of the intake stroke at least when the fuel temperature is higher than a predetermined value (vapor generation temperature). In this way, the pressure drop can be reduced. Therefore, it is possible to suppress the decrease in the discharge amount when the vapor is generated, and to suppress the generation of the vapor itself.

また、本実施形態によれば、燃温の代わりに水温を用いる場合、ソレノイド15の通電開始時期を吸入行程初期とする運転条件を、始動時は、水温が第1の所定値(110℃)より高いとき、通常運転時は、水温が第2の所定値(100℃)より高いときとし、前記第1の所定値(110℃)より前記第2の所定値(100℃)の方が低い設定とすることにより、水温と燃温との相関が始動時と通常運転時とで異なることに的確に対処できる。   Further, according to the present embodiment, when the water temperature is used instead of the fuel temperature, the operating temperature is set to the first predetermined value (110 ° C.) at the time of starting the operation condition in which the energization start timing of the solenoid 15 is the initial stage of the suction stroke. When higher, during normal operation, the water temperature is higher than a second predetermined value (100 ° C.), and the second predetermined value (100 ° C.) is lower than the first predetermined value (110 ° C.). By setting, it is possible to accurately cope with the fact that the correlation between the water temperature and the fuel temperature differs between the start time and the normal operation time.

また、本実施形態によれば、ソレノイド15の通電開始時期を吸入行程初期とする運転条件を、少なくとも、均質燃焼により始動する低温始動時とすることにより、要求噴射量が高圧燃料ポンプの最大吐出量を上回り、低圧燃料ポンプからの低圧燃料をそのまま吐出させる状態において、高圧燃料ポンプでの吸入時の圧損を低減して、始動性の向上につなげることができる。   Further, according to the present embodiment, the required injection amount is set to the maximum discharge of the high-pressure fuel pump by setting the operation condition in which the energization start timing of the solenoid 15 is the initial stage of the intake stroke at least at the time of low-temperature start starting by homogeneous combustion. When the low pressure fuel is discharged from the low pressure fuel pump as it is, the pressure loss at the time of suction by the high pressure fuel pump can be reduced and the startability can be improved.

本発明の一実施形態を示す内燃機関の燃料供給装置の構成図The block diagram of the fuel supply apparatus of the internal combustion engine which shows one Embodiment of this invention 高圧燃料ポンプの具体的構造を示す図Diagram showing the specific structure of the high-pressure fuel pump 通常制御時(A)及び圧損低減制御時(B)のソレノイドの通電開始時期を示すタイムチャートTime chart showing energization start timing of solenoid during normal control (A) and pressure loss reduction control (B) 通常制御と圧損低減制御との切換制御のフローチャートFlow chart of switching control between normal control and pressure loss reduction control ソレノイドの通電開始時期及び通電終了時期の制御のフローチャートFlow chart of control of energization start timing and energization end timing of solenoid

符号の説明Explanation of symbols

1 燃料タンク
2 低圧燃料タンク
3 燃料フィルタ
4 低圧プレッシャレギュレータ
5 低圧燃料通路
6 燃料フィルタ
7 燃料ダンパ
8 高圧燃料ポンプ
9 プランジャポンプ
10 ポンプ駆動カム
11 プランジャ
12 ポンプ室
13 吸入側一方向弁
13s スプリング
14 吐出側一方向弁
14s スプリング
15 ソレノイド
16 高圧燃料通路
17 燃料蓄圧室
18 分岐管
19 燃料噴射弁
20 燃圧センサ
21 連通路
22 リリーフ弁
23 リターン通路
100 ECU
DESCRIPTION OF SYMBOLS 1 Fuel tank 2 Low pressure fuel tank 3 Fuel filter 4 Low pressure pressure regulator 5 Low pressure fuel passage 6 Fuel filter 7 Fuel damper 8 High pressure fuel pump 9 Plunger pump 10 Pump drive cam 11 Plunger 12 Pump chamber 13 Suction side one-way valve 13s Spring 14 Discharge Side one-way valve 14s Spring 15 Solenoid 16 High pressure fuel passage 17 Fuel accumulator 18 Branch pipe 19 Fuel injection valve 20 Fuel pressure sensor 21 Communication passage 22 Relief valve 23 Return passage 100 ECU

Claims (6)

プランジャの往復動によりポンプ室の容積を変化させ、プランジャの吸入行程にて吸入側一方向弁を介してポンプ室に燃料を吸入し、プランジャの吐出行程にてポンプ室の燃料を吐出側一方向弁を介して吐出するプランジャポンプと、
前記吸入側一方向弁に対し設けられ、通電により発生する電磁力によりポンプ室内の圧力にかかわらず前記吸入側一方向弁を開弁状態に保持することができるソレノイドと、
を備え、
前記プランジャの吐出行程の任意の時期まで前記ソレノイドに通電して、前記吸入側一方向弁を開弁状態に保持し、前記ソレノイドへの通電終了後に前記吸入側一方向弁を閉弁させて、吐出動作を開始させるようにし、前記ソレノイドの通電終了時期の制御により、前記吸入側一方向弁の閉弁時期を制御することで、前記プランジャポンプの吐出量を制御するようにした筒内直噴式内燃機関の燃料供給装置において、
前記ソレノイドの通電開始時期を、運転条件に応じ、吸入行程初期と、吸入行程後期とに切換え、
前記ソレノイドの通電開始時期を吸入行程初期とする運転条件は、少なくとも、吐出側の燃料圧力が所定値より低いときであることを特徴とする筒内直噴式内燃機関の燃料供給装置。
The volume of the pump chamber is changed by the reciprocating movement of the plunger, the fuel is sucked into the pump chamber through the suction-side one-way valve in the plunger suction stroke, and the fuel in the pump chamber is discharged in one direction in the plunger discharge stroke. A plunger pump that discharges through a valve;
A solenoid provided for the suction side one-way valve, and capable of holding the suction side one-way valve in an open state regardless of the pressure in the pump chamber by electromagnetic force generated by energization;
With
Energizing the solenoid until an arbitrary timing of the discharge stroke of the plunger, holding the suction side one-way valve in an open state, closing the suction side one-way valve after energization to the solenoid, An in-cylinder direct injection type in which the discharge amount of the plunger pump is controlled by starting the discharge operation and controlling the closing timing of the suction side one-way valve by controlling the energization end timing of the solenoid In a fuel supply device for an internal combustion engine,
The energization start timing of the solenoid is switched between the initial suction stroke and the late suction stroke according to the operating conditions.
The fuel supply device for a direct injection type internal combustion engine, characterized in that the operating condition in which the energization start timing of the solenoid is at the beginning of the intake stroke is at least when the fuel pressure on the discharge side is lower than a predetermined value .
前記ソレノイドの通電開始時期を吸入行程初期とする運転条件は、少なくとも、成層燃焼による始動時で、かつ吐出側の燃料圧力が所定値より低いときであることを特徴とする請求項1に記載の筒内直噴式内燃機関の燃料供給装置。 The operating condition in which the energization start timing of the solenoid is set to the initial stage of the intake stroke is at least at the time of start-up by stratified combustion and when the fuel pressure on the discharge side is lower than a predetermined value . A fuel supply device for a direct injection type internal combustion engine. 前記ソレノイドの通電開始時期を吸入行程初期とする運転条件は、少なくとも、燃料温度が所定値より高いときであることを特徴とする請求項1又は請求項2記載の筒内直噴式内燃機関の燃料供給装置。 The in-cylinder direct injection internal combustion engine according to claim 1 or 2 , wherein the operating condition in which the energization start timing of the solenoid is set to the initial stage of the intake stroke is at least when the fuel temperature is higher than a predetermined value . Fuel supply device. 前記燃料温度の代わりに冷却水温度を用いる場合、前記ソレノイドの通電開始時期を吸入行程初期とする運転条件は、始動時は、冷却水温度が第1の所定値より高いとき、通常運転時は、冷却水温度が第2の所定値より高いときとし、前記第1の所定値より前記第2の所定値の方が低いことを特徴とする請求項3に記載の筒内直噴式内燃機関の燃料供給装置。 When the cooling water temperature is used instead of the fuel temperature, the operation condition in which the energization start timing of the solenoid is at the beginning of the intake stroke is as follows: at the start, when the cooling water temperature is higher than the first predetermined value, 4. The direct injection internal combustion engine according to claim 3 , wherein the coolant temperature is higher than a second predetermined value, and the second predetermined value is lower than the first predetermined value . Fuel supply device. 前記ソレノイドの通電開始時期を吸入行程初期とする運転条件は、少なくとも、均質燃焼により始動する低温始動時であることを特徴とする請求項1から請求項4のいずれか1つに記載の筒内直噴式内燃機関の燃料供給装置。 The in-cylinder according to any one of claims 1 to 4 , wherein the operation condition in which the energization start timing of the solenoid is at the initial stage of the intake stroke is at least a low-temperature start time that is started by homogeneous combustion . A fuel supply device for a direct injection internal combustion engine. 前記ソレノイドの通電開始時期を吸入行程初期とするときに、前記ソレノイドの通電開始時期を前記プランジャの上死点とすることを特徴とする請求項1から請求項5のいずれか1つに記載の筒内直噴式内燃機関の燃料供給装置。 The energization start timing of the solenoid when the suction stroke initial, according to energization start timing of the solenoid claim 1, characterized in that the top dead center of the plunger to any one of claims 5 A fuel supply device for a direct injection type internal combustion engine.
JP2008023806A 2008-02-04 2008-02-04 In-cylinder direct injection internal combustion engine fuel supply device Expired - Fee Related JP5040692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008023806A JP5040692B2 (en) 2008-02-04 2008-02-04 In-cylinder direct injection internal combustion engine fuel supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008023806A JP5040692B2 (en) 2008-02-04 2008-02-04 In-cylinder direct injection internal combustion engine fuel supply device

Publications (2)

Publication Number Publication Date
JP2009185622A JP2009185622A (en) 2009-08-20
JP5040692B2 true JP5040692B2 (en) 2012-10-03

Family

ID=41069125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008023806A Expired - Fee Related JP5040692B2 (en) 2008-02-04 2008-02-04 In-cylinder direct injection internal combustion engine fuel supply device

Country Status (1)

Country Link
JP (1) JP5040692B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5530876B2 (en) * 2010-09-14 2014-06-25 日立オートモティブシステムズ株式会社 High pressure fuel supply pump
US10161370B2 (en) * 2016-04-13 2018-12-25 GM Global Technology Operations LLC Systems and methods for performing prognosis of fuel delivery systems
US9995237B2 (en) * 2016-11-16 2018-06-12 Ford Global Technologies, Llc Systems and methods for operating a lift pump

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3428443B2 (en) * 1998-06-29 2003-07-22 株式会社日立製作所 Variable flow high pressure fuel pump and fuel supply control method
JP2003120460A (en) * 2001-10-16 2003-04-23 Toyota Motor Corp Compressed-fuel feeder for internal combustion engine
JP3960051B2 (en) * 2002-01-15 2007-08-15 株式会社デンソー Accumulated fuel injection system
JP4478944B2 (en) * 2004-12-17 2010-06-09 株式会社デンソー Fluid metering valve and fuel injection pump using the same
JP4765440B2 (en) * 2005-07-05 2011-09-07 日産自動車株式会社 Engine fuel supply method and engine fuel supply device
JP4455470B2 (en) * 2005-10-19 2010-04-21 日立オートモティブシステムズ株式会社 Controller for high pressure fuel pump and normally closed solenoid valve of high pressure fuel pump

Also Published As

Publication number Publication date
JP2009185622A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP5124612B2 (en) High pressure fuel pump control device for internal combustion engine
JP2011132813A (en) Fuel supply device for internal combustion engine
JP2006291785A (en) Start controller of cylinder injection type internal combustion engine
JP2004353487A (en) Fuel supply device of internal combustion engine
JP2009079514A (en) Fuel pressure control device for cylinder injection type internal combustion engine
WO2015133209A1 (en) Fuel injection control device for internal combustion engine
JP2009079564A (en) High-pressure pump control device of internal combustion engine
JP2013199916A (en) Fuel injection system for internal combustion engine
JP5040692B2 (en) In-cylinder direct injection internal combustion engine fuel supply device
JP2004156578A (en) Accumulator fuel injection system
JP3572937B2 (en) Fuel pressure control device for accumulator type fuel injection mechanism
JP2007224785A (en) Fuel supply device
JP2009221906A (en) Low pressure pump control device of direct injection type internal combustion engine
JP2014231746A (en) Internal combustion engine fuel supply device
JP5835117B2 (en) Fuel supply control device for internal combustion engine
JP4857372B2 (en) Fuel pressure control device
JP5282468B2 (en) Diesel engine automatic stop control method and automatic stop device
JP4826300B2 (en) Control device and control method for internal combustion engine
JP2000130234A (en) Fuel injection control device for direct injection internal combustion engine
JP5018374B2 (en) Fuel injection system for internal combustion engine
JP2007315309A (en) Fuel injection control device for internal combustion engine
JP7054712B2 (en) Fuel pressure control device for internal combustion engine
JP2011185164A (en) Control device of internal combustion engine
JP4019969B2 (en) Fuel system control device for internal combustion engine
JP2003120460A (en) Compressed-fuel feeder for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

R150 Certificate of patent or registration of utility model

Ref document number: 5040692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees