JP2004251173A - Compressor with closed type motor - Google Patents

Compressor with closed type motor Download PDF

Info

Publication number
JP2004251173A
JP2004251173A JP2003041330A JP2003041330A JP2004251173A JP 2004251173 A JP2004251173 A JP 2004251173A JP 2003041330 A JP2003041330 A JP 2003041330A JP 2003041330 A JP2003041330 A JP 2003041330A JP 2004251173 A JP2004251173 A JP 2004251173A
Authority
JP
Japan
Prior art keywords
compressor
rotor
refrigerant
electric motor
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003041330A
Other languages
Japanese (ja)
Inventor
Nobuyasu Ioi
伸泰 五百井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003041330A priority Critical patent/JP2004251173A/en
Publication of JP2004251173A publication Critical patent/JP2004251173A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To effectively suppress heating of a rotor by utilizing a part of a refrigerant sucked by a compressor, in a compressor with a closed type electric motor. <P>SOLUTION: In the compressor A with a closed type electric motor, a compressor 40 and an electric motor 53 for driving the electric motor are juxtaposed on a rotary shaft 30 supported by a closed container 10. The electric motor comprises a stator 55 fixed at the closed container; a rotor 70 having a permanent magnet 75 and revolvably supported at the closed container; and magnet cooling means 50 and 85 to gasify liquid refrigerant, fed from the opposite side in an axial direction of the compressor, and cause it to flow within the rotor toward the compressor and cool a permanent magnet. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、密閉された電動機を持つ密閉型電動機付圧縮機、特にその回転子の冷却に関する。
【0002】
【従来の技術】
家庭等のエアコンシステムの冷凍サイクルにおいて、液冷媒を圧縮してガス冷媒にする圧縮機は電動機により回転駆動される。電動機に大きな負荷が加わるとき回転子が発熱し、温度上昇を抑制するために、圧縮機により圧縮される冷媒の一部を利用することが便利である。これを考慮して、観点から、圧縮機と電動機とを近接させ、圧縮機に吸入される冷媒の一部を電動機内に導いて回転子を冷却している。
【0003】
第1従来例では、圧縮機と電動機とを同軸上に設け、電動機上の圧縮機側の部分から冷媒を吸入している。換言すれば、並置した圧縮機と電動機との間の軸方向中間部に冷媒吸入口を設けている。しかし、これでは吸入される冷媒の大部分は吸入口から圧縮機に流れ、電動機にはあまり供給されない。よって冷媒により電動機が十分に冷却されるとは言い難い。
【0004】
これに対して、第2従来例(特許文献1参照)では、電動機と圧縮機とを並置した上で、電動機上の圧縮機とは反対側の端部に形成した吸入口から冷媒を吸入し、圧縮機に向かって電動機内を軸方向に送っている。
【0005】
【特許文献1】
特開2001−173567号
【0006】
【発明が解決しようとする課題】
第2従来例によれば、吸入された冷媒は電動機内を軸方向に流れ、理屈上はその際回転子を冷却できる。しかし、電動機においてハウジングに固定されたステータの内周面と、ハウジングにより回転可能に支持された回転子の外周面との間の隙間は非常に狭い(0.5から1mm程度)。よって、実際には冷媒の吸入抵抗が大きく少量の冷媒しか隙間を流通できず、回転子の冷却に十分とは言い難い。
【0007】
さりとて、回転子の冷却に有効な量の冷媒を吸引するためには大きな吸引装置が必要になる。のみならず、その分圧縮機に吸引される冷媒の量が減少し、圧縮機を含む冷凍サイクルのCOPが低下してしまう。
【0008】
本発明は上記事情に鑑みてなされたもので、圧縮機に吸入される冷媒の一部を利用して、回転子の発熱を効果的に抑制するできる密閉型電動機付圧縮機を提供することを目的とする。
【0009】
【課題を解決するための手段】
本願の発明者は、反圧縮機側から吸引した冷媒を、上記第2実施例のようにステータと回転子との間の隙間を流通させるのではなく、回転子の内部を流通させることを思い付いて、本発明を完成した。
【0010】
本発明による密閉型電動機付圧縮機は、請求項1に記載したように、密閉容器に支持された回転軸に圧縮機と、圧縮機と該圧縮機を駆動する電動機とが並設されている。ここで、電動機は、密閉容器に固定された固定子と、永久磁石を有し密閉容器に回転可能に支持された回転子と、軸方向で圧縮機の反対側から供給した液冷媒をガス化し、回転子内を圧縮機に向かって流通させ、永久磁石を冷却する磁石冷却手段と、を含むことを特徴とする。
【0011】
この密閉型電動機付圧縮機において、冷凍サイクルにより冷房する冷房負荷が大きいときは、磁石冷却手段から回転子に液冷媒を供給する。供給された液冷媒はガス化され、回転子内を流通する際永久磁石を冷却する。
【0012】
請求項2の密閉型電動機付圧縮機は、請求項1において、磁石冷却手段は、回転子と一体的に形成され液冷媒をガス冷媒に変える減圧部と、回転子に形成されたガス冷媒の流通路とを含む。請求項3の密閉型電動機付圧縮機は、請求項2において、減圧部は、回転子と一体化された中空環状部材の絞りである。
【0013】
請求項4の密閉型電動機付圧縮機は、請求項1において、流通路は、回転子のロータコアに形成された磁石挿入孔の幅方向両端に形成された磁束漏れ防止用空隙である。請求項5の密閉型電動機付圧縮機は、請求項1において、圧縮機は、軸方向で電動機寄りに冷媒吸入口を備え、電動機と反対側に冷媒吐出口を備えている。
【0014】
請求項6の密閉型電動機付圧縮機は、請求項1において、更に、回転子の温度を測定し、測定温度が所定値を超えたとき磁石冷却手段を作動させる温度測定手段を含む。
【0015】
【発明の実施の形態】
<密閉容器>
全体として箱形状又は円筒形状を持つ密閉容器は単一部材から成っても良いし、複数の部材から成っても良い。圧縮機の構成部品を密閉容器の構成部品として共用することもできる。その内部空間を冷媒が流通するので、外界から密閉されている。
【0016】
密閉容器は軸方向で中間部の冷媒吸入口と、軸方向で圧縮機側端部の冷媒吐出口とを有する。冷媒入口を密閉容器の軸方向の中間部に形成するのは、ステータのコイルの構成との関係による。ステータが松葉形状の導体コイルを含む場合、冷媒の流通に対して抵抗となり難い導体コイルの接合部が中間部の半径方向内方に位置するからである。
<圧縮機>
圧縮機は回転軸上の一端側に取り付けられ、固定スクロール及び可動スクロールを含む。電動機の回転力により固定スクロールに対して可動スクロールが回転し、冷媒を圧縮する。
<電動機>
▲1▼電動機は回転軸上の他端側に圧縮機と並んで配置され、固定子と回転子とから成る。回転軸は軸方向で圧縮機とは反対側の一端に液冷媒入口通路を有する。入口通路は外部の冷媒供給管(キャピラリチューブ)が接続される部分と、回転子に連通する部分とを持つ。
▲2▼固定子(ステータ)のステータコアは円筒形状で、密閉容器に固定される。複数の貫通孔内に複数の導体コイルが挿入されている。
▲3▼回転子(ロータ)はロータコアと、ロータコアの複数の磁石挿入孔の各々に挿入された複数の永久磁石と、ロータコアの反圧縮機側で供給される液冷媒をガス冷媒に変える減圧部を持つ環状部材とを持つ。環状部材は回転軸に連通される部分と、液冷媒をガス化して回転子に供給する部分とを持つ。
【0017】
ロータコアには一端面から他端面まで軸方向に貫通する冷媒流通路が形成されている。冷媒流通路はロータコア内の永久磁石の近傍に形成されれば良い。例えば、いわゆるSPMの場合は磁石挿入孔とは別に、該磁石挿入孔の半径方向外方に、専用の冷媒流通路を形成すれば良い。
【0018】
これに対して、中空円筒状のロータコアの磁石挿入孔に永久磁石を内蔵したいわゆるIPMでは、磁石挿入孔の幅方向両端に磁束漏れ防止用空隙(フラックスバリヤ)が存在する。この空隙を冷媒流通路として利用すれば専用の冷媒流通路を設けることは不要となり、構造上、部品点数の削減及び冷却効率上極めて効果的である。
▲4▼電動機は回転子の温度を測定する温度測定手段(サーミスタ)を含むことが望ましい。測定温度が所定値を超えたとき、開閉弁を開いて、キャピラリチューブから液冷媒を供給する。
【0019】
【実施例】
以下、本発明の実施例を図1、図2、図3及び図4を参照しつつ説明する。
<実施例>
(構成)
図1にエアコンシステムの冷凍サイクルを示す。ガス冷媒は密閉型電動機付圧縮機(以下、実施例では「密閉圧縮機」と略称する)Aで高温・高圧のまま圧縮され、凝縮器Bで周囲の冷却水で冷却され液冷媒になる。液冷媒は膨張弁Cで低温・定圧のまま減圧されてガス化した後蒸発気Dに入り、空気から熱を吸収した後、再度密閉圧縮機Aに吸入される。凝縮器Bと膨張弁Cとの間に配置された受液器Eから密閉圧縮機AにキャピラリチューブGが延び、その途中に開閉弁Fが配置されている。
【0020】
図2に示すように、密閉圧縮機Aは密閉容器10と、圧縮機(コンプレッサ)40と、電動機(モータ)53とから成る。このうち、密閉容器10は本体ケース11と支持部材20と蓋ケース46とを含む。本体ケース11は有底円筒形状で円筒部12と蓋部15とを備える。円筒部12の左端上方、即ち圧縮機40と電動機53との境界部に半径方向に延びる冷媒入口13が形成されている。
【0021】
本体ケース11の左端開口は内外径が異なり、かつ軸方向にずれた大径部22、中径部24及び小径部28を有する支持部材20に覆われている。大径部22が本体ケース11の端面に当接し、中径部24が軸受25を介して回転軸30の中間の太径部31を回転可能に支持している。回転軸30の右端の細径部32は軸受35を介して本体ケース11の蓋部15により回転可能に支持されている。
【0022】
尚、小径部28は回転軸30に緩く嵌合されている。支持部材20の大径部22の半径方向内側で回転軸30の太径部31の側方となる位置に、カウンタバランサ37が取り付けられている。
【0023】
圧縮機40は可動スクロール43及び固定スクロール44等を含む。回転軸30の左端の細径部33にはスライドブッシュ38を介して可動スクロール41が取り付けられ、回転軸30と共に回転する。可動スクロール41及び支持部材20の軸方向外側(左側)に、中心部に吐出弁44を備えた固定スクロール43が可動スクロール41を覆うように取り付けられ、圧縮チャンバ42を形成している。固定スクロール43の更に軸方向外側に、冷媒吐出口49を持つ蓋ケース46が取り付けられ、吐出チャンバー47を形成している。
【0024】
回転軸30の右端に液冷媒の供給通路50が形成されている。供給通路50は右端面の中心部に形成され行止り孔から成る軸方向孔部51と、その先端から半径方向に延び外周面で開口した半径方向孔部52とを含む。軸方向孔部52の開口部に上記キャピラリチューブGが接続される。
【0025】
電動機53は永久磁石式ブラシレスインバータモータ、特に永久磁石をロータコアに内蔵したIPMであり、ステータ55とロータ70とから成る。図2,3に示すように、ステータ55のステータコア56は全体として円筒形状で、軸方向に貫通する複数の貫通孔57が円周方向に隔設されている。横断面が円形の貫通孔57に挿入された導体コイル60は松葉形状の複数の導体セグメント62を接合して成る。ステータコア56に収容された軸方向で中間の一対の収容部64と、一端面から突出した一対の接合部65と、他端面から突出したU字形状のターン部63とを含む。
【0026】
なお、密閉容器10の円筒部12にサーミスタ67が固定され、電動機53の温度を測定している。測定温度が所定値を超えたとき、開閉弁Fを開き受液器E内の液冷媒をキャピラリチューブGを通して密閉圧縮機Aに供給する。
【0027】
一方、図3,図4においてロータ70はロータコア71と、永久磁石75と、両端のエンドリング82及び85とを含む。ロータコア71は全体的には中空円筒形状を持ち、キー74により回転軸30に対して回り止めされている。外周面に近い部分に4つの磁石挿入孔72が形成されている。各磁石挿入孔72は、厚さが薄く幅が広い薄型の横断面形状を持ち、ロータコア71の外周面の円に対して弦を形成するように形成されている。、形成されている。その結果、隣接する磁石挿入孔72は互いに直交し、4つの磁石挿入孔72は正方形の各辺に相当する位置に配置されている。
【0028】
各磁石挿入孔72内に薄型の永久磁石75が、その半径方向内面及び外面が同じ極性を持つように配置されている。磁石挿入孔72の幅方向の両端にフラックスバリヤ73を残すため、永久磁石75の幅は磁石挿入孔72の幅よりも少し狭く選定されている。
【0029】
左方のエンドリング82は中実な環状部材から成り、回転軸30に相対回転不能に取り付けられている。その一端面(右端面)から他端面(左端面)にかけて、湾曲した冷媒出口通路83が形成されている。
【0030】
右方のエンドリング85は中空の環状部材から成り、回転軸30に相対回転不能に取り付けられている。その内周面に形成された適数個の冷媒入口86が上記回転軸30の半径方向孔部54に連通している。また、一端面(左端面)には各磁石挿入孔72のフラックスバリヤ73と連通する位置に、断面積が非常に小さい複数の絞り88が形成されている。
(作動)
次に、本実施例の密閉圧縮機の作動を説明する。電動機53ではステータ55の導体コイル60に電流が流れ、電磁力によりロータ70が回転する。
【0031】
圧縮機40では、回転軸30に取り付けられた可動スクロール41が固定スクロール43に対して回転し、冷媒入口13から冷媒が半径方向内向きに吸引される。支持部材20及び可動スクロール41に形成された連通孔(不図示)を通過して、可動スクロール41と固定スクロール43との間の圧縮チャンバ42に流入する。冷媒は可動スクロール41の回転により圧縮チャンバー42内で圧縮され、所定圧力以上になったとき吐出弁44から吐出チャンバー47に流出し、冷媒出口49から吐出される。
【0032】
冷房負荷が比較的小さいときは、圧縮機40での冷媒の吸入量が少なく、電動機53の回転数は比較的小さい。よって、サーミスタ67により測定されるロータ70の温度上昇は低い。開閉弁Fは閉じたままであり、キャピラリチューブGに液冷媒は供給されない。
【0033】
これに対して、冷房負荷が比較的大きいときは、圧縮機40での冷媒の吸入量が多く、電動機53の回転数が大きくなる。それに伴い発熱量が増えることから、サーミスタ67により測定される電動機53の温度が上昇する。測定温度が所定値を超えると、開閉弁Fを開き受液器EからキャピラリチューブGに液冷媒を供給する。冷媒吸入口13からの圧縮機40への冷媒の吸入と併行して、キャピラリチューブGから電動機53に液冷媒を供給する。
【0034】
詳述すると、キャピラリチューブから供給される液冷媒は、回転軸30の軸方向孔部51から半径方向孔部52に流れ、冷媒入口86からサイドリング85内に流入する。絞り88を流れるとき減圧されてガス化し、ガス冷媒は磁石挿入孔72の幅方向両側に形成されたフラックスバリヤ73内をロータ70の一端面から他端面に向かって流れる。その際、永久磁石の高熱を吸収して液冷媒が蒸発する。かくして、気化熱で永久磁石75を幅方向両側から冷却し、その温度上昇を抑制する。
【0035】
他端面に至った冷媒は左方のエンドリング82の冷媒出口通路83から流出し、冷媒吸入口13から吸入された冷媒と合流して圧縮される。
(効果)
本実施例の密閉圧縮機Aによれば、以下の効果が得られる。
【0036】
先ず、永久磁石75ひいてはロータ70のコストが低減される。図4から分かるように、フラックスバリヤ73内を流通するガス冷媒が永久磁石75の温度上昇を制御するので、永久磁石の中でも比較的高価とされるネオジウム製永久磁石75のうち、性耐熱性が低く安価なグレードの採用が可能となるからである。
【0037】
これに対して、従来のように永久磁石の冷却が不十分であったため、耐熱性を考慮して高価なネオジウム磁石を採用し、コストの上昇を招いていた。
【0038】
第2に、密閉圧縮機Aの軸方向寸法が短縮される。図2からわかるように、冷媒吸入口13はステータ55の導体コイル60の接合部63側に位置している。各導体コイル60の接合部63間にはある程度の隙間がある(それ程密集していない)。よって、冷媒吸入口13から半径方向内向きに吸入される冷媒は円周方向で隣接する接合部63間の隙間を通過することができ、冷媒の通過のために余計な隙間を設ける必要はない。
【0039】
これに対して、従来のように導体コイルのターン部側に冷媒吸入口を設けた場合、密集したターン部間を冷媒が通過することは困難である。そのために、ターン部と密閉容器(特にその蓋部)との間に隙間を設ける必要が生じ、その分電動機の軸方向長さが増加していた。
【0040】
第3に、電動機70は永久磁石75を含むIPMから成り、高い特性を得ることができ、しかも永久磁石75の冷却に好都合である。ステータ55とロータ70との間の間隙が極力小さくされ、磁石挿入孔72の幅方向両端にフラックスバリヤ73が形成されているからである。
【0041】
一方、永久磁石75の冷却に都合が良いのは、元々存在している磁石挿入孔72の幅方向両端のフラックスバリヤ73を冷媒流通路として利用でき、新たな通路を形成は不要だからである。しかも、フラックスバリヤ73内にガス冷媒を流通させても、ロータ70の性能には全く影響しない。
【0042】
最後に、回転軸30に冷媒入口通路50を形成する作業は困難ではなく、ロータコア71の両端に配置した一対のエンドリング82及び85も簡単な部材である。従来の高価な永久磁石に代えて安価が永久磁石75を採用できる上記利点は、これらの作業及び配置に要するコストを上回る。
<変形例>
図5にロータの変形例を示す。このロータ90では、ロータコア91に形成された4つの磁石挿入孔92の各々は平面状の内面93と、湾曲した外面94と、一対の接続面95とで区画されている。内面93は直径と平行に延び、ロータコア91の外周面97の円に対して弦を成している。外面94は外周面97に沿って延び、その結果円弧状で一定厚さのブリッジ98が形成されている。内面93及び外面94の両端に形成された一対の接続面95は概ねロータコア91の半径方向に延びている。
【0043】
磁石挿入孔92に挿入された永久磁石100はロータコア90の内面93と同形状の内面101と、外面94よりも少し曲率が大きい外面102と、両端の接続面103とを持つ。内面94と内面102との曲率の差により、両者間に円周方向に延びるフラックスバリヤ105が形成されている。このフラックスバリヤ105の半径方向の大きさは接続面103側が大きく、接続面103から遠ざかるにつれて減少している。
【0044】
密閉圧縮機Aの作動時に冷却負荷が大きいとき、前記サイドリング85の絞り88で減圧したガス冷媒をフラックスバリヤ105内に流通させる。
【0045】
この変形例によれば、永久磁石100の冷媒接触面積が大きいのでより優れた特性が得られる。また、永久磁石100の厚さが比較的大きいが、フラックスバリヤ105内を流通するガス冷媒により外面102が広い範囲が冷却され、温度上昇が効果的に抑制される。
【0046】
【発明の効果】
以上述べてきたように、本発明の密閉型電動機付圧縮機によれば、冷房負荷が大きいときは、磁石冷却手段が回転子内にガス冷媒を流通させて永久磁石を冷却し、その温度上昇を抑制する。その結果、永久磁石の耐熱性を重視することが不要となり、安価な永久磁石が使用でき、回転子ひいては電動機のコストが低減できる。加えて、圧縮機の冷媒吸入口は回転子の冷却を考慮することなく、圧縮機にとって都合が良く、しかも電動機の固定子との関係で吸入抵抗が少ない場所に形成できる。
【0047】
請求項2の密閉型電動機付圧縮機によれば、外部から供給される液冷媒が確実にガス化され、回転子の永久磁石の冷却に使用できる。請求項3の密閉型電動機付圧縮機によれば、液冷媒を回転子に導入する直前にガス冷媒に変えることができる。請求項4の密閉型電動機付圧縮機によれば、回転子に冷媒の流通路を新たに形成することが不要で、コストの上昇が極力抑制できる。
【0048】
請求項5の密閉型電動機付圧縮機によれば、電動機の固定子のコイルは圧縮機側ではそれほど密集しておらず冷媒の吸入抵抗が小さい。よって、コイルの周辺に冷媒流通のための空間を確保することは不要であり、その分軸方向長さを短縮できる。請求項6の密閉型電動機付圧縮機によれば、冷却負荷が大きく電動機の温度が上昇し易いときは、磁石冷却手段から確実に冷媒が供給される。
【図面の簡単な説明】
【図1】エアコンの冷凍サイクルを示す説明図である。
【図2】本発明の実施例を示す縦断面図である。
【図3】同じく横断面図である
【図4】図2の要部拡大図である。
【図5】上記実施例の変形例を示す要部横断面図である。
【符号の説明】
A:密閉型電動機付圧縮機 10:密閉容器
40:圧縮機 50:冷媒入口通路
53:電動機 55:ステータ
56:ステータコア 60:導体コイル
70:ロータ 71:ロータコア
72:磁石挿入孔 73:フラックスバリヤ
75:永久磁石 82:サイドリング
88:絞り
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hermetic motor-equipped compressor having a hermetic motor, and particularly to cooling of a rotor thereof.
[0002]
[Prior art]
BACKGROUND ART In a refrigeration cycle of an air conditioner system at home or the like, a compressor that compresses a liquid refrigerant into a gas refrigerant is rotationally driven by an electric motor. When a large load is applied to the electric motor, the rotor generates heat, and it is convenient to use a part of the refrigerant compressed by the compressor in order to suppress a rise in temperature. In consideration of this, from the viewpoint, the compressor and the electric motor are brought close to each other, and a part of the refrigerant drawn into the compressor is guided into the electric motor to cool the rotor.
[0003]
In the first conventional example, a compressor and an electric motor are provided coaxially, and refrigerant is sucked from a portion of the electric motor on the compressor side. In other words, the refrigerant suction port is provided at an axially intermediate portion between the juxtaposed compressor and the electric motor. However, in this case, most of the sucked refrigerant flows from the suction port to the compressor, and is not supplied much to the electric motor. Therefore, it cannot be said that the electric motor is sufficiently cooled by the refrigerant.
[0004]
On the other hand, in a second conventional example (see Patent Document 1), after a motor and a compressor are juxtaposed, refrigerant is sucked from a suction port formed at an end of the motor opposite to the compressor. , And feeds in the motor in the axial direction toward the compressor.
[0005]
[Patent Document 1]
JP 2001-173567 A
[Problems to be solved by the invention]
According to the second conventional example, the sucked refrigerant flows in the electric motor in the axial direction, and can theoretically cool the rotor at that time. However, the gap between the inner peripheral surface of the stator fixed to the housing and the outer peripheral surface of the rotor rotatably supported by the housing in the electric motor is very narrow (about 0.5 to 1 mm). Therefore, in reality, the suction resistance of the refrigerant is large and only a small amount of the refrigerant can flow through the gap, and it is hardly sufficient for cooling the rotor.
[0007]
In addition, a large suction device is required to suck an effective amount of refrigerant for cooling the rotor. Not only that, the amount of refrigerant sucked into the compressor is reduced by that amount, and the COP of the refrigeration cycle including the compressor is reduced.
[0008]
The present invention has been made in view of the above circumstances, and provides a hermetic motor-equipped compressor that can effectively suppress heat generation of a rotor by utilizing a part of refrigerant sucked into the compressor. Aim.
[0009]
[Means for Solving the Problems]
The inventor of the present application has conceived that the refrigerant sucked from the anti-compressor side flows through the inside of the rotor instead of flowing through the gap between the stator and the rotor as in the second embodiment. Thus, the present invention has been completed.
[0010]
In the hermetic type compressor with an electric motor according to the present invention, as described in claim 1, the compressor, the compressor and the electric motor for driving the compressor are arranged side by side on a rotating shaft supported by the hermetic container. . Here, the electric motor gasifies a liquid refrigerant supplied from the opposite side of the compressor in the axial direction, with a stator fixed to the closed container, a rotor having a permanent magnet and rotatably supported by the closed container. And a magnet cooling unit that circulates through the rotor toward the compressor and cools the permanent magnet.
[0011]
In this hermetic motor-equipped compressor, when the cooling load for cooling by the refrigeration cycle is large, liquid refrigerant is supplied to the rotor from the magnet cooling means. The supplied liquid refrigerant is gasified and cools the permanent magnet when flowing through the rotor.
[0012]
According to a second aspect of the present invention, there is provided the hermetic motor-equipped compressor according to the first aspect, wherein the magnet cooling means is formed integrally with the rotor and converts the liquid refrigerant into a gas refrigerant. And a flow passage. According to a third aspect of the present invention, in the compressor of the second aspect, the pressure reducing unit is a throttle of a hollow annular member integrated with the rotor.
[0013]
According to a fourth aspect of the present invention, in the first aspect, the flow passage is a magnetic flux leakage preventing gap formed at both widthwise ends of a magnet insertion hole formed in the rotor core of the rotor. According to a fifth aspect of the present invention, in the compressor of the first aspect, the compressor includes a refrigerant suction port in the axial direction near the electric motor and a refrigerant discharge port on a side opposite to the electric motor.
[0014]
According to a sixth aspect of the present invention, the hermetic compressor with a motor further includes a temperature measuring means for measuring the temperature of the rotor and activating the magnet cooling means when the measured temperature exceeds a predetermined value.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
<Closed container>
The closed container having a box shape or a cylindrical shape as a whole may be formed of a single member, or may be formed of a plurality of members. The components of the compressor can be shared as the components of the closed vessel. Since the refrigerant flows through the internal space, it is sealed from the outside world.
[0016]
The hermetic container has a refrigerant inlet at an intermediate portion in the axial direction and a refrigerant outlet at a compressor-side end in the axial direction. The reason why the refrigerant inlet is formed in the axially intermediate portion of the closed container depends on the relationship with the configuration of the coils of the stator. This is because, when the stator includes the pine needle-shaped conductor coil, the joint portion of the conductor coil, which does not easily become a resistance to the flow of the refrigerant, is located radially inward of the intermediate portion.
<Compressor>
The compressor is mounted at one end on the rotating shaft and includes a fixed scroll and a movable scroll. The movable scroll rotates with respect to the fixed scroll by the rotational force of the electric motor, and compresses the refrigerant.
<Electric motor>
{Circle around (1)} The electric motor is arranged at the other end of the rotating shaft alongside the compressor, and includes a stator and a rotor. The rotating shaft has a liquid refrigerant inlet passage at one end in the axial direction opposite to the compressor. The inlet passage has a portion connected to an external refrigerant supply pipe (capillary tube) and a portion communicating with the rotor.
(2) The stator core of the stator (stator) has a cylindrical shape and is fixed to an airtight container. A plurality of conductor coils are inserted into the plurality of through holes.
(3) The rotor (rotor) is a rotor core, a plurality of permanent magnets inserted into each of the plurality of magnet insertion holes of the rotor core, and a decompression unit that converts liquid refrigerant supplied on the anti-compressor side of the rotor core into gas refrigerant. And an annular member having The annular member has a portion that communicates with the rotating shaft and a portion that gasifies the liquid refrigerant and supplies it to the rotor.
[0017]
The rotor core is formed with a refrigerant flow passage penetrating in the axial direction from one end surface to the other end surface. The refrigerant flow passage may be formed near the permanent magnet in the rotor core. For example, in the case of a so-called SPM, a dedicated refrigerant flow passage may be formed outside the magnet insertion hole in the radial direction separately from the magnet insertion hole.
[0018]
On the other hand, in a so-called IPM in which a permanent magnet is built in a magnet insertion hole of a hollow cylindrical rotor core, magnetic flux leakage prevention gaps (flux barriers) exist at both ends in the width direction of the magnet insertion hole. If this gap is used as a coolant flow passage, it is not necessary to provide a dedicated coolant flow passage, which is extremely effective in terms of structure, reduction in the number of parts, and cooling efficiency.
(4) It is desirable that the electric motor includes a temperature measuring means (thermistor) for measuring the temperature of the rotor. When the measured temperature exceeds a predetermined value, the on-off valve is opened and the liquid refrigerant is supplied from the capillary tube.
[0019]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1, 2, 3, and 4. FIG.
<Example>
(Constitution)
FIG. 1 shows a refrigeration cycle of the air conditioner system. The gas refrigerant is compressed at a high temperature and a high pressure in a hermetic compressor with electric motor (hereinafter, abbreviated as “hermetic compressor” in the embodiments) A, and is cooled in a condenser B by surrounding cooling water to become a liquid refrigerant. The liquid refrigerant is decompressed and gasified at a low temperature and a constant pressure by the expansion valve C, enters the evaporative gas D, absorbs heat from the air, and is sucked into the hermetic compressor A again. A capillary tube G extends from a liquid receiver E disposed between the condenser B and the expansion valve C to the hermetic compressor A, and an opening / closing valve F is disposed in the middle thereof.
[0020]
As shown in FIG. 2, the hermetic compressor A includes a hermetic container 10, a compressor (compressor) 40, and an electric motor (motor) 53. The closed container 10 includes the main body case 11, the support member 20, and the lid case 46. The main body case 11 has a bottomed cylindrical shape and includes a cylindrical portion 12 and a lid portion 15. A refrigerant inlet 13 extending in the radial direction is formed above the left end of the cylindrical portion 12, that is, at the boundary between the compressor 40 and the electric motor 53.
[0021]
The left end opening of the main body case 11 is covered with a support member 20 having a large-diameter portion 22, a middle-diameter portion 24, and a small-diameter portion 28 having different inner and outer diameters and shifted in the axial direction. The large-diameter portion 22 abuts on the end face of the main body case 11, and the middle-diameter portion 24 rotatably supports the middle large-diameter portion 31 of the rotary shaft 30 via the bearing 25. The small diameter portion 32 at the right end of the rotating shaft 30 is rotatably supported by the lid 15 of the main body case 11 via a bearing 35.
[0022]
The small diameter portion 28 is loosely fitted to the rotating shaft 30. A counter balancer 37 is attached at a position radially inside the large diameter portion 22 of the support member 20 and on the side of the large diameter portion 31 of the rotating shaft 30.
[0023]
The compressor 40 includes a movable scroll 43, a fixed scroll 44, and the like. A movable scroll 41 is attached to the small diameter portion 33 at the left end of the rotating shaft 30 via a slide bush 38, and rotates together with the rotating shaft 30. A fixed scroll 43 provided with a discharge valve 44 at the center thereof is mounted on the outer side (left side) of the movable scroll 41 and the support member 20 in the axial direction so as to cover the movable scroll 41 to form a compression chamber 42. A lid case 46 having a refrigerant discharge port 49 is attached further axially outside the fixed scroll 43 to form a discharge chamber 47.
[0024]
A supply passage 50 for the liquid refrigerant is formed at the right end of the rotating shaft 30. The supply passage 50 includes an axial hole 51 formed at the center of the right end face and formed of a blind hole, and a radial hole 52 extending in the radial direction from the tip thereof and opening on the outer peripheral surface. The capillary tube G is connected to the opening of the axial hole 52.
[0025]
The electric motor 53 is a permanent magnet type brushless inverter motor, in particular, an IPM in which a permanent magnet is incorporated in a rotor core, and includes a stator 55 and a rotor 70. As shown in FIGS. 2 and 3, the stator core 56 of the stator 55 has a cylindrical shape as a whole, and a plurality of through holes 57 penetrating in the axial direction is spaced in the circumferential direction. The conductor coil 60 inserted in the through hole 57 having a circular cross section is formed by joining a plurality of pine needle-shaped conductor segments 62. It includes a pair of axially intermediate housing portions 64 housed in the stator core 56, a pair of joining portions 65 protruding from one end surface, and a U-shaped turn portion 63 protruding from the other end surface.
[0026]
In addition, the thermistor 67 is fixed to the cylindrical portion 12 of the closed container 10, and the temperature of the electric motor 53 is measured. When the measured temperature exceeds a predetermined value, the on-off valve F is opened and the liquid refrigerant in the receiver E is supplied to the hermetic compressor A through the capillary tube G.
[0027]
3 and 4, the rotor 70 includes a rotor core 71, a permanent magnet 75, and end rings 82 and 85 at both ends. The rotor core 71 has a hollow cylindrical shape as a whole, and is prevented from rotating with respect to the rotating shaft 30 by a key 74. Four magnet insertion holes 72 are formed in a portion near the outer peripheral surface. Each magnet insertion hole 72 has a thin and wide cross-sectional shape with a small thickness and a large width, and is formed so as to form a chord with respect to a circle on the outer peripheral surface of the rotor core 71. , Is formed. As a result, the adjacent magnet insertion holes 72 are orthogonal to each other, and the four magnet insertion holes 72 are arranged at positions corresponding to each side of the square.
[0028]
In each magnet insertion hole 72, a thin permanent magnet 75 is disposed so that its inner and outer surfaces in the radial direction have the same polarity. In order to leave the flux barriers 73 at both ends in the width direction of the magnet insertion hole 72, the width of the permanent magnet 75 is selected to be slightly smaller than the width of the magnet insertion hole 72.
[0029]
The left end ring 82 is formed of a solid annular member, and is attached to the rotation shaft 30 so as not to rotate relatively. A curved refrigerant outlet passage 83 is formed from one end face (right end face) to the other end face (left end face).
[0030]
The right end ring 85 is formed of a hollow annular member, and is attached to the rotating shaft 30 so as not to rotate relatively. An appropriate number of refrigerant inlets 86 formed on the inner peripheral surface communicate with the radial holes 54 of the rotating shaft 30. Further, on one end surface (left end surface), a plurality of apertures 88 having a very small cross-sectional area are formed at positions where the magnet insertion holes 72 communicate with the flux barrier 73.
(Actuation)
Next, the operation of the hermetic compressor of the present embodiment will be described. In the electric motor 53, a current flows through the conductor coil 60 of the stator 55, and the rotor 70 is rotated by the electromagnetic force.
[0031]
In the compressor 40, the movable scroll 41 attached to the rotating shaft 30 rotates with respect to the fixed scroll 43, and the refrigerant is sucked inward in the radial direction from the refrigerant inlet 13. After passing through a communication hole (not shown) formed in the support member 20 and the movable scroll 41, it flows into the compression chamber 42 between the movable scroll 41 and the fixed scroll 43. The refrigerant is compressed in the compression chamber 42 by the rotation of the orbiting scroll 41, flows out of the discharge valve 44 to the discharge chamber 47 when the pressure becomes equal to or higher than a predetermined pressure, and is discharged from the refrigerant outlet 49.
[0032]
When the cooling load is relatively small, the suction amount of the refrigerant in the compressor 40 is small, and the rotation speed of the electric motor 53 is relatively small. Therefore, the temperature rise of the rotor 70 measured by the thermistor 67 is low. The on-off valve F remains closed, and no liquid refrigerant is supplied to the capillary tube G.
[0033]
On the other hand, when the cooling load is relatively large, the suction amount of the refrigerant in the compressor 40 is large, and the rotation speed of the electric motor 53 is increased. As a result, the calorific value increases, so that the temperature of the electric motor 53 measured by the thermistor 67 increases. When the measured temperature exceeds a predetermined value, the on-off valve F is opened and the liquid refrigerant is supplied from the receiver E to the capillary tube G. The liquid refrigerant is supplied from the capillary tube G to the electric motor 53 in parallel with the suction of the refrigerant from the refrigerant inlet 13 into the compressor 40.
[0034]
More specifically, the liquid refrigerant supplied from the capillary tube flows from the axial hole 51 of the rotating shaft 30 to the radial hole 52, and flows into the side ring 85 from the refrigerant inlet 86. When flowing through the throttle 88, the pressure is reduced and gasified, and the gas refrigerant flows from one end surface of the rotor 70 to the other end surface in the flux barrier 73 formed on both sides in the width direction of the magnet insertion hole 72. At that time, the liquid refrigerant evaporates by absorbing the high heat of the permanent magnet. Thus, the permanent magnet 75 is cooled from both sides in the width direction by the heat of vaporization, and its temperature rise is suppressed.
[0035]
The refrigerant that has reached the other end surface flows out of the refrigerant outlet passage 83 of the left end ring 82, merges with the refrigerant sucked from the refrigerant suction port 13, and is compressed.
(effect)
According to the hermetic compressor A of the present embodiment, the following effects can be obtained.
[0036]
First, the cost of the permanent magnet 75 and thus the rotor 70 is reduced. As can be seen from FIG. 4, since the gas refrigerant flowing through the flux barrier 73 controls the temperature rise of the permanent magnet 75, the heat resistance of the neodymium permanent magnet 75, which is relatively expensive among the permanent magnets, is low. This is because it is possible to use a low-priced grade.
[0037]
On the other hand, since the cooling of the permanent magnet is insufficient as in the prior art, an expensive neodymium magnet is adopted in consideration of heat resistance, which causes an increase in cost.
[0038]
Second, the axial dimension of the hermetic compressor A is reduced. As can be seen from FIG. 2, the refrigerant suction port 13 is located on the stator 55 on the joint portion 63 side of the conductor coil 60. There is a certain gap between the joints 63 of each conductor coil 60 (not so dense). Therefore, the refrigerant drawn inward in the radial direction from the refrigerant suction port 13 can pass through the gap between the joining portions 63 adjacent in the circumferential direction, and there is no need to provide an extra gap for the passage of the refrigerant. .
[0039]
On the other hand, when the coolant suction port is provided on the turn portion side of the conductor coil as in the related art, it is difficult for the coolant to pass between the dense turn portions. Therefore, it is necessary to provide a gap between the turn part and the closed container (particularly, the lid part), and the axial length of the motor has been increased accordingly.
[0040]
Third, the electric motor 70 is made of an IPM including a permanent magnet 75, can obtain high characteristics, and is convenient for cooling the permanent magnet 75. This is because the gap between the stator 55 and the rotor 70 is made as small as possible, and the flux barriers 73 are formed at both ends in the width direction of the magnet insertion hole 72.
[0041]
On the other hand, the reason why the cooling of the permanent magnets 75 is convenient is that the flux barriers 73 at both ends in the width direction of the magnet insertion holes 72 which originally exist can be used as the coolant flow passages, and a new passage is not required. Moreover, even if the gas refrigerant flows through the flux barrier 73, the performance of the rotor 70 is not affected at all.
[0042]
Finally, the operation of forming the refrigerant inlet passage 50 in the rotating shaft 30 is not difficult, and the pair of end rings 82 and 85 disposed at both ends of the rotor core 71 are also simple members. The above advantage that the permanent magnet 75 can be used at low cost in place of the conventional expensive permanent magnet exceeds the cost required for these operations and arrangements.
<Modification>
FIG. 5 shows a modification of the rotor. In the rotor 90, each of the four magnet insertion holes 92 formed in the rotor core 91 is defined by a planar inner surface 93, a curved outer surface 94, and a pair of connection surfaces 95. The inner surface 93 extends in parallel with the diameter and forms a chord with the circle of the outer peripheral surface 97 of the rotor core 91. The outer surface 94 extends along the outer peripheral surface 97 so that an arc-shaped bridge 98 having a constant thickness is formed. A pair of connecting surfaces 95 formed at both ends of the inner surface 93 and the outer surface 94 extend substantially in the radial direction of the rotor core 91.
[0043]
The permanent magnet 100 inserted into the magnet insertion hole 92 has an inner surface 101 having the same shape as the inner surface 93 of the rotor core 90, an outer surface 102 having a slightly larger curvature than the outer surface 94, and connecting surfaces 103 at both ends. Due to the difference in curvature between the inner surface 94 and the inner surface 102, a flux barrier 105 extending in the circumferential direction is formed between the two. The size of the flux barrier 105 in the radial direction is large on the connection surface 103 side, and decreases as the distance from the connection surface 103 increases.
[0044]
When the cooling load is large during the operation of the hermetic compressor A, the gas refrigerant depressurized by the throttle 88 of the side ring 85 is allowed to flow through the flux barrier 105.
[0045]
According to this modification, more excellent characteristics can be obtained because the refrigerant contact area of the permanent magnet 100 is large. Further, although the thickness of the permanent magnet 100 is relatively large, a wide range of the outer surface 102 is cooled by the gas refrigerant flowing in the flux barrier 105, and the temperature rise is effectively suppressed.
[0046]
【The invention's effect】
As described above, according to the hermetic motor-equipped compressor of the present invention, when the cooling load is large, the magnet cooling means circulates the gas refrigerant in the rotor to cool the permanent magnet and raise the temperature thereof. Suppress. As a result, it is not necessary to attach importance to the heat resistance of the permanent magnet, an inexpensive permanent magnet can be used, and the cost of the rotor and thus the motor can be reduced. In addition, the refrigerant suction port of the compressor can be formed in a place convenient for the compressor without considering the cooling of the rotor, and at a place where the suction resistance is small in relation to the stator of the electric motor.
[0047]
According to the hermetic compressor with the electric motor of the second aspect, the liquid refrigerant supplied from the outside is reliably gasified and can be used for cooling the permanent magnet of the rotor. According to the compressor of the third aspect, the liquid refrigerant can be changed to the gas refrigerant immediately before the liquid refrigerant is introduced into the rotor. According to the compressor with the hermetic motor of the fourth aspect, it is not necessary to newly form a flow passage for the refrigerant in the rotor, and an increase in cost can be suppressed as much as possible.
[0048]
According to the compressor of the fifth aspect, the coils of the stator of the electric motor are not so dense on the compressor side, and the suction resistance of the refrigerant is small. Therefore, it is not necessary to secure a space for refrigerant circulation around the coil, and the axial length can be shortened by that amount. According to the compressor with the hermetic motor of the sixth aspect, when the cooling load is large and the temperature of the motor easily rises, the refrigerant is reliably supplied from the magnet cooling means.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a refrigeration cycle of an air conditioner.
FIG. 2 is a longitudinal sectional view showing an embodiment of the present invention.
FIG. 3 is a transverse sectional view of the same; FIG. 4 is an enlarged view of a main part of FIG. 2;
FIG. 5 is a cross-sectional view of a main part showing a modification of the embodiment.
[Explanation of symbols]
A: Hermetic compressor with motor 10: Hermetic container 40: Compressor 50: Refrigerant inlet passage 53: Motor 55: Stator 56: Stator core 60: Conductor coil 70: Rotor 71: Rotor core 72: Magnet insertion hole 73: Flux barrier 75 : Permanent magnet 82: Side ring 88: Aperture

Claims (6)

密閉容器に支持された回転軸に圧縮機と、該圧縮機を駆動する電動機とが並設された密閉型電動機付圧縮機において、前記電動機は、
前記密閉容器に固定された固定子と、
永久磁石を有し該密閉容器に回転可能に支持された回転子と、
軸方向で前記圧縮機の反対側から供給した液冷媒をガス化し、該回転子内を前記圧縮機に向かって流通させて前記永久磁石を冷却する磁石冷却手段と、
を含むことを特徴とする密閉型電動機付圧縮機。
In a compressor with a hermetic motor in which a compressor and a motor for driving the compressor are arranged side by side on a rotating shaft supported by a closed container, the motor is:
A stator fixed to the closed container,
A rotor having a permanent magnet and rotatably supported by the closed container,
Magnet cooling means for gasifying a liquid refrigerant supplied from the opposite side of the compressor in the axial direction, flowing the inside of the rotor toward the compressor, and cooling the permanent magnet,
A hermetic motor-equipped compressor comprising:
前記磁石冷却手段は、前記回転子と一体的に形成され液冷媒をガス冷媒に変える減圧部と、前記回転子に形成されたガス冷媒の流通路とを含む請求項1に記載の密閉型電動機付圧縮機。2. The hermetic electric motor according to claim 1, wherein the magnet cooling unit includes a decompression unit formed integrally with the rotor and converting a liquid refrigerant into a gas refrigerant, and a gas refrigerant flow passage formed on the rotor. 3. With compressor. 前記減圧部は、前記回転子と一体化された中空環状部材の絞りである請求項2に記載の密閉型電動機付圧縮機。The hermetic compressor with a motor according to claim 2, wherein the pressure reducing unit is a throttle of a hollow annular member integrated with the rotor. 前記流通路は、前記回転子のロータコアに形成された磁石挿入孔の幅方向両端に形成された磁束漏れ防止用空隙である請求項2に記載の密閉型電動機付圧縮機。3. The hermetic motor-equipped compressor according to claim 2, wherein the flow passage is a magnetic flux leakage preventing gap formed at both ends in a width direction of a magnet insertion hole formed in a rotor core of the rotor. 前記圧縮機は、軸方向で前記電動機寄りに冷媒吸入口を備え、該電動機と反対側に冷媒吐出口を備えている請求項1に記載の密閉型電動機付圧縮機。2. The compressor according to claim 1, wherein the compressor has a refrigerant suction port in the axial direction near the electric motor, and has a refrigerant discharge port on a side opposite to the electric motor. 3. 更に、前記電動機の温度を測定し、測定温度が所定値を超えたとき前記磁石冷却手段を作動させる温度測定手段を含む請求項1に記載の密閉型電動機付圧縮機。2. The hermetic motor-equipped compressor according to claim 1, further comprising a temperature measuring means for measuring a temperature of said electric motor and activating said magnet cooling means when the measured temperature exceeds a predetermined value.
JP2003041330A 2003-02-19 2003-02-19 Compressor with closed type motor Pending JP2004251173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003041330A JP2004251173A (en) 2003-02-19 2003-02-19 Compressor with closed type motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003041330A JP2004251173A (en) 2003-02-19 2003-02-19 Compressor with closed type motor

Publications (1)

Publication Number Publication Date
JP2004251173A true JP2004251173A (en) 2004-09-09

Family

ID=33024943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003041330A Pending JP2004251173A (en) 2003-02-19 2003-02-19 Compressor with closed type motor

Country Status (1)

Country Link
JP (1) JP2004251173A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650287A (en) * 2011-02-24 2012-08-29 上海日立电器有限公司 Radial flexible floating structure with unidirectional spacing function for scroll compressor
WO2012127749A1 (en) * 2011-03-24 2012-09-27 三洋電機株式会社 Scroll compression device
JP2014098357A (en) * 2012-11-15 2014-05-29 Toyota Industries Corp Motor-driven compressor
US9494155B2 (en) 2011-03-24 2016-11-15 Panasonic Intellectual Property Management Co., Ltd. Scroll compression device
JP2017008949A (en) * 2016-10-17 2017-01-12 株式会社豊田自動織機 Electric compressor
US9581160B2 (en) 2011-03-24 2017-02-28 Panasonic Intellectual Property Management Co. Ltd. Scroll compression device
DE102021129036A1 (en) 2021-11-08 2023-05-11 Vaillant Gmbh Compressor, air conditioner and use of a magnetic flux barrier or refrigerant

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650287A (en) * 2011-02-24 2012-08-29 上海日立电器有限公司 Radial flexible floating structure with unidirectional spacing function for scroll compressor
CN102650287B (en) * 2011-02-24 2016-03-02 上海日立电器有限公司 Scroll compressor has the radial compliance floating structure of unidirectional limit function
WO2012127749A1 (en) * 2011-03-24 2012-09-27 三洋電機株式会社 Scroll compression device
CN103459849A (en) * 2011-03-24 2013-12-18 三洋电机株式会社 Scroll compression device
US9388808B2 (en) 2011-03-24 2016-07-12 Panasonic Intellectual Property Management Co., Ltd. Scroll compression device
US9494155B2 (en) 2011-03-24 2016-11-15 Panasonic Intellectual Property Management Co., Ltd. Scroll compression device
US9581160B2 (en) 2011-03-24 2017-02-28 Panasonic Intellectual Property Management Co. Ltd. Scroll compression device
US10227982B2 (en) 2011-03-24 2019-03-12 Panasonic Intellectual Property Management Co., Ltd. Scroll compression device
JP2014098357A (en) * 2012-11-15 2014-05-29 Toyota Industries Corp Motor-driven compressor
JP2017008949A (en) * 2016-10-17 2017-01-12 株式会社豊田自動織機 Electric compressor
DE102021129036A1 (en) 2021-11-08 2023-05-11 Vaillant Gmbh Compressor, air conditioner and use of a magnetic flux barrier or refrigerant

Similar Documents

Publication Publication Date Title
CA1153414A (en) High speed magnetic coupling with ceramic magnets maintained under centrifugal compression
JP3818213B2 (en) Electric compressor
KR101025366B1 (en) Motor and compressor
US20070228847A1 (en) High speed electric motor
JP4976630B2 (en) Electric refrigerant pump
US20170058915A1 (en) Electric Coolant Pump
WO2001082448A2 (en) Permanent magnet rotor cooling system and method
CN103283127B (en) Motor in axial magnetic field
JP2013150408A (en) Rotary machine
JP2019190457A (en) Fluid compressor
JP2004293871A (en) Refrigerant cycle equipment
JP2004251173A (en) Compressor with closed type motor
JP2000303986A (en) Integral motor pump
JP2021516526A (en) Double flow electromechanical
RU2150609C1 (en) Centrifugal compressor unit and electric motor
KR102617452B1 (en) Motor rotor with cooling
WO2004025083A1 (en) Generator motor device
JP2008082279A (en) Electric compressor
JP6984383B2 (en) Rotating machine
JP4618050B2 (en) Compressor
WO2020196117A1 (en) Electric compressor
JP5135779B2 (en) Compressor
JP2017145724A (en) Motor compressor
JP2023061141A (en) centrifugal compressor
JP2008138591A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071101