JP2004251131A - Refrigerant compressor - Google Patents

Refrigerant compressor Download PDF

Info

Publication number
JP2004251131A
JP2004251131A JP2003039348A JP2003039348A JP2004251131A JP 2004251131 A JP2004251131 A JP 2004251131A JP 2003039348 A JP2003039348 A JP 2003039348A JP 2003039348 A JP2003039348 A JP 2003039348A JP 2004251131 A JP2004251131 A JP 2004251131A
Authority
JP
Japan
Prior art keywords
refrigerant
communication pipe
heat insulating
insulating material
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003039348A
Other languages
Japanese (ja)
Inventor
Shuhei Sugimoto
修平 杉本
Souzou Suzuki
創三 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003039348A priority Critical patent/JP2004251131A/en
Publication of JP2004251131A publication Critical patent/JP2004251131A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To raise refrigerating capacity and efficiency in relation with heat reception reduction of refrigerant gas at an intake muffler of a refrigerant compressor. <P>SOLUTION: The compressor is constructed so that vacuum heat insulating material 105 is disposed in at least a part between a communication pipe 102 and an intake space 103. The communication pipe 102 of the intake muffler 101, even when having heat transmission from a cylinder head 104, since air gaps of core material 106 forming the vacuum heat insulating material 105 are kept evacuated, has no convective heat transfer occurring due to heat and is limited to slight heat transmission of the core material 106. Heat insulating performance is therefore very high, and temperature of he refrigerant is kept low. This can increase refrigerant density, enlarge a circulating amount of the refrigerant and raise the refrigerating capacity and compression efficiency. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍冷蔵装置等に使用される密閉型圧縮機の効率向上に関するものである。
【0002】
【従来の技術】
近年、冷凍冷蔵装置等に使用される密閉型圧縮機は効率向上が強く望まれている。従来の密閉型圧縮機の効率向上したものとしては、吸入マフラの連通管とシリンダヘッドの吸入空間の隙間に空間を介在させることにより、圧縮室内に吸入するガス冷媒の温度をできるだけ低くすることにより、ガス冷媒の密度を高くして冷媒循環量を大きくし、効率を高めたものがある(例えば、特許文献1参照)。
【0003】
以下、図面を参照しながら上記従来の密閉型圧縮機の一例について説明する。
【0004】
図9は従来の冷媒圧縮機の断面図であり、図10は従来の冷媒圧縮機の要部断面図である。
【0005】
図9、図10において、1は密閉容器であり、2は電動モータ、3は電動モータで駆動される圧縮要素である。4は固定子、5は回転子であり、前記電動モータ2を構成している。
【0006】
6は吸入空間7と吐出空間8を形成したシリンダヘッド、9はシリンダ10を有したシリンダブロック、11は吸入孔12と吐出孔13を有したバルブプレート、14は吸入リード、15はピストン、16はクランク軸、17は前記クランク軸16の偏芯部18に連結された連接棒、19は前記吸入空間7に連通管20を介して前記バルブプレート11の前記吸入孔12と連通した吸入マフラであり、入口部19aより冷媒ガスを吸入する。21は前記連通管20とシリンダヘッド6の間に生じた微小空間であり、22は、前記微小空間21に配置された略円盤状の板ばねである。
【0007】
以上のように構成された冷媒圧縮機について以下その動作を説明する。
【0008】
まず、電動モータ2によって駆動される圧縮要素3には外部冷凍サイクル(図示せず)より戻ってきた低温低圧の冷媒ガスが吸入管(図示せず)から容器1内に吸入され、さらに吸入マフラ19の入口部19aより吸入され、連通管20から吸入孔12を通り、吸入リード14を開いてシリンダ10へ導かれて圧縮され高温高圧となり吐出管(図示せず)を通り、外部冷凍サイクル(図示せず)へ導かれて冷凍作用をなす。この時、シリンダ10内で発生する圧力脈動は吸入マフラ19の消音作用で減衰されて、冷媒圧縮機の容器1内に伝達され、吸入管を介して外部冷凍サイクルに伝搬する冷媒圧縮機の圧力脈動に起因する騒音を低減する。また、吸入マフラ19内は、シリンダヘッド6の微小空間21に略円盤状の板ばねにより弾性的に固定されるので、ピストン15の往復運動による圧縮要素3の振動でガタツキが生じることがなく、磨耗問題を引き起こしたりガタツキによる騒音問題を防止できる。
【0009】
【特許文献1】
特開2002−195158号公報
【0010】
【発明が解決しようとする課題】
しかしながら上記従来の構成において、ピストン15の往復運動によりシリンダ10内に吸入された冷媒ガスは、圧縮工程にて約120℃ちかくの高温ガスとなり、シリンダヘッド6の吐出空間8に吐出される。この際高温のガスは、吐出されたガスより低温となるシリンダヘッド壁に熱伝達してシリンダヘッド6の温度を80℃ちかくまで上昇させる。
【0011】
ここで、シリンダヘッド6に構成された吸入空間7とそこに挿入された吸入マフラ19の連通管20との間には、微小空間21が存在する構成となることから、高温のシリンダヘッド壁から微小空間21へ熱伝達が生じ、この閉空間を満たすガスを加熱する。さらにこの高温となったガスは、連通管壁に熱伝達し、連通管20を加熱する。そして加熱された連通管壁から連通管内部を流れる冷媒ガス(約50℃)への熱伝達により、ガス温度は数℃上昇し、最終シリンダへ吸入される。以上より、シリンダへ吸入される冷媒ガスの密度が低くなり、冷媒循環量を減少させ、冷凍能力および効率が低下するという課題を有していた。
【0012】
本発明は従来の課題を解決するもので、吸入マフラ19内に吸入した冷媒ガスの温度上昇を小さくし冷凍能力及び効率を向上した冷媒圧縮機を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の請求項1に記載の発明は、往復動するピストンを収納するシリンダと、前記シリンダの開口端に備えられたバルブプレートと、前記バルブプレートの吸入孔に連通する連通管を有する吸入マフラと前記バルブプレートの反シリンダ側に設けられ、吐出空間および前記連通管を収容する吸入空間を形成したシリンダヘッドとを備え、前記連通管と前記吸入空間との間の少なくとも一部に断熱材を介在させた構成となっており、吸入マフラの連通管は高温になったシリンダヘッドからの熱の伝達を受けても、前記連通管と前記吸入空間の間に設けた断熱材により断熱されるため、連通管内を流れる冷媒への熱伝達は低減され、冷媒の温度は低く保たれることにより、ガス冷媒の密度が高く冷媒循環量が大きくなり、冷凍能力および圧縮効率を高くすることができる作用を有する。
【0014】
本発明の請求項2に記載の発明は、往復動するピストンを収納するシリンダと、前記シリンダの開口端に備えられたバルブプレートと、前記バルブプレートの吸入孔に連通する連通管を有する吸入マフラとを備え、前記連通管内壁の少なくとも一部に断熱材を装着した構成となっており、吸入マフラの連通管は高温のシリンダヘッドからの熱を受けても、連通管内壁に装着した断熱材で十分に断熱されるため、吸入マフラの連通管内を流れる冷媒への熱伝達は低減され、冷媒の温度は低くたもたれることにより、ガス冷媒の密度が高く冷媒循環量が大きくなり、冷凍能力および圧縮効率が高くなるという作用を有する。
【0015】
本発明の請求項3に記載の発明は、請求項1または請求項2に記載の断熱材が空隙を有した芯材と前記芯材を被う非通気性外被材から構成された真空断熱材であり、請求項1または請求項2に記載の発明の作用に加えて、真空断熱材の内部は空隙を有する芯材で構成され、その空隙を真空に保っていることから、熱による対流熱伝達が発生せず、芯材の僅かな熱伝導に限られる。よって、断熱性能が非常に高く、高温になったシリンダヘッド壁からの熱を受けても、真空断熱材において殆ど伝達しない。さらに真空断熱材から連通管への熱伝達も減少し、最終的に連通管壁から連通管内部を流れる冷媒ガスへの熱伝達量も減少するため、冷媒ガスの温度はより低く保たれることにより、ガス冷媒の密度が高く冷媒循環量が大きくなり、冷凍能力および圧縮効率を高くすることができる。また、真空断熱材の形状を簡略化できるため、生産性の高い低コストの断熱構造の吸入マフラが得られるという作用を有する。
【0016】
請求項4に記載の発明は、請求項3に記載の発明に、非通気性外被材をプラスチックフィルムと金属箔のラミネートフィルムで構成したものであり、請求項3に記載の発明の作用に加えて、金属箔の非通気性が非常に高いことから、真空断熱材の芯材の真空度を安定的に長期にわたり確保すると共に、連通管外被の耐油性が増すことから、信頼性の高い断熱構造の吸入マフラが得られるという作用を有する。
【0017】
【発明の実施の形態】
以下、本発明による密閉型圧縮機の実施の形態について、図面を参照しながら説明する。なお、従来例と同一構成については同一符号を付して詳細な説明を省略する。
【0018】
(実施の形態1)
図1は、本発明の実施の形態1による冷媒圧縮機の断面図である。図2は、同実施の形態の要部断面図である。図3は、同実施の形態のシリンダヘッドと吸入マフラの分解斜視図である。図4は、同実施の形態の真空断熱材の要部断面図である。図5は、同実施の形態の吸入マフラ内部における冷媒の温度分布を表す特性図である。
【0019】
図1、図2、図3、図4、図5において、101は吸入マフラであり、102は、吸入マフラ101とバルブプレート11の吸入孔12に連通する連通管であり、103は、連通管102を収容する吸入空間であり、104は、吸入空間103および吐出空間8を形成したシリンダヘッドである。連通管102と吸入空間103の間にある微小空間に断熱性のよい真空断熱材105を構成しており、真空断熱材105は空隙を有した芯材106を非通気性外被材107で覆い、芯材106の空隙を真空に保持している。芯材106としては、耐熱性が高く熱伝導率の低いパーライトやシリカなどの無機粉末を用いることができ、本実施の形態ではシリカ粉を用いた。芯材106のシリカ粉の粒子と粒子との間には空隙ができるため、芯材106は連続した通気性をもち、非通気性外被材107で覆った真空断熱材105内部を真空に保持するのに適している。また。芯材106のシリカ粉は粒子径が非常に小さいため、粒子と粒子の接触面積が小さく、接触面を介した熱伝導が非常に小さい。非通気性外被材107としてはポリプロピレン等のプラスチックフィルム材や複数のフィルム材を積層したラミネート材が使用できる。
【0020】
以上のように構成された本実施の形態の冷媒圧縮機について、以下その動作を説明する。
【0021】
シリンダ10においてピストン15の往復運動の際、ピストン15がシリンダヘッド104側へ移動する過程で、ガスは圧縮作用により約120℃ちかくの高温状態となりシリンダヘッド104の吐出空間8へ吐出される。これにより、シリンダヘッド104は加熱され約80℃ちかくの高温状態となり、連通管102と吸入空間103の間に介在する真空断熱材105は加熱されるが、真空断熱材105を構成する芯材106の空隙が真空に保たれているため、熱による対流熱伝達が発生せず、芯材106の僅かな熱伝導に限られるため断熱性が高い。よって、高温になったシリンダヘッド壁からの熱を受けても、真空断熱材105において殆ど熱伝達しない。さらに真空断熱材105から連通管102への熱伝達も減少し、最終的に連通管壁から連通管102内部を流れる冷媒ガスへの熱伝達量も減少するため、冷媒ガス温度はより低く、すなわち冷媒ガス密度が高く維持され、冷媒循環量を大きくし、冷凍能力及び冷媒圧縮機の効率が高められる。さらに、真空断熱材105の断熱性能が高いため、真空断熱材105を薄く構成することが可能であり、連通管102を囲うシリンダヘッド104の肉厚を厚くすることが可能となり、シリンダヘッド104の剛性が向上できる。
【0022】
ここで、吸入マフラ101を含む吸入経路を流れる冷媒ガスの温度分布を図5に示す。図5において、横軸は吸入マフラ101内空間の各部位およびシリンダ入口部、縦軸は各部位における冷媒ガスの温度であり、吸入マフラ101からシリンダ10に至る吸入経路(吸入マフラ入口部19a、連通管102入口、連通管102出口、シリンダ10入口)における冷媒ガスの温度分布を従来仕様の吸入マフラ19との比較にて示したものである。この結果より、吸入マフラ入口部19aからシリンダ10入口にかけて、冷媒ガスが加熱されていくが、連通管102入口から連通管102出口に至る過程において、冷媒ガスの温度が従来仕様に対し、約4K改善されていることがわかる。そして連通管出口からシリンダ入口に至る過程において、ほぼ同じ温度差を保ちながら冷媒ガスの温度は上昇している。連通管102の入口から出口に至る過程で、加熱度が改善された理由は、連通管102内部を冷媒ガスが通過する際、連通管102周辺の真空断熱材105の断熱作用により高温のシリンダヘッドから冷媒ガスへの熱伝達を抑制するためであり、その結果、連通管102の入口付近から冷媒ガスの受熱抑制効果が現れ、連通管102の出口付近では、従来の吸入マフラ仕様と比べて約4Kの温度低減効果が得られている。また、この冷媒ガスの温度低減によって冷媒圧縮機の冷凍能力は、従来マフラ仕様に対して、+2.0%向上し,COPは、+1.5%以上向上することが確認できた。
【0023】
尚、本実施の形態の冷媒圧縮機は、連通管102と吸入空間103の間に真空断熱材105を介在させたが、耐油性、耐冷媒性のある一般的な断熱材で構成する場合においても、シリンダヘッド104から冷媒ガスへの熱伝達を効果的に減少させることができる。
【0024】
尚、本実施の形態の真空断熱材は断熱性が高いことから、連通管102と吸入空間103の間の一部を真空断熱材で構成する場合においても、シリンダヘッド104から冷媒ガスへの熱伝達を効果的に減少させることができる。
【0025】
(実施の形態2)
図6は、本発明の実施の形態2による冷媒圧縮機の要部断面図である。図7は、同実施の形態のシリンダヘッドと吸入マフラの分解斜視図である。図8は、同実施の形態による冷媒圧縮機の真空断熱材の要部斜視断面図である。
【0026】
図6および図7および図8において、201は吸入マフラであり、202は連通管であり、203は連通管202の内壁に装着した真空断熱材であり、非通気性外被材204を、空隙を有する芯材205に接する側に配したプラスチックフィルム206と、プラスチックフィルム206の外側に配した金属箔207と、プラスチックフィルム206と金属箔207を接着して形成したラミネートフィルム208で形成し、芯材205の空隙を真空に保持している。非通気性外被材204のプラスチックフィルム206として好ましくはポリプロピレンやポリエステルなどを用いることができ、金属箔207としてはアルミニュウム箔を用いることができる。209は、吸入空間210と吐出空間8を有するシリンダヘッドである。なお、他の符号は、従来例及び実施の形態1と同一構成の場合、同一符号を付して詳細な説明を省略する。
【0027】
以上のように構成された本実施の形態の冷媒圧縮機について、以下その動作を説明する。
【0028】
シリンダ10においてピストン15の往復運動の際、ピストン15がシリンダヘッド209側へ移動する過程で、ガスは圧縮作用により約120℃ちかくの高温状態となりシリンダヘッド209の吐出空間8へ吐出される。これにより、シリンダヘッド209は加熱され約80℃ちかくの高温状態となり、シリンダヘッド209に挿入された連通管202および連通管内壁に装着された真空断熱材203は順次加熱されるが、真空断熱材203を構成する芯材205の空隙は真空に保たれているため、熱による対流熱伝達がほとんど発生せず、芯材205の僅かな熱伝導に限られるため断熱性が非常に高い。よって高温になったシリンダヘッド壁からの熱を連通管は受け高温になるが、連通管壁から真空断熱材203への熱伝達は殆どない。そして最終的に真空断熱材203から真空断熱材203内部を流れる冷媒ガスへの熱伝達量も減少するため、冷媒ガス温度はより低く、すなわち冷媒ガス密度が高く維持され、冷媒循環量を大きくし、冷凍能力および冷媒圧縮機の効率が高められる。さらに、非通気性外被材204としては、ポリプロピレン製のプラスチックフィルム206の外側にアルミニウムの金属箔207を接着したラミネートフィルム208を用いており、アルミニウム箔の非通気性が非常に高く、また冷凍システム内の潤滑油に対する耐油性も高いため、真空断熱材203内部の真空度を長期かつ安定して保つことができる。また、真空断熱材の形状を円筒形状に簡略化できるため、生産性の高い低コストの断熱構造の吸入マフラ201が得られる。
【0029】
尚、本実施の形態ではプラスチックフィルム206の外側に金属箔207を接着した2層構造の例を示したが、アルミニウムの金属箔の外側にもプラスチックフィルムを積層した3層以上の構造としてもよく、さらに安定した断熱効果が得られ、連通管202に吸入されたガス冷媒への熱伝達の低減による冷媒圧縮機の効率向上効果をより長期に安定して得ることができる。
【0030】
尚、本実施の形態の真空断熱材は断熱性が高いことから、連通管内の一部に真空断熱材を装着する構成とした場合においても、冷媒ガスへの熱伝達を効果的に減少させることができる。
【0031】
【発明の効果】
以上説明したように請求項1に記載の発明は、吸入マフラの連通管は高温のシリンダヘッドからの熱伝達を受けても、微小空間に設けた断熱材で十分に断熱されるため、吸入マフラの連通管内の冷媒への熱伝達は低減され、冷媒の温度は低く保たれることにより、ガス冷媒の密度が高く冷媒循環量が大きくなり、冷凍能力および圧縮効率を高くできる効果がある。
【0032】
また、請求項2に記載の発明は、吸入マフラの連通管は高温のシリンダヘッドからの熱を受けても、連通管内壁に装着した断熱材で十分に断熱されるため、吸入マフラの連通管内における冷媒への熱伝達は低減され、冷媒の温度は低くたもたれることにより、ガス冷媒の密度が高く冷媒循環量が大きくなり、冷凍能力および圧縮効率を高くできる効果がある。
【0033】
また、請求項3記載の発明は請求項1または2に記載の発明の効果に加えて、真空断熱材を用いたことで、断熱性能が著しく向上するため、吸入マフラの連通管内における冷媒への熱伝達は大幅に低減され、冷媒の温度はより低く保たれることにより、ガス冷媒の密度が高く冷媒循環量が大きくなり、冷凍能力および圧縮効率を高くすることができる。
【0034】
また、請求項4記載の発明は請求項3に記載の発明の効果に加えて、ラミネ−トフィルムに金属箔を被膜することにより、真空断熱材内部を長期に安定した真空度を保つと共に外被の耐油性を増し、信頼性の高い断熱構造の吸入マフラが得られる効果がある。
【図面の簡単な説明】
【図1】本発明による冷媒圧縮機の実施の形態1の断面図
【図2】同実施の形態の冷媒圧縮機の要部断面図
【図3】同実施の形態の冷媒圧縮機のシリンダヘッドと吸入マフラの分解斜視図
【図4】同実施の形態の真空断熱材の要部断面図
【図5】同実施の形態の吸入マフラ内部における冷媒の温度分布を示す特性図
【図6】本発明による冷媒圧縮機の実施の形態2の要部断面図
【図7】同実施の形態の冷媒圧縮機のシリンダヘッドと吸入マフラの分解斜視図
【図8】同実施の形態の真空断熱材の要部斜視断面図
【図9】従来の冷媒圧縮機の断面図
【図10】従来の冷媒圧縮機の要部断面図
【符号の説明】
6、104、209 シリンダヘッド
7、103、210 吸入空間
8 吐出空間
10 シリンダ
11 バルブプレート
12 吸入孔
15 ピストン
19、101、201 吸入マフラ
20、102、202 連通管
21 微小空間
105、203 真空断熱材
106、205 芯材
107、204 非通気性外被材
206 プラスチックフィルム
207 金属箔
208 ラミネートフィルム
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement in the efficiency of a hermetic compressor used in a refrigerator or the like.
[0002]
[Prior art]
In recent years, there has been a strong demand for improved efficiency of hermetic compressors used in freezers and the like. The efficiency of the conventional hermetic compressor is improved by interposing a space between the communication pipe of the suction muffler and the suction space of the cylinder head to lower the temperature of the gas refrigerant sucked into the compression chamber as much as possible. There is a technique in which the density of a gas refrigerant is increased to increase the amount of circulating the refrigerant, thereby increasing the efficiency (for example, see Patent Document 1).
[0003]
Hereinafter, an example of the conventional hermetic compressor will be described with reference to the drawings.
[0004]
FIG. 9 is a cross-sectional view of a conventional refrigerant compressor, and FIG. 10 is a cross-sectional view of a main part of the conventional refrigerant compressor.
[0005]
9 and 10, 1 is a closed container, 2 is an electric motor, and 3 is a compression element driven by the electric motor. Reference numeral 4 denotes a stator, and reference numeral 5 denotes a rotor, which constitutes the electric motor 2.
[0006]
6 is a cylinder head having a suction space 7 and a discharge space 8; 9 is a cylinder block having a cylinder 10; 11 is a valve plate having a suction hole 12 and a discharge hole 13; 14 is a suction lead; Is a crankshaft; 17 is a connecting rod connected to the eccentric portion 18 of the crankshaft 16; 19 is a suction muffler which communicates with the suction hole 12 of the valve plate 11 through a communication pipe 20 to the suction space 7. In addition, refrigerant gas is sucked from the inlet 19a. Reference numeral 21 denotes a minute space generated between the communication pipe 20 and the cylinder head 6, and reference numeral 22 denotes a substantially disk-shaped leaf spring disposed in the minute space 21.
[0007]
The operation of the refrigerant compressor configured as described above will be described below.
[0008]
First, a low-temperature and low-pressure refrigerant gas returned from an external refrigeration cycle (not shown) is sucked into the container 1 from a suction pipe (not shown) to the compression element 3 driven by the electric motor 2, and furthermore, a suction muffler. Inlet 19 is sucked from inlet 19a, passes through communication pipe 20, passes through suction hole 12, opens suction lead 14 and is guided to cylinder 10 where it is compressed to high temperature and high pressure, passes through a discharge pipe (not shown), and passes through an external refrigeration cycle ( (Not shown) to perform a refrigeration action. At this time, the pressure pulsation generated in the cylinder 10 is attenuated by the silencing effect of the suction muffler 19, transmitted to the inside of the container 1 of the refrigerant compressor, and transmitted to the external refrigeration cycle via the suction pipe. Reduce noise caused by pulsation. Further, since the inside of the suction muffler 19 is elastically fixed to the minute space 21 of the cylinder head 6 by a substantially disc-shaped leaf spring, rattling does not occur due to the vibration of the compression element 3 due to the reciprocation of the piston 15. Abrasion problems and noise problems due to rattling can be prevented.
[0009]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-195158
[Problems to be solved by the invention]
However, in the above-described conventional configuration, the refrigerant gas sucked into the cylinder 10 by the reciprocating motion of the piston 15 becomes a high-temperature gas of about 120 ° C. in the compression step, and is discharged into the discharge space 8 of the cylinder head 6. At this time, the high-temperature gas transfers heat to the cylinder head wall, which has a lower temperature than the discharged gas, and raises the temperature of the cylinder head 6 to about 80 ° C.
[0011]
Here, since a minute space 21 exists between the suction space 7 formed in the cylinder head 6 and the communication pipe 20 of the suction muffler 19 inserted therein, the high temperature cylinder head wall is Heat is transferred to the minute space 21 to heat the gas filling the closed space. Further, the high-temperature gas transfers heat to the communication pipe wall and heats the communication pipe 20. Then, due to heat transfer from the heated communication pipe wall to the refrigerant gas (about 50 ° C.) flowing inside the communication pipe, the gas temperature increases by several degrees and is sucked into the final cylinder. As described above, there has been a problem that the density of the refrigerant gas sucked into the cylinder is reduced, the amount of refrigerant circulated is reduced, and the refrigerating capacity and efficiency are reduced.
[0012]
An object of the present invention is to solve the conventional problem, and an object of the present invention is to provide a refrigerant compressor in which the temperature rise of the refrigerant gas sucked into the suction muffler 19 is reduced to improve the refrigerating capacity and efficiency.
[0013]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a suction muffler having a cylinder for accommodating a reciprocating piston, a valve plate provided at an open end of the cylinder, and a communication pipe communicating with a suction hole of the valve plate. And a cylinder head provided on the side opposite to the cylinder of the valve plate and forming a suction space for accommodating the discharge space and the communication tube, wherein a heat insulating material is provided at least in part between the communication tube and the suction space. Because the communication pipe of the suction muffler receives heat from the high temperature cylinder head, it is insulated by the heat insulating material provided between the communication pipe and the suction space. The heat transfer to the refrigerant flowing through the communication pipe is reduced, and the temperature of the refrigerant is kept low, so that the density of the gas refrigerant is high, the refrigerant circulation amount is large, and the refrigeration capacity and the compression efficiency are reduced. Has an action can be increased.
[0014]
According to a second aspect of the present invention, there is provided a suction muffler having a cylinder for accommodating a reciprocating piston, a valve plate provided at an open end of the cylinder, and a communication pipe communicating with a suction hole of the valve plate. The communication pipe of the suction muffler receives heat from a high-temperature cylinder head, and the heat-insulating material mounted on the communication pipe inner wall has a configuration in which a heat insulating material is attached to at least a part of the communication pipe inner wall. The heat transfer to the refrigerant flowing in the communication pipe of the suction muffler is reduced because the heat is sufficiently insulated, and the temperature of the refrigerant is lowered, so that the density of the gas refrigerant is high and the refrigerant circulation amount is large, and the refrigeration capacity and This has the effect of increasing the compression efficiency.
[0015]
According to a third aspect of the present invention, there is provided a heat insulating material according to the first or second aspect, wherein the heat insulating material comprises a core material having a gap and a non-permeable air-permeable material covering the core material. In addition to the effects of the invention described in claim 1 or claim 2, the inside of the vacuum heat insulating material is formed of a core material having a gap, and since the gap is kept at a vacuum, convection due to heat is achieved. No heat transfer occurs and is limited to slight heat conduction of the core. Therefore, the heat insulation performance is very high, and even if heat from the high temperature cylinder head wall is received, the heat is hardly transmitted through the vacuum heat insulating material. Furthermore, the heat transfer from the vacuum insulation material to the communication pipe also decreases, and finally the heat transfer from the communication pipe wall to the refrigerant gas flowing inside the communication pipe also decreases, so that the temperature of the refrigerant gas is kept lower. Thereby, the density of the gas refrigerant is high, the refrigerant circulation amount is large, and the refrigeration capacity and the compression efficiency can be increased. Further, since the shape of the vacuum heat insulating material can be simplified, a suction muffler having a heat insulating structure with high productivity and low cost can be obtained.
[0016]
The invention according to claim 4 is the invention according to claim 3, wherein the non-breathable covering material is constituted by a laminate film of a plastic film and a metal foil. In addition, the extremely high air permeability of the metal foil ensures the vacuum of the core material of the vacuum insulation stably for a long period of time, and the oil resistance of the communication pipe jacket increases. It has an effect that a suction muffler having a high heat insulation structure can be obtained.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a hermetic compressor according to the present invention will be described with reference to the drawings. The same components as those in the conventional example are denoted by the same reference numerals, and detailed description is omitted.
[0018]
(Embodiment 1)
FIG. 1 is a cross-sectional view of a refrigerant compressor according to Embodiment 1 of the present invention. FIG. 2 is a sectional view of a main part of the embodiment. FIG. 3 is an exploded perspective view of the cylinder head and the suction muffler according to the embodiment. FIG. 4 is a cross-sectional view of a main part of the vacuum heat insulating material of the embodiment. FIG. 5 is a characteristic diagram illustrating a temperature distribution of the refrigerant inside the suction muffler of the embodiment.
[0019]
1, 2, 3, 4, and 5, reference numeral 101 denotes a suction muffler, reference numeral 102 denotes a communication pipe communicating between the suction muffler 101 and the suction hole 12 of the valve plate 11, and reference numeral 103 denotes a communication pipe. Reference numeral 104 denotes a suction space for accommodating 102, and 104 denotes a cylinder head in which the suction space 103 and the discharge space 8 are formed. A vacuum heat insulating material 105 having good heat insulating property is formed in a minute space between the communication pipe 102 and the suction space 103, and the vacuum heat insulating material 105 covers a core material 106 having a gap with a non-breathable outer cover material 107. The gap of the core material 106 is kept in a vacuum. As the core material 106, inorganic powder such as pearlite or silica having high heat resistance and low thermal conductivity can be used. In the present embodiment, silica powder is used. Since there is a gap between the silica powder particles of the core material 106, the core material 106 has continuous air permeability, and the interior of the vacuum heat insulating material 105 covered with the non-air permeable material 107 is kept in vacuum. Suitable to do. Also. Since the silica powder of the core material 106 has a very small particle size, the contact area between the particles is small, and the heat conduction through the contact surface is very small. As the non-breathable covering material 107, a plastic film material such as polypropylene or a laminated material obtained by laminating a plurality of film materials can be used.
[0020]
The operation of the refrigerant compressor of the present embodiment configured as described above will be described below.
[0021]
During the reciprocating movement of the piston 15 in the cylinder 10, in the process of moving the piston 15 toward the cylinder head 104, the gas is brought into a high temperature state of about 120 ° C. by the compression action and is discharged into the discharge space 8 of the cylinder head 104. As a result, the cylinder head 104 is heated to a high temperature state of about 80 ° C., and the vacuum heat insulator 105 interposed between the communication pipe 102 and the suction space 103 is heated, but the core material 106 constituting the vacuum heat insulator 105 is heated. Is kept in a vacuum, convection heat transfer by heat does not occur, and the heat conduction is limited to a small amount of heat of the core member 106, so that the heat insulating property is high. Therefore, even if the heat from the cylinder head wall, which has become hot, is received, almost no heat is transmitted through the vacuum heat insulating material 105. Further, the heat transfer from the vacuum heat insulating material 105 to the communication pipe 102 also decreases, and finally the heat transfer amount from the communication pipe wall to the refrigerant gas flowing inside the communication pipe 102 also decreases, so that the refrigerant gas temperature is lower, that is, The refrigerant gas density is maintained high, the refrigerant circulation amount is increased, and the refrigeration capacity and the efficiency of the refrigerant compressor are increased. Further, since the heat insulating performance of the vacuum heat insulating material 105 is high, the vacuum heat insulating material 105 can be configured to be thin, and the thickness of the cylinder head 104 surrounding the communication pipe 102 can be increased. Rigidity can be improved.
[0022]
Here, FIG. 5 shows the temperature distribution of the refrigerant gas flowing through the suction path including the suction muffler 101. In FIG. 5, the horizontal axis represents each part of the space inside the suction muffler 101 and the cylinder inlet, and the vertical axis represents the temperature of the refrigerant gas in each part. The suction path from the suction muffler 101 to the cylinder 10 (the suction muffler inlet 19 a, The temperature distribution of the refrigerant gas at the inlet of the communication pipe 102, the outlet of the communication pipe 102, and the inlet of the cylinder 10) is shown in comparison with the suction muffler 19 of the conventional specification. From this result, the refrigerant gas is heated from the inlet muffler inlet 19a to the cylinder 10 inlet. In the process from the communication pipe 102 inlet to the communication pipe 102 outlet, the temperature of the refrigerant gas is about 4K It can be seen that it has been improved. In the process from the outlet of the communication pipe to the inlet of the cylinder, the temperature of the refrigerant gas increases while maintaining substantially the same temperature difference. The reason why the heating degree is improved in the process from the inlet to the outlet of the communication pipe 102 is that when the refrigerant gas passes through the inside of the communication pipe 102, the heat insulating effect of the vacuum heat insulating material 105 around the communication pipe 102 causes the high temperature of the cylinder head. As a result, the effect of suppressing the heat reception of the refrigerant gas appears near the inlet of the communication pipe 102, and the vicinity of the outlet of the communication pipe 102 is reduced by about A 4K temperature reduction effect is obtained. In addition, it was confirmed that the refrigerating capacity of the refrigerant compressor was improved by + 2.0% and the COP was improved by + 1.5% or more as compared with the conventional muffler specification due to the reduction in the temperature of the refrigerant gas.
[0023]
In the refrigerant compressor of the present embodiment, the vacuum heat insulating material 105 is interposed between the communication pipe 102 and the suction space 103. However, in the case where the refrigerant compressor is made of a general heat insulating material having oil resistance and refrigerant resistance. Also, heat transfer from the cylinder head 104 to the refrigerant gas can be effectively reduced.
[0024]
In addition, since the vacuum heat insulating material of the present embodiment has a high heat insulating property, even when a portion between the communication pipe 102 and the suction space 103 is formed of the vacuum heat insulating material, the heat from the cylinder head 104 to the refrigerant gas is not affected. Transmission can be effectively reduced.
[0025]
(Embodiment 2)
FIG. 6 is a cross-sectional view of a main part of a refrigerant compressor according to Embodiment 2 of the present invention. FIG. 7 is an exploded perspective view of the cylinder head and the suction muffler according to the embodiment. FIG. 8 is a perspective sectional view of a main part of a vacuum heat insulating material of the refrigerant compressor according to the embodiment.
[0026]
6, 7, and 8, reference numeral 201 denotes a suction muffler; 202, a communication pipe; 203, a vacuum heat insulating material attached to the inner wall of the communication pipe 202; A plastic film 206 disposed on the side in contact with the core material 205 having a metal film, a metal foil 207 disposed outside the plastic film 206, and a laminated film 208 formed by bonding the plastic film 206 and the metal foil 207. The gap of the material 205 is kept in a vacuum. As the plastic film 206 of the non-breathable covering material 204, preferably, polypropylene, polyester, or the like can be used, and as the metal foil 207, an aluminum foil can be used. 209 is a cylinder head having a suction space 210 and a discharge space 8. In the case where the other reference numerals are the same as those of the conventional example and the first embodiment, the same reference numerals are given and the detailed description is omitted.
[0027]
The operation of the refrigerant compressor of the present embodiment configured as described above will be described below.
[0028]
During the reciprocating movement of the piston 15 in the cylinder 10, in the process of moving the piston 15 toward the cylinder head 209, the gas is brought into a high temperature state of about 120 ° C. by the compression action and is discharged into the discharge space 8 of the cylinder head 209. As a result, the cylinder head 209 is heated to a high temperature of about 80 ° C., and the communication pipe 202 inserted into the cylinder head 209 and the vacuum heat insulating material 203 attached to the inner wall of the communication pipe are sequentially heated. Since the gap of the core material 205 constituting the core 203 is kept in a vacuum, convection heat transfer due to heat hardly occurs, and the heat conduction of the core material 205 is limited, so that the heat insulating property is very high. Therefore, the communication pipe receives the high temperature heat from the cylinder head wall and becomes high temperature, but there is almost no heat transfer from the communication pipe wall to the vacuum heat insulating material 203. Finally, since the amount of heat transfer from the vacuum heat insulating material 203 to the refrigerant gas flowing inside the vacuum heat insulating material 203 also decreases, the refrigerant gas temperature is lower, that is, the refrigerant gas density is maintained high, and the refrigerant circulation amount is increased. The refrigeration capacity and the efficiency of the refrigerant compressor are improved. Further, as the non-breathable covering material 204, a laminate film 208 in which an aluminum metal foil 207 is adhered to the outside of a plastic film 206 made of polypropylene is used. Since the oil resistance to the lubricating oil in the system is high, the degree of vacuum inside the vacuum heat insulating material 203 can be stably maintained for a long time. Further, since the shape of the vacuum heat insulating material can be simplified to a cylindrical shape, the suction muffler 201 having a heat insulating structure with high productivity and low cost can be obtained.
[0029]
In this embodiment, an example of the two-layer structure in which the metal foil 207 is bonded to the outside of the plastic film 206 is shown, but a structure of three or more layers in which the plastic film is laminated also to the outside of the aluminum metal foil may be used. Further, a more stable heat insulating effect can be obtained, and the effect of improving the efficiency of the refrigerant compressor by reducing the heat transfer to the gas refrigerant sucked into the communication pipe 202 can be stably obtained for a longer period of time.
[0030]
In addition, since the vacuum heat insulating material of the present embodiment has a high heat insulating property, it is necessary to effectively reduce the heat transfer to the refrigerant gas even when the vacuum heat insulating material is attached to a part of the communication pipe. Can be.
[0031]
【The invention's effect】
As described above, according to the first aspect of the present invention, the communication pipe of the suction muffler is sufficiently insulated by the heat insulating material provided in the minute space even if it receives heat transfer from the high-temperature cylinder head. The heat transfer to the refrigerant in the communication pipe is reduced, and the temperature of the refrigerant is kept low, so that the density of the gas refrigerant is high, the refrigerant circulation amount is large, and the refrigerating capacity and the compression efficiency can be increased.
[0032]
According to the second aspect of the present invention, the communication pipe of the suction muffler is sufficiently insulated by the heat insulating material attached to the inner wall of the communication pipe even if it receives heat from the high-temperature cylinder head. In this case, the heat transfer to the refrigerant is reduced, and the temperature of the refrigerant leans low, thereby increasing the density of the gas refrigerant, increasing the refrigerant circulation amount, and increasing the refrigerating capacity and the compression efficiency.
[0033]
According to the third aspect of the present invention, in addition to the effects of the first or second aspect of the present invention, the use of a vacuum heat insulating material significantly improves heat insulating performance. Heat transfer is greatly reduced, and the temperature of the refrigerant is kept lower, so that the density of the gas refrigerant is high, the refrigerant circulation amount is large, and the refrigeration capacity and compression efficiency can be increased.
[0034]
In addition to the effects of the third aspect of the present invention, the invention according to the fourth aspect provides a laminating film coated with a metal foil to maintain a stable degree of vacuum inside the vacuum heat insulating material for a long period of time and to coat the outer layer. This has the effect of increasing the oil resistance and providing a highly reliable suction muffler with a heat insulating structure.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a first embodiment of a refrigerant compressor according to the present invention; FIG. 2 is a cross-sectional view of a main part of the refrigerant compressor of the first embodiment; FIG. 3 is a cylinder head of the refrigerant compressor of the first embodiment; FIG. 4 is an exploded perspective view of a suction muffler and FIG. 4 is a sectional view of a main part of the vacuum heat insulating material of the embodiment. FIG. 5 is a characteristic diagram showing a temperature distribution of a refrigerant inside the suction muffler of the embodiment. FIG. 7 is an exploded perspective view of a cylinder head and a suction muffler of the refrigerant compressor according to the second embodiment of the second embodiment of the refrigerant compressor according to the present invention. FIG. 9 is a cross-sectional view of a conventional refrigerant compressor. FIG. 10 is a cross-sectional view of a main part of a conventional refrigerant compressor.
6, 104, 209 Cylinder head 7, 103, 210 Suction space 8 Discharge space 10 Cylinder 11 Valve plate 12 Suction hole 15 Piston 19, 101, 201 Suction muffler 20, 102, 202 Communication tube 21 Micro space 105, 203 Vacuum heat insulating material 106, 205 Core material 107, 204 Non-breathable covering material 206 Plastic film 207 Metal foil 208 Laminated film

Claims (4)

往復動するピストンを収納するシリンダと、前記シリンダの開口端に備えられたバルブプレートと、前記バルブプレートの吸入孔に連通する連通管を有する吸入マフラと前記バルブプレートの反シリンダ側に設けられ、吐出空間および前記連通管を収容する吸入空間を形成したシリンダヘッドとを備え、前記連通管と前記吸入空間との間の少なくとも一部に断熱材を介在させた冷媒圧縮機。A cylinder for storing a reciprocating piston, a valve plate provided at an open end of the cylinder, a suction muffler having a communication pipe communicating with a suction hole of the valve plate, and a suction muffler provided on a side opposite to the cylinder of the valve plate; A refrigerant compressor, comprising: a cylinder head having a discharge space and a suction space for accommodating the communication pipe; and a heat insulating material interposed at least in part between the communication pipe and the suction space. 往復動するピストンを収納するシリンダと、前記シリンダの開口端に備えられたバルブプレートと、前記バルブプレートの吸入孔に連通する連通管を有する吸入マフラとを備え、前記連通管内壁の少なくとも一部に断熱材を装着した冷媒圧縮機。A cylinder accommodating a reciprocating piston, a valve plate provided at an open end of the cylinder, and a suction muffler having a communication pipe communicating with a suction hole of the valve plate, and at least a part of an inner wall of the communication pipe. Refrigerant compressor equipped with heat insulating material. 前記断熱材が空隙を有した芯材と前記芯材を被う非通気性外被材から構成された真空断熱材である請求項1または請求項2に記載の冷媒圧縮機。The refrigerant compressor according to claim 1, wherein the heat insulating material is a vacuum heat insulating material including a core material having a void and a non-permeable air-sheath material covering the core material. 前記非通気性外被材をプラスチックフィルムと金属箔のラミネートフィルムで構成した請求項3に記載の冷媒圧縮機。4. The refrigerant compressor according to claim 3, wherein the non-breathable covering material is constituted by a laminated film of a plastic film and a metal foil.
JP2003039348A 2003-02-18 2003-02-18 Refrigerant compressor Pending JP2004251131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003039348A JP2004251131A (en) 2003-02-18 2003-02-18 Refrigerant compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003039348A JP2004251131A (en) 2003-02-18 2003-02-18 Refrigerant compressor

Publications (1)

Publication Number Publication Date
JP2004251131A true JP2004251131A (en) 2004-09-09

Family

ID=33023554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003039348A Pending JP2004251131A (en) 2003-02-18 2003-02-18 Refrigerant compressor

Country Status (1)

Country Link
JP (1) JP2004251131A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102251950A (en) * 2011-07-07 2011-11-23 广州万宝集团压缩机有限公司 Exhausting and sound deadening structure of refrigerator compressor
CN106121972A (en) * 2016-07-22 2016-11-16 广州万宝集团压缩机有限公司 A kind of refrigeration compressor valve plate and the attachment structure of deafener

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102251950A (en) * 2011-07-07 2011-11-23 广州万宝集团压缩机有限公司 Exhausting and sound deadening structure of refrigerator compressor
CN106121972A (en) * 2016-07-22 2016-11-16 广州万宝集团压缩机有限公司 A kind of refrigeration compressor valve plate and the attachment structure of deafener

Similar Documents

Publication Publication Date Title
US9004879B2 (en) Discrete heat-insulated exhaust muffler device and refrigeration compressor using same
KR100821796B1 (en) Hermetic compressor
US20130108493A1 (en) Valve plate for a compressor
JP6259498B2 (en) Hermetic compressor and refrigeration system
KR102280431B1 (en) Compressor
CN103518110B (en) Refrigerator
EP2061969A1 (en) A compressor structure for a refrigeration system
JP6286364B2 (en) Hermetic compressor and refrigeration system
JP2004251131A (en) Refrigerant compressor
WO2013035323A1 (en) Hermetic compressor
JP2004225645A (en) Refrigerant compressor
WO2014017051A1 (en) Sealed refrigeration compressor and refrigeration device provided with same
JP3115710B2 (en) Hermetic electric compressor
JPH0599141A (en) Closed type motor-operated compressor
JP2015025363A (en) Hermetic compressor and refrigerator
EP0181019B1 (en) Compressor
JP2002235667A (en) Refrigerant compressor
EP1853822A1 (en) A compressor
JP2848418B2 (en) Hermetic electric compressor
EP3835580B1 (en) Piston for compressor
JP2001221159A (en) Linear compressor
JP2003097430A (en) Sealed compressor
JPS6368791A (en) Suction device for closed type rotary compressor
WO2020015901A1 (en) A cylinder head of a hermetic reciprocating compressor
EP2304235A1 (en) A compressor