JP2004251130A - Hermetic compressor and refrigeration cycle - Google Patents

Hermetic compressor and refrigeration cycle Download PDF

Info

Publication number
JP2004251130A
JP2004251130A JP2003039347A JP2003039347A JP2004251130A JP 2004251130 A JP2004251130 A JP 2004251130A JP 2003039347 A JP2003039347 A JP 2003039347A JP 2003039347 A JP2003039347 A JP 2003039347A JP 2004251130 A JP2004251130 A JP 2004251130A
Authority
JP
Japan
Prior art keywords
refrigerant
hermetic compressor
refrigeration cycle
side valve
hermetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003039347A
Other languages
Japanese (ja)
Inventor
Satoshi Hiratsuka
聡 平塚
Takanori Ishida
貴規 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003039347A priority Critical patent/JP2004251130A/en
Publication of JP2004251130A publication Critical patent/JP2004251130A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants

Abstract

<P>PROBLEM TO BE SOLVED: To improve safety by reducing a leakage of a refrigerant in relation with a hermetic compressor and a refrigeration cycle which use flammable saturated hydrocarbon as the refrigerant. <P>SOLUTION: An intake side valve 102 and a discharge side valve 104 are provided in a sealed container 2, which close a refrigerant intake passage 10 and a refrigerant discharge passage 12 at the time of shut-down of the hermetic compressor 101. When operation of the hermetic compressor 101 is stopped, the hermetic compressor 101 and a condenser and evaporator side of the refrigeration cycle are disconnected by the intake side valve 102 and the discharge side valve 104. This can prevent the refrigerant in the sealed container 2 from leaking out of the refrigeration cycle, reduce an amount of the refrigerant leaking outside the refrigeration cycle so as to avoid flushing-off of the leaked refrigerant, and ensure the safety. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は冷蔵庫、ショーケース、自動販売機等に用いる冷凍サイクル及び密閉型圧縮機に関するものである。
【0002】
【従来の技術】
近年、地球温暖化防止の観点から、冷凍サイクルの冷媒として弗化炭化水素系冷媒に代わってイソブタンなどの飽和炭化水素系冷媒の採用が進みつつあり、特に家庭用冷蔵庫での実用化が進んでいる。
【0003】
従来の冷蔵庫などに用いる密閉型圧縮機としては、密閉容器内が高圧となり、圧縮機構部の圧縮室に連通する冷媒吸入路と、冷媒吸入路の途中に逆止弁を備えたものがある(例えば、特許文献1参照)。
【0004】
以下、図面を参照しながら上記従来の密閉型圧縮機を説明する。
【0005】
図6は、従来の密閉型圧縮機の断面図である。図7は、図6の部分拡大図である。図6,7に示すように、従来の密閉型圧縮機は、密閉型圧縮機1の密閉容器2の内部に、電動要素部4とこれによって駆動される圧縮機構部6を収納している。さらに、密閉容器2の外部の冷凍サイクル(図示せず)の蒸発器側から圧縮機構部6の圧縮室8内に冷媒を導く冷媒吸入路10と、圧縮機構部6で圧縮された高温高圧の冷媒を密閉容器2の外部の冷凍サイクル(図示せず)の凝縮器側へ吐出する冷媒吐出路12が設けられており、冷媒吸入路10の途中であるブロック14の吸入口16には逆止弁18が設けられている。
【0006】
密閉容器2内には潤滑油26が封入されており、各摺動部へ供給され、潤滑シールを行っている。逆止弁18は、吸入口16の通路内を可動可能な弁体20とスリーブ22の端面から構成される弁座24から構成される。
【0007】
以上のように構成された密閉型圧縮機について、以下その動作を説明する。
【0008】
密閉型圧縮機1の運転時では、電動要素部4の回転に伴って、冷媒吸入路10が連通する圧縮室8内の圧力が低下するため、冷媒吸入路10の蒸発器側より、圧縮室8側の圧力が低くなり、この圧力差により弁体20は弁座24より離れて圧縮室側に移動することにより逆止弁18が開き、蒸発器側から冷媒が冷媒吸入路10を介して圧縮室8内に吸引される。
【0009】
逆に、密閉型圧縮機1が停止した時は、冷媒吸入路10が連通する圧縮室8内に密閉容器2内に吐出された高温高圧の冷媒が漏れ込み、冷媒吸入路10の蒸発器側よりも圧力が高くなる。この圧力差により弁体20は蒸発器側に移動し、弁座24に密着することで逆止弁18が閉じ、密閉型圧縮機1の高温高圧の冷媒が蒸発器側へ逆流することを防止できる。
【0010】
従って、蒸発器の内部の冷媒を低温低圧の状態に保ち、温度上昇を防止できると共に、再び密閉型圧縮機1を起動させた時に、冷媒の逆流が発生した際には高温高圧状態となる蒸発器内を再び低温低圧状態に戻すための運転動力を削減することができる。
【0011】
また、従来の飽和炭化水素系冷媒を用いた冷凍サイクルとしては、冷媒漏洩検出手段を備え、冷媒漏洩検出手段からの検知信号に基づき、冷媒回路を遮断する冷媒回路遮断手段を有するものがある(例えば、特許文献2参照)。
【0012】
以下、図面を参照しながら上記従来の冷凍サイクルを説明する。
【0013】
図8は、従来の冷凍サイクルを示す冷媒回路図であり、図中の矢印は冷媒の流れを示す。図8に示すように、従来の冷凍サイクルは、密閉型圧縮機51と、凝縮器52と、絞り装置54と、蒸発器56と、漏洩検出手段58,59と、制御手段60と、絞り装置54と蒸発器56の間に設けられた冷媒回路遮断手段62と、蒸発器56と密閉型圧縮機51の間に設けられた冷媒回路遮断手段64とから構成されている。
【0014】
以上のように構成された冷凍サイクルについて、以下その動作を説明する。
【0015】
まず、蒸発器56側で冷媒漏洩を検知した場合について説明する。冷凍サイクルの運転中に、冷媒漏洩検出手段58により蒸発器56側で冷媒漏洩を検出すると、冷媒が漏洩した旨の信号を制御手段60に送信する。制御手段60は信号を受信すると、密閉型圧縮機51を停止させる共に、冷媒回路遮断手段62,64を閉鎖する。この結果、蒸発器56に冷媒が流入することを防止でき、密閉型圧縮機51と凝縮器52側の冷媒の漏洩を防止できる。
【0016】
一方、冷凍サイクルの運転中に、冷媒漏洩検出手段59により凝縮器52側で冷媒漏洩を検出すると、冷媒が漏洩した旨の信号を制御手段60に送信する。制御手段60は信号を受信すると、密閉型圧縮機51を停止させる。この結果、密閉型圧縮機51から吐出される冷媒の圧力が徐々に低下し、圧力が規定値以下になったとき、冷媒回路遮断手段62,64を閉鎖する。そのため、凝縮器52内の圧力が低下することにより冷媒の漏れ量が減少する。また、冷媒が蒸発器56に閉じ込められるので、蒸発器56内の冷媒が凝縮器52側から漏洩することを防止できる。
【0017】
また、凝縮器52側及び蒸発器56側いずれからの漏洩においても、密閉型圧縮機51への電源の供給が無くなることで、発火点が無くなり、引火につながる冷媒の漏れや発火点をなくすことができる。
【0018】
【特許文献1】
特開平1−219382号公報
【特許文献2】
特開平8−178481号公報
【0019】
【発明が解決しようとする課題】
しかしながら、上記従来の構成の密閉型圧縮機1や冷凍サイクルでは、冷凍サイクルの凝縮器52側において何らかの破損が生じた場合、密閉容器2内の冷媒が、凝縮器52へ流入し、密閉容器2内の冷媒までもが破損箇所から冷凍サイクル外に漏洩する可能性があった。特に、密閉容器2内が高圧となる密閉型圧縮機1の場合、運転中や停止直後は密閉容器2内の圧力及び温度が高いため、密閉容器2内が低圧となる密閉型圧縮機と比べて、より多くの冷媒が密閉容器2内の潤滑油26に溶解して封入されている。そのため、冷凍サイクルの凝縮器52側において何らかの破損が生じた場合、大量の冷媒が漏洩し、引火につながる可能性があった。
【0020】
本発明は従来の課題を解決するもので、冷凍サイクルの凝縮器側において何らかの破損が生じた場合でも冷媒の漏洩量が少なく引火につながりにくい密閉型圧縮機及び冷凍サイクルを提供することを目的とする。
【0021】
【課題を解決するための手段】
本発明の請求項1に記載の発明は、飽和炭化水素系冷媒を使用し、圧縮された前記冷媒が放出される密閉容器内に、電動要素部とこれによって駆動される圧縮機構部とを収納し、冷媒吸入路及び冷媒吐出路を備えるとともに、運転の停止時に前記冷媒吸入路及び前記冷媒吐出路を閉鎖する吸入側弁と吐出側弁とをそれぞれ前記密閉容器内に設けたものであり、密閉型圧縮機の運転停止時に、密閉型圧縮機と冷凍サイクルの凝縮器側及び蒸発器側とを、それぞれ吸入側弁及び吐出側弁で遮断することで、圧縮機の停止中に冷凍サイクルで破損が生じた場合においても、密閉容器内の冷媒が冷凍サイクル外に漏洩することを防止することができるという作用を有する。
【0022】
特に、使用している冷媒は可燃性であるため、漏洩した冷媒が引火することが無いように、冷凍サイクル外に漏洩する冷媒量を低減することから、安全性を確保することができるという作用を有する。
【0023】
請求項2に記載の発明は、請求項1に記載の発明に、さらに、前記冷媒の漏洩を検知して検知信号を出力する漏洩検知手段と、前記漏洩検知手段の前記検知信号に基づき、圧縮機の運転を停止する停止制御手段を備えたものであり、請求項1に記載の発明の作用に加えて、密閉型圧縮機の運転中に冷凍サイクルの破損等で冷媒漏洩が発生しても、速やかに密閉型圧縮機の運転を停止し、密閉型圧縮機と冷凍サイクルの凝縮器側及び蒸発器側とを、それぞれ吸入側弁及び吐出側弁で遮断することで、密閉容器内の冷媒が冷凍サイクル外に漏洩することを防止することができるという作用を有する。
【0024】
請求項3に記載の発明は、請求項1に記載の発明において、吸入側弁と吐出側弁を電磁弁としたものであり、請求項1に記載の発明の作用に加えて、冷媒吸入路あるいは冷媒吐出路を含む冷凍サイクル各部に圧力差がある場合でも、確実に閉鎖することが可能となるため、密閉容器内と外部の冷凍サイクルを確実に遮断し、冷凍サイクルで破損が生じた場合においても、密閉容器内の冷媒が漏洩することを防止することができるという作用を有する。
【0025】
請求項4に記載の発明は、請求項1に記載の発明において、吸入側弁が逆止弁であり、吐出側弁が電磁弁としたものであり、請求項1に記載の発明の作用に加えて、逆止弁を用いることにより、可燃性冷媒中の電気接点が減少し着火源が減少するため、冷媒が引火する可能性が低くなり、より高い安全性を確保することができるという作用を有する。また、電磁弁を使用した場合と比較して、小型化、低コスト化、軽量化を実現することができるという作用を有する。
【0026】
請求項5に記載の発明は、請求項1から4のいずれか一項に記載の密閉型圧縮機を備えた冷凍サイクルであり、密閉型圧縮機の停止中や冷媒の漏洩を検出した際に密閉容器内と外部の冷凍サイクルを確実に遮断することで、密閉容器内の冷媒が冷凍サイクル以外に漏洩することを防止し、冷凍サイクル外に漏洩する冷媒量を低減するという作用を有する。
【0027】
【発明の実施の形態】
以下、本発明による密閉型圧縮機の実施の形態について、図面を参照しながら説明する。なお、従来と同一の構成については、同一符号を付して詳細な説明を省略する。
【0028】
(実施の形態1)
図1は、本発明の実施の形態1による密閉型圧縮機の断面図である。
【0029】
図1において、密閉型圧縮機101の密閉容器2の内部には、電動要素部4とこれによって駆動される圧縮機構部6を収納している。さらに、密閉容器2の外部の冷凍サイクル(図示せず)の蒸発器側から圧縮機構部6の圧縮室8内に冷媒を導く冷媒吸入路10と、圧縮機構部6で圧縮された高温高圧の冷媒を密閉容器2内に一旦吐出した後、外部の冷凍サイクル(図示せず)の凝縮器側へ吐出する冷媒吐出路12が設けられている。さらに、密閉容器2の内部の冷媒吸入路10の途中には、吸入側弁102が設けられており、密閉容器2の内部の冷媒吐出路12の途中には、吐出側弁104が設けられている。吸入側弁102及び吐出側弁104は電磁弁であり、密閉型圧縮機101への運転電源の供給と連動しており、密閉型圧縮機101へ運転電源が供給された時には電磁弁である吸入側弁102及び吐出側弁104が開き、運転電源が供給されない時には、電磁弁である吸入側弁102及び吐出側弁104が閉じるようになっている。
【0030】
以上のように構成された密閉型圧縮機について、以下その動作を説明する。
密閉型圧縮機101の運転時には、吸入側弁102は開いており、蒸発器側から冷媒が冷媒吸入路10を介して圧縮室8内に吸引される。また、吐出側弁104も開いており、圧縮機構部6で圧縮された冷媒が一旦密閉容器2内に吐出された後、冷媒吐出路12を介して冷凍サイクルの凝縮器側に流出する。
【0031】
密閉型圧縮機101が停止した時は、密閉型圧縮機101への電源の供給停止に伴って、吸入側弁102が閉じられるため、密閉型圧縮機101と冷凍サイクルの蒸発器側は遮断される。さらに、吐出側弁104も閉じられるため、密閉型圧縮機101と冷凍サイクルの凝縮器側は遮断される。この時、吸入側弁102及び吐出側弁104は電磁弁であるため、電磁弁の両側に作用する圧力に圧力差があっても、確実に閉じることができる。
【0032】
そのため、密閉型圧縮機101の停止中は、停止直後を含めて密閉容器2内と冷凍サイクルの凝縮器側及び蒸発器側は、密閉容器2内の吸入側弁102と吐出側弁104でそれぞれ遮断されることになり、密閉容器2内の冷媒は密閉容器2内に完全に閉じ込められる。
【0033】
従って、密閉型圧縮機101の冷凍能力制御などを含む種々の制御や、圧縮機や冷凍サイクルの保護機能のために、運転を停止した時及び運転を停止している間は、冷媒吸入路10及び冷媒吐出路12等の冷凍サイクルの各部において圧力差がある場合においても、密閉容器2内の冷媒は密閉容器2内に完全に閉じ込められて凝縮器側と蒸発器側の冷凍サイクルには流出しないため、密閉容器2以外の冷凍サイクルのどこかに破損が生じても、密閉容器2内の冷媒が破損箇所から冷凍サイクル外に流出することを防止できる。
【0034】
従って、可燃性である飽和炭化水素系冷媒が、冷凍サイクル外に漏洩する量を激減することができ、高い安全性を確保することができる。
【0035】
なお、本実施の形態は密閉型圧縮機101の運転電源の供給と停止に連動して吸入側弁102及び吐出側弁104を開閉する例にて説明したが、他の何らかの制御により密閉型圧縮機101の運転停止時に吸入側弁102及び吐出側弁104を閉じるようにしても同じ効果が得られる。
【0036】
なお、本実施の形態は吸入側弁102及び吐出側弁104を電磁弁としたが、その他の弁を用いても同様の効果が得られる。
【0037】
(実施の形態2)
図2は、本発明の実施の形態2による密閉型圧縮機の断面図である。
【0038】
図2において、密閉型圧縮機201の密閉容器2の内部には、電動要素部4とこれによって駆動される圧縮機構部6を収納している。さらに、密閉容器2の外部の冷凍サイクルの蒸発器56側から圧縮機構部6の圧縮室8内に冷媒を導く冷媒吸入路10と、圧縮機構部6で圧縮された高温高圧の冷媒を密閉容器2内に一旦吐出した後、外部の冷凍サイクルの凝縮器52側へ吐出する冷媒吐出路12が設けられている。さらに、密閉容器2の内部の冷媒吸入路10の途中には、吸入側弁102が設けられており、密閉容器2の内部の冷媒吐出路12の途中には、吐出側弁104が設けられている。吸入側弁102及び吐出側弁104は電磁弁であり、密閉型圧縮機201への運転電源の供給と連動しており、密閉型圧縮機201へ運転電源が供給された時には弁が開き、運転電源が供給されない時には弁が閉じるようになっている。
【0039】
冷凍サイクルの近傍には漏洩検知手段58,59が設けられている。漏洩検知手段58,59としては、飽和炭化水素系冷媒の濃度に反応するガスセンサ等がある。また、漏洩検知手段58,59及び密閉型圧縮機201に接続して停止制御手段202が設けられており、停止制御手段202は漏洩検知手段58,59の冷媒漏洩検知を受信して密閉型圧縮機201を停止する制御を行う。
【0040】
以上のように構成された密閉型圧縮機について、以下その動作を説明する。
【0041】
密閉型圧縮機201の運転時には、吸入側弁102は開いており、蒸発器側から冷媒が冷媒吸入路10を介して圧縮室8内に吸引される。また、吐出側弁104も開いており、圧縮機構部6で圧縮された冷媒が一旦密閉容器2内に吐出された後、冷媒吐出路12を介して冷凍サイクルの凝縮器側に流出する。
【0042】
密閉型圧縮機201の運転中に、漏洩検知手段58,59により冷凍サイクルからの冷媒漏洩を検知すると、冷媒漏洩を検知した旨の信号を停止制御手段202に送信する。停止制御手段202は信号を受信すると、密閉型圧縮機201を停止させる。密閉型圧縮機201が停止した時は、実施の形態1にて説明した通り、吸入側弁102が閉じられるため、密閉型圧縮機201と冷凍サイクルの蒸発器56側は遮断される。さらに、吐出側弁104が閉じられるため、密閉型圧縮機201と冷凍サイクルの凝縮器52側は遮断される。
【0043】
そのため、密閉型圧縮機201の停止中は、停止直後を含めて密閉容器2内と冷凍サイクルの凝縮器56側及び蒸発器52側は、密閉容器2内の吸入側弁102と吐出側弁104でそれぞれ遮断されることになり、密閉容器2内の冷媒は密閉容器2内に完全に閉じ込められる。
【0044】
従って、本実施の形態においては、冷媒漏洩検知に基づき密閉型圧縮機を停止させるため、実施の形態1で述べた冷凍能力制御などを含む種々の制御や、圧縮機や冷凍サイクルの保護機能のために、運転を停止した時及び運転を停止している間に加えて、運転中に冷媒漏洩を検知した時において、可燃性である飽和炭化水素系冷媒が、冷凍サイクル外に漏洩する量を激減することができ、高い安全性を確保することができる。
【0045】
従って、密閉型圧縮機201の運転中及び運転停止直後は、密閉容器2内の冷媒が高温高圧状態であるため、潤滑油中26に溶解している冷媒量が密閉容器内の冷媒が低圧である密閉型圧縮機に比べて多く、その大量の冷媒を密閉容器2内に閉じ込めて密閉容器2内から冷媒が冷凍サイクル外に流出することを防止することで、可燃性である飽和炭化水素系冷媒が、冷凍サイクル外に漏洩する量を激減することができ、高い安全性を確保することができる。
【0046】
なお、本実施の形態は密閉型圧縮機201の運転電源の供給と停止に連動して吸入側弁102及び吐出側弁104を開閉する例にて説明したが、他の何らかの制御により密閉型圧縮機201の運転停止時に吸入側弁102及び吐出側弁104を閉じるようにしても同じ効果が得られる。
【0047】
なお、本実施の形態は吸入側弁102及び吐出側弁104を電磁弁としたが、その他の弁を用いても同様の効果が得られる。
【0048】
(実施の形態3)
図3は、本発明の実施の形態4による密閉型圧縮機の断面図である。図4は、図3の部分拡大図である。
【0049】
図3,4において、密閉容器2の内部の冷媒吸入路10の途中には、吸入側弁302が設けられており、密閉容器2の内部の冷媒吐出路12の途中には、吐出側弁104が設けられている。吐出側弁104は電磁弁であり、密閉型圧縮機301の運転電源の供給と連動しており、密閉型圧縮機401へ運転電源が供給された時には弁が開き、運転電源が供給されない時には弁が閉じるようになっている。吸入側弁302は逆止弁であり、冷媒吸入路10内の通路内を可動可能な弁体20とスリーブ22の端面から構成される弁座24から構成される。
【0050】
以上のように構成された密閉型圧縮機について、以下その動作を説明する。
【0051】
密閉型圧縮機301の運転時には、電動要素部4の回転に伴って、冷媒吸入路10が連通する圧縮室8内の圧力が低下するため、冷媒吸入路10の蒸発器側より圧縮室8側の圧力が低くなり、この圧力差により弁体20は圧縮室側に移動する。そのため、弁体20が弁座24より離れることにより吸入側弁302が開き、蒸発器側から冷媒が冷媒吸入路10を介して圧縮室8内に吸引される。また、密閉型圧縮機401に電源が供給されているため、吐出側弁104は開いており、圧縮機構部6で圧縮された冷媒が一旦密閉容器2内に吐出された後、冷媒吐出路12を介して冷凍サイクルの凝縮器側に流出する。
【0052】
密閉型圧縮機301が停止した時は、冷媒吸入路10が連通する圧縮室8内に密閉容器2内に吐出された高温高圧の冷媒が漏れ込み、冷媒吸入路10の蒸発器側よりも圧力が高くなる。この圧力差により弁体20は蒸発器側に移動し弁座24に密着することで吸入側弁302が閉じるため、密閉型圧縮機301と冷凍サイクルの蒸発器側は遮断される。また、密閉型圧縮機301に運転電源が供給されなくなるため、吐出側弁104が閉じられ、密閉型圧縮機301と冷凍サイクルの凝縮器側は遮断される。
【0053】
そのため、密閉型圧縮機301の停止中は、停止直後を含めて密閉容器2内と冷凍サイクルの凝縮器側及び蒸発器側は、密閉容器2内の吸入側弁302と吐出側弁104でそれぞれ遮断されることになり、密閉容器2内の冷媒は密閉容器2内に完全に閉じ込められる。
【0054】
従って、本実施の形態においては、吸入側弁302を逆止弁としたことにより、実施の形態1で述べた通り、可燃性である飽和炭化水素系冷媒が、冷凍サイクル外に漏洩する量を激減することができ、高い安全性を確保することができる。
【0055】
さらに、電磁弁等と比べて逆止弁は内部に電気的接点を備えていないため、冷媒の引火を引き起こす一要素である可燃性冷媒内の着火源を減らすことができ、高い安全性を確保することができる。
【0056】
さらに、吸入側弁302を逆止弁とすることにより、電磁弁等を用いた場合と比較して、装置の小型化、低コスト化、軽量化を実現することができる。
【0057】
なお、本実施の形態は密閉型圧縮機301への運転電源の供給と停止に連動して吐出側弁104を開閉する例にて説明したが、他の何らかの制御により、密閉型圧縮機301の運転停止時に吐出側弁104を閉じるようにしても同じ効果が得られる。
【0058】
(実施の形態4)
図5は、本実施の形態4における冷凍サイクルの冷媒回路図である。図中の矢印は冷媒の流れを示す。
【0059】
図5において、冷凍サイクル400は、密閉型圧縮機401と、凝縮器52と、絞り装置54と、蒸発器56とから構成されている。密閉型圧縮機401には、密閉型圧縮機401の密閉容器2の外部の冷凍サイクル400の蒸発器56側から密閉型圧縮機401に冷媒を導く冷媒吸入路10と、圧縮された高温高圧の冷媒を密閉容器2の外部の冷凍サイクル400の凝縮器52側へ吐出する冷媒吐出路12が設けられており、密閉容器2の内部の冷媒吸入路10の途中に、吸入側弁102が設けられており、密閉容器2の内部の冷媒吐出路12の途中には吐出側弁104が設けられている。
【0060】
吸入側弁102及び吐出側弁104は、密閉型圧縮機401への運転電源の供給と連動しており、密閉型圧縮機401へ運転電源が供給された時には弁が開き、運転電源が供給されない時には弁が閉じるようになっている。
【0061】
以上のように構成された冷凍サイクルについて、以下その動作を説明する。
【0062】
密閉閉型圧縮機401の運転時には、吸入側弁402は開いており、蒸発器56側から冷媒が冷媒吸入路10を介して密閉型圧縮機401に吸引される。また、吐出側弁104も開いており、圧縮された冷媒が冷媒吐出路12を介して冷凍サイクル400の凝縮器52側に流出する。
【0063】
密閉型圧縮機401が停止した時は、密閉型圧縮機401への電源の供給停止に伴って、吸入側弁102が閉じられるため、密閉型圧縮機401と冷凍サイクル400の蒸発器56側は遮断される。また、吐出側弁104が閉じられるため、密閉型圧縮機401と冷凍サイクル400の凝縮器52側は遮断される。
【0064】
そのため、密閉型圧縮機401の停止中は、停止直後を含めて密閉容器2内と冷凍サイクル400の凝縮器52側及び蒸発器56側は、密閉容器2内の吸入側弁102と吐出側弁104で遮断されることになり、密閉容器2内の冷媒は密閉容器2内に完全に閉じ込められる。
【0065】
従って、密閉型圧縮機401の冷凍能力制御を含む種々の制御や、圧縮機や冷凍サイクルの保護機能のために運転を停止した時及び運転を停止している間は、密閉容器2内の冷媒は完全に閉じ込められて凝縮器52側と蒸発器56側の冷凍サイクル400には流出しないため、密閉容器2以外の冷凍サイクル400のどこかに破損が生じても、密閉容器2内の冷媒が破損箇所から冷凍サイクル400外に流出することを防止できる。
【0066】
従って、可燃性である飽和炭化水素系冷媒が、冷凍サイクル外に漏洩する量を激減することができ、高い安全性を確保することができる。
【0067】
なお、本実施の形態は密閉型圧縮機401の運転電源の供給と停止に連動して吸入側弁102及び吐出側弁104を開閉する例にて説明したが、他の何らかの制御や機構により密閉型圧縮機401の運転停止時に吸入側弁102及び吐出側弁104を閉じるようにしても同じ効果が得られる。
【0068】
なお、本実施の形態は吸入側弁102及び吐出側弁104を電磁弁としたが、その他の弁を用いても同様の効果が得られる。
【0069】
なお、本実施の形態の冷凍サイクル400に、冷媒の漏洩を検知して検知信号を出力する漏洩検知手段と、漏洩検知手段の検知信号に基づき、密閉型圧縮機401の運転を停止する停止制御手段を設けた場合には、冷凍サイクル400の運転中に冷凍サイクル400の破損等で冷媒漏洩が発生した時も、速やかに密閉型圧縮機401の運転を停止し、密閉型圧縮機401の密閉容器2内と冷凍サイクル400の凝縮器52側及び蒸発器56側とを吸入側弁102及び吐出側弁104で遮断することで、密閉型圧縮機401の密閉容器2内の冷媒が冷凍サイクル400外に漏洩することを防止し、より高い安全性を確保することができる。
【0070】
従って、密閉型圧縮機401の運転中及び運転停止直後は、密閉容器2内の冷媒が高温高圧状態であり、密閉容器内2に封入されている潤滑油に溶解している冷媒量が、密閉容器内が低圧である密閉型圧縮機と比べて多く、その大量の冷媒を密閉容器2内に閉じ込めて密閉容器内から冷凍サイクル外に冷媒が流出することを防止することで、より高い安全性を確保することができる。
【0071】
なお、本実施の形態の冷凍サイクルにおいて、密閉型圧縮機401の吸入側弁102を逆止弁とすることで、冷媒の引火を引き起こす一要素である可燃性冷媒内での着火源を減らして冷媒回路遮断を行うことができ、より高い安全性を確保することができる。さらに、電磁弁を用いた場合と比較して、装置の小型化、低コスト化、軽量化を実現することができる。
【0072】
【発明の効果】
以上説明したように請求項1記載の発明は、密閉型圧縮機の運転停止時に、密閉型圧縮機と冷凍サイクルの凝縮器側及び蒸発器側とを、それぞれ吸入側弁及び吐出側弁で遮断することができ、そのため、圧縮機の運転中に冷凍サイクルで破損が生じた場合において、密閉容器内の冷媒が冷凍サイクル外に漏洩することを防止することで冷凍サイクル外に漏洩する冷媒量を低減でき、引火につながりにくい密閉型圧縮機を提供することができるという効果がある。
【0073】
また、請求項2に記載の発明は、圧縮機の運転中に冷凍サイクルの破損等で冷媒漏洩が発生しても、密閉容器内の冷媒が冷凍サイクル外に漏洩することを防止することで冷凍サイクル外に漏洩する冷媒量を低減でき、引火につながりにくい密閉型圧縮機を提供することができるという効果がある。
【0074】
また、請求項3に記載の発明は、冷媒吸入路あるいは冷媒吐出路を含む冷凍サイクルの各部において圧力差がある場合においても、確実に閉じることが可能となるため、密閉容器内と外部の冷凍サイクルを確実に遮断し、冷凍サイクルで破損が生じた場合においても、密閉容器内の冷媒が漏洩することを防止することで冷凍サイクル外に漏洩する冷媒量を低減でき、引火につながりにくい密閉型圧縮機を提供することができるという効果がある。
【0075】
また、請求項4に記載の発明は、電磁弁等と比べて逆止弁は内部に電気的接点を備えていないため、冷媒の引火を引き起こす一要素である可燃性冷媒内の着火源を減らすことができ、引火につながりにくい密閉型圧縮機を提供することができるという効果がある。
【0076】
また、請求項5に記載の発明は、圧縮機の停止中や、圧縮機運転中に冷媒の漏洩を検知して圧縮機を停止した際には、密閉容器内と外部の冷凍サイクルを確実に遮断して密閉容器内の冷媒が冷凍システム外に漏洩することを防止することで冷凍サイクル外に漏洩する冷媒量を低減でき、引火につながりにくい冷凍サイクルを提供することができるという効果がある。
【図面の簡単な説明】
【図1】本発明による密閉型圧縮機の実施の形態1の断面図
【図2】本発明による密閉型圧縮機の実施の形態2の断面図
【図3】本発明による密閉型圧縮機の実施の形態3の断面図
【図4】同実施の形態3の密閉型圧縮機の部分拡大図
【図5】本発明による冷凍サイクルの実施の形態5の冷媒回路図
【図6】従来の密閉型圧縮機の断面図
【図7】従来の密閉型圧縮機の部分拡大図
【図8】従来の冷凍サイクルの冷媒回路図
【符号の説明】
101,201,301,401,501 密閉型圧縮機
2 密閉容器
4 電動要素
6 圧縮機構部
10 冷媒吐出路
12 冷媒吸入路
58,59 漏洩検知手段
102,302 吸入側弁
104 吐出側弁
202 停止制御手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigeration cycle and a hermetic compressor used for refrigerators, showcases, vending machines, and the like.
[0002]
[Prior art]
In recent years, from the perspective of preventing global warming, the use of saturated hydrocarbon-based refrigerants such as isobutane as refrigerants for refrigeration cycles has been increasing in place of fluorohydrocarbon-based refrigerants, and in particular, practical use in household refrigerators has been progressing. I have.
[0003]
2. Description of the Related Art As a hermetic compressor used in a conventional refrigerator or the like, there is a hermetic compressor having a refrigerant suction passage communicating with a compression chamber of a compression mechanism section at a high pressure in a hermetic container and a check valve in the middle of the refrigerant suction passage ( For example, see Patent Document 1).
[0004]
Hereinafter, the conventional hermetic compressor will be described with reference to the drawings.
[0005]
FIG. 6 is a sectional view of a conventional hermetic compressor. FIG. 7 is a partially enlarged view of FIG. As shown in FIGS. 6 and 7, in the conventional hermetic compressor, an electric element section 4 and a compression mechanism section 6 driven by the electric element section 4 are housed inside a hermetic container 2 of the hermetic compressor 1. Further, a refrigerant suction passage 10 for guiding the refrigerant from the evaporator side of a refrigeration cycle (not shown) outside the closed casing 2 into the compression chamber 8 of the compression mechanism 6, and a high-temperature and high-pressure compressed by the compression mechanism 6. A refrigerant discharge path 12 for discharging the refrigerant to the condenser side of a refrigeration cycle (not shown) outside the closed casing 2 is provided, and a check port is provided at a suction port 16 of a block 14 in the middle of the refrigerant suction path 10. A valve 18 is provided.
[0006]
A lubricating oil 26 is sealed in the sealed container 2 and is supplied to each sliding portion to perform a lubricating seal. The check valve 18 includes a valve body 20 movable in the passage of the suction port 16 and a valve seat 24 including an end face of a sleeve 22.
[0007]
The operation of the hermetic compressor configured as described above will be described below.
[0008]
During operation of the hermetic compressor 1, the pressure in the compression chamber 8 to which the refrigerant suction passage 10 communicates decreases with the rotation of the electric element unit 4. The pressure on the side 8 decreases, and the pressure difference causes the valve body 20 to move away from the valve seat 24 toward the compression chamber, whereby the check valve 18 opens, and the refrigerant flows from the evaporator through the refrigerant suction passage 10. It is sucked into the compression chamber 8.
[0009]
Conversely, when the hermetic compressor 1 is stopped, the high-temperature and high-pressure refrigerant discharged into the hermetic container 2 leaks into the compression chamber 8 to which the refrigerant suction passage 10 communicates, and the refrigerant suction passage 10 has the evaporator side. Pressure is higher than that. Due to this pressure difference, the valve body 20 moves to the evaporator side, and closes to the valve seat 24 to close the check valve 18 and prevent the high-temperature and high-pressure refrigerant of the sealed compressor 1 from flowing back to the evaporator side. it can.
[0010]
Therefore, the refrigerant inside the evaporator can be kept at a low temperature and a low pressure to prevent the temperature from rising, and when the hermetic compressor 1 is started again, when the backflow of the refrigerant occurs, the evaporation becomes a high temperature and a high pressure. The operating power for returning the inside of the vessel to the low-temperature low-pressure state again can be reduced.
[0011]
Further, as a conventional refrigeration cycle using a saturated hydrocarbon-based refrigerant, there is a refrigeration cycle including a refrigerant leak detection unit and a refrigerant circuit shutoff unit that shuts off a refrigerant circuit based on a detection signal from the refrigerant leak detection unit ( For example, see Patent Document 2).
[0012]
Hereinafter, the conventional refrigeration cycle will be described with reference to the drawings.
[0013]
FIG. 8 is a refrigerant circuit diagram showing a conventional refrigeration cycle, and the arrows in the figure show the flow of the refrigerant. As shown in FIG. 8, the conventional refrigeration cycle includes a hermetic compressor 51, a condenser 52, a throttling device 54, an evaporator 56, leak detecting means 58 and 59, a control means 60, a throttling device. It comprises a refrigerant circuit shutoff means 62 provided between the evaporator 56 and the evaporator 56, and a refrigerant circuit shutoff means 64 provided between the evaporator 56 and the hermetic compressor 51.
[0014]
The operation of the refrigeration cycle configured as described above will be described below.
[0015]
First, a case where a refrigerant leak is detected on the evaporator 56 side will be described. During the operation of the refrigeration cycle, when a refrigerant leak is detected on the evaporator 56 side by the refrigerant leak detecting means 58, a signal indicating that the refrigerant has leaked is transmitted to the control means 60. When receiving the signal, the control means 60 stops the hermetic compressor 51 and closes the refrigerant circuit shut-off means 62, 64. As a result, the refrigerant can be prevented from flowing into the evaporator 56, and leakage of the refrigerant from the hermetic compressor 51 and the condenser 52 can be prevented.
[0016]
On the other hand, when refrigerant leakage is detected on the condenser 52 side by the refrigerant leakage detection means 59 during operation of the refrigeration cycle, a signal indicating that refrigerant has leaked is transmitted to the control means 60. When receiving the signal, the control means 60 stops the hermetic compressor 51. As a result, the pressure of the refrigerant discharged from the hermetic compressor 51 gradually decreases, and when the pressure becomes equal to or less than the specified value, the refrigerant circuit shutoff means 62 and 64 are closed. Therefore, the pressure in the condenser 52 decreases, so that the amount of refrigerant leakage decreases. Further, since the refrigerant is confined in the evaporator 56, it is possible to prevent the refrigerant in the evaporator 56 from leaking from the condenser 52 side.
[0017]
In addition, in the case of leakage from either the condenser 52 side or the evaporator 56 side, the supply of power to the hermetic compressor 51 is eliminated, thereby eliminating the ignition point and eliminating the leakage and the ignition point of the refrigerant leading to the ignition. Can be.
[0018]
[Patent Document 1]
JP-A-1-219382
[Patent Document 2]
JP-A-8-178481
[0019]
[Problems to be solved by the invention]
However, in the hermetic compressor 1 and the refrigeration cycle having the above-described conventional configuration, when any damage occurs on the condenser 52 side of the refrigeration cycle, the refrigerant in the hermetic vessel 2 flows into the condenser 52 and the hermetic vessel 2 There is a possibility that even the refrigerant inside may leak out of the refrigeration cycle from the damaged part. In particular, in the case of the hermetic compressor 1 in which the pressure in the hermetic container 2 is high, the pressure and the temperature in the hermetic container 2 are high during operation or immediately after stoppage, and therefore, compared to the hermetic compressor in which the pressure in the hermetic container 2 becomes low. Thus, more refrigerant is dissolved and enclosed in the lubricating oil 26 in the closed container 2. Therefore, if any damage occurs on the condenser 52 side of the refrigeration cycle, a large amount of refrigerant may leak, leading to ignition.
[0020]
The present invention has been made to solve the conventional problems, and an object of the present invention is to provide a hermetic compressor and a refrigeration cycle in which even if some damage occurs on the condenser side of the refrigeration cycle, the amount of refrigerant leakage is small and it is difficult to cause ignition. I do.
[0021]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention uses a saturated hydrocarbon-based refrigerant, and accommodates an electric element part and a compression mechanism driven by the same in a closed container from which the compressed refrigerant is discharged. A refrigerant suction path and a refrigerant discharge path are provided, and a suction side valve and a discharge side valve for closing the refrigerant suction path and the refrigerant discharge path when operation is stopped are provided in the closed container, respectively. When the operation of the hermetic compressor is stopped, the hermetic compressor and the condenser side and the evaporator side of the refrigeration cycle are shut off by the suction side valve and the discharge side valve, respectively. Even in the case of breakage, the refrigerant in the closed container can be prevented from leaking out of the refrigeration cycle.
[0022]
In particular, since the refrigerant used is flammable, the amount of refrigerant leaking out of the refrigeration cycle is reduced so that the leaked refrigerant does not ignite, thereby ensuring safety. Having.
[0023]
According to a second aspect of the present invention, in addition to the first aspect of the present invention, a leak detecting unit that detects a leak of the refrigerant and outputs a detection signal, and further performs compression based on the detection signal of the leak detecting unit. A stop control unit for stopping the operation of the compressor. In addition to the operation of the invention described in claim 1, even if refrigerant leakage occurs due to breakage of the refrigeration cycle during operation of the hermetic compressor. By immediately stopping the operation of the hermetic compressor and shutting off the hermetic compressor and the condenser side and the evaporator side of the refrigeration cycle by the suction side valve and the discharge side valve, respectively, Can be prevented from leaking out of the refrigeration cycle.
[0024]
According to a third aspect of the present invention, in the first aspect of the invention, the suction-side valve and the discharge-side valve are electromagnetic valves. Alternatively, even if there is a pressure difference between each part of the refrigeration cycle including the refrigerant discharge path, it is possible to securely close the refrigeration cycle, so that the refrigeration cycle inside and outside the sealed container is reliably shut off, and breakage occurs in the refrigeration cycle This also has the effect of preventing the refrigerant in the closed container from leaking.
[0025]
According to a fourth aspect of the present invention, in the first aspect of the invention, the suction side valve is a check valve and the discharge side valve is a solenoid valve. In addition, the use of a check valve reduces the number of electrical contacts in the flammable refrigerant and the number of ignition sources, reducing the possibility of ignition of the refrigerant and ensuring higher safety. Has an action. Also, there is an effect that the size, cost and weight can be reduced as compared with the case where an electromagnetic valve is used.
[0026]
According to a fifth aspect of the present invention, there is provided a refrigeration cycle including the hermetic compressor according to any one of the first to fourth aspects, wherein the hermetic compressor is stopped or when leakage of refrigerant is detected. By reliably shutting off the refrigeration cycle between the inside of the closed container and the outside, the refrigerant in the closed container is prevented from leaking to other than the refrigeration cycle, and the amount of the refrigerant leaking outside the refrigeration cycle is reduced.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a hermetic compressor according to the present invention will be described with reference to the drawings. The same components as those in the related art are denoted by the same reference numerals, and detailed description is omitted.
[0028]
(Embodiment 1)
FIG. 1 is a sectional view of a hermetic compressor according to Embodiment 1 of the present invention.
[0029]
In FIG. 1, an electric element part 4 and a compression mechanism part 6 driven by the electric element part 4 are accommodated in a sealed container 2 of a sealed compressor 101. Further, a refrigerant suction passage 10 for guiding the refrigerant from the evaporator side of a refrigeration cycle (not shown) outside the closed casing 2 into the compression chamber 8 of the compression mechanism 6, and a high-temperature and high-pressure compressed by the compression mechanism 6. A refrigerant discharge path 12 is provided for discharging the refrigerant once into the closed vessel 2 and then discharging the refrigerant to the condenser side of an external refrigeration cycle (not shown). Further, a suction side valve 102 is provided in the middle of the refrigerant suction passage 10 inside the closed container 2, and a discharge side valve 104 is provided in the middle of the refrigerant discharge passage 12 inside the closed container 2. I have. The suction-side valve 102 and the discharge-side valve 104 are electromagnetic valves, and are linked with the supply of operating power to the hermetic compressor 101. When the operating power is supplied to the hermetic compressor 101, the suction valves are electromagnetic valves. The side valve 102 and the discharge side valve 104 are opened, and when the operation power is not supplied, the suction side valve 102 and the discharge side valve 104, which are electromagnetic valves, are closed.
[0030]
The operation of the hermetic compressor configured as described above will be described below.
During operation of the hermetic compressor 101, the suction side valve 102 is open, and refrigerant is sucked into the compression chamber 8 from the evaporator side via the refrigerant suction passage 10. Further, the discharge side valve 104 is also open, and the refrigerant compressed by the compression mechanism 6 is once discharged into the closed vessel 2 and then flows out to the condenser side of the refrigeration cycle via the refrigerant discharge path 12.
[0031]
When the hermetic compressor 101 is stopped, the supply of power to the hermetic compressor 101 is stopped and the suction-side valve 102 is closed, so that the hermetic compressor 101 and the evaporator side of the refrigeration cycle are shut off. You. Further, since the discharge side valve 104 is also closed, the hermetic compressor 101 and the condenser side of the refrigeration cycle are shut off. At this time, since the suction side valve 102 and the discharge side valve 104 are electromagnetic valves, even if there is a pressure difference between the pressures acting on both sides of the electromagnetic valve, they can be reliably closed.
[0032]
Therefore, while the hermetic compressor 101 is stopped, the inside of the hermetic container 2 and the condenser side and the evaporator side of the refrigeration cycle including immediately after the stop are stopped by the suction side valve 102 and the discharge side valve 104 in the hermetic container 2 respectively. As a result, the refrigerant in the closed container 2 is completely shut off in the closed container 2.
[0033]
Therefore, when the operation is stopped and while the operation is stopped for various controls including the refrigeration capacity control of the hermetic compressor 101 and the protection function of the compressor and the refrigeration cycle, the refrigerant suction passage 10 Even when there is a pressure difference in each part of the refrigeration cycle such as the refrigerant discharge path 12 and the like, the refrigerant in the closed container 2 is completely confined in the closed container 2 and flows out to the refrigeration cycle on the condenser side and the evaporator side. Therefore, even if damage occurs in any part of the refrigeration cycle other than the closed vessel 2, it is possible to prevent the refrigerant in the closed vessel 2 from flowing out of the refrigeration cycle from the damaged portion.
[0034]
Therefore, the amount of the flammable saturated hydrocarbon-based refrigerant leaking out of the refrigeration cycle can be drastically reduced, and high safety can be secured.
[0035]
Although the present embodiment has been described with reference to an example in which the suction side valve 102 and the discharge side valve 104 are opened and closed in conjunction with the supply and stop of the operation power of the hermetic compressor 101, the hermetic compressor 101 is controlled by some other control. The same effect can be obtained by closing the suction side valve 102 and the discharge side valve 104 when the operation of the machine 101 is stopped.
[0036]
In this embodiment, the suction side valve 102 and the discharge side valve 104 are electromagnetic valves. However, similar effects can be obtained by using other valves.
[0037]
(Embodiment 2)
FIG. 2 is a sectional view of a hermetic compressor according to Embodiment 2 of the present invention.
[0038]
In FIG. 2, an electric element part 4 and a compression mechanism part 6 driven by the electric element part 4 are housed inside a sealed container 2 of a sealed compressor 201. Further, a refrigerant suction passage 10 for guiding the refrigerant from the evaporator 56 side of the refrigeration cycle outside the closed container 2 into the compression chamber 8 of the compression mechanism 6, and a high-temperature and high-pressure refrigerant compressed by the compression mechanism 6 2, a refrigerant discharge path 12 is provided for discharging the refrigerant once into the condenser 52 of the external refrigeration cycle. Further, a suction side valve 102 is provided in the middle of the refrigerant suction passage 10 inside the closed container 2, and a discharge side valve 104 is provided in the middle of the refrigerant discharge passage 12 inside the closed container 2. I have. The suction-side valve 102 and the discharge-side valve 104 are electromagnetic valves, and are linked with the supply of operation power to the hermetic compressor 201. When the operation power is supplied to the hermetic compressor 201, the valves open and operate. The valve closes when power is not supplied.
[0039]
Leak detection means 58 and 59 are provided near the refrigeration cycle. Examples of the leak detecting means 58 and 59 include a gas sensor that responds to the concentration of the saturated hydrocarbon-based refrigerant. Further, a stop control means 202 is provided connected to the leak detecting means 58, 59 and the hermetic compressor 201, and the stop control means 202 receives the refrigerant leak detection of the leak detecting means 58, 59 and performs hermetic compression. The control for stopping the machine 201 is performed.
[0040]
The operation of the hermetic compressor configured as described above will be described below.
[0041]
During operation of the hermetic compressor 201, the suction side valve 102 is open, and the refrigerant is sucked into the compression chamber 8 from the evaporator side via the refrigerant suction passage 10. Further, the discharge side valve 104 is also open, and the refrigerant compressed by the compression mechanism 6 is once discharged into the closed vessel 2 and then flows out to the condenser side of the refrigeration cycle via the refrigerant discharge path 12.
[0042]
When the leak detection means 58, 59 detects a refrigerant leak from the refrigeration cycle during the operation of the hermetic compressor 201, a signal indicating that the refrigerant leak is detected is transmitted to the stop control means 202. Upon receiving the signal, the stop control means 202 stops the hermetic compressor 201. When the hermetic compressor 201 is stopped, as described in the first embodiment, the suction side valve 102 is closed, so that the hermetic compressor 201 and the evaporator 56 side of the refrigeration cycle are shut off. Further, since the discharge side valve 104 is closed, the hermetic compressor 201 and the condenser 52 side of the refrigeration cycle are shut off.
[0043]
Therefore, while the hermetic compressor 201 is stopped, the inside of the hermetic container 2 and the condenser 56 side and the evaporator 52 side of the refrigeration cycle, including immediately after the stop, are connected to the suction side valve 102 and the discharge side valve 104 in the hermetic container 2. And the refrigerant in the closed container 2 is completely confined in the closed container 2.
[0044]
Therefore, in the present embodiment, in order to stop the hermetic compressor based on the refrigerant leak detection, various controls including the refrigeration capacity control described in the first embodiment and the protection functions of the compressor and the refrigeration cycle are performed. Therefore, in addition to when the operation is stopped and while the operation is stopped, when the refrigerant leakage is detected during the operation, the amount of the flammable saturated hydrocarbon-based refrigerant leaking out of the refrigeration cycle is reduced. It can be drastically reduced and high security can be secured.
[0045]
Therefore, during and immediately after the operation of the hermetic compressor 201, since the refrigerant in the hermetic container 2 is in a high-temperature and high-pressure state, the amount of refrigerant dissolved in the lubricating oil 26 is low when the refrigerant in the hermetic container has a low pressure. Compared to a certain hermetic compressor, a large amount of the refrigerant is confined in the hermetic container 2 to prevent the refrigerant from flowing out of the refrigeration cycle from the hermetic container 2 so that a flammable saturated hydrocarbon system is used. The amount of the refrigerant leaking out of the refrigeration cycle can be drastically reduced, and high safety can be secured.
[0046]
Although the present embodiment has been described with reference to an example in which the suction side valve 102 and the discharge side valve 104 are opened and closed in conjunction with the supply and stop of the operation power supply of the hermetic compressor 201, the hermetic compressor 201 is controlled by some other control. The same effect can be obtained by closing the suction side valve 102 and the discharge side valve 104 when the operation of the machine 201 is stopped.
[0047]
In this embodiment, the suction side valve 102 and the discharge side valve 104 are electromagnetic valves. However, similar effects can be obtained by using other valves.
[0048]
(Embodiment 3)
FIG. 3 is a sectional view of a hermetic compressor according to Embodiment 4 of the present invention. FIG. 4 is a partially enlarged view of FIG.
[0049]
3 and 4, a suction side valve 302 is provided in the middle of the refrigerant suction passage 10 inside the closed container 2, and a discharge side valve 104 is provided in the middle of the refrigerant discharge passage 12 inside the closed container 2. Is provided. The discharge side valve 104 is an electromagnetic valve, and is linked with the supply of the operation power of the hermetic compressor 301. The valve opens when the hermetic compressor 401 is supplied with the operation power, and is opened when the hermetic compressor 401 is not supplied. Is closed. The suction-side valve 302 is a check valve, and includes a valve body 20 movable in a passage in the refrigerant suction passage 10 and a valve seat 24 including an end surface of a sleeve 22.
[0050]
The operation of the hermetic compressor configured as described above will be described below.
[0051]
During the operation of the hermetic compressor 301, the pressure in the compression chamber 8 to which the refrigerant suction passage 10 communicates decreases with the rotation of the electric element portion 4, so that the refrigerant suction passage 10 is closer to the compression chamber 8 than to the evaporator. Is reduced, and the pressure difference moves the valve body 20 to the compression chamber side. Therefore, when the valve body 20 is separated from the valve seat 24, the suction side valve 302 is opened, and the refrigerant is sucked into the compression chamber 8 from the evaporator side via the refrigerant suction passage 10. Further, since power is supplied to the hermetic compressor 401, the discharge side valve 104 is open, and the refrigerant compressed by the compression mechanism 6 is once discharged into the closed container 2, and then the refrigerant discharge path 12 Through the refrigeration cycle to the condenser side.
[0052]
When the hermetic compressor 301 is stopped, the high-temperature and high-pressure refrigerant discharged into the hermetic container 2 leaks into the compression chamber 8 communicating with the refrigerant suction passage 10, and the pressure of the refrigerant is higher than that of the evaporator side of the refrigerant suction passage 10. Will be higher. Due to this pressure difference, the valve body 20 moves to the evaporator side and comes into close contact with the valve seat 24 so that the suction side valve 302 is closed, so that the hermetic compressor 301 and the evaporator side of the refrigeration cycle are shut off. Further, since no operation power is supplied to the hermetic compressor 301, the discharge side valve 104 is closed, and the hermetic compressor 301 and the condenser side of the refrigeration cycle are shut off.
[0053]
Therefore, while the hermetic compressor 301 is stopped, the inside of the hermetic vessel 2 and the condenser side and the evaporator side of the refrigeration cycle including immediately after the stop are stopped by the suction side valve 302 and the discharge side valve 104 in the hermetic vessel 2 respectively. As a result, the refrigerant in the closed container 2 is completely shut off in the closed container 2.
[0054]
Therefore, in the present embodiment, by using the check valve as the suction side valve 302, as described in the first embodiment, the amount of the flammable saturated hydrocarbon-based refrigerant leaking out of the refrigeration cycle is reduced. It can be drastically reduced and high security can be secured.
[0055]
Furthermore, compared to solenoid valves, etc., non-return valves do not have electrical contacts inside, so it is possible to reduce the number of ignition sources in the flammable refrigerant, which is one factor that causes ignition of the refrigerant, and to increase safety. Can be secured.
[0056]
Further, by using the check valve as the suction side valve 302, the size, cost and weight of the device can be reduced as compared with the case where an electromagnetic valve or the like is used.
[0057]
Although the present embodiment has been described with an example in which the discharge side valve 104 is opened and closed in conjunction with the supply and stop of the operating power to the hermetic compressor 301, the hermetic compressor 301 is controlled by some other control. The same effect can be obtained by closing the discharge side valve 104 when the operation is stopped.
[0058]
(Embodiment 4)
FIG. 5 is a refrigerant circuit diagram of a refrigeration cycle according to the fourth embodiment. The arrows in the figure indicate the flow of the refrigerant.
[0059]
In FIG. 5, the refrigeration cycle 400 includes a hermetic compressor 401, a condenser 52, a throttle device 54, and an evaporator 56. The hermetic compressor 401 includes a refrigerant suction passage 10 that guides refrigerant from the evaporator 56 side of the refrigeration cycle 400 outside the hermetic container 2 of the hermetic compressor 401 to the hermetic compressor 401, and a compressed high-temperature high-pressure A refrigerant discharge path 12 for discharging the refrigerant to the condenser 52 side of the refrigeration cycle 400 outside the closed vessel 2 is provided, and a suction side valve 102 is provided in the middle of the refrigerant suction path 10 inside the closed vessel 2. A discharge-side valve 104 is provided in the middle of the refrigerant discharge passage 12 inside the closed container 2.
[0060]
The suction side valve 102 and the discharge side valve 104 are interlocked with the supply of operation power to the hermetic compressor 401. When the operation power is supplied to the hermetic compressor 401, the valves are opened and the operation power is not supplied. Sometimes the valve closes.
[0061]
The operation of the refrigeration cycle configured as described above will be described below.
[0062]
During operation of the hermetic closed type compressor 401, the suction side valve 402 is open, and the refrigerant is sucked into the hermetic type compressor 401 from the evaporator 56 side through the refrigerant suction path 10. The discharge side valve 104 is also open, and the compressed refrigerant flows out to the condenser 52 side of the refrigeration cycle 400 via the refrigerant discharge path 12.
[0063]
When the hermetic compressor 401 is stopped, the supply of power to the hermetic compressor 401 is stopped and the suction side valve 102 is closed, so that the hermetic compressor 401 and the evaporator 56 side of the refrigeration cycle 400 are Will be shut off. Further, since the discharge side valve 104 is closed, the hermetic compressor 401 and the condenser 52 side of the refrigeration cycle 400 are shut off.
[0064]
Therefore, during the stop of the hermetic compressor 401, including immediately after the stop, the inside of the hermetic container 2 and the condenser 52 side and the evaporator 56 side of the refrigeration cycle 400 are connected to the suction side valve 102 and the discharge side valve in the hermetic container 2. As a result, the refrigerant in the closed container 2 is completely shut off in the closed container 2.
[0065]
Accordingly, when the operation is stopped for various controls including the refrigerating capacity control of the hermetic compressor 401 and for the protection function of the compressor and the refrigeration cycle, and while the operation is stopped, the refrigerant in the hermetic container 2 is stopped. Is completely confined and does not flow out to the refrigeration cycle 400 on the condenser 52 side and the evaporator 56 side. Therefore, even if the refrigeration cycle 400 other than the closed vessel 2 is damaged, the refrigerant in the closed vessel 2 It can be prevented from flowing out of the refrigeration cycle 400 from the damaged part.
[0066]
Therefore, the amount of the flammable saturated hydrocarbon-based refrigerant leaking out of the refrigeration cycle can be drastically reduced, and high safety can be secured.
[0067]
Although the present embodiment has been described with reference to an example in which the suction side valve 102 and the discharge side valve 104 are opened and closed in conjunction with the supply and stop of the operation power of the hermetic compressor 401, the hermetic compressor 401 may be closed or closed by some other control or mechanism. The same effect can be obtained by closing the suction side valve 102 and the discharge side valve 104 when the operation of the compressor 401 is stopped.
[0068]
In this embodiment, the suction side valve 102 and the discharge side valve 104 are electromagnetic valves. However, similar effects can be obtained by using other valves.
[0069]
Note that, in the refrigeration cycle 400 of the present embodiment, leakage detection means for detecting leakage of the refrigerant and outputting a detection signal, and stop control for stopping the operation of the hermetic compressor 401 based on the detection signal of the leakage detection means In the case where the means is provided, even when refrigerant leakage occurs due to breakage of the refrigeration cycle 400 during operation of the refrigeration cycle 400, the operation of the hermetic compressor 401 is stopped immediately, and the hermetic compressor 401 is hermetically sealed. By shutting off the inside of the container 2 and the condenser 52 side and the evaporator 56 side of the refrigeration cycle 400 by the suction side valve 102 and the discharge side valve 104, the refrigerant in the closed vessel 2 of the hermetic compressor 401 is cooled. Leakage to the outside can be prevented, and higher security can be ensured.
[0070]
Therefore, during and immediately after the operation of the hermetic compressor 401, the refrigerant in the hermetic container 2 is in a high-temperature and high-pressure state, and the amount of refrigerant dissolved in the lubricating oil sealed in the hermetic container 2 is reduced. Higher safety is achieved by confining a large amount of the refrigerant in the closed container 2 to prevent the refrigerant from flowing out of the refrigeration cycle from the closed container, as compared with the hermetic compressor in which the pressure in the container is low. Can be secured.
[0071]
In the refrigeration cycle of the present embodiment, by setting the suction side valve 102 of the hermetic compressor 401 as a check valve, the number of ignition sources in the flammable refrigerant, which is one factor causing ignition of the refrigerant, is reduced. Thus, the refrigerant circuit can be shut off, and higher safety can be ensured. Furthermore, the size, cost, and weight of the device can be reduced as compared with the case where an electromagnetic valve is used.
[0072]
【The invention's effect】
As described above, according to the first aspect of the invention, when the operation of the hermetic compressor is stopped, the hermetic compressor and the condenser side and the evaporator side of the refrigeration cycle are shut off by the suction side valve and the discharge side valve, respectively. Therefore, when damage occurs in the refrigeration cycle during operation of the compressor, the amount of refrigerant leaking out of the refrigeration cycle can be reduced by preventing the refrigerant in the closed vessel from leaking out of the refrigeration cycle. There is an effect that it is possible to provide a hermetic compressor that can be reduced and that does not easily cause ignition.
[0073]
Further, the invention described in claim 2 prevents the refrigerant in the sealed container from leaking out of the refrigeration cycle even if the refrigerant leaks due to breakage of the refrigeration cycle during operation of the compressor. This has the effect of reducing the amount of refrigerant leaking out of the cycle and providing a hermetic compressor that does not easily cause ignition.
[0074]
Further, according to the third aspect of the present invention, even if there is a pressure difference in each part of the refrigeration cycle including the refrigerant suction path or the refrigerant discharge path, the refrigeration cycle can be reliably closed, so that the refrigeration between the closed container and the external Even if the refrigeration cycle breaks down, the closed type can prevent the refrigerant from leaking out of the refrigeration cycle even if the refrigeration cycle is damaged. There is an effect that a compressor can be provided.
[0075]
According to the invention described in claim 4, since the check valve does not have an electrical contact inside as compared with an electromagnetic valve or the like, an ignition source in the flammable refrigerant, which is one element that causes ignition of the refrigerant, is used. This has the effect of providing a hermetic compressor that can reduce the amount of ignition and does not easily lead to ignition.
[0076]
In addition, the invention according to claim 5 ensures that when the compressor is stopped or when the compressor is stopped by detecting leakage of the refrigerant during the operation of the compressor, the refrigeration cycle in the closed container and the outside is reliably performed. By shutting off and preventing the refrigerant in the closed container from leaking out of the refrigeration system, the amount of refrigerant leaking out of the refrigeration cycle can be reduced, and an effect can be provided in that a refrigeration cycle that does not easily cause ignition can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of Embodiment 1 of a hermetic compressor according to the present invention.
FIG. 2 is a sectional view of Embodiment 2 of the hermetic compressor according to the present invention.
FIG. 3 is a sectional view of Embodiment 3 of the hermetic compressor according to the present invention.
FIG. 4 is a partially enlarged view of the hermetic compressor according to the third embodiment.
FIG. 5 is a refrigerant circuit diagram of Embodiment 5 of a refrigeration cycle according to the present invention.
FIG. 6 is a sectional view of a conventional hermetic compressor.
FIG. 7 is a partially enlarged view of a conventional hermetic compressor.
FIG. 8 is a refrigerant circuit diagram of a conventional refrigeration cycle.
[Explanation of symbols]
101, 201, 301, 401, 501 Hermetic compressor
2 sealed containers
4 Electric elements
6 Compression mechanism
10 Refrigerant discharge path
12 Refrigerant suction path
58,59 Leak detection means
102,302 Suction side valve
104 Discharge side valve
202 Stop control means

Claims (5)

飽和炭化水素系冷媒を使用し、圧縮された前記冷媒が放出される密閉容器内に、電動要素部とこれによって駆動される圧縮機構部とを収納し、冷媒吸入路及び冷媒吐出路を備えるとともに、運転の停止時に前記冷媒吸入路及び前記冷媒吐出路を閉鎖する吸入側弁と吐出側弁とをそれぞれ前記密閉容器内に設けた密閉型圧縮機。Using a saturated hydrocarbon-based refrigerant, in a closed container from which the compressed refrigerant is discharged, the electric element part and a compression mechanism driven by the electric element part are housed, and a refrigerant suction path and a refrigerant discharge path are provided. A hermetic compressor in which a suction-side valve and a discharge-side valve for closing the refrigerant suction passage and the refrigerant discharge passage when the operation is stopped are provided in the hermetic container, respectively. 前記冷媒の漏洩を検知して検知信号を出力する漏洩検知手段と、前記漏洩検知手段の前記検知信号に基づき、圧縮機の運転を停止する停止制御手段を備えた請求項1に記載の密閉型圧縮機。The hermetic type according to claim 1, comprising: leak detection means for detecting a leak of the refrigerant and outputting a detection signal; and stop control means for stopping operation of the compressor based on the detection signal of the leak detection means. Compressor. 前記吸入側弁と前記吐出側弁が電磁弁である請求項1に記載の密閉型圧縮機。The hermetic compressor according to claim 1, wherein the suction side valve and the discharge side valve are solenoid valves. 前記吸入側弁が逆止弁であり、前記吐出側弁が電磁弁である請求項1に記載の密閉型圧縮機。The hermetic compressor according to claim 1, wherein the suction side valve is a check valve, and the discharge side valve is a solenoid valve. 請求項1から4のいずれか一項に記載の密閉型圧縮機を備えた冷凍サイクル。A refrigeration cycle comprising the hermetic compressor according to any one of claims 1 to 4.
JP2003039347A 2003-02-18 2003-02-18 Hermetic compressor and refrigeration cycle Pending JP2004251130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003039347A JP2004251130A (en) 2003-02-18 2003-02-18 Hermetic compressor and refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003039347A JP2004251130A (en) 2003-02-18 2003-02-18 Hermetic compressor and refrigeration cycle

Publications (1)

Publication Number Publication Date
JP2004251130A true JP2004251130A (en) 2004-09-09

Family

ID=33023553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003039347A Pending JP2004251130A (en) 2003-02-18 2003-02-18 Hermetic compressor and refrigeration cycle

Country Status (1)

Country Link
JP (1) JP2004251130A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115325A (en) * 2007-11-01 2009-05-28 Yazaki Corp Cooling device
JP2009196556A (en) * 2008-02-22 2009-09-03 Denso Corp Refrigeration cycle device for vehicle
JP2013068106A (en) * 2011-09-21 2013-04-18 Toyota Industries Corp Electric compressor
WO2016194143A1 (en) * 2015-06-02 2016-12-08 三菱電機株式会社 Refrigeration cycle system
CN107228501A (en) * 2017-05-24 2017-10-03 广东志高暖通设备股份有限公司 A kind of air conditioner

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115325A (en) * 2007-11-01 2009-05-28 Yazaki Corp Cooling device
JP2009196556A (en) * 2008-02-22 2009-09-03 Denso Corp Refrigeration cycle device for vehicle
JP4665976B2 (en) * 2008-02-22 2011-04-06 株式会社デンソー Refrigeration cycle equipment for vehicles
US8082746B2 (en) 2008-02-22 2011-12-27 Denso Corporation Refrigeration cycle device for vehicle
JP2013068106A (en) * 2011-09-21 2013-04-18 Toyota Industries Corp Electric compressor
US9482229B2 (en) 2011-09-21 2016-11-01 Kabushiki Kaisha Toyota Jidoshokki Motor-driven compressor
WO2016194143A1 (en) * 2015-06-02 2016-12-08 三菱電機株式会社 Refrigeration cycle system
JPWO2016194143A1 (en) * 2015-06-02 2017-12-07 三菱電機株式会社 Refrigeration cycle system
CN107228501A (en) * 2017-05-24 2017-10-03 广东志高暖通设备股份有限公司 A kind of air conditioner
CN107228501B (en) * 2017-05-24 2023-12-01 广东开利暖通空调股份有限公司 Air conditioner

Similar Documents

Publication Publication Date Title
US7607902B2 (en) Closed compressor and refrigerating cycle apparatus
JP2000179971A (en) Refrigerating device
US10578103B2 (en) Scroll compressor and refrigeration cycle apparatus
US9850903B2 (en) Capacity modulated scroll compressor
JPH0420751A (en) Freezing cycle
KR20070027762A (en) Valve for preventing unpowered reverse run at shutdown
CN106091494B (en) Compressor oil storage component, air conditioner and its control method
KR100500617B1 (en) Supercritical refrigerating apparatus
JP2003074481A (en) Scroll compressor
KR20030028831A (en) Heat pump device
JP2007511700A (en) Tandem compressor with discharge valve in connecting passage
WO2023040210A1 (en) Refrigeration system
JP2004251130A (en) Hermetic compressor and refrigeration cycle
JP5355336B2 (en) Screw compressor and refrigerator
KR100500618B1 (en) Heat Pump Type Hot Water Supply Apparatus
KR100585798B1 (en) Apparatus preventing over heating for scroll compressor
JP2002372346A (en) Refrigerant circuit, its operation checking method, method for filling refrigerant, and closing valve for filling refrigerant
JP2005214575A (en) Refrigerator
JP2004239070A (en) Scroll compressor
JPH11173684A (en) Refrigerator with deep freezer
JPH05133368A (en) Two-stage compression refrigerator provided with check valve device
JP2004278474A (en) Sealed type compressor and refrigeration cycle
JP2005207666A (en) Refrigerator
JPH10132401A (en) Control for multi-stage refrigerant compressor
JP2757689B2 (en) Refrigeration equipment