JP2002372346A - Refrigerant circuit, its operation checking method, method for filling refrigerant, and closing valve for filling refrigerant - Google Patents

Refrigerant circuit, its operation checking method, method for filling refrigerant, and closing valve for filling refrigerant

Info

Publication number
JP2002372346A
JP2002372346A JP2001178464A JP2001178464A JP2002372346A JP 2002372346 A JP2002372346 A JP 2002372346A JP 2001178464 A JP2001178464 A JP 2001178464A JP 2001178464 A JP2001178464 A JP 2001178464A JP 2002372346 A JP2002372346 A JP 2002372346A
Authority
JP
Japan
Prior art keywords
refrigerant
valve
refrigerant circuit
pressure
supercritical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001178464A
Other languages
Japanese (ja)
Inventor
Yasuhiko Oka
恭彦 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2001178464A priority Critical patent/JP2002372346A/en
Publication of JP2002372346A publication Critical patent/JP2002372346A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/006Details for charging or discharging refrigerants; Service stations therefor characterised by charging or discharging valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Fluid-Driven Valves (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerant circuit and an operation checking method for improving reliability of a product by preventing leakage of a refrigerant, and also to provide a method for filling the refrigerant and a closing valve for filling the refrigerant enabling a supercritical refrigerant to be filled highly accurately and contributing to reduction of costs. SOLUTION: The refrigerant circuit is made into a pressure reduced state via a communication port 15 provided on a low pressure side between a pressure reducing unit 4 and an evaporator 5, and then the refrigerant is filled through the communication port 15 while a pressure sensor 19 on a high pressure side is being calibrated. The pressure reducing unit 4 is provided with a total-closure inhibiting function S.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、冷媒回路及びそ
の運転検査方法並びに冷媒充填方法及び冷媒充填用閉鎖
弁に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant circuit, a method for inspecting the operation of the circuit, a method for charging the refrigerant, and a shutoff valve for charging the refrigerant.

【0002】[0002]

【従来の技術】冷媒回路を使用した装置にはヒートポン
プ式給湯装置がある。すなわち、ヒートポンプ式給湯装
置は、貯湯タンクを有するタンクユニットと、冷媒回路
を有する熱源ユニットとを備え、この熱源ユニットに冷
媒回路を使用する。そして、冷媒回路は、一般には、圧
縮機と凝縮器と減圧機構と蒸発器とを備え、貯湯タンク
の底壁の取水口から循環路へ水(温水)を流出させ、循
環路に設けられる水熱交換器(凝縮器にて構成される)
でもって沸上げ、この沸上げた温湯を貯湯タンクの上部
の給水口を介してこの貯湯タンクに返流させる。これに
よって、貯湯タンクに高温の温湯を貯めるものである。
2. Description of the Related Art There is a heat pump type hot water supply apparatus as an apparatus using a refrigerant circuit. That is, the heat pump hot water supply device includes a tank unit having a hot water storage tank and a heat source unit having a refrigerant circuit, and the refrigerant circuit is used for this heat source unit. The refrigerant circuit generally includes a compressor, a condenser, a decompression mechanism, and an evaporator, and allows water (hot water) to flow out of an intake port on the bottom wall of the hot water storage tank to the circulation path, and to be provided in the circulation path. Heat exchanger (condenser)
The hot water is then boiled and returned to the hot water storage tank through the water supply port at the top of the hot water storage tank. Thus, high-temperature hot water is stored in the hot water storage tank.

【0003】ところで、従来では、冷媒回路の冷媒とし
て、ジクロロジフルオロメタン(R−12)やクロロジ
フルオロメタン(R−22)のような冷媒が使用されて
きたが、近年、オゾン層の破壊、環境汚染等の問題か
ら、1,1,1,2−テトラフルオロエタン(R−13
4a)のような代替冷媒が使用されるようになってい
る。しかしながらこのR−134aにおいても、依然と
して地球温暖化能が高いなどの問題があることから、近
年では、このような問題のない自然系冷媒を使用するこ
とが推奨されつつある。この自然系冷媒として炭酸ガス
等の超臨界冷媒が有用であることは、公知である。
Conventionally, refrigerants such as dichlorodifluoromethane (R-12) and chlorodifluoromethane (R-22) have been used as refrigerants in the refrigerant circuit. Due to problems such as contamination, 1,1,1,2-tetrafluoroethane (R-13
An alternative refrigerant such as 4a) is used. However, since R-134a still has a problem such as high global warming ability, use of a natural refrigerant free of such a problem has been recently recommended. It is known that a supercritical refrigerant such as carbon dioxide is useful as the natural refrigerant.

【0004】[0004]

【発明が解決しようとする課題】また、熱源ユニットの
冷媒回路においては、その形成する冷凍サイクルを検証
する必要がある。この場合、超臨界冷媒を使用しない冷
媒回路では、冷媒配管にポートを設け、このポートを介
して圧力を測定して、運転状況(冷凍サイクル)の検証
を行うことができた。そして、ポートとしては、例え
ば、バルブにて構成していた。しかしながら、このよう
なバルブでは、冷媒配管とのロウ付け箇所が他の接続部
位に比べてシール性が劣り、超臨界冷媒を使用した冷媒
回路では、冷媒配管内は高圧であるので、冷媒漏れの発
生のおそれがあった。冷媒漏れの発生すれば、過少な冷
媒量による運転となり、圧縮機吸入加熱が大きくなると
共に、吐出管温度が上昇することになる。このため、圧
縮機の保護の観点から圧縮機の周波数を低下させる必要
があり、低下させれば能力の低下を招き、また、圧縮機
最低周波数でも保護されない場合は、運転不能となって
いた。
In the refrigerant circuit of the heat source unit, it is necessary to verify the refrigeration cycle formed. In this case, in the refrigerant circuit not using the supercritical refrigerant, a port was provided in the refrigerant pipe, and the pressure was measured through this port, so that the operation state (refrigeration cycle) could be verified. And the port was constituted by, for example, a valve. However, in such a valve, the portion to be brazed to the refrigerant pipe is inferior in sealing performance as compared with other connection portions, and in a refrigerant circuit using a supercritical refrigerant, the pressure in the refrigerant pipe is high, so that refrigerant leakage may occur. There was a risk of occurrence. If a refrigerant leak occurs, the operation is performed with an excessively small amount of the refrigerant, so that the compressor suction heating increases and the discharge pipe temperature increases. For this reason, it is necessary to lower the frequency of the compressor from the viewpoint of protection of the compressor. If the frequency is lowered, the performance of the compressor is reduced. If the compressor is not protected even at the lowest frequency of the compressor, the operation becomes impossible.

【0005】この発明は、上記従来の欠点を解決するた
めになされたものであって、その一の目的は、冷媒漏れ
発生を防止して製品の信頼性の向上を図ることが可能な
冷媒回路及びその運転検査方法を提供することにあり、
他の目的は高精度に超臨界冷媒を充填できてしかもコス
トの低減に寄与する冷媒充填方法及び冷媒充填用閉鎖弁
を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional disadvantages, and one object of the present invention is to provide a refrigerant circuit capable of preventing the occurrence of refrigerant leakage and improving the reliability of products. And to provide an operation inspection method thereof,
It is another object of the present invention to provide a refrigerant charging method and a refrigerant charging shut-off valve capable of filling a supercritical refrigerant with high accuracy and contributing to cost reduction.

【0006】[0006]

【課題を解決するための手段】そこで請求項1の冷媒回
路は、圧縮機1と凝縮器2と減圧機構4と蒸発器5とを
有すると共に、超臨界で使用する超臨界冷媒を用いる冷
媒回路であって、低圧側に、真空ポンプ41を有する冷
媒充填装置40等が着脱自在に取付けられる連絡ポート
15を設けると共に、上記減圧機構4に全閉阻止機能S
を付設したことを特徴としている。
Accordingly, a refrigerant circuit according to claim 1 has a compressor 1, a condenser 2, a decompression mechanism 4, and an evaporator 5, and uses a supercritical refrigerant used in supercritical condition. In the low-pressure side, a communication port 15 to which a refrigerant filling device 40 having a vacuum pump 41 and the like is detachably attached is provided, and the pressure reducing mechanism 4 is provided with a fully-closed preventing function S.
It is characterized by having attached.

【0007】請求項1の冷媒回路では、減圧機構4に全
閉阻止機能Sを付設したので、減圧機構4が全閉状態と
ならず、冷媒充填装置にて冷媒充填作業を行う際の真空
ポンプによる真空引き工程において、冷媒回路の冷媒配
管全体を確実に減圧状態(真空状態)とすることができ
る。しかも、ポートとして、低圧側に設けられる連絡ポ
ートだけでよく、冷媒漏れを抑えることができる。
In the refrigerant circuit according to the first aspect, since the pressure reducing mechanism 4 is provided with the fully closed preventing function S, the pressure reducing mechanism 4 is not completely closed, and the vacuum pump for performing the refrigerant charging operation by the refrigerant charging device is used. In the evacuation step, the entire refrigerant pipe of the refrigerant circuit can be reliably reduced in pressure (vacuum state). In addition, only a communication port provided on the low pressure side is required as a port, so that refrigerant leakage can be suppressed.

【0008】請求項2の冷媒回路は、圧力検知素子から
なる高圧側圧力センサ19を設けたことを特徴としてい
る。
The refrigerant circuit according to a second aspect is characterized in that a high pressure side pressure sensor 19 comprising a pressure detecting element is provided.

【0009】上記請求項2の冷媒回路では、冷媒充填装
置が圧力検出器を有するものであれば、高圧側圧力セン
サ19による高圧側の圧力の検出と共に、低圧側の圧力
を検出することができる。
In the refrigerant circuit of the second aspect, if the refrigerant charging device has a pressure detector, the high pressure side pressure sensor 19 can detect the high pressure side pressure as well as the low pressure side pressure. .

【0010】請求項3の運転検査方法は、超臨界で使用
する超臨界冷媒を用いる冷媒回路の運転検査方法であっ
て、低圧側に設けられる連絡ポート15に、取外可能と
して圧力検出器43を取付け、この圧力検出器43によ
る低圧側の圧力の測定に加えて、圧力検知素子からなる
高圧側圧力センサ19による高圧側の圧力測定を行うこ
とを特徴としている。
An operation inspection method according to a third aspect is an operation inspection method for a refrigerant circuit using a supercritical refrigerant used in a supercritical state, wherein the pressure detector 43 is detachably connected to the communication port 15 provided on the low pressure side. In addition to the measurement of the pressure on the low pressure side by the pressure detector 43, the pressure on the high pressure side is measured by the high pressure side pressure sensor 19 composed of a pressure detecting element.

【0011】上記請求項3の運転検査方法では、連絡ポ
ート15の圧力検出器43による低圧側の圧力の検出と
共に、高圧側圧力センサ19による高圧側の圧力を検出
することができる。しかも、ポートとして、低圧側に設
けられる連絡ポートだけでよく、冷媒漏れを抑えること
ができる。
According to the operation inspection method of the third aspect, it is possible to detect the low pressure side pressure by the pressure detector 43 of the communication port 15 and the high pressure side pressure by the high pressure side pressure sensor 19. In addition, only a communication port provided on the low pressure side is required as a port, so that refrigerant leakage can be suppressed.

【0012】請求項4の冷媒充填方法は、超臨界で使用
する超臨界冷媒を用いる冷媒回路にこの超臨界冷媒を充
填する冷媒充填方法であって、上記冷媒回路に全閉阻止
機能Sを有する減圧機構4を使用し、低圧側に設けられ
る連絡ポート15を介して上記冷媒回路を真空状態とし
た後、高圧側圧力センサ19の較正を行いつつ、上記連
絡ポート15から冷媒を充填することを特徴としてい
る。
According to a fourth aspect of the present invention, there is provided a refrigerant charging method for charging a supercritical refrigerant into a refrigerant circuit using a supercritical refrigerant used in a supercritical state. After the refrigerant circuit is evacuated through the communication port 15 provided on the low pressure side using the pressure reducing mechanism 4, the refrigerant is charged from the communication port 15 while the high pressure side pressure sensor 19 is calibrated. Features.

【0013】上記請求項4の冷媒充填方法では、冷媒回
路を真空状態とした後(真空引きした後)、連絡ポート
15から冷媒を充填するものであるので、簡単に冷媒を
充填することができ、しかも、上記冷媒回路に全閉阻止
機能Sを有する減圧機構4を使用しているので、真空引
きする際には、冷媒回路の流路(配管)全体を真空引き
することができる。さらに、冷媒を充填する際、高圧側
圧力センサ19の較正を行うことができ、高圧側圧力セ
ンサ19の信頼度が高まる。しかも、ポートとして、低
圧側に設けられる連絡ポートだけでよく、冷媒漏れを抑
えることができる。
In the refrigerant charging method according to the fourth aspect, the refrigerant is charged from the communication port 15 after the refrigerant circuit is evacuated (after evacuation), so that the refrigerant can be easily charged. Moreover, since the pressure reducing mechanism 4 having the fully closed function S is used in the refrigerant circuit, the entire flow path (piping) of the refrigerant circuit can be evacuated when evacuating. Furthermore, when charging the refrigerant, the high pressure side pressure sensor 19 can be calibrated, and the reliability of the high pressure side pressure sensor 19 is increased. In addition, only a communication port provided on the low pressure side is required as a port, so that refrigerant leakage can be suppressed.

【0014】請求項5の冷媒充填用閉鎖弁は、超臨界で
使用する超臨界冷媒を用いる冷媒回路にこの超臨界冷媒
を充填するための冷媒充填用閉鎖弁であって、軸心方向
の往復動が可能な弁棒33と、この弁棒33を一軸心方
向に押圧して弁開状態を維持する弾性部材36とを備え
ると共に、低圧側に取付けられて、弁開状態では、上記
冷媒回路の真空引きを許容すると共に、その真空状態で
冷媒回路への冷媒充填を可能とし、冷媒充填完了で冷媒
回路内の冷媒の圧力にて弁棒33が弾性部材36の付勢
力に抗して押圧されて弁閉状態となって、冷媒の流出を
防止することを特徴としている。
A refrigerant charging shut-off valve according to a fifth aspect of the present invention is a refrigerant charging shut-off valve for charging a supercritical refrigerant into a refrigerant circuit using a supercritical refrigerant. A movable valve rod 33, and an elastic member 36 that presses the valve rod 33 in the axial direction to maintain the valve open state, and is attached to the low pressure side. While allowing the circuit to be evacuated, the refrigerant circuit can be charged with the refrigerant in the vacuum state, and the valve rod 33 resists the urging force of the elastic member 36 due to the pressure of the refrigerant in the refrigerant circuit when the refrigerant charging is completed. It is characterized in that it is pressed to be in a valve-closed state to prevent the refrigerant from flowing out.

【0015】上記請求項5の冷媒充填用閉鎖弁では、弾
性部材36にて弁開状態が維持され、この状態において
冷媒回路を真空引きすることができ、さらに、この真空
状態では冷媒回路への冷媒充填が可能とされるので、冷
媒回路に冷媒を充填することができる。また、冷媒回路
への冷媒充填が完了すれば、この閉鎖弁に対する冷媒の
充填圧が解除される。これによって、冷媒回路からの冷
媒の圧力にて弁棒33が弾発部材36の付勢力に抗して
押圧されて弁閉状態となって、冷媒の流出が防止され
る。ところで、弁閉状態において、冷媒の圧力の抗して
弁棒33を開状態となる方向に押圧すれば、開状態とな
ってこの冷媒回路の冷媒を放出することができる。
According to the fifth aspect of the present invention, the valve is kept open by the elastic member 36. In this state, the refrigerant circuit can be evacuated. Since the refrigerant can be charged, the refrigerant circuit can be charged with the refrigerant. When the refrigerant circuit is completely charged with the refrigerant, the pressure at which the refrigerant is charged into the closing valve is released. As a result, the valve rod 33 is pressed against the urging force of the resilient member 36 by the pressure of the refrigerant from the refrigerant circuit to be in a valve-closed state, thereby preventing the refrigerant from flowing out. By the way, when the valve rod 33 is pressed in the direction of opening in the valve closed state against the pressure of the refrigerant, the valve rod 33 is opened and the refrigerant in the refrigerant circuit can be discharged.

【0016】[0016]

【発明の実施の形態】次に、この発明の冷媒回路の具体
的な実施の形態について、図面を参照しつつ詳細に説明
する。図1は冷媒回路の簡略図を示し、この冷媒回路
は、例えばヒートポンプ式給湯装置の熱源ユニットに使
用される。そして、冷媒回路は、圧縮機1と凝縮器(こ
の場合水熱交換器)2とレシーバ3と減圧機構4と蒸発
器5とを有し、冷媒としては、例えば、超臨界で使用す
る二酸化炭素(CO2)を用いる。また、凝縮器2から
流出した冷媒を冷却する液ガス熱交換器6が設けられて
いると共に、圧縮機1の吸込路7にアキュームレータ8
が設けられている。
Next, a specific embodiment of the refrigerant circuit of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a simplified diagram of a refrigerant circuit, which is used, for example, in a heat source unit of a heat pump water heater. The refrigerant circuit includes a compressor 1, a condenser (in this case, a water heat exchanger) 2, a receiver 3, a pressure reducing mechanism 4, and an evaporator 5, and as a refrigerant, for example, carbon dioxide used in supercritical (CO2) is used. Further, a liquid-gas heat exchanger 6 for cooling the refrigerant flowing out of the condenser 2 is provided, and an accumulator 8 is provided in a suction passage 7 of the compressor 1.
Is provided.

【0017】液ガス熱交換器6は、凝縮器2からの冷媒
が通過する第1通路6aと、蒸発器5からの冷媒が通過
する第2通路6bとを備える。すなわち、第1通路6a
が、凝縮器2とレシーバ3とを連結する冷媒流路10の
一部を構成し、第2通路6b、蒸発器5とアキュームレ
ータ8とを連結する冷媒流路11の一部を構成する。こ
のため、第1通路6aを通過する高温高圧の冷媒と第2通
路6bを通過する低温低圧の冷媒との間で熱交換され、
レシーバ3に入る冷媒が冷却される。なお、レシーバ3
と減圧機構4とが流路12にて接続され、減圧機構4と
蒸発器5とは流路13にて接続され、圧縮機1と凝縮器
2とは流路14にて接続されている。
The liquid-gas heat exchanger 6 has a first passage 6a through which the refrigerant from the condenser 2 passes and a second passage 6b through which the refrigerant from the evaporator 5 passes. That is, the first passage 6a
Constitutes a part of a refrigerant flow path 10 connecting the condenser 2 and the receiver 3, and forms a part of a refrigerant flow path 11 connecting the evaporator 5 and the accumulator 8 to the second passage 6 b. Therefore, heat is exchanged between the high-temperature and high-pressure refrigerant passing through the first passage 6a and the low-temperature and low-pressure refrigerant passing through the second passage 6b.
The refrigerant entering the receiver 3 is cooled. The receiver 3
The pressure reducing mechanism 4 and the evaporator 5 are connected by a flow path 13, and the compressor 1 and the condenser 2 are connected by a flow path 14.

【0018】また、低圧側、つまり減圧機構4と蒸発器
5との間に連絡ポート15が設けられる。すなわち、流
路13に連絡ポート15が設けられ、この連絡ポート1
5に後述する冷媒充填装置40が着脱自在に取付けられ
る。この場合の連絡ポート15には図3に示す冷媒充填
用閉鎖弁30が使用される。そして、上記流路14に
は、圧力検知素子からなる高圧側圧力センサ19が設け
られている。
A communication port 15 is provided on the low pressure side, that is, between the pressure reducing mechanism 4 and the evaporator 5. That is, the communication port 15 is provided in the flow path 13, and the communication port 1
5, a refrigerant charging device 40 described later is detachably attached. In this case, the closing port 30 for charging the refrigerant shown in FIG. 3 is used for the communication port 15. A high-pressure side pressure sensor 19 composed of a pressure detecting element is provided in the flow path 14.

【0019】ところで、この場合の減圧機構4は、例え
ば電動膨張弁20からなり、図2に示すように、全閉阻
止機能Sが付設されている。すなわち、膨張弁20は、
弁室21を有する弁本体22と、この弁室21に内有さ
れる弁体23と、この弁体23を受ける弁座24とを備
える。また、弁体23は円錐体からなり、弁座24に
は、溝25・・が設けられている。従って、図例のよう
に、弁座24にて弁体23を受けた状態では、弁体23
の外面と弁座24との間に小通路26・・が形成され
る。そのため、小通路26・・でもって、全閉となるの
を機械的に防止する全閉阻止機能Sが構成され、弁座2
4が弁体23にて受けられた状態となってもこの電動膨
張弁20は全閉とならない。
Incidentally, the pressure reducing mechanism 4 in this case comprises, for example, an electric expansion valve 20 and is provided with a fully-closed preventing function S as shown in FIG. That is, the expansion valve 20
A valve body 22 having a valve chamber 21, a valve element 23 included in the valve chamber 21, and a valve seat 24 for receiving the valve element 23 are provided. The valve body 23 is formed of a cone, and the valve seat 24 is provided with grooves 25. Therefore, as shown in FIG.
Are formed between the outer surface of the valve seat 24 and the valve seat 24. Therefore, a full-close prevention function S is mechanically prevented from being fully closed by the small passage 26.
Even when the valve 4 is received by the valve body 23, the electric expansion valve 20 is not fully closed.

【0020】また、全閉阻止機能Sとしては、図1の仮
想線で示すように、流路12と流路13とを連結するバ
イパス回路27を設け、バイパス回路27にキャピラリ
ーチューブ28を介設することによって形成してもよ
い。すなわち、減圧機構4を、全閉阻止機能Sを有さな
い通常の膨張弁20と、キャピラリーチューブ28を有
するバイパス回路27とをもって構成している。このた
め、膨張弁20自体を閉状態(この場合、全閉状態が可
能)としたとしても、冷媒はこのバイパス回路27のキ
ャピラリーチューブ28を流れ、減圧機構4としては全
閉状態とならない。従って、この仮想線で示すキャピラ
リーチューブ28を使用した減圧機構4であっても、図
1に示す膨張弁20と同様の作用効果を呈することがで
きる。
As shown in the phantom line in FIG. 1, a bypass circuit 27 for connecting the flow path 12 and the flow path 13 is provided as the fully closed prevention function S, and a capillary tube 28 is provided in the bypass circuit 27. It may be formed by doing. That is, the pressure reducing mechanism 4 is configured by a normal expansion valve 20 having no full-close prevention function S and a bypass circuit 27 having a capillary tube 28. Therefore, even if the expansion valve 20 itself is closed (in this case, the fully closed state is possible), the refrigerant flows through the capillary tube 28 of the bypass circuit 27, and the pressure reducing mechanism 4 does not enter the fully closed state. Therefore, even with the decompression mechanism 4 using the capillary tube 28 shown by the phantom line, the same operation and effect as the expansion valve 20 shown in FIG. 1 can be exhibited.

【0021】次に、上記冷媒充填用閉鎖弁30は、図3
に示すように、弁室31を有する弁本体32と、この弁
室31内にその軸心方向に往復動可能に内装される弁棒
33と、この弁棒33の弁体34を受ける弁座35と、
この弁棒33を弁座35から離間させる方向(一軸心方
向)に付勢する弾発部材36とを備える。すなわち、自
由状態では弾発部材36の付勢力にて、弁体34を弁座
35から離間させていわゆる弁開状態を維持する。そし
て、この弾発部材36の付勢力に抗して弁棒33を図4
の矢印方向へ押圧すれば、弁体34が弁座35に接触乃
至圧接して、いわゆる弁閉状態となる。
Next, the closing valve 30 for charging the refrigerant is shown in FIG.
As shown in FIG. 1, a valve body 32 having a valve chamber 31, a valve rod 33 housed in the valve chamber 31 so as to reciprocate in its axial direction, and a valve seat for receiving a valve element 34 of the valve rod 33 35,
A resilient member 36 is provided for urging the valve rod 33 in a direction (uniaxial direction) for separating the valve rod 33 from the valve seat 35. That is, in the free state, the urging force of the resilient member 36 moves the valve body 34 away from the valve seat 35 to maintain a so-called valve open state. Then, the valve rod 33 is moved against the urging force of the resilient member 36 as shown in FIG.
, The valve body 34 comes into contact with or presses against the valve seat 35 to be in a so-called valve closed state.

【0022】また、この冷媒充填用閉鎖弁30は、弁本
体32の基端から突設される配管37が流路13に取付
けられる共に、弁本体32の先端から突設される配管3
8が冷媒充填装置40に取付けられる。ここで、冷媒充
填装置40とは、冷媒回路に冷媒を充填するためのもの
であって、真空ポンプ41と冷媒ボンベ42と圧力検出
器43を備える。すなわち、配管38にカップリング等
の図示省略の連結部材を介して配管44が着脱自在に連
結され、この配管44に、真空ポンプ41に接続される
第1配管45と、冷媒ボンベ42に接続される第2配管
46と、圧力検出器43が接続される第3配管47とが
接続されている。そして、第1配管45には開閉弁48
が介設され、第2配管46には開閉弁49が介設され、
第3配管47には開閉弁50が介設されている。ところ
で、冷媒充填用閉鎖弁30は、弁開状態では、弁棒33
の外面と弁室31の内面との間に隙間が設けられ、配管
37と配管38とが連通状態となっている。また、弾発
部材36の付勢力に抗して、冷媒充填用閉鎖弁30を弁
閉状態とすれば、配管37と配管38とが遮断された状
態となる。
In the refrigerant filling closing valve 30, a pipe 37 protruding from the base end of the valve body 32 is attached to the flow path 13 and a pipe 3 protruding from the tip of the valve body 32.
8 is attached to the refrigerant charging device 40. Here, the refrigerant charging device 40 is for charging the refrigerant in the refrigerant circuit, and includes a vacuum pump 41, a refrigerant cylinder 42, and a pressure detector 43. That is, a pipe 44 is detachably connected to the pipe 38 via a connection member (not shown) such as a coupling. The pipe 44 is connected to a first pipe 45 connected to a vacuum pump 41 and a refrigerant cylinder 42. A second pipe 46 is connected to a third pipe 47 to which the pressure detector 43 is connected. The first pipe 45 has an on-off valve 48.
And an on-off valve 49 is provided in the second pipe 46,
An on-off valve 50 is provided in the third pipe 47. By the way, the closing valve 30 for charging the refrigerant has the valve rod 33 in the valve open state.
A gap is provided between the outer surface of the valve chamber 31 and the inner surface of the valve chamber 31, and the pipe 37 and the pipe 38 are in communication with each other. Further, if the refrigerant charging closing valve 30 is closed against the urging force of the resilient member 36, the pipe 37 and the pipe 38 are shut off.

【0023】次に、この冷媒回路の真空引き及び冷媒充
填方法を説明する。図1に示すように、冷媒充填装置4
0を連絡ポート15、つまり冷媒充填用閉鎖弁30に取
付けた状態とする。この状態では、弾発部材36の付勢
力にて冷媒充填用閉鎖弁30は開状態となっている。そ
こで、開閉弁49、50を閉状態とすると共に開閉弁4
8を開状態として、真空ポンプ41を駆動(作動)させ
る。これによって、冷媒充填用閉鎖弁30を介して冷媒
回路内が真空引きされて減圧状態(真空状態)となる。
この場合、減圧機構(電動膨張弁)4は全閉阻止機能S
を有するので、冷媒回路の配管(流路)全体を真空引き
することができる。その後、この真空状態を維持したま
ま、開閉弁48を閉状態とすると共に開閉弁49を開状
態として冷媒を充填する。この際、冷媒回路へは、圧力
差を利用して冷媒ボンベ42からの液又はガス冷媒を、
開状態となっている冷媒充填用閉鎖弁30を介して、充
填することができる。このとき、冷媒が液冷媒であれ
ば、冷媒回路の運転を行うことなく、十分な量を簡単に
充填することができる。なお、液冷媒充填の場合、液冷
媒が圧縮機1に吸い込まれないようにするという観点か
らは、ポート位置を膨張弁4の前後にするのが好まし
い。また、運転させながら冷媒を充填する場合、図例の
ように、膨張弁4よりも下流の位置(低圧側)に連絡ポ
ート15を接続する。これは、圧力差が必要であるので
高圧側では困難であるからである。
Next, a method of evacuating the refrigerant circuit and charging the refrigerant will be described. As shown in FIG.
0 is attached to the communication port 15, that is, the refrigerant charging stop valve 30. In this state, the refrigerant charging closing valve 30 is in an open state by the urging force of the resilient member 36. Therefore, the on-off valves 49 and 50 are closed and the on-off valves 4 and 50 are closed.
8 is opened, and the vacuum pump 41 is driven (operated). As a result, the inside of the refrigerant circuit is evacuated via the refrigerant charging closing valve 30 to be in a reduced pressure state (vacuum state).
In this case, the pressure reducing mechanism (electric expansion valve) 4 is provided with the fully-closed preventing function S.
Therefore, the entire piping (flow path) of the refrigerant circuit can be evacuated. Thereafter, while maintaining this vacuum state, the on-off valve 48 is closed and the on-off valve 49 is opened to fill the refrigerant. At this time, the liquid or gas refrigerant from the refrigerant cylinder 42 is supplied to the refrigerant circuit by utilizing the pressure difference.
The charging can be performed through the refrigerant charging closing valve 30 which is in the open state. At this time, if the refrigerant is a liquid refrigerant, a sufficient amount can be easily filled without operating the refrigerant circuit. In addition, in the case of charging the liquid refrigerant, it is preferable to set the port position before and after the expansion valve 4 from the viewpoint of preventing the liquid refrigerant from being sucked into the compressor 1. When the refrigerant is charged during operation, the communication port 15 is connected to a position (low pressure side) downstream of the expansion valve 4 as shown in the figure. This is because it is difficult on the high pressure side because a pressure difference is required.

【0024】そして、冷媒充填量の確認は、製品重量の
増加量又は冷媒ボンベ42の減少量を検出することによ
って行うことができる。特に、運転させながらの確認
は、冷媒ボンベ42の減少量で充填量を確認する。さら
に、所定の冷凍サイクル(高低圧、各部位温度が所定の
値)になるまで冷媒を充填する方法もある。充填工程が
終了すれば、冷媒回路内の冷媒圧力(例えば、30kg
/cm2〜50kg/cm2)にて冷媒充填用閉鎖弁30
の弁棒33を図4の矢印のように押圧することになる。
このため、弁棒33を弾発部材36の付勢力に抗して弁
座35側へ押され、弁体34が弁座35に当接して弁閉
状態となる。これによって、充填された冷媒の流出が防
止される。
The confirmation of the refrigerant charge amount can be performed by detecting the increase amount of the product weight or the decrease amount of the refrigerant cylinder 42. In particular, for checking while operating, the charged amount is checked based on the reduced amount of the refrigerant cylinder 42. Further, there is a method of charging the refrigerant until a predetermined refrigeration cycle (high and low pressures, each part temperature is a predetermined value) is reached. When the charging step is completed, the refrigerant pressure in the refrigerant circuit (for example, 30 kg
/ Cm 2 to 50 kg / cm 2 )
Is pushed as shown by the arrow in FIG.
Therefore, the valve rod 33 is pushed toward the valve seat 35 against the urging force of the resilient member 36, and the valve body 34 comes into contact with the valve seat 35 to be in a valve closed state. This prevents the charged refrigerant from flowing out.

【0025】充填後は、高圧側圧力センサ19にて高圧
側の圧力を検出すると共に、圧力検出器43にて低圧側
の圧力を検出して、冷凍サイクルの検証するための運転
検査を行うことができる。すなわち、冷媒充填後、開閉
弁49及び開閉弁48を閉状態とすると共に、開閉弁5
0を開状態として、圧力検出器43にて圧力を測定し、
装置付帯の高圧側圧力センサ19の較正を行う。この場
合、圧力は温度により変化するので、温度を一定状態に
維持して行う必要がある。さらに、臨界温度以上では較
正できないので、温度は臨界温度以下で行うのが好まし
い。また、運転停止時の冷媒回路内の冷媒は、平衡状態
であるので圧力は温度により定まる。このため、上記の
ように、検査用圧力センサ(圧力検出器43)にて装置
付帯の圧力センサ(高圧側圧力センサ19)の較正が可
能である。その後、この図4に示すように、冷媒充填装
置40をこの冷媒充填用閉鎖弁30から取外せば、冷媒
充填、運転検査作業が終了する。
After the filling, the high-pressure side pressure sensor 19 detects the high-pressure side pressure, and the pressure detector 43 detects the low-pressure side pressure to perform an operation inspection for verifying the refrigeration cycle. Can be. That is, after the refrigerant is charged, the on-off valves 49 and 48 are closed and the on-off valves 5
With 0 as an open state, the pressure is measured by the pressure detector 43,
The high pressure side pressure sensor 19 attached to the device is calibrated. In this case, since the pressure changes with the temperature, it is necessary to maintain the temperature at a constant state. Further, since the calibration cannot be performed at a temperature higher than the critical temperature, the temperature is preferably performed at a temperature lower than the critical temperature. Further, since the refrigerant in the refrigerant circuit when the operation is stopped is in an equilibrium state, the pressure is determined by the temperature. Therefore, as described above, it is possible to calibrate the pressure sensor (high-pressure side pressure sensor 19) attached to the device with the inspection pressure sensor (pressure detector 43). Thereafter, as shown in FIG. 4, when the refrigerant charging device 40 is removed from the refrigerant charging closing valve 30, the refrigerant charging and operation inspection work are completed.

【0026】ところで、上記図1の冷媒回路が熱源ユニ
ットとして使用されるヒートポンブ式給湯装置は、図示
省略の貯湯タンクと、循環路51とを備え、この循環路
51に熱交換路52(上記凝縮器2にて構成している)
と図示省略の循環用ポンプとが介設される。そして、冷
媒回路に上記のような充填方法で冷媒を充填した状態に
おいて、圧縮機1を駆動させると共に、水循環用ポンプ
13を駆動(作動)させると、貯湯タンク3の底部に設
けた取水口10から貯溜水(温湯)が流出し、これが循
環路51の熱交換路52を流通する。そのときこの温湯
は水熱交換器である凝縮器2によって加熱され(沸上げ
られ)、給湯口11から貯湯タンク3の上部に返流され
る。このような動作を継続して行うことによって、貯湯
タンクに高温の温湯を貯湯することができる。なお、こ
の冷媒回路は、レシーバ3と液ガス熱交換器6とを備え
ているが、このレシーバ3は、冷媒回路の冷媒循環量を
適量に維持するためのものであり、液ガス熱交換器6
は、レシーバ3に充填する冷媒量を調整するためのもの
である。これにより、外気変動等があっても適切な冷凍
サイクルを維持することができる。さらに、第2通路6
bを通過する冷媒は、第1通路6aを通過する冷媒にて
加熱されるので、過熱ガスとなり、圧縮機1の湿り圧縮
を有効に防止することができる。
The heat pump type hot water supply apparatus in which the refrigerant circuit shown in FIG. 1 is used as a heat source unit includes a hot water storage tank (not shown) and a circulation path 51. 2)
And a circulation pump (not shown) are provided. When the compressor 1 is driven and the water circulation pump 13 is driven (operated) in a state where the refrigerant circuit is filled with the refrigerant by the above-described charging method, the water intake port 10 provided at the bottom of the hot water storage tank 3 is formed. From the storage water (hot water) flows out, and flows through the heat exchange path 52 of the circulation path 51. At this time, the hot water is heated (boiled) by the condenser 2 which is a water heat exchanger, and is returned from the hot water supply port 11 to an upper portion of the hot water storage tank 3. By continuously performing such an operation, high-temperature hot water can be stored in the hot water storage tank. The refrigerant circuit includes a receiver 3 and a liquid-gas heat exchanger 6. The receiver 3 is for maintaining an appropriate amount of refrigerant circulating in the refrigerant circuit. 6
Is for adjusting the amount of refrigerant to be charged into the receiver 3. Thereby, an appropriate refrigeration cycle can be maintained even if there is a fluctuation in the outside air. Further, the second passage 6
Since the refrigerant passing through b is heated by the refrigerant passing through the first passage 6a, the refrigerant becomes superheated gas, and wet compression of the compressor 1 can be effectively prevented.

【0027】また、冷媒回路の冷媒を回収(放出)する
必要が生じた場合には、図4に示すように、内部の冷媒
の圧力にて矢印のように押圧されて弁閉状態を維持して
いる弁棒33に、矢印と相反する方向に弁棒33の軸心
方向に沿って、外力を付与すれば、図3に示すように、
弁棒33が押圧されて弁開状態となる。弁開状態となれ
ば、配管37と配管38とが連通状態となって、冷媒回
路内の冷媒が放出される。この際、減圧機構4は全閉状
態とならないので、冷媒回路内の冷媒を確実に外部に放
出することができる。なお、弁開状態とするための外力
は、例えば、配管38を介して弁棒33を押圧すること
が可能な棒状体等の治具にて付与することができる。
When it is necessary to recover (discharge) the refrigerant in the refrigerant circuit, as shown in FIG. 4, the pressure of the internal refrigerant is pressed as indicated by an arrow to maintain the valve closed state. When an external force is applied to the valve stem 33 along the axial direction of the valve stem 33 in a direction opposite to the arrow, as shown in FIG.
The valve rod 33 is pressed to be in the valve open state. When the valve is in the open state, the pipe 37 and the pipe 38 are in communication with each other, and the refrigerant in the refrigerant circuit is discharged. At this time, since the pressure reducing mechanism 4 does not enter the fully closed state, the refrigerant in the refrigerant circuit can be reliably discharged to the outside. The external force for opening the valve can be applied, for example, with a jig such as a rod-shaped body capable of pressing the valve rod 33 through the pipe 38.

【0028】このように、この冷媒充填用閉鎖弁30を
使用すれば、簡単にしかも正確に適切な量の冷媒を冷媒
回路に充填することができ、しかも、冷媒充填用閉鎖弁
30の構造は簡単であり、安価に提供できる。また、こ
の充填された状態において、弁棒33を冷媒回路側へ押
圧すれば、弁開状態となって冷媒を放出することがで
き、冷媒回路からの冷媒の冷媒回収作業を簡単に行え
る。
As described above, the use of the refrigerant charging stop valve 30 makes it possible to simply and accurately fill an appropriate amount of refrigerant into the refrigerant circuit. Simple and inexpensive. In addition, when the valve rod 33 is pressed toward the refrigerant circuit in this filled state, the valve can be opened and the refrigerant can be discharged, so that the refrigerant can be easily recovered from the refrigerant circuit.

【0029】以上にこの発明の具体的な実施の形態につ
いて説明したが、この発明は上記形態に限定されるもの
ではなく、この発明の範囲内で種々変更して実施するこ
とができる。例えば、減圧機構4の全閉阻止機能Sとし
て、図2に示すような膨張弁20を使用する場合、溝2
5の数や大きさ等を、冷媒回路の膨張弁として機能する
範囲で変更でき、また、溝25を弁座24側に設けずに
弁体23側に設けたり、弁座24と弁体23との両方に
設けたりしてもよい。また、冷媒充填用閉鎖弁30の弾
発部材36としては、真空引き工程及び冷媒充填工程等
において弁閉状態となることを規制し、冷媒充填後にお
いて弁閉状態となることを許容することができる付勢力
を有するものであれば、図例のようなコイルスプリング
に限るものではなく、種々の弾性材を使用することがで
きる。なお、冷媒としては、二酸化炭素以外に、エチレ
ンやエタン、酸化窒素等の超臨界で使用する冷媒であっ
てもよい。また、連絡ポート15を設ける位置として
は、低圧側であればどこでもよい。
Although the specific embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and can be implemented with various modifications within the scope of the present invention. For example, when the expansion valve 20 as shown in FIG.
5 can be changed within a range that functions as an expansion valve of the refrigerant circuit. The groove 25 is not provided on the valve seat 24 side but is provided on the valve body 23 side. Or both. Further, as the resilient member 36 of the refrigerant charging closing valve 30, it is possible to restrict the valve closing state in the evacuation step, the refrigerant charging step, and the like, and to allow the valve closing state after the refrigerant charging. It is not limited to a coil spring as shown in the drawings as long as it has a biasing force that can be used, and various elastic materials can be used. The refrigerant may be a supercritical refrigerant such as ethylene, ethane, or nitrogen oxide, other than carbon dioxide. The position where the communication port 15 is provided may be anywhere on the low pressure side.

【0030】[0030]

【発明の効果】請求項1の冷媒回路によれば、減圧機構
が全閉状態とならず、冷媒充填装置にて冷媒充填作業を
行う際の真空ポンプによる真空引き工程において、冷媒
回路の冷媒配管全体を確実に減圧状態(真空状態)とす
ることができる。これにより、冷媒充填を簡単にしかも
確実に行うことができる。しかも、ポートとして、低圧
側に設けられる連絡ポートだけでよく、冷媒漏れを抑え
ることができる。これにより、冷媒漏れに起因する不良
の低減を図れて製品(冷媒回路)の信頼性が向上する。
According to the refrigerant circuit of the first aspect, the pressure reducing mechanism is not completely closed, and the refrigerant piping of the refrigerant circuit is used in the evacuation step by the vacuum pump when the refrigerant charging operation is performed by the refrigerant charging device. The whole can be reliably brought into a reduced pressure state (vacuum state). Thereby, the refrigerant can be easily and reliably charged. In addition, only a communication port provided on the low pressure side is required as a port, so that refrigerant leakage can be suppressed. As a result, defects due to refrigerant leakage are reduced, and the reliability of the product (refrigerant circuit) is improved.

【0031】請求項2の冷媒回路によれば、冷媒充填装
置が圧力検出器を有するものであれば、高圧側圧力セン
サによる高圧側の圧力の検出と共に、低圧側の圧力を検
出することができ、正確な運転検査を行うことができ
る。
According to the refrigerant circuit of the second aspect, if the refrigerant charging device has a pressure detector, the high pressure side pressure sensor can detect the high pressure side pressure and the low pressure side pressure can be detected. , Accurate driving inspection can be performed.

【0032】請求項3の運転検査方法によれば、連絡ポ
ートの圧力検出器による低圧側の圧力検出とともに、高
圧側圧力センサによる高圧側の圧力を検出することがで
き、正確な運転検査を行うことができる。また、減圧機
構が全閉状態となることがないので、安全性に優れ、安
心して作業を行うことができる。しかも、冷媒漏れを抑
えることができる。
According to the operation inspection method of the third aspect, the low-pressure side pressure can be detected by the pressure detector of the communication port and the high-pressure side pressure can be detected by the high-pressure side pressure sensor. be able to. In addition, since the pressure reducing mechanism is not completely closed, the safety is excellent and the operation can be performed with confidence. In addition, refrigerant leakage can be suppressed.

【0033】請求項4の冷媒充填方法によれば、簡単に
冷媒を充填することができ、しかも、充填する際、高圧
側圧力センサの較正を行うことができ、高圧側圧力セン
サの信頼度が高まり、規定量の冷媒を充填することがで
きる。しかも、冷媒漏れを抑えることができる。
According to the refrigerant charging method of the fourth aspect, the refrigerant can be easily filled, and at the time of charging, the high pressure side pressure sensor can be calibrated, and the reliability of the high pressure side pressure sensor is reduced. As the temperature increases, a specified amount of refrigerant can be charged. In addition, refrigerant leakage can be suppressed.

【0034】請求項5の冷媒充填用閉鎖弁によれば、冷
媒回路に冷媒を簡単にしかも確実に充填することができ
る。また、冷媒回路への冷媒充填が完了すれば、弁閉状
態となって冷媒の流出が防止され、冷媒不足となること
なく適切な冷凍サイクルを維持することができる。とこ
ろで、弁閉状態において、冷媒の圧力の抗して弁棒を開
状態となる方向に押圧すれば、開状態となってこの冷媒
回路の冷媒を放出することができ、冷媒回収作業を簡単
にしかも短時間に行うことができる利点がる。また、冷
媒充填用閉鎖弁としては単純な構造にて構成することが
可能であり、この冷媒充填用閉鎖弁を低コストにて提供
することができる。
According to the fifth aspect of the present invention, the refrigerant can be easily and reliably charged into the refrigerant circuit. In addition, when the charging of the refrigerant in the refrigerant circuit is completed, the valve is in a closed state, and the outflow of the refrigerant is prevented, so that an appropriate refrigeration cycle can be maintained without running out of the refrigerant. By the way, in the valve closed state, if the valve rod is pressed in the direction to be opened against the pressure of the refrigerant, the valve can be opened and the refrigerant in the refrigerant circuit can be discharged, thereby simplifying the refrigerant recovery operation. In addition, there is an advantage that it can be performed in a short time. Further, the refrigerant charging stop valve can be configured with a simple structure, and the refrigerant charging stop valve can be provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の冷媒回路の実施の形態を示す簡略図
である。
FIG. 1 is a simplified diagram showing an embodiment of a refrigerant circuit of the present invention.

【図2】上記冷媒回路の減圧機構の要部拡大断面図であ
る。
FIG. 2 is an enlarged sectional view of a main part of a pressure reducing mechanism of the refrigerant circuit.

【図3】この発明の冷媒充填用閉鎖弁の実施の形態を示
す簡略図である。
FIG. 3 is a simplified diagram showing an embodiment of a refrigerant charging stop valve according to the present invention.

【図4】上記冷媒充填後の冷媒充填用閉鎖弁の簡略図で
ある。
FIG. 4 is a simplified diagram of a refrigerant charging stop valve after the refrigerant charging.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 4 減圧機構 5 蒸発器 15 連絡ポート 19 高圧側圧力センサ 33 弁棒 36 弾発部材 40 冷媒充填装置 41 真空ポンプ 43 圧力検出器 S 全閉阻止機能 DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 4 Decompression mechanism 5 Evaporator 15 Communication port 19 High pressure side pressure sensor 33 Valve stem 36 Resilient member 40 Refrigerant filling device 41 Vacuum pump 43 Pressure detector S Fully closed prevention function

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F25B 1/00 304 F25B 1/00 304Z 395 395Z 13/00 371 13/00 371 30/02 30/02 F Continuation of the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F25B 1/00 304 F25B 1/00 304Z 395 395Z 13/00 371 13/00 371 30/02 30/02 F

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機(1)と凝縮器(2)と減圧機構
(4)と蒸発器(5)とを有すると共に、超臨界で使用
する超臨界冷媒を用いる冷媒回路であって、低圧側に、
真空ポンプ(41)を有する冷媒充填装置(40)等が
着脱自在に取付けられる連絡ポート(15)を設けると
共に、上記減圧機構(4)に全閉阻止機能(S)を付設
したことを特徴とする冷媒回路。
1. A refrigerant circuit comprising a compressor (1), a condenser (2), a decompression mechanism (4), and an evaporator (5), wherein the refrigerant circuit uses a supercritical refrigerant used in supercritical. Beside
A communication port (15) to which a refrigerant filling device (40) having a vacuum pump (41) and the like are detachably attached is provided, and a fully-closed preventing function (S) is provided to the pressure reducing mechanism (4). Refrigerant circuit.
【請求項2】 圧力検知素子からなる高圧側圧力センサ
(19)を設けたことを特徴とする請求項1の冷媒回
路。
2. The refrigerant circuit according to claim 1, further comprising a high pressure side pressure sensor (19) comprising a pressure sensing element.
【請求項3】 超臨界で使用する超臨界冷媒を用いる冷
媒回路の運転検査方法であって、上記冷媒回路に全閉阻
止機能(S)を有する減圧機構(4)を使用し、低圧側
に設けられる連絡ポート(15)に、取外可能として圧
力検出器(43)を取付け、この圧力検出器(43)に
よる低圧側の圧力の測定に加えて、圧力検知素子からな
る高圧側圧力センサ(19)による高圧側の圧力測定を
行うことを特徴とする運転検査方法。
3. A method for inspecting the operation of a refrigerant circuit using a supercritical refrigerant used in a supercritical state, wherein a pressure reducing mechanism (4) having a fully closed prevention function (S) is used in the refrigerant circuit, A pressure detector (43) is detachably attached to the communication port (15) provided. In addition to the measurement of the pressure on the low pressure side by the pressure detector (43), the high pressure side pressure sensor ( An operation inspection method characterized by performing the pressure measurement on the high pressure side according to 19).
【請求項4】 超臨界で使用する超臨界冷媒を用いる冷
媒回路にこの超臨界冷媒を充填する冷媒充填方法であっ
て、上記冷媒回路に全閉阻止機能(S)を有する減圧機
構(4)を使用し、低圧側に設けられる連絡ポート(1
5)を介して上記冷媒回路を真空状態とした後、高圧側
圧力センサ(19)の較正を行いつつ、上記連絡ポート
(15)から冷媒を充填することを特徴とする冷媒充填
方法。
4. A refrigerant charging method for charging a supercritical refrigerant into a refrigerant circuit using a supercritical refrigerant used in supercritical mode, wherein the refrigerant circuit has a fully-closed preventing function (S). The communication port (1
5) A refrigerant charging method, wherein the refrigerant circuit is evacuated via 5), and then the refrigerant is charged from the communication port (15) while calibrating the high pressure side pressure sensor (19).
【請求項5】 超臨界で使用する超臨界冷媒を用いる冷
媒回路にこの超臨界冷媒を充填するための冷媒充填用閉
鎖弁であって、軸心方向の往復動が可能な弁棒(33)
と、この弁棒(33)を一軸心方向に押圧して弁開状態
を維持する弾性部材(36)とを備えると共に、低圧側
に取付けられて、弁開状態では、上記冷媒回路の真空引
きを許容すると共に、その真空状態で冷媒回路への冷媒
充填を可能とし、冷媒充填完了で冷媒回路内の冷媒の圧
力にて弁棒(33)が弾性部材(36)の付勢力に抗し
て押圧されて弁閉状態となって、冷媒の流出を防止する
ことを特徴とする冷媒充填用閉鎖弁。
5. A shut-off valve for charging a supercritical refrigerant in a refrigerant circuit using a supercritical refrigerant used in a supercritical state, wherein the valve stem is capable of reciprocating in an axial direction.
And an elastic member (36) that presses the valve rod (33) in one axial direction to maintain the valve open state, and is attached to the low pressure side. In addition to allowing the pulling, the refrigerant circuit can be charged with the refrigerant in the vacuum state, and the valve rod (33) resists the urging force of the elastic member (36) by the pressure of the refrigerant in the refrigerant circuit when the refrigerant charging is completed. A refrigerant-filling shut-off valve, which is pressed to be in a valve-closed state to prevent refrigerant from flowing out.
JP2001178464A 2001-06-13 2001-06-13 Refrigerant circuit, its operation checking method, method for filling refrigerant, and closing valve for filling refrigerant Pending JP2002372346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001178464A JP2002372346A (en) 2001-06-13 2001-06-13 Refrigerant circuit, its operation checking method, method for filling refrigerant, and closing valve for filling refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001178464A JP2002372346A (en) 2001-06-13 2001-06-13 Refrigerant circuit, its operation checking method, method for filling refrigerant, and closing valve for filling refrigerant

Publications (1)

Publication Number Publication Date
JP2002372346A true JP2002372346A (en) 2002-12-26

Family

ID=19019161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001178464A Pending JP2002372346A (en) 2001-06-13 2001-06-13 Refrigerant circuit, its operation checking method, method for filling refrigerant, and closing valve for filling refrigerant

Country Status (1)

Country Link
JP (1) JP2002372346A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028542A (en) * 2001-07-16 2003-01-29 Daikin Ind Ltd Refrigeration unit
JP2006207925A (en) * 2005-01-28 2006-08-10 Showa Tansan Co Ltd Carbon dioxide gas filling device
JP2007127326A (en) * 2005-11-02 2007-05-24 Yanmar Co Ltd Engine drive type heat pump comprising refrigerant filling circuit
JP2007187387A (en) * 2006-01-13 2007-07-26 Daikin Ind Ltd Refrigeration device and construction method for refrigeration device
JP2008025924A (en) * 2006-07-21 2008-02-07 Daikin Ind Ltd Refrigerant filling method in refrigerating device using carbon dioxide as refrigerant
JP2008241072A (en) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp Refrigerating cycle device
JP2008261563A (en) * 2007-04-12 2008-10-30 Mitsubishi Electric Corp Refrigerant circuit
JP2008298341A (en) * 2007-05-30 2008-12-11 Daikin Ind Ltd Air conditioner
JP2009243882A (en) * 2009-07-31 2009-10-22 Daikin Ind Ltd Refrigerant filling method in refrigeration device using carbon dioxide as refrigerant
JP2009287909A (en) * 2008-06-02 2009-12-10 Mitsubishi Electric Corp Method for manufacturing heat pump water heater, refrigerant circuit of heat pump water heater, and heat pump water heater
JP2010002101A (en) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp Refrigerating cycle device, and refrigerant filling method and refrigerant recovering method for refrigerating cycle device
KR100951934B1 (en) 2007-12-17 2010-04-09 삼성전자서비스 주식회사 Auto vacuum type refrigerants injecting device
JP2013044490A (en) * 2011-08-25 2013-03-04 Miura Co Ltd Refrigerant charging device and refrigerant charging method
CN113513815A (en) * 2021-04-12 2021-10-19 格力电器(合肥)有限公司 Air conditioner medium conveying method, device and system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346358A (en) * 1986-08-13 1988-02-27 三菱重工業株式会社 Method of diagnosing trouble of pressure sensor in refrigerator
JPH04327768A (en) * 1991-04-26 1992-11-17 Mitsubishi Electric Corp Air conditioner
JPH05340479A (en) * 1992-06-09 1993-12-21 Saginomiya Seisakusho Inc Machining method for valve seat cut groove of expansion valve
JPH08291876A (en) * 1995-04-20 1996-11-05 Sanyo Electric Co Ltd Three way valve for refrigerant
JPH08313120A (en) * 1995-05-15 1996-11-29 Matsushita Electric Ind Co Ltd Three-constituent mixture refrigerant filling device and filling method
JPH0921471A (en) * 1995-07-06 1997-01-21 Toyota Motor Corp Check valve
JPH09310769A (en) * 1996-05-24 1997-12-02 Ito Koki Kk Mechanism for preventing reverse flow of lpg
JPH1047799A (en) * 1996-07-26 1998-02-20 Toshiba Corp Freezing cycle device
JPH1151514A (en) * 1997-07-30 1999-02-26 Hitachi Ltd Air conditioner
JPH11153370A (en) * 1997-07-02 1999-06-08 Ford Global Technol Inc Air-conditioning system for vehicle
JP2001021238A (en) * 1999-07-02 2001-01-26 Denso Corp Charge valve
JP2001041611A (en) * 1999-08-03 2001-02-16 Hitachi Ltd Air conditioner

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346358A (en) * 1986-08-13 1988-02-27 三菱重工業株式会社 Method of diagnosing trouble of pressure sensor in refrigerator
JPH04327768A (en) * 1991-04-26 1992-11-17 Mitsubishi Electric Corp Air conditioner
JPH05340479A (en) * 1992-06-09 1993-12-21 Saginomiya Seisakusho Inc Machining method for valve seat cut groove of expansion valve
JPH08291876A (en) * 1995-04-20 1996-11-05 Sanyo Electric Co Ltd Three way valve for refrigerant
JPH08313120A (en) * 1995-05-15 1996-11-29 Matsushita Electric Ind Co Ltd Three-constituent mixture refrigerant filling device and filling method
JPH0921471A (en) * 1995-07-06 1997-01-21 Toyota Motor Corp Check valve
JPH09310769A (en) * 1996-05-24 1997-12-02 Ito Koki Kk Mechanism for preventing reverse flow of lpg
JPH1047799A (en) * 1996-07-26 1998-02-20 Toshiba Corp Freezing cycle device
JPH11153370A (en) * 1997-07-02 1999-06-08 Ford Global Technol Inc Air-conditioning system for vehicle
JPH1151514A (en) * 1997-07-30 1999-02-26 Hitachi Ltd Air conditioner
JP2001021238A (en) * 1999-07-02 2001-01-26 Denso Corp Charge valve
JP2001041611A (en) * 1999-08-03 2001-02-16 Hitachi Ltd Air conditioner

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028542A (en) * 2001-07-16 2003-01-29 Daikin Ind Ltd Refrigeration unit
JP2006207925A (en) * 2005-01-28 2006-08-10 Showa Tansan Co Ltd Carbon dioxide gas filling device
JP2007127326A (en) * 2005-11-02 2007-05-24 Yanmar Co Ltd Engine drive type heat pump comprising refrigerant filling circuit
JP2007187387A (en) * 2006-01-13 2007-07-26 Daikin Ind Ltd Refrigeration device and construction method for refrigeration device
US8479526B2 (en) 2006-07-21 2013-07-09 Daikin Industries, Ltd. Refrigerant charging method for refrigeration device having carbon dioxide as refrigerant
JP2008025924A (en) * 2006-07-21 2008-02-07 Daikin Ind Ltd Refrigerant filling method in refrigerating device using carbon dioxide as refrigerant
US9869498B2 (en) 2006-07-21 2018-01-16 Daikin Industries, Ltd. Refrigerant charging method for refrigeration device having carbon dioxide as refrigerant
JP2008241072A (en) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp Refrigerating cycle device
JP2008261563A (en) * 2007-04-12 2008-10-30 Mitsubishi Electric Corp Refrigerant circuit
WO2008149767A1 (en) * 2007-05-30 2008-12-11 Daikin Industries, Ltd. Air conditioner
US8899056B2 (en) 2007-05-30 2014-12-02 Daikin Industries, Ltd. Air conditioner
JP2008298341A (en) * 2007-05-30 2008-12-11 Daikin Ind Ltd Air conditioner
KR100951934B1 (en) 2007-12-17 2010-04-09 삼성전자서비스 주식회사 Auto vacuum type refrigerants injecting device
JP2009287909A (en) * 2008-06-02 2009-12-10 Mitsubishi Electric Corp Method for manufacturing heat pump water heater, refrigerant circuit of heat pump water heater, and heat pump water heater
JP2010002101A (en) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp Refrigerating cycle device, and refrigerant filling method and refrigerant recovering method for refrigerating cycle device
JP2009243882A (en) * 2009-07-31 2009-10-22 Daikin Ind Ltd Refrigerant filling method in refrigeration device using carbon dioxide as refrigerant
JP2013044490A (en) * 2011-08-25 2013-03-04 Miura Co Ltd Refrigerant charging device and refrigerant charging method
CN113513815A (en) * 2021-04-12 2021-10-19 格力电器(合肥)有限公司 Air conditioner medium conveying method, device and system

Similar Documents

Publication Publication Date Title
JP2002372346A (en) Refrigerant circuit, its operation checking method, method for filling refrigerant, and closing valve for filling refrigerant
DK2491317T3 (en) OPERATING COOLANT Vapor Compression System
US10753660B2 (en) Air-conditioning apparatus
JP2002286333A (en) Freezing apparatus
JP2002195705A (en) Supercritical refrigerating cycle
CN106796071B (en) Method and system for estimating refrigerant charge loss in RVCS systems
KR102551284B1 (en) Refrigerator low pressure piping blockage inspection method
KR102551286B1 (en) Refrigerator low pressure piping blockage inspection method
KR102551281B1 (en) Refrigerator high pressure pipe blockage inspection method
KR102569930B1 (en) Refrigerator Refrigeration Cycle Inspection Method
JPH04103975A (en) Refrigerant recovering and filling device
EP1445551A1 (en) Freezer
JP6785974B2 (en) Air conditioner
EP3404345B1 (en) Refrigeration cycle device
US11781936B2 (en) Airtightness evaluation device
JP6008416B2 (en) Refrigeration apparatus and refrigerant leakage detection method for refrigeration apparatus
JP2003148819A (en) Refrigerant circuit
EP2801772B1 (en) Refrigeration device and method for detecting filling of wrong refrigerant
JP2009133795A (en) Leakage test method for built-in expansion valve
JPH055581A (en) Refrigerant recovering and charging apparatus
JP3882120B2 (en) Refrigeration cycle apparatus and failure diagnosis method thereof
WO2023032126A1 (en) Differential pressure sensor and refrigeration cycle device equipped with differential pressure sensor
WO2024009394A1 (en) Air conditioner and refrigerant leak detection method
US11788781B2 (en) Refrigeration device and method for determining amount of refrigerant in refrigeration device
KR102551288B1 (en) Communication and function inspection method for refrigerator parts during refrigerator vacuum inspection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110920