JP2004250907A - Sole plate construction method of underground structure - Google Patents

Sole plate construction method of underground structure Download PDF

Info

Publication number
JP2004250907A
JP2004250907A JP2003040044A JP2003040044A JP2004250907A JP 2004250907 A JP2004250907 A JP 2004250907A JP 2003040044 A JP2003040044 A JP 2003040044A JP 2003040044 A JP2003040044 A JP 2003040044A JP 2004250907 A JP2004250907 A JP 2004250907A
Authority
JP
Japan
Prior art keywords
compartment
bottom plate
partition wall
atmospheric pressure
underground structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003040044A
Other languages
Japanese (ja)
Other versions
JP3746274B2 (en
Inventor
Yoshinori Hasegawa
壬則 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Kako Kensetsu Co Ltd
Original Assignee
Yamaha Kako Kensetsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Kako Kensetsu Co Ltd filed Critical Yamaha Kako Kensetsu Co Ltd
Priority to JP2003040044A priority Critical patent/JP3746274B2/en
Publication of JP2004250907A publication Critical patent/JP2004250907A/en
Application granted granted Critical
Publication of JP3746274B2 publication Critical patent/JP3746274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To thin a sole plate of an open caisson which is constructed under the surface of water, and to ensure quality stability and reliability of the sole plate as well. <P>SOLUTION: A first section room 9 having a bottom opening of a short span and a second section room 11 adjacent to the first section room through a partition wall 5 and having a bottom opening of a long span are formed in the ground. Then, a first sole plate 13 is formed in the first section room 9, and water inside thereof is drained out. A cylinder body 15 is placed in the second section room 11, and an underwater concrete is supplied to the second section room 11 to construct a second sole plate 21. After that, an opening section 23 is made in the partition wall 5, a hollow section 15a of the cylinder body 15 is connected to the first section room 9 through the opening section, and the hollow section 15a of the cylinder body 11 is used for an atmospheric space. Reinforcing work of the second sole plate 21 is carried out in the atmospheric space. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、地中に沈設した地中構造物の底盤築造方法に関し、特に水底又は地下水面下に根入れされる地下構造物の底盤築造方法として有益なものである。
【0002】
【従来の技術】
水底又は地下水面下の湧水地層中に護岸、橋脚、立杭等の建設物を構築する際には、ケーソン工法が多用されている。このケーソン工法は、一般にニューマチックケーソン工法とオープンケーソン工法に大別され、このうちニューマチックケーソン工法は、地盤を深く掘削する場合に障害となる地下水の湧水を、各深度の水圧に相当する空気圧力でおさえてケーソンを沈設する工法である。一方、オープンケーソン工法は、圧縮空気を使わずに大気圧下でケーソンを掘削沈埋する工法である。
【0003】
ニューマチックケーソン工法では、閉鎖された高気圧下の作業室内に作業員が入って作業を行う必要があるため、潜函病予防のための作業時間制限により、作業能率が低下すること、機械設備が大型化することなどの問題がある。特に近年求められる地中構造物の大深度化に伴い、これらの問題がより顕在化する傾向にある。
【0004】
一方、オープンケーソン工法は、大気圧下での作業となるため、この種の問題点は全て回避することができる。しかしながら、オープンケーソン工法では、地下水の湧水等により、実体内部が水で満たされて溶接が困難となるため、実体底部を封口する底盤を有筋コンクリートとすることは難しく、水中コンクリートによる無筋コンクリート造りとせざるを得ない場合が多い。この場合、コンクリートの打設状況等を作業者が直接目視確認できないことから、底盤の品質や信頼性を確保することが難しくなる。また、底盤強度確保のために底盤厚さを増厚する必要があり、地下空間の利用率の低下、これを補うためのさらなる大深度化を要し、コストの高騰を招く。特に地下数十〜数百mに達するような大深度下では、揚圧力の増大に対応して底盤厚さをさらに厚くする必要があるため、これらの弊害がより一層顕著なものとなる。
【0005】
オープンケーソンの底盤強化を図った提案として、例えば特開平11−181783号公報記載のものがある。これは、予めケーソン実体の設置底面地盤領域に対して、鋼棒、鋼管、鋼芯モルタルパイル等の地盤補強材を埋設するものである。しかしながら、この工法でも、底盤自体は水中コンクリートからなる無筋状態であることは変わりなく、底盤の品質安定性や信頼性が懸念される。
【0006】
【特許文献1】
特開平11−181783号公報
【0007】
【発明が解決しようとする課題】
以上の点に鑑み、本発明では、底盤の築造が水面下で行われる地中構造物、例えばオープンケーソンの底盤を薄肉化し、併せて底盤の品質安定性や信頼性を確保することを目的とする。
【0008】
【課題を解決するための手段】
上記目的の達成のため、本発明にかかる地下構造物の底盤築造方法は、▲1▼短スパンの底部開口を水面下に有する第一区画室と、第一区画室と仕切り壁を介して隣接し、長スパンの底部開口を水面下に有する第二区画室とを形成する工程と、▲2▼第一区画室に第一底盤を形成した後、当該室内を排水する工程と、▲3▼第二区画室の水面下に、排水後の第一区画室と連通する大気圧空間を形成する工程と、▲4▼第二区画室に水中コンクリートを供給して第二底盤を築造する工程と、▲5▼上記大気圧空間で第二底盤の補強作業を行う工程とを含むものである。なお、各工程の施工順序は、▲1▼→▲2▼→▲3▼→▲4▼→▲5▼の順に限らず、必要に応じて任意に変更することができる。
【0009】
二つの区画室のうち、短スパンの第一区画室に形成する第一底盤は、短スパンであるが故に底盤に作用する揚圧力が小さく、従って、仮に無筋コンクリートで築造するとしても、その厚さは薄いもので足りる。
【0010】
一方、第二区画室の第二底盤には長スパンであるが故に大きな揚圧力が作用するが、上記のように本発明では、第二底盤の補強作業を行っているため、無筋コンクリートに比べて底盤厚さを大幅に減じることができる。
【0011】
以上から、本発明によれば、地下構造物の全体で底盤の薄肉化を図ることができる。
【0012】
また、本発明では、第二底盤の補強作業が大気圧空間で行われるため、作業者が現場で直接施工状況を目視確認することができ、底盤の品質や信頼性の向上を図ることができる。
【0013】
第一区画室と大気圧空間との連通は、例えば仕切り壁に設けた開口部を介して行うことができる。
【0014】
上記大気圧空間は、例えば第二区画室に配置した筒体の内空部に形成することができる。この場合、筒体内部に底盤補強用の底盤強化材を配置する他、筒体を剛性材料で形成することにより、筒体そのものを底盤強化材として使用することも可能となる。
【0015】
第二底盤の補強作業としては、例えば、大気圧空間に配置された底盤強化材を地中構造物に結合する工程を含むものが考えられる。底盤の補強作業としては、少なくともこの工程が含まれていれば足り、これ以外の工程、例えば大気圧空間に底盤強化材を配置したり、あるいはコンクリートを打設する等の工程を併行して行ってもよい。なお、底盤強化材としては、例えば有筋コンクリート(鉄筋あるいは鉄骨、またはその組み合わせを内在したコンクリート)が好ましく、これにより大気コンクリートを用いた底盤補強が可能となる。
【0016】
【発明の実施の形態】
以下、本発明にかかる地中構造物の底盤築造方法の一実施形態を図1〜図12に基づいて説明する。ここでいう「地中構造物」は、その一部または全部が根入れされる構造物をいう。構造物の種類や用途は特に問わず、ケーソンの他、鋼板セルや鋼管などで製作されたものも含まれる。以下の説明では、地下構造物として、オープンケーソンを例に挙げて説明する。
【0017】
図1および図2に示すように、本発明で使用するケーソン実体1は、上下を開口させた筒状、例えば円筒状をなし、本壁3の内側に、一又は複数の仕切り壁5を配置した多重壁構造をなしている(図示例は、本壁3の内側に一つの仕切り壁5を配置した二重壁構造である)。本壁3は、鉄筋コンクリート等の剛体材料で形成され、その下端部には外側刃口部3aが形成されている。仕切り壁5は、その下端に形成された内側刃口部5aと、刃口部5a上に設置された壁体部5bとで構成される。壁体部5bは、例えば鋼矢板等からなり、内側刃口部5aに対して着脱自在に取り付けられている。内側刃口部5aは、その外側の円周方向複数箇所に配した連結部7を介して外側刃口3と連結され、これにより仕切り壁5がケーソン実体1と強固に結合されている(なお、図3〜図9では連結部7の図示を省略している)。以上の構成から、本壁3と仕切り壁5との間に、底部開口を短スパンL1とした第一区画室9が形成され、仕切り壁5の内側に、底部開口を上記スパンL1よりも長スパンL2とした第二区画室11が形成される(L2>L1)。
【0018】
このケーソン実体1は、第一区画室9の地盤を掘削することによって地中に沈設される。この時の沈下力は、自重のみに頼る他、必要に応じて油圧ジャッキ等による圧入力を併用することもできる。また、ケーソン実体1は、その全体を地上で構築してから地中に沈下させる他、沈下させた量だけ躯体1を地上で継ぎ足し、これを繰り返すという手順で沈設することもできる。ケーソン実体1が水面下の所定深さまで沈下したところで、仕切り壁5内側の第二区画室11の地盤を掘削する。これにより、図1に示すように、第一区画室9および第二区画室11がそれぞれ水(地下水や海水等)で満たされる。
【0019】
次に図3に示すように、第一区画室9に水中コンクリートを供給して底盤13(第一底盤)を築造する。この第一底盤13は、鉄筋等の補強材のない無筋コンクリートとなるが、上記の通り第一区画室9はその底部開口が短スパンL1であるので、極端な増厚は不要であり、薄肉であっても十分に揚圧力に対抗することができる。第一底盤13の築造後、図4に示すように、第一区画室9内の水をポンプ等で排水して第一区画室9を大気圧領域とする。
【0020】
次に図5に示すように、第二区画室9の底部にその底部開口を横断する筒体15を配置する。この筒体15は、後述するコンクリート打設時の型枠となるもので、コンクリート型枠として好適な材料、例えば木材や樹脂材等で形成され、例えばクレーン等を用いて第二区画室9内の所定位置に吊り降ろされる。
【0021】
この筒体15の長さは、その両端が対向する仕切り壁5の内面(図示例では内側刃口部5aの内面)と密着もしくは水中コンクリート漏れを抑制できる程度に近接する長さに設定する。また、上下方向では、少なくとも筒体15の両端が第一底盤13よりも上方となるように設置する。この場合、筒体15を所定位置に確実に設置できるよう、図10(a)(b)に示すように、筒体15の端部に対向する仕切り壁5の内面(本実施形態では内側刃口部5aの内面)に切欠き17を形成し、この切欠き17に筒体15の両端を嵌合する構造とするのが望ましい。また、筒体15の両端部は、第二区画室11に沈める際の内空部15aへの水の進入を防止するため、着脱容易な蓋体19で密閉しておくのが望ましい。
【0022】
次に、筒体15の位置・姿勢を保持しながら、図6に示すように、第二区画室11に水中コンクリートを供給して養生・固化させ、筒体15を内在した第二底盤21を築造する。
【0023】
次に、図7に示すように、大気圧領域である第一区画室9から、筒体15の両端位置に対応した仕切り壁5(本実施形態では、内側刃口部5a)に開口部23を設け(さらに筒体15両端部を蓋体19で封口している場合は、この蓋体19を取り外す)、筒体15の内空部15aを、開口部23を介して第一区画室9と連通させる。これにより、筒体15の内空部15aが作業員の自由に出入りできる大気圧空間となるので、この大気圧空間に鉄筋や鉄骨等からなる補強部材24を適宜配置し、その両端を適宜の手段で実体1(例えば内側刃口部5a)に強固に結合する。併せて筒体15を除去し、第二底盤21内部に筒体15の形状に対応した空洞を形成する。
【0024】
なお、大気圧空間の補強部材24は、地上で予め筒体15の内空部15aに組み込むこともできる。この場合、大気圧空間では、補強部材24を実体に結合する作業、およびコンクリートの打設作業のみを行えばよく、作業能率の向上を図ることができる。
【0025】
以上の作業が完了したところで、第一区画室9から開口部23を介して上記空洞にコンクリート(散点模様で示す)を打設し、これを養生固化させる。これにより、第二底盤21がRC造りあるいはSRC造りの底盤強化材25を内在した有筋構造となる。さらに図8に示すように、仕切り壁5の開口部23をコンクリート等で封口する(この封口作業で補強部材24の両端を刃口部5aに結合することもできる)。
【0026】
その後、第二区画室11内を排水し、さらに仕切り壁5の壁体部5bを撤去することにより、図9に示すように、実体の底部開口を厚さの異なる二種類の底盤13,27で封口した地下空間が形成される。この場合、第二底盤21は、少なくとも底盤強化材25の厚み分以上の分だけ第一底盤27よりも厚肉となり、第一底盤13と第二底盤21との間に段差Hが形成される。なお、この排水および壁体部5bの撤去作業は、第二区画室11に第二底盤21を築造し、第二区画室11を地盤と分離した後(図6に示す段階)であれば、何時でも行うことができる。
【0027】
以上のように本発明では、強度的弱点となる長スパンの第二区画室11の第二底盤21が、底盤強化材25を内在させた有筋コンクリートとして形成されるので、従来の無筋コンクリート製底盤に比べて底盤厚さを大幅に薄くすることができる。従って、地下空間利用率の向上を達成すると同時に、地下空間確保のための大深度化が不要となり、施工コストの低減化が可能となる。
【0028】
また、第二区画室11内に、開口部23を介して第一区画室9と連通させた大気圧空間を形成しているので、底盤強化材25の第二区画室11内への設置作業、あるいは底盤強化材25の実体への結合作業を大気圧下で行うことができる。従って、これらの作業を作業者が直接目視確認しながら行うことができ、底盤品質の安定化や信頼性の向上を図ることができる。
【0029】
本発明方法による施工に際しては、以上の説明に限定されることなく、必要に応じて実施形態を変更することができる。例えば、底盤強化材25の設置個所は、一箇所に限られず、第二区画室11の底部開口の複数箇所とすることができる。また、底盤強化材25の形状も任意で、図示のような棒状とする他、複数の底盤強化材を平面的にあるいは立体的に組み上げてユニット化した形状(例えば星型等)とすることもできる。
【0030】
また、上記説明では、仕切り壁5の壁体部5aを第二底盤5bの築造後に撤去しているが、これを撤去させること無く存置させることもできる。この場合、仕切り壁5は、刃口部5aと壁体部5bの一体構造とすることができる。
【0031】
さらに、上記説明では筒体15を型枠としてのみ利用し、第二底盤21の築造後にこれを撤去しているが、筒体15を鋼管や鋼製箱等の中空の剛性材料で形成することにより、底盤強化材そのものとして使用し、これを第二底盤21中に存置させることもできる。この場合、筒体15の内空部は、空間のままでも良いが、これに鉄筋コンクリート等を充填することにより、さらに底盤強度を向上させることができる。また、筒体15と、その外側に配置した鉄筋等の補強部材とをユニット化したものを底盤強化材として使用することもできる。
【0032】
また、上記説明では、水中コンクリートで第二底盤21を築造してから大気圧空間にて底盤の補強作業を行う場合を例示しているが、この手順以外にも、例えば第一区画室9の排水後、仕切り壁5に開口部23を形成して第二区画室11底部に大気圧空間を形成し、底盤強化材25を構築してから、第二区画室11に水中コンクリートを供給して第二底盤21を築造することもできる。
【0033】
また、以上の説明では一つの第二区画室11を有する地下構造物を例示しているが、長短スパンの底部開口を有する第一区画室9と第二区画室11とが仕切り壁5を介して複数段以上に連続している場合には、上記施工手順を繰り返すことにより、第一底盤13と第二底盤21で交互に区画された広大な連続地下空間を形成することができる。この場合、第一区画室9や第二区画室11はケーソン実体の内部に形成する必要は必ずしもなく、図11に示すように、隣接するケーソン実体1、1の対向壁面に挟まれた空間をこれら区画室として使用することもできる。ちなみに図11は、一方のケーソン実体1の本壁3と他方のケーソン実体1の本壁3とで挟まれた空間を第二区画室11’とし、この第二区画室11’の底部に上記と同様の手順で底盤強化材(図示省略)で補強された第二底盤21’を築造する例を示すものである。なお、この場合、第二底盤21’の築造中は、対向する本壁3、3が上記仕切り壁5としての役割を果たすことになる。その他、両区画室9、11は、一つの刃口部3aのみを有する単壁ケーソンを二以上組合わせることによっても形成することができる。
【0034】
また、上記施工手順は、薄肉の第一底盤13と厚肉の第二底盤21とが交互に設置される場合のみならず、底盤厚さが階段状に増していくような連続底盤を築造する場合にも同様に適用することができる。
【0035】
図12に本発明の他の実施形態を示す。この実施形態は、形状を異にする第一実体1と第二実体10とで地下空間を形成する例である。
【0036】
この実施形態においては、先ず第一実体1を所定深さまで沈設する。第一実体1は、本壁3と、本壁3から離隔する方向に順次配設された仕切り壁5および中間刃口部31とを備えるもので、本壁3と仕切り壁5の間に第一区画室9が形成され、仕切り壁5と中間刃口部31との間に第二区画室11が形成されている。本壁3と仕切り壁5は連結部7を介して結合され、さらに中間刃口部31も図示しない連結部を介して本壁3と結合されている。この第一実体1を所定深さまで沈設した後、上記実施形態と同様の手順で、第一区画室9の第一底盤13と、底盤強化材25を内在した第二底盤21とを築造する。
【0037】
次に、中間刃口部31から所定ピッチ離隔させて第二実体10を沈設する。この第二実体10は、本壁3’と、本壁3’の内側に配置した仕切り壁5’とを具備するもので、仕切り壁5’の刃口部5a’は連結部7を介して本壁3’に結合されている。この場合、本壁3’と仕切り壁5’の間に第一区画室9’が形成され、仕切り壁5’と中間刃口部31の間に第二区画室11’が形成される。
【0038】
第二実体10の沈設後、上記実施形態と同様に第一区画室9’に第一底盤13’を築造し、当該室内を排水する。その後、同様の手順で第二底盤21’の底盤補強を行い、底盤強化材25’を内在した第二底盤21’を築造する。この際、大気圧空間を利用して底盤強化材25’を中間刃口部31にも連結し、両実体1、10を一体化する。
【0039】
これにより第一実体1および第二実体10が剛体結合され、これらの実体1、10の内側に地下空間が形成される。第一実体1および第二実体10を予め一体形成したケーソンとした場合、一つの実体に刃口部が多数存在するため、沈下抵抗が過大となって沈設が困難となるが、このように両実体1、10を独立構造としてそれぞれ別個に沈設作業を行い、その後大気圧空間を利用して両者を結合する手順をとることにより、広大な地下空間を有する地下構造物を容易に築造することが可能となる。
【0040】
なお、第二実体10の沈設時に予めその設置域を掘削しておけば、第二実体10をクレーン等で吊り降ろして据え付けることができ、第二実体10をその内側地盤を掘削して沈下させる場合に比べ、施工手順を簡略化することができる。この場合、底盤強化材25’を設置するための筒体を予め地上で第二実体10に連結しておくこともでき、これにより施工手順をさらに簡略化することができる。
【0041】
【発明の効果】
以上のように本発明によれば、地中構造物の底盤を薄肉化することができ、かつ高い品質および信頼性を有する底盤を築造することが可能となる。
【図面の簡単な説明】
【図1】本発明にかかる底盤築造方法の工程を示す縦断面図である。
【図2】本発明で使用する地中構造物の横断面図である。
【図3】本発明にかかる底盤築造方法の工程を示す縦断面図である。
【図4】本発明にかかる底盤築造方法の工程を示す縦断面図である。
【図5】本発明にかかる底盤築造方法の工程を示す縦断面図である。
【図6】本発明にかかる底盤築造方法の工程を示す縦断面図である。
【図7】本発明にかかる底盤築造方法の工程を示す縦断面図である。
【図8】本発明にかかる底盤築造方法の工程を示す縦断面図である。
【図9】本発明にかかる底盤築造方法の工程を示す縦断面図である。
【図10】筒体と切欠きの嵌合状態を示す横断面図(a)、および縦断面図(b)である。
【図11】連続した底盤の築造状態を示す縦断面図である。
【図12】本発明方法の他の実施形態を示す縦断面図である。
【符号の説明】
1 ケーソン実体
3 本壁
3a 刃口部
5 仕切り壁
5a 刃口部
5b 壁体部
7 連結部
9 第一区画室
11 第二区画室
13 第一底盤
15 筒体
15a 内空部
17 切欠き
19 蓋体
21 第二底盤
23 開口部
24 補強部材
25 底盤強化材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for constructing a bottom plate of an underground structure submerged in the ground, and is particularly useful as a method for building a bottom plate of an underground structure that is rooted under a water bottom or a groundwater surface.
[0002]
[Prior art]
The caisson method is often used when constructing revetments, piers, vertical piles, and other structures in the spring formations below the bottom of the water or groundwater. This caisson method is generally divided into a pneumatic caisson method and an open caisson method. Of these, the pneumatic caisson method is equivalent to the water pressure at each depth, which is the groundwater spring that becomes an obstacle when deeply excavating the ground. It is a construction method in which caisson is sunk by air pressure. On the other hand, the open caisson method is a method in which caisson is excavated and submerged under atmospheric pressure without using compressed air.
[0003]
The pneumatic caisson method requires workers to enter a closed high-pressure working room, which reduces work efficiency due to work time limitations to prevent latent illnesses and increases the size of machinery and equipment. There is a problem such as. In particular, as the depth of underground structures required in recent years increases, these problems tend to become more apparent.
[0004]
On the other hand, since the open caisson method is an operation under atmospheric pressure, all of these types of problems can be avoided. However, in the open caisson method, due to groundwater springs and the like, the inside of the entity is filled with water and welding becomes difficult, so it is difficult to make the bottom plate that seals the bottom of the entity into reinforced concrete, In many cases, it must be made of concrete. In this case, it is difficult to ensure the quality and reliability of the bottom board because the operator cannot directly confirm the concrete placement condition or the like. In addition, it is necessary to increase the thickness of the bottom plate in order to ensure the strength of the bottom plate, and it is necessary to reduce the utilization rate of the underground space and to further increase the depth to make up for this. In particular, under a large depth reaching several tens to several hundreds of meters, it is necessary to further increase the thickness of the bottom plate in response to an increase in the lifting pressure, and these adverse effects become even more remarkable.
[0005]
For example, Japanese Patent Application Laid-Open No. 11-181783 discloses a proposal for strengthening the bottom of an open caisson. In this method, ground reinforcing materials such as steel bars, steel pipes, and steel core mortar piles are embedded in advance in the ground bottom area of the caisson entity. However, even with this construction method, the bottom plate itself remains in an unreinforced state made of underwater concrete, and there is concern about the quality stability and reliability of the bottom plate.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-181783
[Problems to be solved by the invention]
In view of the above points, an object of the present invention is to reduce the thickness of an underground structure such as an open caisson where the construction of the bottom board is performed under the surface of the water, and also to ensure the quality stability and reliability of the bottom board. To do.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a method for constructing a base plate of an underground structure according to the present invention comprises: (1) a first compartment having a short-span bottom opening below the surface of the water, and a first compartment and a partition wall adjacent to each other. And a step of forming a second compartment having a long-span bottom opening under the water surface, (2) a step of draining the chamber after forming the first bottom plate in the first compartment, and (3) A step of forming an atmospheric pressure space communicating with the first compartment after drainage under the water surface of the second compartment, and a step of constructing a second bottom plate by supplying underwater concrete to the second compartment; And (5) a step of reinforcing the second bottom plate in the atmospheric pressure space. In addition, the construction order of each process is not limited to the order of (1) → (2) → (3) → (4) → (5), but can be arbitrarily changed as necessary.
[0009]
Of the two compartments, the first bottom plate formed in the short span first compartment has a short lifting span, so the lift pressure acting on the bottom plate is small, so even if it is constructed with unreinforced concrete, A thin one is sufficient.
[0010]
On the other hand, a large lifting pressure acts on the second bottom plate of the second compartment because it has a long span. However, in the present invention, because the reinforcement work for the second bottom plate is performed as described above, unreinforced concrete is used. Compared to this, the thickness of the bottom board can be greatly reduced.
[0011]
From the above, according to the present invention, it is possible to reduce the thickness of the bottom board in the entire underground structure.
[0012]
In the present invention, since the reinforcement work of the second bottom plate is performed in the atmospheric pressure space, the operator can visually check the construction status directly on site, and the quality and reliability of the bottom plate can be improved. .
[0013]
The communication between the first compartment and the atmospheric pressure space can be performed, for example, through an opening provided in the partition wall.
[0014]
The atmospheric pressure space can be formed, for example, in the inner space of a cylinder disposed in the second compartment. In this case, in addition to disposing a bottom base reinforcing material for reinforcing the bottom base inside the cylindrical body, the cylindrical body itself can be used as the bottom base reinforcing material by forming the cylindrical body with a rigid material.
[0015]
As the reinforcing work of the second bottom board, for example, an operation including a step of joining the bottom board reinforcing material arranged in the atmospheric pressure space to the underground structure can be considered. It is sufficient to reinforce the bottom plate as long as at least this step is included. Other steps, such as placing a bottom plate reinforcement in the atmospheric pressure space or placing concrete, are performed in parallel. May be. In addition, as the bottom base reinforcing material, for example, reinforced concrete (reinforcement or steel frame, or a concrete containing a combination thereof) is preferable, and thereby bottom base reinforcement using atmospheric concrete becomes possible.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a method for building a bottom plate of an underground structure according to the present invention will be described with reference to FIGS. As used herein, “underground structure” refers to a structure in which a part or all of the structure is incorporated. The type and application of the structure are not particularly limited, and include those manufactured with steel plates, steel pipes, etc., in addition to caisson. In the following description, an open caisson will be described as an example of an underground structure.
[0017]
As shown in FIG. 1 and FIG. 2, the caisson entity 1 used in the present invention has a cylindrical shape that is open at the top and bottom, for example, a cylindrical shape, and one or a plurality of partition walls 5 are arranged inside the main wall 3. (The illustrated example is a double wall structure in which one partition wall 5 is arranged inside the main wall 3). The main wall 3 is made of a rigid material such as reinforced concrete, and an outer blade edge 3a is formed at the lower end thereof. The partition wall 5 is comprised by the inner blade edge part 5a formed in the lower end, and the wall part 5b installed on the blade edge part 5a. The wall body part 5b consists of a steel sheet pile etc., for example, and is attached to the inner blade edge part 5a so that attachment or detachment is possible. The inner blade edge portion 5a is connected to the outer blade edge 3 via connecting portions 7 arranged at a plurality of positions in the circumferential direction on the outer side, whereby the partition wall 5 is firmly coupled to the caisson entity 1 (note that 3 to 9, the illustration of the connecting portion 7 is omitted). From the above configuration, the first compartment 9 having the bottom opening as the short span L1 is formed between the main wall 3 and the partition wall 5, and the bottom opening is longer than the span L1 inside the partition wall 5. A second compartment 11 having a span L2 is formed (L2> L1).
[0018]
The caisson entity 1 is submerged in the ground by excavating the ground of the first compartment 9. The subsidence force at this time depends not only on its own weight, but can also be used in combination with pressure input by a hydraulic jack or the like, if necessary. Further, the caisson entity 1 can be set up by constructing the whole on the ground and then sinking it into the ground, or by adding the frame 1 on the ground by the amount of sinking and repeating this procedure. When the caisson entity 1 sinks to a predetermined depth below the water surface, the ground of the second compartment 11 inside the partition wall 5 is excavated. Thereby, as shown in FIG. 1, the 1st division chamber 9 and the 2nd division chamber 11 are each filled with water (ground water, seawater, etc.).
[0019]
Next, as shown in FIG. 3, underwater concrete is supplied to the first compartment 9 to build a bottom board 13 (first bottom board). The first bottom plate 13 is made of unreinforced concrete without a reinforcing material such as a reinforcing bar. However, as described above, since the bottom opening of the first compartment 9 has a short span L1, an extreme increase in thickness is unnecessary. Even a thin wall can sufficiently resist the lifting pressure. After the construction of the first base 13, as shown in FIG. 4, the water in the first compartment 9 is drained with a pump or the like to make the first compartment 9 an atmospheric pressure region.
[0020]
Next, as shown in FIG. 5, a cylindrical body 15 that crosses the bottom opening is disposed at the bottom of the second compartment 9. The cylindrical body 15 is a formwork at the time of placing concrete, which will be described later, and is formed of a material suitable as a concrete formwork, such as wood or a resin material, and is formed in the second compartment 9 using, for example, a crane or the like. Is suspended at a predetermined position.
[0021]
The length of the cylindrical body 15 is set to a length close to the inner surface (the inner surface of the inner blade edge portion 5a in the illustrated example) of the partition wall 5 whose both ends are opposed to each other so as to suppress the leakage of underwater concrete. Further, in the vertical direction, the cylinder 15 is installed so that both ends of the cylinder 15 are located above the first bottom board 13. In this case, as shown in FIGS. 10A and 10B, the inner surface of the partition wall 5 facing the end of the cylindrical body 15 (in this embodiment, the inner blade) so that the cylindrical body 15 can be reliably installed at a predetermined position. It is desirable that a notch 17 is formed in the inner surface of the mouth portion 5a, and both ends of the cylindrical body 15 are fitted into the notch 17. Moreover, in order to prevent water from entering the inner space 15 a when sinking into the second compartment 11, it is desirable to seal both ends of the cylinder 15 with a lid 19 that can be easily attached and detached.
[0022]
Next, while maintaining the position / posture of the cylinder 15, as shown in FIG. 6, underwater concrete is supplied to the second compartment 11 to be cured and solidified, and the second bottom plate 21 containing the cylinder 15 is provided. Build.
[0023]
Next, as shown in FIG. 7, the opening 23 extends from the first compartment 9, which is an atmospheric pressure region, to the partition wall 5 (in the present embodiment, the inner blade edge 5 a) corresponding to both end positions of the cylindrical body 15. (If the both ends of the cylinder 15 are sealed with the lid 19, the lid 19 is removed), and the inner space 15 a of the cylinder 15 is connected to the first compartment 9 through the opening 23. Communicate with. As a result, the inner space 15a of the cylindrical body 15 becomes an atmospheric pressure space where workers can freely enter and exit. Therefore, a reinforcing member 24 made of a reinforcing bar, a steel frame, or the like is appropriately disposed in the atmospheric pressure space, and both ends thereof are appropriately disposed. By means, it is firmly connected to the entity 1 (for example, the inner blade edge 5a). At the same time, the cylinder 15 is removed, and a cavity corresponding to the shape of the cylinder 15 is formed inside the second bottom plate 21.
[0024]
The reinforcing member 24 in the atmospheric pressure space can be incorporated in the inner space 15a of the cylindrical body 15 in advance on the ground. In this case, in the atmospheric pressure space, it is only necessary to perform the work of joining the reinforcing member 24 to the substance and the concrete placing work, and the work efficiency can be improved.
[0025]
When the above operation is completed, concrete (shown as a dotted pattern) is placed in the cavity from the first compartment 9 through the opening 23, and this is cured and solidified. Thereby, the 2nd bottom board 21 becomes a reinforced structure in which the bottom board reinforcement 25 made of RC or SRC was built. Further, as shown in FIG. 8, the opening 23 of the partition wall 5 is sealed with concrete or the like (both ends of the reinforcing member 24 can be joined to the blade edge 5a by this sealing work).
[0026]
Thereafter, the interior of the second compartment 11 is drained, and the wall body portion 5b of the partition wall 5 is removed, so that the bottom opening of the substance has two types of bottom boards 13, 27 having different thicknesses as shown in FIG. An underground space sealed with is formed. In this case, the second bottom plate 21 is thicker than the first bottom plate 27 by at least the thickness of the bottom plate reinforcing material 25, and a step H is formed between the first bottom plate 13 and the second bottom plate 21. . In addition, if this drainage and the removal work of the wall part 5b are after building the 2nd bottom board 21 in the 2nd division chamber 11, and isolate | separating the 2nd division chamber 11 from the ground (stage shown in FIG. 6), Can be done at any time.
[0027]
As described above, in the present invention, the second bottom plate 21 of the long-span second compartment 11 which is a strength weak point is formed as the reinforced concrete in which the bottom plate reinforcing material 25 is contained. The bottom board thickness can be significantly reduced compared to the bottom board. Therefore, at the same time as improving the utilization rate of the underground space, it is not necessary to increase the depth for securing the underground space, and the construction cost can be reduced.
[0028]
Further, since an atmospheric pressure space communicating with the first compartment 9 through the opening 23 is formed in the second compartment 11, the installation work of the bottom board reinforcing material 25 in the second compartment 11 is performed. Alternatively, the bonding work of the bottom base reinforcement 25 to the substance can be performed under atmospheric pressure. Therefore, these operations can be performed by an operator while directly confirming visually, and the bottom board quality can be stabilized and the reliability can be improved.
[0029]
The construction according to the method of the present invention is not limited to the above description, and the embodiment can be changed as necessary. For example, the installation location of the bottom board reinforcing material 25 is not limited to one location, and may be a plurality of locations in the bottom opening of the second compartment 11. Further, the shape of the bottom plate reinforcing material 25 is arbitrary, and may be a rod shape as shown in the figure, or may be a united shape (for example, a star shape) by assembling a plurality of bottom plate reinforcing materials in a plane or three-dimensionally. it can.
[0030]
Moreover, in the said description, although the wall part 5a of the partition wall 5 is removed after construction of the 2nd bottom board 5b, it can also be left without removing this. In this case, the partition wall 5 can be made into an integral structure of the blade edge part 5a and the wall part 5b.
[0031]
Further, in the above description, the cylindrical body 15 is used only as a formwork and is removed after the second bottom plate 21 is constructed. However, the cylindrical body 15 is formed of a hollow rigid material such as a steel pipe or a steel box. Thus, it can be used as the bottom plate reinforcing material itself and can be left in the second bottom plate 21. In this case, the inner space of the cylinder 15 may be left as it is, but by filling it with reinforced concrete or the like, the bottom board strength can be further improved. Moreover, what united the cylinder 15 and reinforcement members, such as a reinforcing bar arrange | positioned on the outer side, can also be used as a bottom base reinforcement.
[0032]
In the above description, the case where the bottom plate is reinforced in the atmospheric pressure space after the second bottom plate 21 is constructed with underwater concrete is exemplified. After drainage, an opening 23 is formed in the partition wall 5 to form an atmospheric pressure space at the bottom of the second compartment 11 and the bottom plate reinforcing material 25 is constructed, and then the underwater concrete is supplied to the second compartment 11 The second bottom board 21 can also be built.
[0033]
In the above description, an underground structure having one second compartment 11 is illustrated, but the first compartment 9 and the second compartment 11 having a bottom opening with a long and short span are provided via the partition wall 5. In the case where it is continuous in a plurality of stages, a large continuous underground space partitioned alternately by the first bottom board 13 and the second bottom board 21 can be formed by repeating the above construction procedure. In this case, the first compartment 9 and the second compartment 11 do not necessarily have to be formed inside the caisson entity, and as shown in FIG. 11, a space sandwiched between the opposing wall surfaces of the adjacent caisson entities 1 and 1 is formed. It can also be used as these compartments. Incidentally, in FIG. 11, a space sandwiched between the main wall 3 of one caisson entity 1 and the main wall 3 of the other caisson entity 1 is defined as a second compartment 11 ′. The example which constructs 2nd bottom board 21 'reinforced with the bottom board reinforcement | strengthening material (illustration omitted) in the same procedure as is shown. In this case, the opposing main walls 3 and 3 serve as the partition wall 5 during the construction of the second bottom plate 21 ′. In addition, both the compartments 9 and 11 can also be formed by combining two or more single-wall caissons having only one blade edge portion 3a.
[0034]
In addition, the above construction procedure is not limited to the case where the thin first bottom board 13 and the thick second bottom board 21 are alternately installed, but also builds a continuous bottom board in which the bottom board thickness increases stepwise. The same applies to the case.
[0035]
FIG. 12 shows another embodiment of the present invention. This embodiment is an example in which an underground space is formed by a first entity 1 and a second entity 10 having different shapes.
[0036]
In this embodiment, first, the first entity 1 is sunk to a predetermined depth. The first entity 1 includes a main wall 3, a partition wall 5 and an intermediate blade 31 that are sequentially arranged in a direction away from the main wall 3, and the first entity 1 is provided between the main wall 3 and the partition wall 5. A single compartment 9 is formed, and a second compartment 11 is formed between the partition wall 5 and the intermediate blade 31. The main wall 3 and the partition wall 5 are coupled via the connecting portion 7, and the intermediate blade portion 31 is also coupled to the main wall 3 via a connecting portion (not shown). After the first entity 1 is sunk to a predetermined depth, the first bottom plate 13 of the first compartment 9 and the second bottom plate 21 containing the bottom plate reinforcing material 25 are built in the same procedure as in the above embodiment.
[0037]
Next, the second entity 10 is set at a predetermined pitch from the intermediate blade portion 31. The second entity 10 includes a main wall 3 ′ and a partition wall 5 ′ disposed inside the main wall 3 ′, and a blade edge portion 5 a ′ of the partition wall 5 ′ is connected via a connecting portion 7. It is connected to the main wall 3 '. In this case, a first compartment 9 ′ is formed between the main wall 3 ′ and the partition wall 5 ′, and a second compartment 11 ′ is formed between the partition wall 5 ′ and the intermediate cutting edge 31.
[0038]
After the second entity 10 is laid, the first base 13 'is built in the first compartment 9' in the same manner as in the above embodiment, and the room is drained. Thereafter, the second bottom plate 21 'is reinforced by the same procedure, and the second bottom plate 21' including the bottom plate reinforcement 25 'is built. At this time, the bottom board reinforcing material 25 ′ is also connected to the intermediate blade edge 31 using the atmospheric pressure space, and the two entities 1 and 10 are integrated.
[0039]
Thereby, the first entity 1 and the second entity 10 are rigidly coupled, and an underground space is formed inside these entities 1, 10. In the case where the first entity 1 and the second entity 10 are formed as a caisson integrally formed in advance, a large number of blade portions exist in one entity, so that the sinking resistance becomes excessive and it is difficult to set the two. It is possible to easily construct an underground structure having a vast underground space by performing the substituting work separately for the entities 1 and 10 as independent structures and then using the atmospheric pressure space to couple them together. It becomes possible.
[0040]
In addition, if the installation area is excavated in advance when the second entity 10 is submerged, the second entity 10 can be suspended and installed with a crane or the like, and the second entity 10 is submerged by excavating its inner ground. Compared to the case, the construction procedure can be simplified. In this case, a cylinder for installing the bottom base reinforcing material 25 ′ can be connected to the second entity 10 in advance on the ground, thereby further simplifying the construction procedure.
[0041]
【The invention's effect】
As described above, according to the present invention, the bottom plate of the underground structure can be thinned, and the bottom plate having high quality and reliability can be constructed.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a process of a bottom board construction method according to the present invention.
FIG. 2 is a cross-sectional view of an underground structure used in the present invention.
FIG. 3 is a longitudinal sectional view showing a process of the bottom building method according to the present invention.
FIG. 4 is a longitudinal sectional view showing the steps of the bottom board construction method according to the present invention.
FIG. 5 is a longitudinal sectional view showing a process of the bottom building method according to the present invention.
FIG. 6 is a longitudinal sectional view showing a process of the bottom building method according to the present invention.
FIG. 7 is a longitudinal sectional view showing the steps of the bottom board construction method according to the present invention.
FIG. 8 is a longitudinal sectional view showing a process of the bottom building method according to the present invention.
FIG. 9 is a longitudinal sectional view showing a process of the bottom building method according to the present invention.
FIGS. 10A and 10B are a cross-sectional view (a) and a vertical cross-sectional view (b) showing a fitting state between a cylindrical body and a notch. FIGS.
FIG. 11 is a longitudinal sectional view showing a continuous bottom board construction state.
FIG. 12 is a longitudinal sectional view showing another embodiment of the method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Caisson entity 3 Main wall 3a Blade edge part 5 Partition wall 5a Blade edge part 5b Wall part 7 Connection part 9 1st division chamber 11 2nd division chamber 13 1st bottom board 15 Cylindrical body 15a Inner space part 17 Notch 19 Lid Body 21 Second base 23 Opening 24 Reinforcement member 25 Bottom base reinforcement

Claims (5)

短スパンの底部開口を水面下に有する第一区画室と、第一区画室と仕切り壁を介して隣接し、長スパンの底部開口を水面下に有する第二区画室とを形成する工程と、
第一区画室に第一底盤を形成した後、当該室内を排水する工程と、
第二区画室の水面下に、排水後の第一区画室と連通する大気圧空間を形成する工程と、
第二区画室に水中コンクリートを供給して第二底盤を築造する工程と、
上記大気圧空間で第二底盤の補強作業を行う工程と
を含むことを特徴とする地中構造物の底盤築造方法。
Forming a first compartment having a short span bottom opening below the water surface, and a second compartment adjacent to the first compartment via a partition wall and having a long span bottom opening below the water surface;
After forming the first bottom plate in the first compartment, draining the chamber;
Forming an atmospheric pressure space communicating with the first compartment after drainage under the water surface of the second compartment;
Supplying underwater concrete to the second compartment and constructing the second bottom plate;
And a step of reinforcing the second bottom plate in the atmospheric pressure space.
仕切り壁に設けた開口部を介して第一区画室と大気圧空間とを連通させる請求項1記載の地中構造物の底盤築造方法。The method for constructing a bottom plate of an underground structure according to claim 1, wherein the first compartment and the atmospheric pressure space are communicated with each other through an opening provided in the partition wall. 大気圧空間を、第二区画室に配置した筒体の内空部に形成する請求項1または2記載の地中構造物の底盤築造方法。The method for building a bottom plate of an underground structure according to claim 1 or 2, wherein the atmospheric pressure space is formed in an inner space of a cylindrical body arranged in the second compartment. 第二底盤の補強作業が、大気圧空間に配置された底盤強化材を地中構造物に結合する工程を含む請求項1記載の地中構造物の底盤築造方法。The method for building a bottom plate of an underground structure according to claim 1, wherein the reinforcing work of the second bottom plate includes a step of joining a bottom plate reinforcing material arranged in the atmospheric pressure space to the underground structure. 底盤強化材が有筋コンクリートである請求項4記載の地中構造物の底盤築造方法。The method for constructing a bottom plate of an underground structure according to claim 4, wherein the bottom plate reinforcing material is reinforced concrete.
JP2003040044A 2003-02-18 2003-02-18 How to build the bottom of underground structures Expired - Fee Related JP3746274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003040044A JP3746274B2 (en) 2003-02-18 2003-02-18 How to build the bottom of underground structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003040044A JP3746274B2 (en) 2003-02-18 2003-02-18 How to build the bottom of underground structures

Publications (2)

Publication Number Publication Date
JP2004250907A true JP2004250907A (en) 2004-09-09
JP3746274B2 JP3746274B2 (en) 2006-02-15

Family

ID=33024049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003040044A Expired - Fee Related JP3746274B2 (en) 2003-02-18 2003-02-18 How to build the bottom of underground structures

Country Status (1)

Country Link
JP (1) JP3746274B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144391A (en) * 2004-11-19 2006-06-08 Yasuko Hasegawa Reaction device
JP2017002688A (en) * 2015-06-16 2017-01-05 大成建設株式会社 Bottom slab construction method and bottom slab structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144391A (en) * 2004-11-19 2006-06-08 Yasuko Hasegawa Reaction device
JP4504166B2 (en) * 2004-11-19 2010-07-14 靖子 長谷川 Reaction force device
JP2017002688A (en) * 2015-06-16 2017-01-05 大成建設株式会社 Bottom slab construction method and bottom slab structure

Also Published As

Publication number Publication date
JP3746274B2 (en) 2006-02-15

Similar Documents

Publication Publication Date Title
KR20210119861A (en) Slurry wall, construction method for the same and wire mesh assembly
JP4347846B2 (en) Bridge pier reinforcement method
JP3746274B2 (en) How to build the bottom of underground structures
JP4042153B2 (en) Construction method of wall formwork block and wall structure and underground structure
JP7019183B2 (en) How to build underground structures
JP2007291849A (en) Form block for wall, wall structure, and execution method of underground structure
JP3974457B2 (en) Caisson and caisson construction method
KR101913630B1 (en) Reverse t-type steel composite vertical member for outer wall of the underground structure and the construction method using the same
CN111827265A (en) Construction method of steel reinforced concrete underground continuous wall
JP4146250B2 (en) Open caisson bottom plate construction method
KR200291360Y1 (en) Complex structure of reclamation type of soil guard for pier&#39;s basis
JP4159148B2 (en) Construction method of shaft
JPH07216903A (en) Bulkhead caisson and construction method of bulkhead
JP3228199U (en) Construction structure of earth retaining support
JP2004132124A (en) Pneumatic caisson and pneumatic caisson constructing method
JP4319231B2 (en) Approach caisson and method for constructing tunnel approach section composed of caisson
KR20100117826A (en) Construction method of earth retaining wall
CN111827267A (en) Underground continuous wall construction method
JP2003074053A (en) Execution method of continuous underground wall and cage unit used for this execution method
CN114718081A (en) Prefabricated assembled recyclable foundation pit enclosure pile and construction method thereof
JPH0351416A (en) Constructing method for continuous underground wall having pole built therein
KR20210119710A (en) Slurry wall, construction method for the same and wire mesh assembly
JP2003176540A (en) Caisson and construction method of caisson
KR20210072944A (en) Slurry wall and construction method for the same
JP4365820B2 (en) Pier reinforcement unit and bridge reinforcement structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051121

R150 Certificate of patent or registration of utility model

Ref document number: 3746274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees