JP2004250607A - Multi-step polymerization polymer emulsion and its producing method - Google Patents

Multi-step polymerization polymer emulsion and its producing method Download PDF

Info

Publication number
JP2004250607A
JP2004250607A JP2003043506A JP2003043506A JP2004250607A JP 2004250607 A JP2004250607 A JP 2004250607A JP 2003043506 A JP2003043506 A JP 2003043506A JP 2003043506 A JP2003043506 A JP 2003043506A JP 2004250607 A JP2004250607 A JP 2004250607A
Authority
JP
Japan
Prior art keywords
ethylenically unsaturated
emulsion
unsaturated monomer
polymer
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003043506A
Other languages
Japanese (ja)
Other versions
JP3693054B2 (en
Inventor
Tadashi Ogawa
但 小川
Katsuyuki Sakamoto
勝之 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2003043506A priority Critical patent/JP3693054B2/en
Publication of JP2004250607A publication Critical patent/JP2004250607A/en
Application granted granted Critical
Publication of JP3693054B2 publication Critical patent/JP3693054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an emulsion which can form a coating film excellent in a high-temperature blocking property and water resistance as well as enabling the film formation even at about 5°C, in the absence of a film forming auxiliary, or in spit of being present in very trace amounts thereof. <P>SOLUTION: A multi-step polymerization polymer emulsion comprises emulsion polymerizing an ethylenically unsaturated monomer at steps ≥three stages in an aqueous medium. In the above, a glass transition temperature (whole Tg) of whole polymers expected from a whole ethylenically unsaturated monomer to be used in the polymerization is 10-30°C, and the glass transition temperature of polymers expected from an ethylenically unsaturated monomer to be used in the polymerization of at least two steps is different from that of the polymer expected from an ethylenically unsaturated monomer to be used in the polymerization of the other steps. That is, the multi-step polymerization polymer emulsion comprises polymerizing the first monomer emulsion comprising the ethylenically unsaturated monomer, an emulsifying agent, and water, the first monomer emulsion being charged in a reaction vessel, to obtain the first polymer emulsion (A), and then sequential polymerizing in the presence of the emulsion (A), the monomer emulsion after 2nd step comprising the ethylenically unsaturated monomer, the emulsifying agent, and water. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、多段重合ポリマーエマルジョン及びその製造方法に関するものであり、詳しくは低温造膜性に優れると共に、ブロッキング性にも優れる塗膜を形成し得る多段重合ポリマーエマルジョン及びその製造方法に関するものである。
【0002】
【従来の技術】
従来、エチレン性不飽和単量体を水性媒体中で乳化重合して得られるエマルジョン樹脂は、各種コーティング剤、接着剤、繊維加工剤、紙加工剤、インキ用等各種工業用途にて実用化されており、幅広く利用されている。中でもエマルジョン型塗料は、溶剤系塗料と比べて安全性、コスト面で優位性が高いことから、広く用いられている。
しかし、エマルジョン型塗料は造膜性が悪いことから、一般的に高沸点有機溶剤が造膜助剤として用いられており、水性塗料でありながら、有機溶剤が塗料中に2〜15重量%程度含まれているのが現状である。かかる状況下、環境保護の観点から有機溶剤を含まないエマルジョン型塗料が望まれている。
【0003】
この要求を満足するための第一段階として、造膜助剤非含有でも造膜するエマルジョン型樹脂の開発が不可欠である。エマルジョン型樹脂を軟質化することにより、造膜助剤を含有しなくともで造膜させることができる。
しかし、エマルジョン型樹脂を軟質化すると形成される塗膜のブロッキング性が悪くなり、汚染性も悪化する。
そこで、造膜助剤を含まずに、低温造膜性及びブロッキング性に優れる塗膜を形成し得るエマルジョン型塗料の開発が望まれた。
【0004】
このような課題に対し、種々の方策が提案された(特許文献1〜2)。
特許文献1:特開平11−343464号公報には、異なるガラス転移温度(以下、Tgと略す)を示す水性エマルジョンと水溶化された樹脂とを混合してなる水性塗料組成物が開示されている。
【0005】
また、特許文献2:特開2001−11105号公報には、高酸価、低Tgのエチレン性不飽和単量体を水性媒体中で乳化重合してなる重合体の存在下に、低酸価、高Tgのエチレン性不飽和単量体を重合する重合体水性分散液の製造方法が記載されている。特許文献2に記載されるような方法では、比較的低温で造膜し得るエマルジョン型塗料を得ることができる。
しかし、特許文献2に記載されるような方法では、形成される塗膜のより高温におけるブロッキング性が不十分であると共に、耐水性が悪い。
【0006】
【特許文献1】
特開平11−343464号
【特許文献2】
特開2001−11105号公報
【0007】
【発明が解決しようとする課題】
本発明は、造膜助剤を全く含まないか,含んでもごく微量であるにもかかわらず,5℃程度でも成膜し得ると共に、高温ブロッキング性及び耐水性に優れた塗膜を形成し得るエマルジョンを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、エチレン性不飽和モノマーを水性媒体中で3段階以上の工程で乳化重合してなる多段重合ポリマーエマルジョンであって、
重合に供される全エチレン性不飽和モノマーから求められるポリマー全体のガラス転移温度:[全]Tgが10〜30℃であり、
少なくとも2つの工程の重合に供されるエチレン性不飽和モノマーから求められるポリマーのガラス転移温度が、他の工程の重合に供されるエチレン性不飽和モノマーから求められるポリマーのガラス転移温度とは異なり、
反応容器中に仕込んだエチレン性不飽和モノマー、乳化剤及び水を含有する第1のモノマーエマルジョンを重合し、第1のポリマーエマルジョン(A)を得、
次いで該第1のポリマーエマルジョン(A)の存在下に、
エチレン性不飽和モノマー、乳化剤及び水を含有する第2工程以降のモノマーエマルジョンを順次重合してなることを特徴とする多段重合ポリマーエマルジョンに関する。
【0009】
また、本発明は、少なくともいずれかの工程においてシランカップリング剤を含有することを特徴とする上記の多段重合ポリマーエマルジョンに関し、
さらに、本発明は、重合開始剤が、熱分解系であることを特徴とする上記発明の多段重合ポリマーエマルジョンに関する。
【0010】
また、本発明は、最終段階の重合に供されるエチレン性不飽和モノマーから求められるポリマーのガラス転移温度が、最終段階よりも前の各工程の重合に供されるエチレン性不飽和モノマーから求められる各ポリマーの各ガラス転移温度のうち最も高い温度以上であることを特徴とする上記発明の多段重合ポリマーエマルジョンに関する。
【0011】
さらにまた、本発明は、エチレン性不飽和モノマーを水性媒体中で3段階以上の工程で乳化重合する多段重合ポリマーエマルジョンの製造方法であって、
重合に供される全エチレン性不飽和モノマーから求められるポリマー全体のガラス転移温度:[全]Tgが10〜30℃であり、
少なくとも2つの工程の重合に供されるエチレン性不飽和モノマーから求められるポリマーのガラス転移温度が、他の工程の重合に供されるエチレン性不飽和モノマーから求められるポリマーのガラス転移温度とは異なり、
反応容器中に仕込んだエチレン性不飽和モノマー、乳化剤及び水を含有する第1のモノマーエマルジョンを重合し、第1のポリマーエマルジョン(A)を得、
次いで該第1のポリマーエマルジョン(A)に、
エチレン性不飽和モノマー、乳化剤及び水を含有する第2工程以降のモノマーエマルジョンを順次、添加、重合することを特徴とする多段重合ポリマーエマルジョンの製造方法に関する。
【0012】
さらに本発明は、多段重合が3段重合であり、第1のモノマーエマルジョン中のエチレン性不飽和モノマーから形成され得るポリマーのTgが−40〜0℃、前記エチレン性不飽和モノマー量が全エチレン性不飽和モノマー量の3〜15重量%、第2工程の重合に供されるエチレン性不飽和モノマーから形成され得るポリマーのTgが−40〜0℃、第2工程のエチレン性不飽和モノマー量が全エチレン性不飽和モノマー量の30〜55重量%であり、第3工程の重合に供されるエチレン性不飽和モノマーから形成され得るポリマーのTgが40〜100℃、第3工程のエチレン性不飽和モノマー量が全エチレン性不飽和モノマー量の30〜55重量%であることを特徴とする上記多段重合ポリマーエマルジョンの製造方法に関する。
【0013】
【発明の実施の形態】
本発明の多段重合ポリマーエマルジョンは、エチレン性不飽和モノマーを水性媒体中で3段階以上の工程で乳化重合してなるものであり、反応容器中に仕込んだエチレン性不飽和モノマー、乳化剤及び水を含有する第1のモノマーエマルジョンを重合し、第1のポリマーエマルジョン(A)を得、次いで該第1のポリマーエマルジョン(A)の存在下に、エチレン性不飽和モノマー、乳化剤及び水を含有する第2工程以降のモノマーエマルジョンを順次重合することが極めて重要である。
即ち、使用するモノマーの組成や量、乳化剤の種類や量等が同じであっても、反応容器中にはエチレン性不飽和モノマーを仕込まず、乳化剤と重合開始剤と水とを仕込んだり、重合開始剤と水とを仕込んだり、乳化剤と水とを仕込んだり、水のみを仕込んだりして、そこにエチレン性不飽和モノマーと乳化剤と重合開始剤と水とを含有するモノマーエマルジョンや、エチレン性不飽和モノマーと乳化剤と水とを含有するモノマーエマルジョンや、エチレン性不飽和モノマーと乳化剤との混合物や、エチレン性不飽和モノマー等を滴下し、モノマーを重合した場合、反応容器中にエチレン性不飽和モノマーを仕込んだ場合に比して、得られるエマルジョンは低温造膜性に劣ると共に、高温ブロッキング性や耐水性の著しく劣る塗膜しか形成できない。
尚、本発明において、重合開始剤は、エチレン性不飽和モノマー等と一緒に反応容器中に予め仕込んでおいてもよいし、滴下する第2段目に以降のモノマーエマルジョン中に含ませておいても良いし、あるいはエチレン性不飽和モノマーや乳化剤とは別に、反応容器中に滴下して加えてもよい。
【0014】
また、本発明の多段重合ポリマーエマルジョンは、重合に供される全エチレン性不飽和モノマーから求められるガラス転移温度:[全]Tgが10℃〜30℃となるようにすることも重要であり、[全]Tgが15℃〜25℃であることがより好ましい。[全]Tgが10℃未満だと、低温造膜性は優れるが高温ブロッキング性が悪くなり、他方[全]Tgが30℃を超えると高温ブロッキング性は優れるが低温造膜性が悪化する。
【0015】
さらに、本発明の多段重合ポリマーエマルジョンは、3段以上の重合工程のうち、少なくとも2つの工程の重合に供されるエチレン性不飽和モノマーから求められるガラス転移温度Tgが、他の工程の重合に供されるエチレン性不飽和モノマーから求められるガラス転移温度Tgとは異なることが重要である。
例えば、3段重合の場合、1段目のTg/2段目のTg/3段目のTgの組み合わせとしては、
(1)低Tg/低Tg/高Tg、
(2)高Tg/高Tg/低Tg、
(3)低Tg/高Tg/低Tg、
(4)高Tg/低Tg/低Tg、
(5)高Tg/低Tg/高Tgが挙げられる。
(1)、(3)、(4)の場合、低Tgは−40〜0℃、高Tgは40〜100℃であることが好ましく、低Tgは−30〜−10℃、高Tgは60〜90℃であることがより好ましい。
(2)、(5)の場合、低Tgは−60〜−20℃、高Tgは20〜70℃であることが好ましく、低Tgは−50〜−30℃、高Tgは30〜60℃であることがより好ましい。
また、形成される塗膜のブロッキング性の観点からは、(1)、(5)が好ましく、特に(1)が好ましい。また、(1)の場合、1〜3段の全工程を通じて重合に供されるモノマー100重量%のうち、1段目の工程に供され、低Tgポリマーを形成し得るモノマーは3〜15重量%、2〜3段目の工程に供されるモノマーは残りの85〜97重量%であることが好ましく、2〜3段目の各工程に供されるモノマーはそれぞれ30〜55重量%あることが好ましい。1段目の工程に供されるモノマーが、3重量%未満であったり15重量%を超えたりするといずれの場合も低温造膜性が悪化する傾向にある。
【0016】
尚、本発明にいうTgとは各単量体から形成され得る各ホモポリマーTg、重合に供される各単量体の重量分率から以下の式に基づいて求めることができる。
1/Tg=Σ(Wn/Tgn)
Tg :重合体の計算Tg(絶対温度)
Wn :単量体nの重量分率(%)
Tgn:単量体nのホモポリマーのガラス転移温度(絶対温度)
【0017】
本発明において用いられるエチレン性不飽和モノマーとしては、一般的にラジカル重合反応に用いることができるものであれば特に制限はない。一例を挙げるとすると、
アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸−2−エチルヘキシル等のアクリル酸エステル類、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸シクロヘキシル等のメタクリル酸エステル類;
マレイン酸、フマル酸、イタコン酸の各エステル類;
酢酸ビニル、プロピオン酸ビニル、第3級カルボン酸ビニル等のビニルエステル類;
スチレン、ビニルトルエンの如き芳香族ビニル化合物;
ビニルピロリドンの如き複素環式ビニル化合物;
塩化ビニル、アクリロニトリル、ビニルエーテル、ビニルケトン、ビニルアミド;塩化ビニリデン、フッ化ビニリデン等の如きハロゲン化ビニリデン化合物;
エチレン、プロピレン等の如きα−オレフィン類;
ブタジエンの如きジエン類等がある。
【0018】
又、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸、イタコン酸ハーフエステル、マレイン酸ハーフエステル、無水マレイン酸、無イタコン酸、2−メタクリロイルプロピオン酸等のカルボキシル基含有エチレン性不飽和モノマーも適宜用いることができ、特にアクリル酸、メタクリル酸が好ましい。
【0019】
さらに本発明の多段重合エマルジョンは、少なくともいずれかの工程においてシランカップリング剤を用いることが耐水性の観点から好ましく、エチレン性不飽和基を有するシランカップリング剤を用いることがより好ましい。このようなシランカップリング剤としては、アクリロイル基、メタクリロイル基、ビニル基を有するシランカップリング剤が挙げられ、低温造膜性の点からビニル基を有するシランカップリング剤が好ましい。このようなシランカップリング剤は、最終段階の重合の際に使用することが好ましい。
尚、エチレン性不飽和基を有するシランカップリング剤は、本発明にいうエチレン性不飽和モノマーには含めないものとする。
【0020】
乳化剤は、乳化重合で使用されているものであれば如何なるもので用いることができる。代表的なものをあげると、アルキルベンゼンスルホン酸塩類、アルキル硫酸塩類類、ポリオキシエチレンアルキルフェニルスルホン酸塩類、ジアルキルスルホサクシネートの塩類等のアニオン乳化剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン−ポリオキシプロピレンブロック共重合体等のノニオン乳化剤などが挙げられる。勿論、これらに限定されるものではなく、乳化重合時に用いることが出来る乳化剤であれば上記骨格に限定せず、如何なるものでも用いることが出来、また、これらを複数種併用することも可能である。これら乳化剤としては、内分泌攪乱作用物質(環境ホルモン物質)に該当しないものを使用することが好ましい。形成される塗膜の耐水性等の観点より反応性乳化剤が好ましい。
【0021】
反応性乳化剤の具体例としては、ビニルスルホン酸ソーダ、アクリル酸ポリオキシエチレン硫酸アンモニウム、メタクリル酸ポリオキシエチレンスルホン酸ソーダ、ポリオキシエチレンアルケニルフェニルスルホン酸アンモニウム、ポリオキシエチレンアルケニルフェニル硫酸ソーダ、ナトリウムアリルアルキルスルホサクシネート、メタクリル酸ポリオキシプロピレンスルホン酸ソーダ等のアニオン系反応性乳化剤、ポリオキシエチレンアルケニルフェニルエーテル、ポリオキシエチレンメタクリロイルエーテル等のノニオン系反応性乳化剤などが挙げられる。
【0022】
例えば、反応性乳化剤としては、アクアロンHS−10、KH−10、 ニューフロンティアA−229E〔以上、第一工業製薬(株)製〕、アデカリアソープSE−3N、SE−5N、SE−10N、SE−20N、SE−30N〔以上、旭電化工業(株)製〕、AntoxMS−60、MS−2N、RA−1120、RA−2614〔以上、日本乳化剤(株)製〕、エレミノールJS−2、RS−30〔以上、三洋化成工業(株)製〕、ラテムルS−120A、S−180A、S−180〔以上、花王(株)製〕等のアニオン型反応性乳化剤、
アクアロンRN−20、RN−30,RN−50,ニューフロンティアN−177E〔以上、第一工業製薬(株)製〕、アデカリアソープNE−10、NE−20,NE−30、NE−40〔以上、旭電化工業(株)製〕、RMA−564,RMA−568,RMA−1114〔以上、日本乳化剤(株)製〕、NKエステルM−20G、M−40G、M−90G、M−230G〔以上、新中村化学工業(株)製〕等のノニオン型反応性乳化剤等が挙げられ、
非反応性乳化剤としては、1118S−70、エマ−ル10〔花王(株)製〕等が挙げる。これらを複数種併用することも可能である。
尚、反応性乳化剤は、本発明にいうエチレン性不飽和モノマーには含めないものとする。
【0023】
本発明において用いることが出来るラジカル重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩類、アゾビスイソブチロニトリル及びその塩酸塩、2,2′−アゾビス(2−アミジノプロパン)二塩酸塩、4,4′−アゾビス(4−シアノ吉草酸)等のアゾ系開始剤、過酸化水素、ターシャリーブチルハイドロパーオキサド,等の過酸化物系開始剤等が挙げられる。また、これらラジカル開始剤と併用可能な還元剤としては、ピロ亜硫酸ソーダ、L−アスコルビン酸等が挙げられる。尚、詳細な理由は、まだ不明ではあるが、低温造膜性の観点からは、ラジカル開始剤と還元剤とを併用するレドックス系開始剤ではなく、ラジカル開始剤のみを用いる熱分解系の開始剤が好ましい。
【0024】
【実施例】以下、実施例、比較例を挙げて本発明を詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。なお、以下の部及び%はいずれも重量に基づく値である。
【0025】実施例1
第1のモノマーエマルジョン
イオン交換水372部、アクリル酸2−エチルヘキシル(以後、2−EHAと略す)48部、メタクリル酸メチル(以後、MMAと略す)20部、アクリル酸(以後、AAと略す)1.5部,メタクリ酸2−ヒドロキシエチル(以後2−HEMAと略す)1.5部、アクアロンKH−10〔第一工業製薬(株)製アニオン性反応性乳化剤〕4部をイオン交換水16部に溶解させた乳化剤水溶液20部、エマルゲン1118−70をイオン交換水17.5部に2.5部を溶解させた乳化剤水溶液20部を混合し、モノマーエマルジョン(a)を作製した。
【0026】
第2のモノマーエマルジョン
また、イオン交換水143部、アクリル酸2−エチルヘキシル(以後、2−EHAと略す)292部、メタクリル酸メチル(以後、MMAと略す)120部、アクリル酸(以後、AAと略す)8.5部,メタクリ酸2−ヒドロキシエチル(以後2−HEMAと略す)8.5部、アクアロンKH−10〔第一工業製薬(株)製アニオン性反応性乳化剤〕8部をイオン交換水32部に溶解させた乳化剤水溶液40部、エマルゲン1118−70をイオン交換水17.5部に2.5部溶解させた乳化剤水溶液20部を混合し、モノマーエマルジョン(b)を作製した。
【0027】
第3のモノマーエマルジョン
更に、イオン交換水135部、アクリル酸2−エチルヘキシル(以後、2−EHAと略す)50部、メタクリル酸メチル(以後、MMAと略す)445部、アクアロンKH−10〔第一工業製薬(株)製アニオン性反応性乳化剤〕8部をイオン交換水32部に溶解させた乳化剤水溶液40部、エマルゲン1118−70をイオン交換水17.5部に2.5部溶解させた乳化剤水溶液20部,ビニル基トリエトキシシラン10部を混合し、モノマーエマルジョン(c)を作製した。
【0028】
開始剤水溶液
過硫酸カリウム4部をイオン交換水76部に溶解させることにより、開始剤水溶液を作製した。
【0029】
撹拌機、温度計、冷却装置を取り付けた2.5リットル反応容器にモノマーエマルジョン(a)を仕込み、窒素ガスを送入しつつ撹拌しながら反応容器内を75℃に昇温した。昇温後、上記開始剤水溶液のうち8部を反応容器内に滴下投入してモノマーエマルジョン(a)の乳化重合を開始させた。
モノマーエマルジョン(a)が反応開始して10分後、反応容器内の液温を75℃に保持しながら、モノマーエマルジョン(b)及び上記開始剤水溶液のうち30部をそれぞれ100分間かけて滴下した。
モノマーエマルジョン(b)滴下終了30分後、反応容器内の液温を75℃に保持しながら、モノマーエマルジョン(c)及び上記開始剤水溶液のうち30部をそれぞれ100分間かけて滴下した。
滴下終了後、さらに75℃で2時間保持した後、室温まで冷却し、14%アンモニア水を用いてpHを調整し、多段重合によるポリマーエマルジョンを得た。得られたポリマーエマルジョンは、不揮発分51.5%、粘度3260mPa・s、pH9.0であった。
表1に、ポリマーエマルジョンの形成に供された各段階のモノマーから形成され得るポリマーのTg及び[全]Tgの計算値、ポリマーエマルジョンの不揮発分濃度、粘度、pH、並びに5℃における造膜性、最低造膜温度(MFT)、形成された塗膜のブロッキング性、耐水性を示す。
【0030】実施例2
表1に示すようにビニルトリエトキシシランを用いなかった以外は、実施例1と同様にしてポリマーエマルジョンを作製した。
【0031】実施例3〜5
表1に示すように、
実施例3:第1のモノマーエマルジョンの計算Tg[A]Tg=40℃、第2のモノマーエマルジョンの計算Tg[B]Tg=40℃、第3のモノマーエマルジョンの計算Tg[C]Tg=−45℃、
実施例4:[A]Tg=−8.5℃、[B]Tg=−8.5℃、[C]Tg=56℃、
実施例5:[A]Tg=−22℃、[B]Tg=−22℃、[C]Tg=67℃、
とした以外は実施例1と同様にしてポリマーエマルジョンを作製した。
【0032】実施例6
ピロ亜硫酸ソーダ4部をイオン交換水76部に溶解させてなる還元剤水溶液を作製し、該還元剤水溶液を実施例1で用いた過硫酸カリウム水溶液と同量並行添加した以外は実施例1と同様にしてしてポリマーエマルジョンを作製した。
【0033】比較例1
反応容器にはイオン交換水のみ405.5部を仕込み、75℃に昇温してから、表1に示すモノマ−エマルジョン(b)及び過硫酸カリウム水溶液38部をそれぞれ100分間かけて滴下した。次いで、モノマーエマルジョン(b)滴下終了30分後、反応容器内の液温を75℃に保持しながら、モノマーエマルジョン(c)及び過硫酸カリウム水溶液30部をそれぞれ100分間かけて滴下した以外は実施例1と同様にしてしてポリマーエマルジョンを作製した。
【0034】比較例2
反応容器にはイオン交換水を405.5部、乳化剤KH−10を4部、1118−70を2.5部仕込み、75℃に昇温してから、表1に示すモノマ−エマルジョン(b)及び過硫酸カリウム水溶液38部をそれぞれ100分間かけて滴下した。次いで、モノマーエマルジョン(b)滴下終了30分後、反応容器内の液温を75℃に保持しながら、モノマーエマルジョン(c)及び過硫酸カリウム水溶液30部をそれぞれ100分間かけて滴下した以外は実施例1と同様にしてしてポリマーエマルジョンを作製した。
【0035】比較例3
反応容器にはイオン交換水のみ240部を仕込み、75℃に昇温してから、表1に示すモノマ−エマルジョン(b)及び4.8%の過硫酸アンモニウム水溶液21部をそれぞれ100分間かけて滴下した。次いで、モノマーエマルジョン(b)滴下終了30分後、反応容器内の液温を75℃に保持しながら、モノマーエマルジョン(c)及び4.8%の過硫酸アンモニウム水溶液21部をそれぞれ100分間かけて滴下した以外は実施例1と同様にしてしてポリマーエマルジョンを作製した。
【0036】比較例4
第2のモノマーエマルジョンから形成されるポリマーのTg、[B]Tgを2.5℃と高くした以外は上記比較例3と同様にして、[全]Tgが20℃のポリマーエマルジョンを作製した。
【0037】比較例5
ピロ亜硫酸ソーダ4部をイオン交換水76部に溶解させてなる還元剤水溶液を作製し、該還元剤水溶液を比較例3で用いた過硫酸アンモニウム水溶液と同量並行添加した以外は実施例1と同様にしてしてポリマーエマルジョンを作製した。
【0038】
なお、計算Tg値は、以下の計算式で算出した。
1/Tg=Σ(Wn/Tgn)
Tg :重合体の計算Tg(絶対温度)
Wn :単量体nの重量分率(%)
Tgn:単量体nのホモポリマーのガラス転移温度(絶対温度)
【0039】
上記Tg値の算出に用いた単量体のホモポリマーのガラス転移温度(Tgn)は、以下の通りである。
アクリル酸2−エチルヘキシル(2EHA)のホモポリマー:−55.3℃
アクリル酸ブチル(BA)のホモポリマー :−45.2℃
メタクリル酸メチル(MMA)のホモポリマー :104.8℃
メタクリル酸(MAA)のホモポリマー :130.0℃
アクリル酸(AA)のホモポリマー : 106.0℃
メタクリル酸グリシジル(GMA)のホモポリマー : 40.8℃
2−ヒドロキシメタアクリレ−ト(2−HEMA)のホモポリマー: 55.0℃
【0040】
重合安定性の評価:得られた各ポリマーエマルジョンを100メッシュ濾過布でろ過し、濾過布上に残った残滓の乾燥重量を下記の基準で評価した。
○=ポリマーエマルジョン1Kgあたり0.1g未満
△=ポリマーエマルジョン1Kgあたり0.1g以上〜1.0g未満
×=ポリマーエマルジョン1Kgあたり1.0g以上
【0041】
5℃における造膜性:得られた各ポリマーエマルジョンを、ガラス板に6MILの厚さに塗布し、5℃の環境下に16時間静置乾燥し、造膜状態を目視観察した。
○=均一な塗膜が形成できた。
△=塗膜は形成できたが、クラックが生じた。
×=塗膜は形成できず、粉々になった。
【0042】
MFT(最低造膜温度)の測定:JIS−K−6828の試験方法に準じて、得られた各ポリマーエマルジョンをガラス板に0.3mmの厚さに塗布し、これを一方の端を高温に、他の端を低温にした熱板上にのせ、均一な乾燥塗膜を形成し得る最低の温度を求めた。
【0043】
ブロッキング性の評価:得られた各ポリマーエマルジョンをガラス板上に6ミルアプリケータで塗布し、20℃で3日間乾燥させた後、40℃乾燥機中で30分乾燥した。次いで、塗膜表面に新聞紙を乗せ、0.5kg/cmの荷重をかけ、12時間、50℃の温度環境下で放置した後の新聞紙の付着度を、以下の基準で目視判定した。
○:付着していない
△:少し付着している
×:かなり付着している
【0044】
耐水性の評価:得られた各ポリマーエマルジョンをガラス板に6MILの厚さに塗布し、20℃で6時間乾燥後40℃乾燥幾で30分乾燥し、25℃水に1時間浸漬し、塗膜の状態を目視評価した。
○=白化無し,△=かなり白化,×=全面が著しく白化
【0045】
【表1】

Figure 2004250607
【0046】
【発明の効果】
本発明によれば、造膜助剤を全く含まないか,含んでもごく微量であるにもかかわらず,5℃程度でも成膜し得ると共に、高温ブロッキング性及び耐水性に優れた塗膜を形成し得るエマルジョンを提供することができるようになった。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multi-stage polymer emulsion and a method for producing the same, and more particularly, to a multi-stage polymer emulsion capable of forming a coating film having excellent low-temperature film-forming properties and excellent blocking properties, and a method for producing the same. .
[0002]
[Prior art]
Conventionally, emulsion resins obtained by emulsion polymerization of ethylenically unsaturated monomers in an aqueous medium have been put to practical use in various industrial applications such as various coating agents, adhesives, fiber processing agents, paper processing agents, and inks. And is widely used. Among them, emulsion paints are widely used because they are superior in safety and cost as compared with solvent-based paints.
However, since the emulsion-type paint has poor film-forming properties, a high-boiling organic solvent is generally used as a film-forming aid, and the organic solvent is about 2 to 15% by weight in the paint while being a water-based paint. It is currently included. Under such circumstances, an emulsion type paint containing no organic solvent is desired from the viewpoint of environmental protection.
[0003]
As a first step to satisfy this requirement, it is essential to develop an emulsion type resin that can form a film without containing a film forming aid. By softening the emulsion type resin, a film can be formed without containing a film forming aid.
However, when the emulsion-type resin is softened, the blocking property of the formed coating film deteriorates, and the contamination property also deteriorates.
Therefore, development of an emulsion-type paint capable of forming a coating film having excellent low-temperature film-forming properties and blocking properties without using a film-forming auxiliary has been desired.
[0004]
Various measures have been proposed for such a problem (Patent Documents 1 and 2).
Patent Document 1: Japanese Unexamined Patent Application Publication No. 11-343664 discloses an aqueous coating composition obtained by mixing an aqueous emulsion having a different glass transition temperature (hereinafter, abbreviated as Tg) and a water-soluble resin. .
[0005]
Patent Document 2: Japanese Patent Application Laid-Open No. 2001-11105 discloses a low acid value in the presence of a polymer obtained by emulsion polymerization of a high acid value, low Tg ethylenically unsaturated monomer in an aqueous medium. A method for producing an aqueous polymer dispersion for polymerizing a high Tg ethylenically unsaturated monomer is described. According to the method described in Patent Document 2, it is possible to obtain an emulsion-type paint capable of forming a film at a relatively low temperature.
However, in the method described in Patent Document 2, the formed coating film has insufficient blocking properties at higher temperatures and poor water resistance.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 11-343465
JP 2001-11105 A
[Problems to be solved by the invention]
INDUSTRIAL APPLICABILITY The present invention can form a film even at about 5 ° C. and can form a coating film excellent in high-temperature blocking properties and water resistance despite containing no or a very small amount of a film-forming auxiliary. It is intended to provide an emulsion.
[0008]
[Means for Solving the Problems]
The present invention is a multi-stage polymer emulsion obtained by emulsion polymerization of an ethylenically unsaturated monomer in an aqueous medium in three or more steps,
Glass transition temperature of the whole polymer obtained from all ethylenically unsaturated monomers subjected to polymerization: [total] Tg is 10 to 30 ° C,
The glass transition temperature of the polymer determined from the ethylenically unsaturated monomer subjected to at least two steps of polymerization is different from the glass transition temperature of the polymer determined from the ethylenically unsaturated monomer subjected to the other steps of polymerization. ,
Polymerizing a first monomer emulsion containing an ethylenically unsaturated monomer, an emulsifier and water charged in a reaction vessel to obtain a first polymer emulsion (A);
Then, in the presence of the first polymer emulsion (A),
The present invention relates to a multi-stage polymer emulsion obtained by sequentially polymerizing a monomer emulsion containing an ethylenically unsaturated monomer, an emulsifier, and water after the second step.
[0009]
Further, the present invention relates to the above-mentioned multi-stage polymer emulsion characterized by containing a silane coupling agent in at least one of the steps,
Furthermore, the present invention relates to the multistage polymer emulsion of the above invention, wherein the polymerization initiator is a pyrolysis system.
[0010]
Further, the present invention provides that the glass transition temperature of the polymer determined from the ethylenically unsaturated monomer subjected to the final stage polymerization is determined from the ethylenically unsaturated monomer subjected to the polymerization in each step before the final stage. The multistage polymer emulsion according to the invention, wherein the temperature is not lower than the highest temperature among the glass transition temperatures of the respective polymers obtained.
[0011]
Furthermore, the present invention is a method for producing a multi-stage polymer emulsion in which an ethylenically unsaturated monomer is emulsion-polymerized in an aqueous medium in three or more steps,
Glass transition temperature of the whole polymer obtained from all ethylenically unsaturated monomers subjected to polymerization: [total] Tg is 10 to 30 ° C,
The glass transition temperature of the polymer determined from the ethylenically unsaturated monomer subjected to at least two steps of polymerization is different from the glass transition temperature of the polymer determined from the ethylenically unsaturated monomer subjected to the other steps of polymerization. ,
Polymerizing a first monomer emulsion containing an ethylenically unsaturated monomer, an emulsifier and water charged in a reaction vessel to obtain a first polymer emulsion (A);
Next, the first polymer emulsion (A)
The present invention relates to a method for producing a multi-stage polymer emulsion, which comprises sequentially adding and polymerizing a monomer emulsion containing an ethylenically unsaturated monomer, an emulsifier, and water after the second step.
[0012]
Further, in the present invention, the multi-stage polymerization is a three-stage polymerization, the Tg of a polymer that can be formed from the ethylenically unsaturated monomer in the first monomer emulsion is -40 to 0 ° C, and the amount of the ethylenically unsaturated monomer is all ethylene. 3 to 15% by weight of the amount of the ethylenically unsaturated monomer, the Tg of the polymer that can be formed from the ethylenically unsaturated monomer subjected to the polymerization in the second step is −40 to 0 ° C., and the amount of the ethylenically unsaturated monomer in the second step Is 30 to 55% by weight of the total amount of the ethylenically unsaturated monomer, the Tg of the polymer which can be formed from the ethylenically unsaturated monomer subjected to the polymerization in the third step is 40 to 100 ° C, and the ethylenic property in the third step is The present invention relates to a method for producing the above-mentioned multistage polymer emulsion, wherein the amount of unsaturated monomer is 30 to 55% by weight of the total amount of ethylenically unsaturated monomer.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The multi-stage polymerized polymer emulsion of the present invention is obtained by emulsion-polymerizing an ethylenically unsaturated monomer in an aqueous medium in three or more steps, and comprises mixing an ethylenically unsaturated monomer, an emulsifier, and water charged in a reaction vessel. The first monomer emulsion containing is polymerized to obtain a first polymer emulsion (A), and then a second polymer emulsion containing an ethylenically unsaturated monomer, an emulsifier and water in the presence of the first polymer emulsion (A). It is very important to sequentially polymerize the monomer emulsion after the second step.
That is, even if the composition and amount of the monomers used, the type and amount of the emulsifier, etc. are the same, the ethylenically unsaturated monomer is not charged in the reaction vessel, but the emulsifier, the polymerization initiator and water are charged, or the polymerization is performed. A monomer emulsion containing an ethylenically unsaturated monomer, an emulsifier, a polymerization initiator and water, or an initiator or water, an emulsifier and water, or only water is charged. When a monomer emulsion containing an unsaturated monomer, an emulsifier, and water, a mixture of an ethylenically unsaturated monomer and an emulsifier, or an ethylenically unsaturated monomer is dropped, and the monomer is polymerized, the ethylenically unsaturated monomer is placed in a reaction vessel. Compared to the case where a saturated monomer is charged, the resulting emulsion is inferior in low-temperature film-forming properties, and can only form a coating film with extremely poor high-temperature blocking properties and water resistance. There.
In the present invention, the polymerization initiator may be charged in advance in the reaction vessel together with the ethylenically unsaturated monomer or the like, or may be contained in the second and subsequent monomer emulsions to be dropped. Or may be added dropwise to the reaction vessel separately from the ethylenically unsaturated monomer and the emulsifier.
[0014]
It is also important that the multistage polymer emulsion of the present invention has a glass transition temperature: [all] Tg of 10 ° C to 30 ° C, which is required from all the ethylenically unsaturated monomers to be subjected to polymerization. [All] Tg is more preferably 15 ° C to 25 ° C. When [all] Tg is less than 10 ° C, low-temperature film-forming properties are excellent, but high-temperature blocking properties are poor. On the other hand, when [all] Tg exceeds 30 ° C, high-temperature blocking properties are excellent, but low-temperature film-forming properties deteriorate.
[0015]
Further, the multi-stage polymerized emulsion of the present invention has a glass transition temperature Tg determined from the ethylenically unsaturated monomer subjected to the polymerization in at least two of the three or more stages of the polymerization, and the polymerization in the other stages It is important that it differs from the glass transition temperature Tg determined from the ethylenically unsaturated monomer provided.
For example, in the case of three-stage polymerization, the combination of Tg at the first stage / Tg at the second stage / Tg at the third stage is as follows.
(1) low Tg / low Tg / high Tg,
(2) high Tg / high Tg / low Tg,
(3) low Tg / high Tg / low Tg;
(4) high Tg / low Tg / low Tg;
(5) High Tg / low Tg / high Tg.
In the cases (1), (3) and (4), the low Tg is preferably −40 to 0 ° C., the high Tg is preferably 40 to 100 ° C., the low Tg is −30 to −10 ° C., and the high Tg is 60. It is more preferable that the temperature is 90C.
In the cases of (2) and (5), the low Tg is preferably −60 to −20 ° C., the high Tg is preferably 20 to 70 ° C., the low Tg is −50 to −30 ° C., and the high Tg is 30 to 60 ° C. Is more preferable.
Further, from the viewpoint of the blocking property of the formed coating film, (1) and (5) are preferable, and (1) is particularly preferable. In the case of (1), 3 to 15% by weight of a monomer which is subjected to the first step and can form a low Tg polymer out of 100% by weight of the monomer to be subjected to polymerization through all of the steps 1 to 3 %, The amount of the monomer supplied to the second and third steps is preferably 85 to 97% by weight, and the amount of the monomer supplied to each of the second to third steps is 30 to 55% by weight. Is preferred. When the amount of the monomer supplied to the first step is less than 3% by weight or more than 15% by weight, the low-temperature film forming property tends to deteriorate in any case.
[0016]
The Tg in the present invention can be determined from each homopolymer Tg that can be formed from each monomer and the weight fraction of each monomer used for polymerization based on the following formula.
1 / Tg = Σ (Wn / Tgn)
Tg: calculated Tg of polymer (absolute temperature)
Wn: weight fraction (%) of monomer n
Tgn: glass transition temperature (absolute temperature) of homopolymer of monomer n
[0017]
The ethylenically unsaturated monomer used in the present invention is not particularly limited as long as it can be generally used for a radical polymerization reaction. As an example,
Acrylic esters such as methyl acrylate, ethyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate; methacrylic acids such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, and cyclohexyl methacrylate Esters;
Esters of maleic acid, fumaric acid, itaconic acid;
Vinyl esters such as vinyl acetate, vinyl propionate and tertiary vinyl carboxylate;
Aromatic vinyl compounds such as styrene and vinyltoluene;
Heterocyclic vinyl compounds such as vinylpyrrolidone;
Vinyl chloride, acrylonitrile, vinyl ether, vinyl ketone, vinyl amide; vinylidene halide compounds such as vinylidene chloride and vinylidene fluoride;
Α-olefins such as ethylene and propylene;
There are dienes such as butadiene.
[0018]
Also, carboxyl group-containing ethylenic such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, itaconic acid half ester, maleic acid half ester, maleic anhydride, itaconic acid-free, 2-methacryloyl propionic acid, etc. Unsaturated monomers can be used as appropriate, and acrylic acid and methacrylic acid are particularly preferred.
[0019]
Further, in the multistage polymerization emulsion of the present invention, it is preferable to use a silane coupling agent in at least one of the steps from the viewpoint of water resistance, and it is more preferable to use a silane coupling agent having an ethylenically unsaturated group. Examples of such a silane coupling agent include a silane coupling agent having an acryloyl group, a methacryloyl group, and a vinyl group, and a silane coupling agent having a vinyl group is preferable from the viewpoint of low-temperature film forming properties. Such a silane coupling agent is preferably used at the time of the final polymerization.
The silane coupling agent having an ethylenically unsaturated group is not included in the ethylenically unsaturated monomer according to the present invention.
[0020]
Any emulsifier can be used as long as it is used in emulsion polymerization. Representative examples are anionic emulsifiers such as alkylbenzene sulfonates, alkyl sulfates, polyoxyethylene alkylphenyl sulfonates, salts of dialkyl sulfosuccinates, polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers And nonionic emulsifiers such as polyoxyethylene-polyoxypropylene block copolymer. Of course, the emulsifier is not limited to these, and is not limited to the above-mentioned skeleton as long as it is an emulsifier that can be used at the time of emulsion polymerization. Any emulsifier can be used, and a plurality of these can be used in combination. . As these emulsifiers, it is preferable to use those which do not correspond to endocrine disrupting substances (environmental hormone substances). A reactive emulsifier is preferred from the viewpoint of the water resistance of the formed coating film and the like.
[0021]
Specific examples of the reactive emulsifier include sodium vinyl sulfonate, polyoxyethylene ammonium acrylate, sodium polyoxyethylene sulfonate methacrylate, polyoxyethylene alkenyl phenyl sulfonate ammonium, polyoxyethylene alkenyl phenyl sulfate sodium, sodium allyl alkyl Examples thereof include anionic reactive emulsifiers such as sulfosuccinate and sodium polyoxypropylene sulfonic acid methacrylate, and nonionic reactive emulsifiers such as polyoxyethylene alkenyl phenyl ether and polyoxyethylene methacryloyl ether.
[0022]
For example, as a reactive emulsifier, Aqualon HS-10, KH-10, New Frontier A-229E (above, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), Adecaria Soap SE-3N, SE-5N, SE-10N, SE-20N, SE-30N [all, manufactured by Asahi Denka Kogyo Co., Ltd.], AntoxMS-60, MS-2N, RA-1120, RA-2614 [all, manufactured by Nippon Emulsifier Co., Ltd.], Eleminor JS-2, Anionic reactive emulsifiers such as RS-30 [all manufactured by Sanyo Chemical Industries, Ltd.] and Latemul S-120A, S-180A, S-180 [all manufactured by Kao Corporation];
Aqualon RN-20, RN-30, RN-50, New Frontier N-177E (all manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), Adecaria Soap NE-10, NE-20, NE-30, NE-40 [ As described above, RMA-564, RMA-568, RMA-1114 [from Nippon Emulsifier Co., Ltd.], NK ester M-20G, M-40G, M-90G, M-230G Non-reactive emulsifiers such as [Nippon Shinkamura Chemical Industry Co., Ltd.]
Examples of the non-reactive emulsifier include 1118S-70 and Emal 10 (manufactured by Kao Corporation). These may be used in combination of two or more.
The reactive emulsifier is not included in the ethylenically unsaturated monomer according to the present invention.
[0023]
Examples of the radical polymerization initiator that can be used in the present invention include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate, azobisisobutyronitrile and its hydrochloride, and 2,2′-azobis ( Azo initiators such as 2-amidinopropane) dihydrochloride and 4,4'-azobis (4-cyanovaleric acid), and peroxide initiators such as hydrogen peroxide and tert-butyl hydroperoxide. Is mentioned. Examples of the reducing agent that can be used in combination with these radical initiators include sodium pyrosulfite and L-ascorbic acid. Although the detailed reason is still unknown, from the viewpoint of low-temperature film-forming properties, it is not a redox initiator using a radical initiator and a reducing agent together, but a thermal decomposition system using only a radical initiator. Agents are preferred.
[0024]
EXAMPLES Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to only the following Examples. The following parts and% are values based on weight.
Embodiment 1
First monomer emulsion 372 parts of ion-exchanged water, 48 parts of 2-ethylhexyl acrylate (hereinafter abbreviated as 2-EHA), 20 parts of methyl methacrylate (hereinafter abbreviated as MMA), acrylic acid (hereinafter, abbreviated as MMA) 1.5 parts of 2-hydroxyethyl methacrylate (hereinafter abbreviated as 2-HEMA), 4 parts of AQUALON KH-10 [an anionic reactive emulsifier manufactured by Daiichi Kogyo Seiyaku Co., Ltd.] A monomer emulsion (a) is prepared by mixing 20 parts of an aqueous solution of an emulsifier dissolved in 16 parts of ion-exchanged water and 20 parts of an aqueous solution of an emulsifier obtained by dissolving 2.5 parts of emulgen 1118-70 in 17.5 parts of ion-exchanged water. did.
[0026]
Second monomer emulsion 143 parts of ion-exchanged water, 292 parts of 2-ethylhexyl acrylate (hereinafter abbreviated as 2-EHA), 120 parts of methyl methacrylate (hereinafter abbreviated as MMA), and acrylic acid ( Hereafter, 8.5 parts of AA), 8.5 parts of 2-hydroxyethyl methacrylate (hereinafter, 2-HEMA), Aqualon KH-10 [anionic reactive emulsifier manufactured by Daiichi Kogyo Seiyaku Co., Ltd.] 8 40 parts of an emulsifier aqueous solution in which 32 parts of ion-exchanged water were dissolved, and 20 parts of an emulsifier aqueous solution in which 2.5 parts of emulgen 1118-70 were dissolved in 17.5 parts of ion-exchanged water were mixed to prepare a monomer emulsion (b). Produced.
[0027]
Third monomer emulsion Further, 135 parts of ion-exchanged water, 50 parts of 2-ethylhexyl acrylate (hereinafter abbreviated as 2-EHA), 445 parts of methyl methacrylate (hereinafter abbreviated as MMA), Aqualon KH- 10 [Anionic reactive emulsifier manufactured by Daiichi Kogyo Seiyaku Co., Ltd.] 8 parts of an emulsifier aqueous solution obtained by dissolving 8 parts in 32 parts of ion-exchanged water, and 2.5 parts of emulgen 1118-70 in 17.5 parts of ion-exchanged water 20 parts of the dissolved emulsifier aqueous solution and 10 parts of vinyl group triethoxysilane were mixed to prepare a monomer emulsion (c).
[0028]
Aqueous initiator solution An aqueous initiator solution was prepared by dissolving 4 parts of potassium persulfate in 76 parts of ion-exchanged water.
[0029]
The monomer emulsion (a) was charged into a 2.5-liter reaction vessel equipped with a stirrer, a thermometer, and a cooling device, and the inside of the reaction vessel was heated to 75 ° C. while stirring while introducing nitrogen gas. After the temperature was raised, 8 parts of the initiator aqueous solution was dropped into the reaction vessel to start emulsion polymerization of the monomer emulsion (a).
After 10 minutes from the start of the reaction of the monomer emulsion (a), 30 parts of the monomer emulsion (b) and the above aqueous initiator solution were respectively dropped over 100 minutes while maintaining the liquid temperature in the reaction vessel at 75 ° C. .
Thirty minutes after the completion of the dropping of the monomer emulsion (b), 30 parts of the monomer emulsion (c) and the above aqueous initiator solution were respectively dropped over 100 minutes while maintaining the liquid temperature in the reaction vessel at 75 ° C.
After completion of the dropwise addition, the mixture was further maintained at 75 ° C. for 2 hours, cooled to room temperature, adjusted with 14% aqueous ammonia to obtain a polymer emulsion by multistage polymerization. The obtained polymer emulsion had a nonvolatile content of 51.5%, a viscosity of 3260 mPa · s, and a pH of 9.0.
Table 1 shows the calculated values of Tg and [total] Tg of the polymer that can be formed from the monomers at each stage subjected to the formation of the polymer emulsion, the nonvolatile content of the polymer emulsion, the viscosity, the pH, and the film forming property at 5 ° C. , Minimum film forming temperature (MFT), blocking property and water resistance of the formed coating film.
Embodiment 2
As shown in Table 1, a polymer emulsion was prepared in the same manner as in Example 1 except that vinyltriethoxysilane was not used.
Examples 3 to 5
As shown in Table 1,
Example 3: Calculated Tg of first monomer emulsion [A] Tg = 40 ° C, Calculated second monomer emulsion Tg [B] Tg = 40 ° C, Calculated third monomer emulsion Tg [C] Tg =- 45 ° C,
Example 4: [A] Tg = -8.5 ° C, [B] Tg = -8.5 ° C, [C] Tg = 56 ° C,
Example 5: [A] Tg = −22 ° C., [B] Tg = −22 ° C., [C] Tg = 67 ° C.
A polymer emulsion was prepared in the same manner as in Example 1 except that
Embodiment 6
Example 1 was repeated except that 4 parts of sodium pyrosulfite was dissolved in 76 parts of ion-exchanged water to prepare a reducing agent aqueous solution, and the reducing agent aqueous solution was added in parallel with the same amount of the potassium persulfate aqueous solution used in Example 1. A polymer emulsion was prepared in the same manner.
Comparative Example 1
Only 405.5 parts of ion-exchanged water was charged into the reaction vessel, the temperature was raised to 75 ° C., and then the monomer emulsion (b) and 38 parts of an aqueous potassium persulfate solution shown in Table 1 were added dropwise over 100 minutes. Next, 30 minutes after the completion of the dropping of the monomer emulsion (b), the monomer emulsion (c) and 30 parts of an aqueous potassium persulfate solution were respectively dropped over 100 minutes while maintaining the liquid temperature in the reaction vessel at 75 ° C. A polymer emulsion was prepared in the same manner as in Example 1.
Comparative Example 2
405.5 parts of ion-exchanged water, 4 parts of emulsifier KH-10 and 2.5 parts of 1118-70 were charged into the reaction vessel, and the temperature was raised to 75 ° C., and then the monomer emulsion (b) shown in Table 1 was prepared. And 38 parts of an aqueous potassium persulfate solution were added dropwise over 100 minutes. Next, 30 minutes after the completion of the dropping of the monomer emulsion (b), the monomer emulsion (c) and 30 parts of an aqueous potassium persulfate solution were respectively dropped over 100 minutes while maintaining the liquid temperature in the reaction vessel at 75 ° C. A polymer emulsion was prepared in the same manner as in Example 1.
Comparative Example 3
A reaction vessel was charged with 240 parts of ion-exchanged water alone, heated to 75 ° C., and thereafter, monomer emulsion (b) shown in Table 1 and 21 parts of a 4.8% ammonium persulfate aqueous solution were added dropwise over 100 minutes. did. Then, 30 minutes after the completion of the dropping of the monomer emulsion (b), the monomer emulsion (c) and 21 parts of a 4.8% ammonium persulfate aqueous solution were respectively dropped over 100 minutes while maintaining the liquid temperature in the reaction vessel at 75 ° C. A polymer emulsion was prepared in the same manner as in Example 1 except that the procedure was repeated.
Comparative Example 4
A polymer emulsion having an [all] Tg of 20 ° C. was prepared in the same manner as in Comparative Example 3 except that the Tg of the polymer formed from the second monomer emulsion and [B] Tg were increased to 2.5 ° C.
Comparative Example 5
Same as Example 1 except that 4 parts of sodium pyrosulfite was dissolved in 76 parts of ion-exchanged water to prepare a reducing agent aqueous solution, and the same amount of the reducing agent aqueous solution was added in parallel with the ammonium persulfate aqueous solution used in Comparative Example 3. To prepare a polymer emulsion.
[0038]
The calculated Tg value was calculated by the following calculation formula.
1 / Tg = Σ (Wn / Tgn)
Tg: calculated Tg of polymer (absolute temperature)
Wn: weight fraction (%) of monomer n
Tgn: glass transition temperature (absolute temperature) of homopolymer of monomer n
[0039]
The glass transition temperature (Tgn) of the homopolymer of the monomer used for calculating the Tg value is as follows.
Homopolymer of 2-ethylhexyl acrylate (2EHA): -55.3 ° C
Homopolymer of butyl acrylate (BA): -45.2 ° C
Homopolymer of methyl methacrylate (MMA): 104.8 ° C
Homopolymer of methacrylic acid (MAA): 130.0 ° C
Acrylic acid (AA) homopolymer: 106.0 ° C.
Homopolymer of glycidyl methacrylate (GMA): 40.8 ° C
Homopolymer of 2-hydroxymethacrylate (2-HEMA): 55.0 ° C
[0040]
Evaluation of polymerization stability: Each of the obtained polymer emulsions was filtered with a 100-mesh filter cloth, and the dry weight of the residue remaining on the filter cloth was evaluated according to the following criteria.
== less than 0.1 g per 1 kg of polymer emulsion △ = 0.1 g or more to less than 1.0 g per 1 kg of polymer emulsion × = 1.0 g or more per 1 kg of polymer emulsion
Film-forming property at 5 ° C .: Each of the obtained polymer emulsions was applied to a glass plate to a thickness of 6 MIL, allowed to stand at 5 ° C. for 16 hours and dried, and the film-forming state was visually observed.
== A uniform coating film was formed.
Δ = A coating film could be formed, but cracks occurred.
× = The coating film could not be formed and was broken.
[0042]
Measurement of MFT (minimum film forming temperature): According to the test method of JIS-K-6828, each of the obtained polymer emulsions was applied to a glass plate to a thickness of 0.3 mm, and one end thereof was heated to a high temperature. The other end was placed on a hot plate having a low temperature, and the lowest temperature at which a uniform dried coating film was formed was determined.
[0043]
Evaluation of blocking property: Each of the obtained polymer emulsions was applied on a glass plate with a 6-mil applicator, dried at 20 ° C for 3 days, and then dried at 40 ° C for 30 minutes. Then, newspaper was placed on the surface of the coating film, a load of 0.5 kg / cm 2 was applied, and the newspaper was allowed to stand under a temperature environment of 50 ° C. for 12 hours, and the adhesion of the newspaper was visually determined based on the following criteria.
:: not adhered Δ: slightly adhered X: considerably adhered [0044]
Evaluation of water resistance: Each of the obtained polymer emulsions was applied to a glass plate to a thickness of 6 MIL, dried at 20 ° C. for 6 hours, dried at 40 ° C. for 30 minutes, immersed in 25 ° C. water for 1 hour, and coated. The state of the film was visually evaluated.
== no whitening, Δ = very whitening, × = significantly whitening the whole surface
[Table 1]
Figure 2004250607
[0046]
【The invention's effect】
According to the present invention, it is possible to form a film even at about 5 ° C. and to form a coating film having excellent high-temperature blocking properties and water resistance, even though the film-forming auxiliary is not contained at all or contained a very small amount. It is possible to provide an emulsion that can be used.

Claims (6)

エチレン性不飽和モノマーを水性媒体中で3段階以上の工程で乳化重合してなる多段重合ポリマーエマルジョンであって、
重合に供される全エチレン性不飽和モノマーから求められるポリマー全体のガラス転移温度:[全]Tgが10〜30℃であり、
少なくとも2つの工程の重合に供されるエチレン性不飽和モノマーから求められるポリマーのガラス転移温度が、他の工程の重合に供されるエチレン性不飽和モノマーから求められるポリマーのガラス転移温度とは異なり、
反応容器中に仕込んだエチレン性不飽和モノマー、乳化剤及び水を含有する第1のモノマーエマルジョンを重合し、第1のポリマーエマルジョン(A)を得、
次いで該第1のポリマーエマルジョン(A)の存在下に、
エチレン性不飽和モノマー、乳化剤及び水を含有する第2工程以降のモノマーエマルジョンを順次重合してなることを特徴とする多段重合ポリマーエマルジョン。
A multistage polymer emulsion obtained by emulsion polymerization of an ethylenically unsaturated monomer in an aqueous medium in three or more steps,
Glass transition temperature of the whole polymer obtained from all ethylenically unsaturated monomers subjected to polymerization: [total] Tg is 10 to 30 ° C,
The glass transition temperature of the polymer determined from the ethylenically unsaturated monomer subjected to at least two steps of polymerization is different from the glass transition temperature of the polymer determined from the ethylenically unsaturated monomer subjected to the other steps of polymerization. ,
Polymerizing a first monomer emulsion containing an ethylenically unsaturated monomer, an emulsifier and water charged in a reaction vessel to obtain a first polymer emulsion (A);
Then, in the presence of the first polymer emulsion (A),
A multi-stage polymer emulsion obtained by sequentially polymerizing a monomer emulsion containing an ethylenically unsaturated monomer, an emulsifier, and water after the second step.
少なくともいずれかの工程においてシランカップリング剤を含有することを特徴とする請求項1記載の多段重合ポリマーエマルジョン。The multistage polymer emulsion according to claim 1, wherein a silane coupling agent is contained in at least one of the steps. 重合開始剤が、熱分解系であることを特徴とする請求項1又は2記載の多段重合ポリマーエマルジョン。The multistage polymer emulsion according to claim 1 or 2, wherein the polymerization initiator is a thermal decomposition system. 最終段階の重合に供されるエチレン性不飽和モノマーから求められるポリマーのガラス転移温度が、最終段階よりも前の各工程の重合に供されるエチレン性不飽和モノマーから求められる各ポリマーの各ガラス転移温度のうち最も高い温度以上であることを特徴とする請求項1ないし3いずれか記載の多段重合ポリマーエマルジョン。The glass transition temperature of the polymer determined from the ethylenically unsaturated monomer subjected to the polymerization in the final step is determined by the glass transition temperature of each polymer determined from the ethylenically unsaturated monomer subjected to the polymerization in each step prior to the final step. The multistage polymer emulsion according to any one of claims 1 to 3, wherein the temperature is not lower than the highest transition temperature. エチレン性不飽和モノマーを水性媒体中で3段階以上の工程で乳化重合する多段重合ポリマーエマルジョンの製造方法であって、
重合に供される全エチレン性不飽和モノマーから求められるポリマー全体のガラス転移温度:[全]Tgが10〜30℃であり、
少なくとも2つの工程の重合に供されるエチレン性不飽和モノマーから求められるポリマーのガラス転移温度が、他の工程の重合に供されるエチレン性不飽和モノマーから求められるポリマーのガラス転移温度とは異なり、
反応容器中に仕込んだエチレン性不飽和モノマー、乳化剤及び水を含有する第1のモノマーエマルジョンを重合し、第1のポリマーエマルジョン(A)を得、
次いで該第1のポリマーエマルジョン(A)に、
エチレン性不飽和モノマー、乳化剤及び水を含有する第2工程以降のモノマーエマルジョンを順次、添加、重合することを特徴とする多段重合ポリマーエマルジョンの製造方法。
A method for producing a multistage polymer emulsion in which an ethylenically unsaturated monomer is emulsion-polymerized in an aqueous medium in three or more steps,
Glass transition temperature of the whole polymer obtained from all ethylenically unsaturated monomers subjected to polymerization: [total] Tg is 10 to 30 ° C,
The glass transition temperature of the polymer determined from the ethylenically unsaturated monomer subjected to at least two steps of polymerization is different from the glass transition temperature of the polymer determined from the ethylenically unsaturated monomer subjected to the other steps of polymerization. ,
Polymerizing a first monomer emulsion containing an ethylenically unsaturated monomer, an emulsifier and water charged in a reaction vessel to obtain a first polymer emulsion (A);
Next, the first polymer emulsion (A)
A method for producing a multi-stage polymer emulsion, comprising sequentially adding and polymerizing a monomer emulsion containing an ethylenically unsaturated monomer, an emulsifier, and water after the second step.
多段重合が3段重合であり、第1のモノマーエマルジョン中のエチレン性不飽和モノマーから形成され得るポリマーのTgが−40〜0℃、前記エチレン性不飽和モノマー量が全エチレン性不飽和モノマー量の3〜15重量%、第2工程の重合に供されるエチレン性不飽和モノマーから形成され得るポリマーのTgが−40〜0℃、第2工程のエチレン性不飽和モノマー量が全エチレン性不飽和モノマー量の30〜55重量%であり、第3工程の重合に供されるエチレン性不飽和モノマーから形成され得るポリマーのTgが40〜100℃、第3工程のエチレン性不飽和モノマー量が全エチレン性不飽和モノマー量の30〜55重量%であることを特徴とする請求項5記載の多段重合ポリマーエマルジョンの製造方法。The multi-stage polymerization is a three-stage polymerization, wherein the polymer that can be formed from the ethylenically unsaturated monomer in the first monomer emulsion has a Tg of -40 to 0 ° C, and the amount of the ethylenically unsaturated monomer is the total amount of the ethylenically unsaturated monomer. Of the polymer which can be formed from the ethylenically unsaturated monomer subjected to the polymerization in the second step is -40 to 0 ° C, and the amount of the ethylenically unsaturated monomer in the second step is 30 to 55% by weight of the amount of the saturated monomer, the Tg of the polymer which can be formed from the ethylenically unsaturated monomer subjected to the polymerization in the third step is 40 to 100 ° C, and the amount of the ethylenically unsaturated monomer in the third step is The method for producing a multi-stage polymerized emulsion according to claim 5, wherein the amount is 30 to 55% by weight of the total amount of the ethylenically unsaturated monomers.
JP2003043506A 2003-02-21 2003-02-21 Multi-stage polymer emulsion and production method thereof Expired - Lifetime JP3693054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003043506A JP3693054B2 (en) 2003-02-21 2003-02-21 Multi-stage polymer emulsion and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003043506A JP3693054B2 (en) 2003-02-21 2003-02-21 Multi-stage polymer emulsion and production method thereof

Publications (2)

Publication Number Publication Date
JP2004250607A true JP2004250607A (en) 2004-09-09
JP3693054B2 JP3693054B2 (en) 2005-09-07

Family

ID=33026476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003043506A Expired - Lifetime JP3693054B2 (en) 2003-02-21 2003-02-21 Multi-stage polymer emulsion and production method thereof

Country Status (1)

Country Link
JP (1) JP3693054B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291082A (en) * 2005-04-13 2006-10-26 Asahi Kasei Chemicals Corp Composition for coating heat-sensitive recording paper
US8202581B2 (en) 2007-02-16 2012-06-19 Valspar Sourcing, Inc. Treatment for cement composite articles
US8277934B2 (en) 2006-01-31 2012-10-02 Valspar Sourcing, Inc. Coating system for cement composite articles
US8658286B2 (en) 2006-06-02 2014-02-25 Valspar Sourcing, Inc. High performance aqueous coating compositions
US8932718B2 (en) 2006-07-07 2015-01-13 Valspar Sourcing, Inc. Coating systems for cement composite articles
US8993110B2 (en) 2005-11-15 2015-03-31 Valspar Sourcing, Inc. Coated fiber cement article with crush resistant latex topcoat
US9133064B2 (en) 2008-11-24 2015-09-15 Valspar Sourcing, Inc. Coating system for cement composite articles
US9175187B2 (en) 2008-08-15 2015-11-03 Valspar Sourcing, Inc. Self-etching cementitious substrate coating composition
US9783622B2 (en) 2006-01-31 2017-10-10 Axalta Coating Systems Ip Co., Llc Coating system for cement composite articles
JP2019502766A (en) * 2015-11-25 2019-01-31 アーケマ・インコーポレイテッド Fluoropolymer composition having improved mechanical wettability

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179726A (en) * 1992-12-11 1994-06-28 Dainippon Ink & Chem Inc Production of copolymer emulsion
JPH1192708A (en) * 1997-09-17 1999-04-06 Nippon Paint Co Ltd Emulsion composition for building exterior coating and building exterior coating composition made by using the emulsion composition
JPH1190325A (en) * 1997-09-17 1999-04-06 Nippon Paint Co Ltd Applycation of external coating material on building
JP2000355602A (en) * 1999-06-14 2000-12-26 Nippon Shokubai Co Ltd Water-borne resin dispersion
JP2002012601A (en) * 2000-06-30 2002-01-15 Saiden Chemical Industry Co Ltd Method for manufacturing aqueous polymer dispersion for coating material and the dispersion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179726A (en) * 1992-12-11 1994-06-28 Dainippon Ink & Chem Inc Production of copolymer emulsion
JPH1192708A (en) * 1997-09-17 1999-04-06 Nippon Paint Co Ltd Emulsion composition for building exterior coating and building exterior coating composition made by using the emulsion composition
JPH1190325A (en) * 1997-09-17 1999-04-06 Nippon Paint Co Ltd Applycation of external coating material on building
JP2000355602A (en) * 1999-06-14 2000-12-26 Nippon Shokubai Co Ltd Water-borne resin dispersion
JP2002012601A (en) * 2000-06-30 2002-01-15 Saiden Chemical Industry Co Ltd Method for manufacturing aqueous polymer dispersion for coating material and the dispersion

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291082A (en) * 2005-04-13 2006-10-26 Asahi Kasei Chemicals Corp Composition for coating heat-sensitive recording paper
US8993110B2 (en) 2005-11-15 2015-03-31 Valspar Sourcing, Inc. Coated fiber cement article with crush resistant latex topcoat
US8293361B2 (en) 2006-01-31 2012-10-23 Valspar Sourcing, Inc. Coating system for cement composite articles
US8277934B2 (en) 2006-01-31 2012-10-02 Valspar Sourcing, Inc. Coating system for cement composite articles
US9783622B2 (en) 2006-01-31 2017-10-10 Axalta Coating Systems Ip Co., Llc Coating system for cement composite articles
US8658286B2 (en) 2006-06-02 2014-02-25 Valspar Sourcing, Inc. High performance aqueous coating compositions
US9359520B2 (en) 2006-06-02 2016-06-07 Valspar Sourcing, Inc. High performance aqueous coating compositions
US8932718B2 (en) 2006-07-07 2015-01-13 Valspar Sourcing, Inc. Coating systems for cement composite articles
US9593051B2 (en) 2006-07-07 2017-03-14 Valspar Sourcing, Inc. Coating systems for cement composite articles
US10640427B2 (en) 2006-07-07 2020-05-05 Axalta Coating Systems IP Co. LLC Coating systems for cement composite articles
US8202581B2 (en) 2007-02-16 2012-06-19 Valspar Sourcing, Inc. Treatment for cement composite articles
US9175187B2 (en) 2008-08-15 2015-11-03 Valspar Sourcing, Inc. Self-etching cementitious substrate coating composition
US9133064B2 (en) 2008-11-24 2015-09-15 Valspar Sourcing, Inc. Coating system for cement composite articles
JP2019502766A (en) * 2015-11-25 2019-01-31 アーケマ・インコーポレイテッド Fluoropolymer composition having improved mechanical wettability

Also Published As

Publication number Publication date
JP3693054B2 (en) 2005-09-07

Similar Documents

Publication Publication Date Title
JP6234221B2 (en) Acrylic resin emulsion for aqueous inkjet ink, and aqueous inkjet ink composition using the same
JP5876175B2 (en) Sealer coating composition
US8741985B2 (en) Resin emulsion for sealer
JP3693054B2 (en) Multi-stage polymer emulsion and production method thereof
JP5695823B2 (en) Sealer coating composition
WO1998016561A1 (en) Polymer obtained by emulsion polymerization method
JP2007091997A (en) One pot type aqueous coating agent, method for producing the same and coated article
JP5011162B2 (en) Aqueous resin composition, method for producing the same, and painted product
JP2006152051A (en) Aqueous acrylic adhesive composition and method for producing the same
JP4678477B2 (en) Re-peelable water-based pressure-sensitive adhesive composition and pressure-sensitive adhesive product
JP5547460B2 (en) Resin composition for sealer
JP2007247111A (en) Binder emulsion for nonwoven fabric and method for producing the same
JP2006045397A (en) Ordinary-temperature-curing resin composition and method for producing the same
JP2005187675A (en) Multi-step polymerization polymer emulsion and method for producing the same
WO2013133418A1 (en) Resin emulsion for water-based inkjet ink, composition for water-based inkjet ink using same, and ink-coated material
JP4483288B2 (en) Acrylic aqueous pressure-sensitive adhesive composition and pressure-sensitive adhesive
JP2007246800A (en) Multi-step polymerization polymer emulsion and method for producing the same
CN109312122B (en) Aqueous resin dispersion
JP3676572B2 (en) Vinylidene chloride emulsion and aqueous resin composition for undercoat
JP2010185069A (en) Resin composition for sealer
JP2004224866A (en) Redispersible resin powder, powder composition containing the same, and use of them
JP3746446B2 (en) Resin composition for water-based paint
JPH05311131A (en) Release agent for application to back surface
JP4529070B2 (en) Acrylic polymer aqueous dispersion and production method
JPH0931386A (en) Water-based printing-ink composition for lamination and laminating method using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050613

R150 Certificate of patent or registration of utility model

Ref document number: 3693054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term