JP2004250509A - Nylon-11 / polyfluorovinylidene blend film and method for producing the same - Google Patents

Nylon-11 / polyfluorovinylidene blend film and method for producing the same Download PDF

Info

Publication number
JP2004250509A
JP2004250509A JP2003040535A JP2003040535A JP2004250509A JP 2004250509 A JP2004250509 A JP 2004250509A JP 2003040535 A JP2003040535 A JP 2003040535A JP 2003040535 A JP2003040535 A JP 2003040535A JP 2004250509 A JP2004250509 A JP 2004250509A
Authority
JP
Japan
Prior art keywords
nylon
pvdf
axis
crystal
oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003040535A
Other languages
Japanese (ja)
Other versions
JP3962810B2 (en
Inventor
Akira Kaido
彰 海藤
Yushin Ri
勇進 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003040535A priority Critical patent/JP3962810B2/en
Publication of JP2004250509A publication Critical patent/JP2004250509A/en
Application granted granted Critical
Publication of JP3962810B2 publication Critical patent/JP3962810B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-axially crystal-oriented material which comprises a nylon-11 / polyfluorovinylidene (PVdF) blend, is obtained by crystallizing the PVdF in an oriented matrix of the nylon-11, and has improved dynamic characteristics by controlling the orientation of the PVdF, and to provide a method for producing the same. <P>SOLUTION: This multi-axially crystal-oriented material comprises a blend film comprising the nylon-11 and the polyfluorovinylidene (PVdF), wherein the crystal axis (c axis) of the nylon-11 in the molecular chain direction and the crystal axis (a axis) of the polyfluorovinylidene in the direction vertical to the molecular chain direction are together oriented in the stretching direction. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、 ナイロン−11/ポリフッ化ビニリデンブレンドから成る多軸結晶配向材料及びその製造方法に関する。
【0002】
【従来の技術】
従来、 ポリフッ化ビニリデンとナイロン12からなり、異方性溶融形態(液晶)を示す成形体でフィブリル化されている、耐薬品性、耐摩耗性、機械的特性に優れた成形体が開示されている。(特許文献1参照)
また、赤外吸収スペクトルのバンドのシフトおよびガラス転移の組成依存性から、ナイロンのアミド基とPVdFのCF結合の間に特異的な相互作用があることがわかっている。(非特許文献1参照)
【特許文献1】特許第2614649号公報
【非特許文献1】Q.Gao, J. I. Scheibeim, Macromolecules, 33, 7564 (2000)”Dipolar Intermolecular Interactions, Structural Development, and Electromechanical Properties in Ferroelectric Polymer Blends of Nylon−11 and Poly(vinylidene fluoride)
【0003】
【発明が解決しようとする課題】
本発明は、 ナイロン−11/ポリフッ化ビニリデンブレンドにおいて、圧電性、耐薬品性、耐摩耗性、耐熱性、強度・弾性率などの優れた物理的特性を有するが、一層の力学特性の向上が必要である。ナイロン−11の配向マトリックス中でPVdFを結晶化することにより、PVdFの配向を制御することにより、ナイロン−11/ポリフッ化ビニリデンブレンドからなる多軸結晶配向材料を作製し、ナイロン−11/ポリフッ化ビニリデンブレンドの力学特性の向上を図る。
【0004】
【課題を解決するための手段】
ナイロン−11とポリフッ化ビニリデン(PVdF)からなるブレンドフィルムでナイロン−11の分子鎖方向の結晶軸(c軸)とポリフッ化ビニリデンの分子鎖と垂直方向の結晶軸(a軸)が共に延伸方向に配向した多軸結晶配向材料を作製する。
具体的には、ナイロン−11/PVdFを混練押出機で混練し、その後熱プレスでシート状に成形し、一軸延伸する。その後ナイロン−11の融点よりも低く、PVdFの融点よりも高い温度においてPVdFを融解し、80〜135℃においてPVdFを結晶化する。
【0005】
【発明の実施の形態】
本発明において用いるナイロン−11(ポリウンデカンアミド)とポリフッ化ビニリデン(PVdF)からなるブレンドは、どのような配合割合のものでも良いが、ナイロン−11(ポリウンデカンアミド):ポリフッ化ビニリデン=30〜80:70〜20(質量比)、より好ましくはナイロン−11(ポリウンデカンアミド):ポリフッ化ビニリデン=40〜70:60〜30(質量比)のものが良い。
例えば、典型的な一例を示せば、ナイロン−11とPVdFの粉末を混合して(混合質量比:ナイロン−11/PVdF=4/6〜7/3)、混練押出機に導入し、溶融状態で混練して押し出す。入り口、シリンダー、ダイスの温度はそれぞれ、150 − 180 ℃、160 − 190 ℃、195 − 225 ℃(好ましくは、それぞれ160 −170 ℃、170 − 180 ℃、205 − 215 ℃)である。その後、熱プレスで215 ℃において溶融してシート状に成形する。さらに、 20 〜180℃、好ましくは120〜150 ℃において、2倍以上(好ましくは3倍以上)に一軸延伸する。その後、形態を拘束して、ナイロン−11の融点よりも低く、PVdFの融点よりも高い温度(好ましくは165〜175 ℃)においてPVdFを融解した後、80〜135℃(好ましくは110〜125℃)においてPVdFを結晶化する。
【0006】
【実施例】
本発明について実施例を用いてさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
(実施例 1)
ナイロン−11とPVdFの粉末を混合して(混合比:ナイロン−11/PVdF=5/5)、混練押出機に導入し、溶融状態で混練して押し出す。入り口、シリンダー、ダイスの温度はそれぞれ、165℃、185℃、210℃である。その後、熱プレスで215℃において溶融してシート状に成形する。さらに、145℃において、 4倍に一軸延伸する。その後、形態を拘束して、170℃においてPVdFを5分間融解した後、120℃においてPVdFを結晶化した。
フルオレセインで染色して共焦点レーザスキャン顕微鏡観察を行うと、直径 2〜10μm、長さ 10〜50μmのPVdFのドメインがナイロンの配向マトリックス中に配列しているのが観測される。広角X線回折によると、ナイロンについては分子鎖方向の結晶軸(結晶c軸)が延伸方向に配向しているのに対し、PVdFについては、分子鎖と垂直方向の結晶軸である結晶a軸が延伸方向に配向し、多軸結晶配向構造が形成されているのが確認できる。(図2d)
引っ張り試験、動的粘弾性測定によると、破断強度140MPa、破断伸度32.5%、動的貯蔵弾性率 2.1GPaであった。(図3)
(実施例 2)
実施例 1と同様にブレンドシートを作製し、145℃において、4倍に一軸延伸した。その後、形態を拘束して、170℃においてPVdFを5分間融解した後、85℃においてPVdFを結晶化した。広角X線回折によると、ナイロンについては分子鎖方向の結晶軸(結晶c軸)が延伸方向に配向しているのに対し、PVdFについては、分子鎖と垂直方向の結晶軸である結晶a軸が延伸方向に配向し、多軸結晶配向構造が形成されているのが確認できる。(図2c)
【0007】
(比較例)
(比較例1)
実施例と同様にブレンドシートを作製し、145℃において、4倍に一軸延伸した。PVdFの融解・結晶化は行わなかった。
共焦点レーザスキャン顕微鏡観察を行うと、直径 2〜10μm、長さ 10〜50μmのPVdFのドメインがナイロンの配向マトリックス中に配列しているのが観測される。広角X線回折によると、ナイロンについてもPVdFについても分子鎖方向の結晶軸(ナイロンについてもPVdFについても結晶c軸)が延伸方向に配向している。(図1a)
引っ張り試験、動的粘弾性測定によると、破断強度164MPa、破断伸度17%、動的貯蔵弾性率 2.1GPaであった。(図3)
(比較例2)
実施例と同様にブレンドシートを作製し、145℃において、4倍に一軸延伸した。170℃においてPVdFを5分間融解した後、氷水中で0℃においてPVdFを結晶化した。
共焦点レーザスキャン顕微鏡観察を行うと、直径 2〜10μm、長さ 10〜50μmのPVdFのドメインがナイロンの配向マトリックス中に配列しているのが観測される。広角X線回折によると、ナイロンについてもPVdFについても分子鎖方向の結晶軸(ナイロンについてもPVdFについても結晶c軸)が延伸方向に配向している。(図2a)
引っ張り試験、動的粘弾性測定によると、破断強度138MPa、破断伸度23%、動的貯蔵弾性率 2.2GPaであった。
【0008】
(比較例3)
ブレンドシート(ナイロン−11/PVdF=5/5)の未延伸膜(無配向膜)の力学物性を評価した。破断強度24MPa、破断伸度4.2%、動的貯蔵弾性率 1.2GPaであった。
(比較例4)
実施例と同様にブレンドシートを作製し、145℃において、4倍に一軸延伸した。170℃においてPVdFを5分間融解した後、形態を拘束することなく氷水中で0℃においてPVdFを結晶化した。PVdFの配向が乱れ、無配向の結晶組織が形成された。(図1b)
【0009】
【発明の効果】
ナイロン−11の配向マトリックス中でPVdFを結晶化することにより、PVdFの配向を制御することにより、PVdFの優れた物理的特性(耐薬品性、耐摩耗性、圧電性)などを維持したまま、機械的特性の向上を図ることができた。高強度プラスチックフィルムなど各種構造材料として広範な用途に応用可能。
【図面の簡単な説明】
【図1】ナイロン−11/PVdFの広角X線回折像図
(a)延伸試料(b)延伸後形態を拘束することなく170℃で5分間熱処理した試料。
【図2】延伸後にPVdFを170℃で5分間溶融後、各温度で結晶化したナイロン−11/PVdFの広角X線回折像の結晶化温度依存性図
(a) 0℃; (b) 75℃; (c) 85℃; (d) 120℃
【図3】ナイロン−11/PVdFの延伸試料の応力−ひずみ曲線
(a) 平行方向 (b) 垂直方向
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polyaxially oriented material comprising a nylon-11 / polyvinylidene fluoride blend and a method for producing the same.
[0002]
[Prior art]
Conventionally, a molded article comprising polyvinylidene fluoride and nylon 12 and fibrillated with a molded article exhibiting an anisotropic molten form (liquid crystal) and having excellent chemical resistance, abrasion resistance and mechanical properties has been disclosed. I have. (See Patent Document 1)
Further, it is known from the shift of the band of the infrared absorption spectrum and the composition dependence of the glass transition that there is a specific interaction between the amide group of nylon and the CF bond of PVdF. (See Non-Patent Document 1)
[Patent Document 1] Japanese Patent No. 2614649 [Non-Patent Document 1] Gao, J .; I. Scheibeim, Macromolecules, 33, 7564 (2000) "Dipolar Intermolecular Interactions, Structural Development, and Electronic Components of Ferroelectric Properties.
[0003]
[Problems to be solved by the invention]
The present invention provides a nylon-11 / polyvinylidene fluoride blend having excellent physical properties such as piezoelectricity, chemical resistance, abrasion resistance, heat resistance, strength and elastic modulus, but further improvement in mechanical properties. is necessary. By crystallizing PVdF in an orientation matrix of nylon-11, by controlling the orientation of PVdF, a polyaxial crystal orientation material comprising a nylon-11 / polyvinylidene fluoride blend was prepared, and nylon-11 / polyfluoride was produced. Improve the mechanical properties of vinylidene blend.
[0004]
[Means for Solving the Problems]
In the blend film composed of nylon-11 and polyvinylidene fluoride (PVdF), the crystal axis (c-axis) in the molecular chain direction of nylon-11 and the crystal axis (a-axis) in the direction perpendicular to the molecular chain of polyvinylidene fluoride are both stretched. A multi-axial crystal oriented material is prepared.
Specifically, nylon-11 / PVdF is kneaded with a kneading extruder, then formed into a sheet by hot pressing, and uniaxially stretched. Thereafter, the PVdF is melted at a temperature lower than the melting point of nylon-11 and higher than the melting point of PVdF, and the PVdF is crystallized at 80 to 135 ° C.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
The blend of nylon-11 (polyundecaneamide) and polyvinylidene fluoride (PVdF) used in the present invention may have any blending ratio. 80: 70-20 (mass ratio), more preferably nylon-11 (polyundecaneamide): polyvinylidene fluoride = 40-70: 60-30 (mass ratio).
For example, as a typical example, nylon-11 and PVdF powder are mixed (mixing mass ratio: nylon-11 / PVdF = 4/6 to 7/3), introduced into a kneading extruder, and melted. Knead and extrude. The temperatures of the inlet, cylinder and die are 150-180 ° C, 160-190 ° C and 195-225 ° C, respectively (preferably 160-170 ° C, 170-180 ° C and 205-215 ° C, respectively). Then, it is melted at 215 ° C. by a hot press to form a sheet. Further, the film is uniaxially stretched twice or more (preferably three times or more) at 20 to 180 ° C, preferably 120 to 150 ° C. Then, after constraining the form and melting the PVdF at a temperature lower than the melting point of nylon-11 and higher than the melting point of PVdF (preferably 165 to 175 ° C), 80 to 135 ° C (preferably 110 to 125 ° C) Crystallize PVdF in)).
[0006]
【Example】
The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(Example 1)
Nylon-11 and PVdF powder are mixed (mixing ratio: nylon-11 / PVdF = 5/5), introduced into a kneading extruder, kneaded and extruded in a molten state. The temperatures of the inlet, cylinder, and die are 165 ° C, 185 ° C, and 210 ° C, respectively. Then, it is melted at 215 ° C. by a hot press and formed into a sheet. Further, at 145 ° C., the film is uniaxially stretched four times. After constraining the morphology, the PVdF was melted at 170 ° C. for 5 minutes and then crystallized at 120 ° C.
When observed with a confocal laser scanning microscope after staining with fluorescein, it is observed that PVdF domains having a diameter of 2 to 10 μm and a length of 10 to 50 μm are arranged in an oriented matrix of nylon. According to wide-angle X-ray diffraction, for nylon, the crystal axis in the molecular chain direction (crystal c-axis) is oriented in the stretching direction, whereas for PVdF, the crystal a-axis, which is the crystal axis perpendicular to the molecular chain, is oriented. Are oriented in the stretching direction, and it can be confirmed that a multiaxial crystal orientation structure is formed. (FIG. 2d)
According to the tensile test and the dynamic viscoelasticity measurement, the breaking strength was 140 MPa, the breaking elongation was 32.5%, and the dynamic storage modulus was 2.1 GPa. (Fig. 3)
(Example 2)
A blend sheet was prepared in the same manner as in Example 1, and uniaxially stretched four times at 145 ° C. After constraining the morphology, the PVdF was melted at 170 ° C. for 5 minutes and then crystallized at 85 ° C. According to wide-angle X-ray diffraction, for nylon, the crystal axis in the molecular chain direction (crystal c-axis) is oriented in the stretching direction, whereas for PVdF, the crystal a-axis, which is the crystal axis perpendicular to the molecular chain, is oriented. Are oriented in the stretching direction, and it can be confirmed that a multiaxial crystal orientation structure is formed. (FIG. 2c)
[0007]
(Comparative example)
(Comparative Example 1)
A blend sheet was prepared in the same manner as in the example, and uniaxially stretched four times at 145 ° C. Melting and crystallization of PVdF were not performed.
Observation with a confocal laser scanning microscope shows that domains of PVdF having a diameter of 2 to 10 μm and a length of 10 to 50 μm are arranged in an alignment matrix of nylon. According to wide-angle X-ray diffraction, the crystal axis in the molecular chain direction (crystal c-axis for both nylon and PVdF) is oriented in the stretching direction for both nylon and PVdF. (FIG. 1a)
According to the tensile test and the dynamic viscoelasticity measurement, the breaking strength was 164 MPa, the breaking elongation was 17%, and the dynamic storage modulus was 2.1 GPa. (Fig. 3)
(Comparative Example 2)
A blend sheet was prepared in the same manner as in the example, and uniaxially stretched four times at 145 ° C. After melting the PVdF at 170 ° C. for 5 minutes, the PVdF was crystallized at 0 ° C. in ice water.
Observation with a confocal laser scanning microscope shows that domains of PVdF having a diameter of 2 to 10 μm and a length of 10 to 50 μm are arranged in an alignment matrix of nylon. According to wide-angle X-ray diffraction, the crystal axis in the molecular chain direction (the crystal c-axis for both nylon and PVdF) is oriented in the stretching direction for both nylon and PVdF. (FIG. 2a)
According to the tensile test and the dynamic viscoelasticity measurement, the breaking strength was 138 MPa, the breaking elongation was 23%, and the dynamic storage modulus was 2.2 GPa.
[0008]
(Comparative Example 3)
The mechanical properties of the unstretched film (non-oriented film) of the blend sheet (nylon-11 / PVdF = 5/5) were evaluated. The breaking strength was 24 MPa, the breaking elongation was 4.2%, and the dynamic storage modulus was 1.2 GPa.
(Comparative Example 4)
A blend sheet was prepared in the same manner as in the example, and uniaxially stretched four times at 145 ° C. After melting the PVdF at 170 ° C. for 5 minutes, the PVdF was crystallized at 0 ° C. in ice water without restricting the morphology. The orientation of PVdF was disturbed, and an unoriented crystal structure was formed. (FIG. 1b)
[0009]
【The invention's effect】
By controlling the orientation of PVdF by crystallizing PVdF in an orientation matrix of nylon-11, while maintaining the excellent physical properties (chemical resistance, abrasion resistance, piezoelectricity) of PVdF, The mechanical properties could be improved. Applicable to a wide range of uses as various structural materials such as high-strength plastic films.
[Brief description of the drawings]
FIG. 1 is a wide-angle X-ray diffraction image of nylon-11 / PVdF (a) a stretched sample (b) a sample heat-treated at 170 ° C. for 5 minutes without restricting the form after stretching.
FIG. 2 shows a crystallization temperature dependence diagram of a wide-angle X-ray diffraction image of nylon-11 / PVdF crystallized at each temperature after melting PVdF at 170 ° C. for 5 minutes after stretching (a) 0 ° C .; (b) 75 (C) 85 ° C; (d) 120 ° C
FIG. 3 is a stress-strain curve of a stretched sample of nylon-11 / PVdF (a) parallel direction (b) vertical direction

Claims (3)

ナイロン−11とポリフッ化ビニリデン(PVdF)からなるブレンドフィルムであり、ナイロン−11の分子鎖方向の結晶軸(c軸)とポリフッ化ビニリデンの分子鎖と垂直方向の結晶軸(a軸)が共に延伸方向に配向した多軸結晶配向材料。It is a blend film composed of nylon-11 and polyvinylidene fluoride (PVdF), and the crystal axis (c-axis) in the molecular chain direction of nylon-11 and the crystal axis (a-axis) perpendicular to the molecular chain of polyvinylidene fluoride are both present. A polyaxial crystal orientation material oriented in the stretching direction. ナイロン−11:ポリフッ化ビニリデン(PVdF)=40〜70:60〜30(質量比)からなるブレンドフィルムである請求項1に記載した多軸結晶配向材料。Nylon-11: The multiaxial crystal orientation material according to claim 1, which is a blend film composed of polyvinylidene fluoride (PVdF) = 40 to 70:60 to 30 (mass ratio). ナイロン−11/PVdFを混練押出機で混練し、その後熱プレスでシート状に成形し、一軸延伸した後、ナイロン−11の融点よりも低く、PVdFの融点よりも高い温度においてPVdFを融解し、その後80〜135℃に保温してPVdFを結晶化することを特徴とする多軸結晶配向材料の製造方法。Nylon-11 / PVdF is kneaded with a kneading extruder, then formed into a sheet by hot pressing, and then uniaxially stretched. A method for producing a multiaxially oriented material, characterized in that the temperature is kept at 80 to 135 ° C. to crystallize PVdF.
JP2003040535A 2003-02-19 2003-02-19 Multiaxial crystal orientation material comprising nylon-11 / polyvinylidene fluoride blend film Expired - Lifetime JP3962810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003040535A JP3962810B2 (en) 2003-02-19 2003-02-19 Multiaxial crystal orientation material comprising nylon-11 / polyvinylidene fluoride blend film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003040535A JP3962810B2 (en) 2003-02-19 2003-02-19 Multiaxial crystal orientation material comprising nylon-11 / polyvinylidene fluoride blend film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007060545A Division JP4677620B2 (en) 2007-03-09 2007-03-09 Nylon-11 and polyvinylidene fluoride blend film manufacturing method

Publications (2)

Publication Number Publication Date
JP2004250509A true JP2004250509A (en) 2004-09-09
JP3962810B2 JP3962810B2 (en) 2007-08-22

Family

ID=33024368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003040535A Expired - Lifetime JP3962810B2 (en) 2003-02-19 2003-02-19 Multiaxial crystal orientation material comprising nylon-11 / polyvinylidene fluoride blend film

Country Status (1)

Country Link
JP (1) JP3962810B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241195A (en) * 2005-02-28 2006-09-14 National Institute Of Advanced Industrial & Technology Ferroelectric film and method for producing the same
JP2007302723A (en) * 2006-05-09 2007-11-22 National Institute Of Advanced Industrial & Technology Nylon-6/polyfluorinated vinylidene-blended film and method for producing the same
JP2008055619A (en) * 2006-08-29 2008-03-13 National Institute Of Advanced Industrial & Technology Orientation structure control method of crystalline polymer blend
JP2010059335A (en) * 2008-09-05 2010-03-18 National Institute Of Advanced Industrial Science & Technology Nylon 6/polypropylene-blended oriented film, and method for producing the same
CN102514198A (en) * 2011-12-27 2012-06-27 江苏昊华光伏科技有限公司 Method for preparing poly(vinylidene difluoride) plates through dual-band screw extrusion
CN110044717A (en) * 2019-02-02 2019-07-23 中南大学 Determine the method that Loading ami deloading response ratio plays height in Rock Under Uniaxial Compression compression classification plus unloading test
CN114479321A (en) * 2022-03-09 2022-05-13 中海石油(中国)有限公司 High-gas-barrier nylon and polyvinylidene fluoride blend and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241195A (en) * 2005-02-28 2006-09-14 National Institute Of Advanced Industrial & Technology Ferroelectric film and method for producing the same
JP2007302723A (en) * 2006-05-09 2007-11-22 National Institute Of Advanced Industrial & Technology Nylon-6/polyfluorinated vinylidene-blended film and method for producing the same
JP2008055619A (en) * 2006-08-29 2008-03-13 National Institute Of Advanced Industrial & Technology Orientation structure control method of crystalline polymer blend
JP2010059335A (en) * 2008-09-05 2010-03-18 National Institute Of Advanced Industrial Science & Technology Nylon 6/polypropylene-blended oriented film, and method for producing the same
CN102514198A (en) * 2011-12-27 2012-06-27 江苏昊华光伏科技有限公司 Method for preparing poly(vinylidene difluoride) plates through dual-band screw extrusion
CN110044717A (en) * 2019-02-02 2019-07-23 中南大学 Determine the method that Loading ami deloading response ratio plays height in Rock Under Uniaxial Compression compression classification plus unloading test
CN110044717B (en) * 2019-02-02 2021-08-03 中南大学 Method for determining loading and unloading response ratio change point in rock uniaxial compression test
CN114479321A (en) * 2022-03-09 2022-05-13 中海石油(中国)有限公司 High-gas-barrier nylon and polyvinylidene fluoride blend and preparation method thereof
CN114479321B (en) * 2022-03-09 2023-03-14 中海石油(中国)有限公司 High-gas-barrier nylon and polyvinylidene fluoride blend and preparation method thereof

Also Published As

Publication number Publication date
JP3962810B2 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
Du et al. Influence of phase morphology and crystalline structure on the toughness of rubber-toughened isotatic polypropylene blends
JP4845084B2 (en) Ferroelectric film and manufacturing method thereof
KR920007285B1 (en) Optical phase plate and production process thereof
Yamane et al. Mechanical properties and higher order structure of bacterial homo poly (3-hydroxybutyrate) melt spun fibers
EP1769840A4 (en) Porous water filtration membrane of vinylidene fluoride resin hollow fiber and process for production thereof
KR101826402B1 (en) Film and polymeric piezoelectric material
Oyama et al. Biologically safe poly (L-lactic acid) blends with tunable degradation rate: microstructure, degradation mechanism, and mechanical properties
CN111235668A (en) Method for preparing ultra-high molecular weight polyethylene fiber and fiber
JP2004250509A (en) Nylon-11 / polyfluorovinylidene blend film and method for producing the same
JP4677620B2 (en) Nylon-11 and polyvinylidene fluoride blend film manufacturing method
JP4868396B2 (en) Nylon-6 / polyvinylidene fluoride blend film and method for producing the same
JPH02104715A (en) Method for manufacturing a stereoregular polystyrene fiber
Jazani et al. Structure–property relationships in ternary polymer blends with core–shell inclusions: revisiting the critical role of the viscosity ratio
JPH0315005A (en) Optical phase difference plate and production thereof
JP3816716B2 (en) Method for producing oriented crystalline polymer material
CN102424718B (en) Preparation method of biodegradable polylactic acid based blend
CN114103078B (en) High-strength polypropylene film and preparation method and application thereof
CN114149668A (en) Preparation method of PBAT (poly (butylene adipate-co-terephthalate)) based material with enhanced rigidity and toughness of mesomorphic phase
CN114350128A (en) Reinforced and toughened polylactic acid material and preparation method thereof
JP2004300228A (en) Polyvinylidene fluoride/polybutylene succinate blend film, and its manufacturing process
Kaito et al. Unique orientation textures induced by confined crystal growth of poly (vinylidene fluoride) in oriented blends with polyamide 6
JPS63242513A (en) Preparation of wholly aromatic liquid crystal polyester film
JP4756370B2 (en) Method for controlling orientational structure of crystalline polymer blends
JP2004307671A (en) High strength, highly transparent polypropylene sheet and method for manufacturing the same
JP5046126B2 (en) Nylon 6 / polypropylene blend oriented film and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

R150 Certificate of patent or registration of utility model

Ref document number: 3962810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term