JP5046126B2 - Nylon 6 / polypropylene blend oriented film and method for producing the same - Google Patents

Nylon 6 / polypropylene blend oriented film and method for producing the same Download PDF

Info

Publication number
JP5046126B2
JP5046126B2 JP2008227696A JP2008227696A JP5046126B2 JP 5046126 B2 JP5046126 B2 JP 5046126B2 JP 2008227696 A JP2008227696 A JP 2008227696A JP 2008227696 A JP2008227696 A JP 2008227696A JP 5046126 B2 JP5046126 B2 JP 5046126B2
Authority
JP
Japan
Prior art keywords
nylon
film
polypropylene
axis
blend
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008227696A
Other languages
Japanese (ja)
Other versions
JP2010059335A (en
Inventor
彰 海藤
勇進 李
博 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008227696A priority Critical patent/JP5046126B2/en
Publication of JP2010059335A publication Critical patent/JP2010059335A/en
Application granted granted Critical
Publication of JP5046126B2 publication Critical patent/JP5046126B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、ナイロン6とポリプロピレンの分子鎖軸が互いに直交方向に配向した直交配向構造あるいは分子鎖軸が互いに斜め方向に配向した傾斜配向構造を有し、二次元的に優れた機械的特性を有する結晶配向フィルム及びその製造方法に関する。   The present invention has an orthogonal orientation structure in which the molecular chain axes of nylon 6 and polypropylene are oriented in directions orthogonal to each other, or a tilted orientation structure in which molecular chain axes are oriented in directions oblique to each other, and has excellent two-dimensional mechanical properties. The present invention relates to a crystallographic film and a method for producing the same.

成形材料として、種々のポリマーが使用されているが、ポリマー単独では付与できる特性に限界があるため、複数のポリマーをブレンドすることにより、それぞれ単独のポリマーの場合に比較して、強度、耐熱性、高衝撃性などを改善した種々の多成分系樹脂組成物が開発されている。
このポリマーブレンドには、構成成分が互いに溶け合う相溶性ブレンドと、構成成分が溶け合わない非相溶性ブレンドの2種類があるが、後者の場合には界面において破壊が生じるために、相溶化剤などにより界面を強化して利用する場合が多い。
例えば、ナイロン6にポリプロピレンを配合させたものは、ナイロン6が有する耐衝撃性、耐薬品性、熱的安定性等の物性と、ポリプロピレンの低吸水性、化学的安定性、低コストの特性をバランスよく兼ね備えた材料として期待されているが、ナイロンとポリプロピレンは互いに非相溶性であるために、種々の相溶化が報告されている(特許文献1,2)。
Various polymers are used as molding materials, but the properties that can be imparted by the polymers alone are limited. By blending multiple polymers, the strength and heat resistance can be improved compared to the case of a single polymer. Various multicomponent resin compositions with improved high impact properties have been developed.
There are two types of polymer blends, a compatible blend in which the constituent components are mutually soluble and an incompatible blend in which the constituent components are not compatible. In many cases, it is used by strengthening the interface.
For example, nylon 6 blended with polypropylene has the properties of nylon 6, such as impact resistance, chemical resistance, and thermal stability, and the low water absorption, chemical stability, and low cost properties of polypropylene. Although it is expected as a material having a good balance, since nylon and polypropylene are incompatible with each other, various compatibilizations have been reported (Patent Documents 1 and 2).

一方、ポリマーフィルムやロッドを一方向に延伸することにより、延伸方向に強化された材料を作成することは周知であり、多数の高分子材料に適用されている。
本発明者らは、幾つかのポリマーブレンドからなる延伸フィルムについて研究を重ねてきた。
例えば、特許文献1では、結晶性ポリスチレンとポリフェニレンオキシド(PPO)からなる相溶性ポリマーブレンドから一軸延伸フィルムを製造する際に、延伸による配向制御と熱処理による結晶化とを組み合わせることにより、フィルムの延伸方向における結晶性アイソタクチックポリスチレンの配向度が0.6〜1であり、PPOの分子鎖がランダムに配向したものであるフィルムであって、フィルムの延伸方向と垂直な方向の強度がフィルムを構成する結晶性ポリスチレンの未延伸フィルムと同程度の強度であり、フィルムの延伸方向の強度がフィルムを構成する結晶性ポリスチレンの未延伸フィルムの強度を凌ぐ一軸延伸フィルムが得られることを見いだしている。
また、特許文献2では、相溶性ポリマーであるポリフッ化ビニリデン(PVdF)とポリブチレンサクシネート(PBSU)を溶媒に溶解した後、フィルム化し、加熱して該フィルムを溶融した後急冷して得られたフィルムを一軸延伸し、その後PVdFの融点よりも低く、PBSUの融点よりも高い温度においてPBSUを融解し、その後50〜100℃に保温してPBSUを結晶化することにより、PVdFの分子鎖方向の結晶軸(c軸)とPBSUの分子鎖と垂直方向の結晶軸(b軸)が共に延伸方向に配向した多軸結晶配向フィルムが得られ、該フィルムは無配向のブレンド膜の強度と比較して、延伸方向に4〜7.5倍強く、延伸と垂直方向にも1.2〜1.5倍強化された物性を有することを見いだしている。
On the other hand, it is well known to create a material reinforced in the stretching direction by stretching a polymer film or rod in one direction, and it is applied to many polymer materials.
The present inventors have repeatedly studied stretched films made of several polymer blends.
For example, in Patent Document 1, when a uniaxially stretched film is produced from a compatible polymer blend composed of crystalline polystyrene and polyphenylene oxide (PPO), the film is stretched by combining orientation control by stretching and crystallization by heat treatment. The orientation degree of the crystalline isotactic polystyrene in the direction is 0.6 to 1, and the molecular chain of PPO is randomly oriented, and the strength in the direction perpendicular to the stretching direction of the film is It has been found that a uniaxially stretched film can be obtained that has the same strength as the unstretched film of crystalline polystyrene constituting the film, and whose strength in the stretching direction of the film exceeds the strength of the unstretched film of crystalline polystyrene constituting the film. .
Patent Document 2 is obtained by dissolving a compatible polymer polyvinylidene fluoride (PVdF) and polybutylene succinate (PBSU) in a solvent, forming a film, heating and melting the film, and then rapidly cooling. The film is uniaxially stretched and then melted at a temperature lower than the melting point of PVdF and higher than that of PBSU, and then kept at 50 to 100 ° C. to crystallize PBSU. A multiaxial crystallographic film in which both the crystal axis (c axis) and the crystallographic axis (b axis) perpendicular to the molecular chain of PBSU are oriented in the stretching direction is obtained, and the film is compared with the strength of the non-oriented blend film. Thus, it has been found to have physical properties that are 4 to 7.5 times stronger in the stretching direction and 1.2 to 1.5 times stronger in the direction perpendicular to the stretching.

さらに、本発明者らは、非相溶性ポリマーブレンドからなるフィルムについても鋭意研究し、ポリフッ化ビニリデン(PVdF)とナイロン11とからなるポリマーブレンド(特許文献3)、或いは、ポリフッ化ビニリデン(PVdF)とナイロン6とからなるポリマーブレンドを混練し、その後熱プレスでシート状に成形し、一軸延伸した後、ナイロンの融点よりも低い温度においてPVdFのみを融解した後徐冷してPVdFを結晶化することにより、ナイロンの分子鎖方向の結晶軸(c軸)とPVdFの分子鎖と垂直方向の結晶軸(b軸)が共に延伸方向に配向し、延伸方向と垂直方向の二方向に破断強度と弾性率が向上した多軸結晶配向フィルムが得られることを見いだしている。   Furthermore, the present inventors have earnestly studied a film composed of an incompatible polymer blend, and a polymer blend composed of polyvinylidene fluoride (PVdF) and nylon 11 (Patent Document 3) or polyvinylidene fluoride (PVdF). A polymer blend consisting of nylon 6 and nylon 6 is kneaded, then formed into a sheet by hot pressing, uniaxially stretched, and then only PVdF is melted at a temperature lower than the melting point of nylon and then slowly cooled to crystallize PVdF. As a result, the crystal axis (c axis) in the molecular chain direction of nylon and the crystal axis (b axis) in the perpendicular direction to the molecular chain of PVdF are both oriented in the stretching direction, and the breaking strength is obtained in two directions of the stretching direction and the perpendicular direction. It has been found that a multiaxial crystal oriented film having an improved elastic modulus can be obtained.

しかしながら、非相溶性ポリマーブレンドであるナイロン6/ポリプロピレンブレンドからなるフィルムについては、まだ充分な検討がなされていない。
例えば、特許文献5には、ナイロン6/ポリプロピレンブレンドからなるフィルムが、易引裂き性を示すことから、包装用フィルムとして用いられることが記載されているが、延伸については、引裂き性が損なわれない範囲で一軸又は二軸延伸処理により引裂き強度、破断強度等の特性を調整してもよいとしているだけである。
また、ナイロン6/ポリプロピレンブレンドからなる繊維については、延伸にともなうブレンド繊維の構造及び強伸度特性の変化について報告がなされているが(非特許文献3参照)、フィルムに関しては検討がなされていない。
特許第3783052号公報 特許第3962810号公報 特許第4035607号公報 特開2007−302723号公報 特開平7−299858号公報 Ide, F.; Hasegawa, A. Studies on polymer blend of nylon 6 and polypropylene or nylon 6 and polystyrene using the reaction of polymer. J. Appl. Polym. Sci. 1974, 18, 963-974. Gonzalez-Montiel, A.; Keskkula, H.; Paul, D.R. Impact-modified nylon 6/polypropylene blends: 1. Morphology-property relationships. Polymer 1995, 36, 4587-4603. ポリプロピレン/ポリアミド6ブレンド繊維の延伸による構造及び強伸度特性の変化、高橋、近田、清水、繊維学会誌、52,396、(1996)
However, a film made of nylon 6 / polypropylene blend, which is an incompatible polymer blend, has not yet been fully studied.
For example, Patent Document 5 describes that a film made of nylon 6 / polypropylene blend is used as a packaging film because it exhibits easy tearability, but for stretching, tearability is not impaired. It is only said that characteristics such as tear strength and breaking strength may be adjusted by uniaxial or biaxial stretching treatment within a range.
In addition, regarding the fiber made of nylon 6 / polypropylene blend, the structure of the blended fiber and the change in the strength and elongation properties due to stretching have been reported (see Non-Patent Document 3), but the film has not been studied. .
Japanese Patent No. 3783052 Japanese Patent No. 3968210 Japanese Patent No. 4035607 JP 2007-302723 A JP-A-7-299858 Ide, F .; Hasegawa, A. Studies on polymer blend of nylon 6 and polypropylene or nylon 6 and polystyrene using the reaction of polymer.J. Appl.Polym. Sci. 1974, 18, 963-974. Gonzalez-Montiel, A .; Keskkula, H .; Paul, DR Impact-modified nylon 6 / polypropylene blends: 1. Morphology-property relationships. Polymer 1995, 36, 4587-4603. Changes in structure and strength properties of polypropylene / polyamide 6 blend fiber due to stretching, Takahashi, Chikita, Shimizu, Journal of Textile Society, 52, 396, (1996)

前述のとおり、ナイロン6/ポリプロピレンブレンドは、ナイロン6の、耐衝撃性、耐薬品性、熱的安定性等の物性と、ポリプロピレンの低吸水性、化学的安定性、低コストの特性をバランスよく兼ね備えた材料として期待されており、一層の力学特性の向上が必要であるものの、未だに充分な検討がなされていないのが現状である。
本発明では、このような事情に鑑みてなされたものであって、ナイロン6/ポリプロピレンブレンドの延伸膜においてポリプロピレンを配向結晶化することによりポリプロピレンの結晶配向を制御し、ナイロン6/ポリプロピレンブレンドの力学物性の向上を図ることを目的とするものである。
As mentioned above, nylon 6 / polypropylene blend balances the properties of nylon 6, such as impact resistance, chemical resistance, and thermal stability, with low water absorption, chemical stability, and low cost properties of polypropylene. Although it is expected as a material having a combination, it is necessary to further improve the mechanical properties, but it has not yet been fully studied.
The present invention has been made in view of such circumstances, and by controlling the crystal orientation of polypropylene by orientation-crystallizing polypropylene in a stretched film of nylon 6 / polypropylene blend, the dynamics of nylon 6 / polypropylene blend are controlled. The purpose is to improve physical properties.

発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、ナイロン6の配向膜中で、ポリプロピレンの結晶配向を制御することにより、ナイロン6とポリプロピレンのポリマーブレンドの優れた物理的特性を保持したまま、延伸方向及び垂直方向の破断強度及び弾性率を向上し、機械的特性の改善を図ることができるという知見を得た。   As a result of intensive studies to achieve the above object, the inventors have achieved excellent physical properties of a polymer blend of nylon 6 and polypropylene by controlling the crystal orientation of polypropylene in the nylon 6 orientation film. It was found that the mechanical properties can be improved by improving the breaking strength and elastic modulus in the stretching direction and the vertical direction while maintaining the same.

本発明は、これら知見に基づいて完成に至ったものであり、以下のとおりのものである。
[1]ナイロン6とアイソタクチックポリプロピレンと相溶化剤を含むブレンドフィルムであり、ナイロン6の分子鎖方向の結晶軸(b軸)とアイソタクチックポリプロピレンの分子鎖方向の結晶軸(c軸)が互いに異なる方向に配向した結晶配向フィルム。
[2]前記相溶化剤が、無水マレイン酸をグラフトしたポリプロピレンである前記[1]の結晶配向フィルム。
[3]前記ナイロン6とアイソタクチックポリプロピレン(PP)とを、重量比で、ナイロン6/PP=50/50〜90/10の割合で含む前記[1]又は[2]に記載の結晶配向フィルム。
[4]前記相溶化剤を0.1〜30重量%含む請求項1又は2に記載の結晶配向フィルム。
[5]ナイロン6とアソタクチックポリプロピレンと相溶化剤を混練し、その後熱プレスでシート状に成形し、一軸延伸した後、ナイロン6の融点よりも低く、アイソタクチックポリプロピレンの融点よりも高い温度においてアイソタクチックポリプロピレンを融解した後、アイソタクチックポリプロピレンをナイロン6/アイソタクチックポリプロピレンブレンド延伸膜中で再結晶化することを特徴とする結晶配向フィルムの製造方法。
The present invention has been completed based on these findings, and is as follows.
[1] A blend film containing nylon 6, isotactic polypropylene, and a compatibilizer, a crystal axis (b axis) in the molecular chain direction of nylon 6 and a crystal axis (c axis) in the molecular chain direction of isotactic polypropylene Crystal oriented films in which the films are oriented in different directions.
[2] The crystal oriented film according to [1], wherein the compatibilizing agent is polypropylene grafted with maleic anhydride.
[3] The crystal orientation according to [1] or [2], wherein the nylon 6 and isotactic polypropylene (PP) are contained at a weight ratio of nylon 6 / PP = 50/50 to 90/10. the film.
[4] The crystal oriented film according to claim 1 or 2, comprising 0.1 to 30% by weight of the compatibilizer.
[5] Nylon 6, astactic polypropylene and a compatibilizing agent are kneaded, then formed into a sheet shape by hot pressing and uniaxially stretched, then lower than the melting point of nylon 6 and higher than the melting point of isotactic polypropylene. A method for producing a crystal orientation film, comprising melting isotactic polypropylene at a temperature and then recrystallizing isotactic polypropylene in a stretched nylon 6 / isotactic polypropylene blend.

本発明により、ナイロン6の配向膜中でポリプロピレンの結晶配向を制御することにより、ナイロン6/ポリプロピレンブレンドの優れた物理的性質を保持したまま、延伸方向及び垂直方向の強度及び弾性率を向上し、機械的特性の改善を図ることができる。   By controlling the crystal orientation of polypropylene in the nylon 6 orientation film according to the present invention, the strength and elastic modulus in the stretching and vertical directions are improved while maintaining the excellent physical properties of the nylon 6 / polypropylene blend. The mechanical properties can be improved.

本発明は、ナイロン6とアイソタクチックポリプロピレンと相溶化剤を含むブレンドフィルムであり、ナイロン6の分子鎖方向の結晶軸(b軸)とアイソタクチックポリプロピレンの分子鎖方向の結晶軸(c軸)が互いに異なる方向に配向した結晶配向フィルムを提供するものである。   The present invention is a blend film containing nylon 6, isotactic polypropylene and a compatibilizing agent, wherein the crystal axis (b axis) in the molecular chain direction of nylon 6 and the crystal axis (c axis) in the molecular chain direction of isotactic polypropylene. ) Are oriented in different directions from each other.

本発明の結晶配向フィルムを構成するポリマーブレンドにおいて、ナイロン−6(ポリウンデカンアミド)とアイソタクチックポリプロピレン(PP)の配合は、どのような割合のものでも良いが、重量比で、ナイロン6/PP=50/50〜90/10の割合で含むもの、より好ましくはナイロン6/PP=60/40〜80/20の割合で含むものがよい。ナイロン6の量が多すぎるとポリプロピレンをブレンドすることにより得られる効果が小さくなる。一方、ポリプロピレンの量が多すぎると、ポリプロピレンがマトリックスとなって連続相を形成するため、結晶化過程で配向が乱れ、目的の配向構造を形成することができない。   In the polymer blend constituting the crystal orientation film of the present invention, the composition of nylon-6 (polyundecanamide) and isotactic polypropylene (PP) may be any ratio, but the weight ratio of nylon 6 / Those containing PP = 50/50 to 90/10, more preferably nylon 6 / PP = 60/40 to 80/20. When there is too much quantity of nylon 6, the effect acquired by blending a polypropylene will become small. On the other hand, if the amount of polypropylene is too large, the polypropylene becomes a matrix to form a continuous phase, so that the orientation is disturbed during the crystallization process, and the desired orientation structure cannot be formed.

また、本発明の結晶配向材料に用いられる相溶化剤は、ナイロン6とアイソタクチックポリプロピレン(PP)からなる非相溶性ポリマーブレンドに対して、反応性、相溶性、又は親和性を示す化合物であれば特に制限されるものではない。
相溶化剤には、例えば、官能基が導入された変性ポリオレフィンなどが含まれ、該官能基としては、例えば、カルボキシル基、酸無水物基、エステル基、グリシジル基などのエポキシ基が含まれ、これらの官能基が、複数組み合わせてポリオレフィンに導入されてもよく、また、これらの変性ポリオレフィンを二種以上組み合わせてもよい。
本発明において、変性ポリオレフィンの好ましいオレフィンとしては、プロピレンが用いられ、また、好ましい官能基として、エチレン性不飽和カルボン酸とそのエステル、無水マレイン酸などのエチレン性不飽和多価カルボン酸の酸無水物などが好ましく用いられるが、特に、本発明においては、無水マレイン酸をグラフトしたポリプロピレン(PP−g−MA)が好ましく用いられる。
The compatibilizer used in the crystal orientation material of the present invention is a compound that exhibits reactivity, compatibility, or affinity for an incompatible polymer blend composed of nylon 6 and isotactic polypropylene (PP). There is no particular limitation as long as it is present.
The compatibilizing agent includes, for example, a modified polyolefin having a functional group introduced therein, and examples of the functional group include an epoxy group such as a carboxyl group, an acid anhydride group, an ester group, and a glycidyl group. A combination of a plurality of these functional groups may be introduced into the polyolefin, or two or more of these modified polyolefins may be combined.
In the present invention, propylene is used as a preferred olefin of the modified polyolefin, and as a preferred functional group, an acid anhydride of an ethylenically unsaturated polyvalent carboxylic acid such as an ethylenically unsaturated carboxylic acid and its ester or maleic anhydride. In particular, in the present invention, polypropylene grafted with maleic anhydride (PP-g-MA) is preferably used.

本発明の結晶配向フィルムを構成するポリマーブレンドにおける相溶化剤の割合は、界面が強化され、相構造が微細化されればどのような割合でも良いが、ブレンド中に相溶化剤を重量比で0.1〜30%含むもの、より好ましくは1〜10%含むものがよい。   The proportion of the compatibilizing agent in the polymer blend constituting the crystal orientation film of the present invention may be any proportion as long as the interface is strengthened and the phase structure is refined. What contains 0.1-30%, More preferably, what contains 1-10% is good.

本発明の上記結晶配向フィルムは、ナイロン6とアイソタクチックポリプロピレンと相溶化剤を含むポリマーブレンドから一軸延伸フィルムを製造する際に、延伸による配向制御と熱処理による結晶化を組み合わせることにより製造することができる。
具体的には、例えば結晶性ポリプロピレンとしてアイソタクチックポリプロピレン(PP)を使用し、これに、ナイロン6及び相溶化剤を加えて混練し、ナイロン6、PP、及び相溶化剤からなるポリマーブレンドを作製する。混練は、混練機を用いて、ナイロン6とアイソタクチックポリプロピレンと相溶化剤を含むポリマーブレンドが溶融した状態で行われるが、用いる混練機はどのようなものであってもよい。また、混練温度は、ナイロン6の融解温度(230℃)以上、好ましくは、235〜340℃で混練される。
The crystal orientation film of the present invention is produced by combining orientation control by stretching and crystallization by heat treatment when producing a uniaxially stretched film from a polymer blend containing nylon 6, isotactic polypropylene, and a compatibilizer. Can do.
Specifically, for example, isotactic polypropylene (PP) is used as crystalline polypropylene, and nylon 6 and a compatibilizing agent are added thereto and kneaded to form a polymer blend composed of nylon 6, PP and the compatibilizing agent. Make it. Kneading is performed using a kneader in a state where the polymer blend containing nylon 6, isotactic polypropylene, and a compatibilizing agent is melted, but any kneader may be used. The kneading temperature is kneading at a melting temperature of nylon 6 (230 ° C.) or higher, preferably 235 to 340 ° C.

次いで、得られた混練物を、熱プレスにより、230〜235℃で溶融してシート状に成形し、さらに、20〜200℃、好ましくは80〜160℃で、一軸方向に、2倍以上、好ましくは3倍以上に延伸する。   Subsequently, the obtained kneaded material is melted at 230 to 235 ° C. by hot pressing and formed into a sheet shape, and further 20 to 200 ° C., preferably 80 to 160 ° C., uniaxially more than twice, Preferably it extends 3 times or more.

延伸後、形態を拘束してナイロン6の融解温度より低く、ポリプロピレンの融解温度より高い温度、好ましくは175℃以上210℃以下の温度でポリプロピレンを融解した後、ポリプロピレンを再結晶化する。
ポリプロピレンの結晶化は、一定温度における等温結晶化でも、一定冷却速度における非等温結晶化でもよく、冷却方法に依存しない。
After stretching, the polypropylene is melted at a temperature lower than the melting temperature of nylon 6 and higher than the melting temperature of polypropylene, preferably at a temperature of 175 ° C. or higher and 210 ° C. or lower.
The crystallization of polypropylene may be isothermal crystallization at a constant temperature or non-isothermal crystallization at a constant cooling rate, and does not depend on the cooling method.

次に、本発明を実施例に基づいてさらに具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
(実施例1)
ナイロン6、アイソタクチックポリプロピレン(PP)、無水マレイン酸グラフトポリプロピレン(PP−g−MA)をそれぞれ、35グラム、10グラム、5グラムを24時間80℃で真空乾燥した後、混練機を用いて235℃で10分間、混練してナイロン6/PP/PP−g−MA=70/20/10(重量比)ブレンドを作製した。熱プレスを用いて233℃において溶融しシート状に成形した。さらに、140℃において3.7倍に延伸して配向膜を作製した。延伸膜の形態を固定して200℃に3分間保持してPPを融解した後、130℃で4時間、真空下で熱処理してPPを配向結晶化した。
Next, the present invention will be described more specifically based on examples, but the present invention is not limited to the following examples.
Example 1
Nylon 6, isotactic polypropylene (PP), and maleic anhydride grafted polypropylene (PP-g-MA), 35 g, 10 g, and 5 g, were vacuum dried at 80 ° C. for 24 hours, respectively, and then kneaded. A nylon 6 / PP / PP-g-MA = 70/20/10 (weight ratio) blend was produced by kneading at 235 ° C. for 10 minutes. It was melted at 233 ° C. using a hot press and formed into a sheet. Further, the film was stretched 3.7 times at 140 ° C. to prepare an alignment film. The shape of the stretched film was fixed and held at 200 ° C. for 3 minutes to melt PP, and then heat-treated at 130 ° C. for 4 hours under vacuum to cause oriented crystallization of PP.

延伸膜の電子顕微鏡観察を行うと、シリンダー状に変形したPPドメイン(径約200〜500nm)がナイロン6のマトリックスに分布し、延伸方向に配向しているのが観測された。
図1は、実施例1で得られた、PPを配向結晶化したフィルムの広角X線回折像であり、子午線(上下方向)が延伸方向に、また赤道(左右方向)が延伸と垂直方向に対応する。
図2は、実施例1で得られた、PPを配向結晶化したフィルムにおけるポリプロピレンの110反射(────)及び040反射(─ - ─ - ─)の回折強度の方位角依存性を示す図であり、方位角0度と±90度は、それぞれ延伸方向および垂直方向に対応している。
When the stretched film was observed with an electron microscope, it was observed that PP domains (diameter of about 200 to 500 nm) deformed into a cylindrical shape were distributed in the nylon 6 matrix and oriented in the stretch direction.
FIG. 1 is a wide-angle X-ray diffraction image of a film obtained by orientation-crystallizing PP obtained in Example 1, with the meridian (vertical direction) in the stretching direction and the equator (horizontal direction) in the direction perpendicular to the stretching. Correspond.
FIG. 2 shows the azimuth angle dependence of the diffraction intensity of 110 reflection (-----) and 040 reflection (-------) of polypropylene in a film obtained by orientation-crystallizing PP obtained in Example 1. In the figure, the azimuth angles of 0 degrees and ± 90 degrees correspond to the stretching direction and the vertical direction, respectively.

広角X線回折像(図1)には、ナイロン6の200反射および002反射が赤道方向(延伸と垂直方向)に観測され、ナイロン6の分子鎖軸(結晶b軸)が延伸方向に配向しているのが確認された。さらに、広角X線回折像(図1)およびPPの110反射と040反射のX線回折強度の方位角依存性(図2)を調べると、PPの040反射は垂直方向にスポットとして観測され、PPの結晶b軸は延伸と垂直方向に高度に配向している。さらに、110反射は、主として延伸方向から少し傾いた角度(方位角±15°)に観測され、このことからa*軸が延伸方向に配向し、分子鎖軸(結晶c軸)と結晶b軸が垂直方向に配向していることが確認された。   In the wide-angle X-ray diffraction image (FIG. 1), 200 reflection and 002 reflection of nylon 6 are observed in the equator direction (perpendicular to the stretching direction), and the molecular chain axis (crystal b axis) of nylon 6 is oriented in the stretching direction. It was confirmed that Furthermore, when examining the azimuth dependence (FIG. 2) of the X-ray diffraction intensity of the 110-angle reflection and the 040 reflection of the wide-angle X-ray diffraction image (FIG. 1), the 040 reflection of PP is observed as a spot in the vertical direction. The crystal b-axis of PP is highly oriented in the direction perpendicular to the stretching. Further, 110 reflection is observed mainly at an angle slightly inclined from the stretching direction (azimuth angle ± 15 °), and from this, the a * axis is oriented in the stretching direction, and the molecular chain axis (crystal c axis) and crystal b axis Were confirmed to be oriented in the vertical direction.

図3は、実施例1で得られた、PPを配向結晶化したフィルムの応力―ひずみ曲線を示す図であり、図中、(────)は、配向結晶化試料を延伸方向に試験した場合、(─ - ─ - ─)は、配向結晶化試料を垂直方向に試験した場合、(---------)は、ナイロン6/PP/PP/PP−g−MA=70/20/10(重量比)ブレンドの未延伸試料の応力−ひずみ曲線を表している。
図3から明らかなように、引張り試験を行うと延伸方向の強度と弾性率は、それぞれ180MPa、1.72GPaであった。また、延伸と垂直方向の強度と弾性率は、それぞれ35.0MPa、1.22GPaであり、未延伸フィルムと比較すると二方向に優れた力学物性を示した。
FIG. 3 is a diagram showing a stress-strain curve of a film obtained by orientation-crystallizing PP obtained in Example 1, in which (-----) indicates that the orientation-crystallized sample was tested in the stretching direction. (-----) indicates that when the oriented crystallized sample is tested in the vertical direction, (---------) indicates that nylon 6 / PP / PP / PP-g-MA = Fig. 7 represents a stress-strain curve of an unstretched sample of a 70/20/10 (weight ratio) blend.
As is clear from FIG. 3, when the tensile test was performed, the strength and elastic modulus in the stretching direction were 180 MPa and 1.72 GPa, respectively. In addition, the strength and elastic modulus in the stretched and vertical directions were 35.0 MPa and 1.22 GPa, respectively, and excellent mechanical properties were exhibited in two directions compared to the unstretched film.

(実施例2)
ナイロン6/PP/PP−g−MA=70/20/10(重量比)ブレンドについて、実施例1と同様に延伸フィルムを作製した。延伸フィルムの形態を固定して200℃で3分間PPを融解した後、氷水中に投下し急冷してPPを配向結晶化した。
図4は、実施例2で得られた、PPを配向結晶化したフィルムの広角X線回折像であり、子午線(上下方向)が延伸方向に、また赤道(左右方向)が延伸と垂直方向に対応する。
図5は、実施例2で得られた、PPを配向結晶化したフィルムにおけるポリプロピレンの110反射(────)及び040反射(─ - ─ - ─)の回折強度の方位角依存性を示す図であり、方位角0度と±90度は、それぞれ延伸方向および垂直方向に対応している。
(Example 2)
A stretched film was produced in the same manner as in Example 1 for the nylon 6 / PP / PP-g-MA = 70/20/10 (weight ratio) blend. The shape of the stretched film was fixed and PP was melted at 200 ° C. for 3 minutes, then dropped in ice water and rapidly cooled to cause oriented crystallisation of PP.
FIG. 4 is a wide-angle X-ray diffraction image of a film obtained by orientation-crystallizing PP obtained in Example 2, with the meridian (vertical direction) in the stretching direction and the equator (horizontal direction) in the direction perpendicular to the stretching. Correspond.
FIG. 5 shows the azimuth angle dependence of the diffraction intensity of 110 reflection (-----) and 040 reflection (-------) of polypropylene in a film obtained by orientation crystallizing PP obtained in Example 2. In the figure, the azimuth angles of 0 degrees and ± 90 degrees correspond to the stretching direction and the vertical direction, respectively.

広角X線回折像(図4)から、ナイロン6の分子鎖軸(b軸)は、実施例1と同様に、延伸方向に配向しているのが確認された。広角X線回折像(図4)および110反射と040反射のX線回折強度の方位角依存性(図5)によると、PPの040反射は垂直方向にスポットとして観測され、結晶b軸は垂直方向に高度に配向した。一方、PPの110反射は、複雑な方位角依存性を示し、延伸方向から±15°、±90°にスポット状の反射を示した。方位角±15°の110反射はPP結晶のa* 軸の延伸方向への配向に起因する。方位角±42°の110反射は、111反射の子午線(延伸方向)への出現と共に増加し、PPの結晶c軸の傾斜配向が形成されたことを示している。以上より、急冷フィルムでは、実施例1の熱処理試料とは異なり、a* 軸配向(結晶c軸の垂直配向)と結晶c軸の傾斜配向が混在することが確認された。   From the wide-angle X-ray diffraction image (FIG. 4), it was confirmed that the molecular chain axis (b axis) of nylon 6 was oriented in the stretching direction, as in Example 1. According to the wide-angle X-ray diffraction image (FIG. 4) and the azimuth angle dependence of the X-ray diffraction intensity of 110 reflection and 040 reflection (FIG. 5), the 040 reflection of PP is observed as a spot in the vertical direction, and the crystal b axis is vertical. Highly oriented in the direction. On the other hand, the 110 reflection of PP showed a complicated azimuth angle dependency, and showed spot-like reflection at ± 15 ° and ± 90 ° from the stretching direction. The 110 reflection with an azimuth angle of ± 15 ° is due to the orientation of the PP crystal in the stretching direction of the a * axis. The 110 reflection at azimuth ± 42 ° increases with the appearance of the 111 reflection on the meridian (stretching direction), indicating that a tilted orientation of the crystal c axis of PP has been formed. From the above, it was confirmed that in the quenched film, unlike the heat-treated sample of Example 1, a * axis orientation (vertical orientation of crystal c axis) and tilt orientation of crystal c axis coexist.

図6は、実施例2で得られた、PPを配向結晶化したフィルムの応力−ひずみ曲線を示す図であり、図中、(────)は、配向結晶化試料を延伸方向に試験した場合、(─ - ─ - ─)は、配向結晶化試料を垂直方向に試験した場合、(---------)は、ナイロン6/PP/PP/PP−g−MA=70/20/10(重量比)ブレンドの未延伸試料の応力−ひずみ曲線を表している。
図6から明らかなように、引張り試験を行うと延伸方向の強度と弾性率は、それぞれ161.5MPa、1.35GPaであった。また、延伸と垂直方向の強度と弾性率は、それぞれ37.6MPa、1.10GPaであり、未延伸フィルムと比較すると二方向に優れた力学物性を示した。
FIG. 6 is a diagram showing a stress-strain curve of a film obtained by orientation-crystallizing PP obtained in Example 2, in which (-----) indicates a test of the orientation-crystallized sample in the stretching direction. (-----) indicates that when the oriented crystallized sample is tested in the vertical direction, (---------) indicates that nylon 6 / PP / PP / PP-g-MA = Fig. 7 represents a stress-strain curve of an unstretched sample of a 70/20/10 (weight ratio) blend.
As is apparent from FIG. 6, when the tensile test was performed, the strength and elastic modulus in the stretching direction were 161.5 MPa and 1.35 GPa, respectively. In addition, the strength and elastic modulus in the stretched and perpendicular directions were 37.6 MPa and 1.10 GPa, respectively, and excellent mechanical properties were exhibited in two directions compared to the unstretched film.

(実施例3)
実施例1および実施例2とは組成比が異なるナイロン6/PP/PP−g−MA=70/29/1(重量比)ブレンドについて実施例1と同様に延伸フィルムを作製した。延伸フィルムの形態を固定して200℃で3分間PPを融解した後、130℃で4時間、真空下で熱処理してPPを配向結晶化した。
延伸膜の電子顕微鏡観察を行うと、シリンダー状に変形したPPドメイン(径約1〜2ミクロン)がナイロン6のマトリックスに分布し、延伸方向に配向しているのが観測された。
図7は、実施例3で得られた、PPを配向結晶化したフィルムの広角X線回折像であり、子午線(上下方向)が延伸方向に、また赤道(左右方向)が延伸と垂直方向に対応する。
図8は、実施例3で得られた、PPを配向結晶化したフィルムにおけるポリプロピレンの110反射(────)及び040反射(─ - ─ - ─)の回折強度の方位角依存性を示す図であり、方位角0度と±90度は、それぞれ延伸方向および垂直方向に対応している。
(Example 3)
A stretched film was prepared in the same manner as in Example 1 for a nylon 6 / PP / PP-g-MA = 70/29/1 (weight ratio) blend having a composition ratio different from that in Example 1 and Example 2. The shape of the stretched film was fixed and PP was melted at 200 ° C. for 3 minutes, and then heat-treated at 130 ° C. for 4 hours under vacuum to cause oriented crystallization of PP.
When the stretched film was observed with an electron microscope, it was observed that PP domains (diameter of about 1 to 2 microns) deformed into a cylindrical shape were distributed in the nylon 6 matrix and oriented in the stretching direction.
FIG. 7 is a wide-angle X-ray diffraction image of a film obtained by orientation-crystallizing PP obtained in Example 3, with the meridian (vertical direction) in the stretching direction and the equator (horizontal direction) in the direction perpendicular to the stretching. Correspond.
FIG. 8 shows the azimuth angle dependency of the diffraction intensity of 110 reflection (------) and 040 reflection (-------) of polypropylene in a film obtained by orientation crystallizing PP obtained in Example 3. In the figure, the azimuth angles of 0 degrees and ± 90 degrees correspond to the stretching direction and the vertical direction, respectively.

広角X線回折像(図7)によると、実施例1および実施例2の場合と同様にナイロン6の分子鎖軸(結晶b軸)が延伸方向に配向しているのが確認された。さらに、広角X線回折像(図7)およびPPの110反射と040反射のX線回折強度の方位角依存性(図8)を調べると、PPの040反射は垂直方向に観測され、PPの結晶b軸は延伸と垂直方向に高度に配向している。さらに、110反射は、主として方位角±15°に観測され、このことから実施例1と同様にa*軸が延伸方向に配向し、分子鎖軸(結晶c軸)と結晶b軸が垂直方向に配向していることが確認された。   According to the wide-angle X-ray diffraction image (FIG. 7), it was confirmed that the molecular chain axis (crystal b-axis) of nylon 6 was oriented in the stretching direction as in the case of Example 1 and Example 2. Furthermore, when examining the azimuth angle dependence (FIG. 8) of the X-ray diffraction intensity of the 110-angle reflection and the 040-reflection of the PP (FIG. 7), the PP 040 reflection is observed in the vertical direction. The crystal b-axis is highly oriented in the direction perpendicular to the stretch. Further, 110 reflection is mainly observed at an azimuth angle of ± 15 °. From this, as in Example 1, the a * axis is oriented in the stretching direction, and the molecular chain axis (crystal c axis) and the crystal b axis are perpendicular. It was confirmed that they were oriented.

図9は、実施例3で得られた、PPを配向結晶化したフィルムの応力―ひずみ曲線を示す図であり、図中、(────)は、配向結晶化試料を延伸方向に試験した場合、(─ - ─ - ─)は、配向結晶化試料を垂直方向に試験した場合、(---------)は、ナイロン6/PP/PP−g−MA=70/29/1(重量比)ブレンドの未延伸試料の応力−ひずみ曲線を表している。
図9から明らかなように、引張り試験を行うと延伸方向の強度と弾性率は、それぞれ148.8MPa、1.30GPaであった。また、延伸と垂直方向の強度と弾性率は、それぞれ30.7MPa、1.27GPaであり、二方向に優れた力学物性を示した。
FIG. 9 is a diagram showing a stress-strain curve of a film obtained by orientation-crystallizing PP obtained in Example 3, in which (-----) indicates a test of the orientation-crystallized sample in the stretching direction. (-----) indicates that when the oriented crystallized sample is tested in the vertical direction, (---------) indicates that nylon 6 / PP / PP-g-MA = 70 / Fig. 4 represents a stress-strain curve of an unstretched sample of a 29/1 (weight ratio) blend.
As is clear from FIG. 9, when the tensile test was performed, the strength and elastic modulus in the stretching direction were 148.8 MPa and 1.30 GPa, respectively. Further, the strength and elastic modulus in the direction perpendicular to the stretching were 30.7 MPa and 1.27 GPa, respectively, and excellent mechanical properties were exhibited in two directions.

(比較例1)
ナイロン6/PP/PP−g−MA=70/20/10(重量比)ブレンドの未延伸フィルムの力学物性を評価した。降伏強度、26.2MPa、弾性率0.47Gpaであり、低ひずみ域における未延伸膜の力学物性は、実施例1(図3参照)および実施例2(図6参照)の配向フィルムの力学物性より劣った。
(Comparative Example 1)
The mechanical properties of the unstretched film of nylon 6 / PP / PP-g-MA = 70/20/10 (weight ratio) blend were evaluated. It has a yield strength of 26.2 MPa and an elastic modulus of 0.47 Gpa. The mechanical properties of the unstretched film in the low strain region are the mechanical properties of the oriented films of Example 1 (see FIG. 3) and Example 2 (see FIG. 6). Inferior.

(比較例2)
ナイロン6/PP/PP−g−MA=70/29/1(重量比)ブレンドの未延伸フィルムの力学物性を評価した。降伏強度、26.4MPa、弾性率0.44GPaであり、低ひずみ域における未延伸膜の力学物性は、実施例3(図9参照)の配向フィルムの力学物性より劣った。
(Comparative Example 2)
The mechanical properties of the unstretched film of nylon 6 / PP / PP-g-MA = 70/29/1 (weight ratio) blend were evaluated. The yield strength was 26.4 MPa, the elastic modulus was 0.44 GPa, and the mechanical properties of the unstretched film in the low strain region were inferior to those of the oriented film of Example 3 (see FIG. 9).

(比較例3)
ナイロン6/PP/PP−g−MA=70/20/10(重量比)ブレンドを実施例1と同様に140℃で延伸し、熱処理を行わずに広角X線回折を測定した。
図10は、140℃で延伸した延伸フィルムの広角X線回折像であり、図中、aは、ナイロン6の場合を、bは、ポリプロピレンの場合を、cは、ナイロン6/PP/PP−g−MA=70/20/10(重量比)ブレンドの場合を、それぞれ示している。いずれも、子午線(上下方向)が延伸方向に、また赤道(左右方向)が延伸と垂直方向に対応する。
ブレンドの延伸フィルムの広角X線回折像(図10c)は、ナイロン6の延伸フィルムの広角X線回折像(図10a)とPPの延伸フィルムの広角X線回折像(図10b)との重ね合わせであり、ブレンド延伸フィルムにおいてナイロン6の分子軸とPPの分子軸が共に延伸方向に配向した。
(Comparative Example 3)
Nylon 6 / PP / PP-g-MA = 70/20/10 (weight ratio) blend was stretched at 140 ° C. in the same manner as in Example 1, and wide-angle X-ray diffraction was measured without heat treatment.
FIG. 10 is a wide-angle X-ray diffraction image of a stretched film stretched at 140 ° C., in which a is the case of nylon 6, b is the case of polypropylene, and c is nylon 6 / PP / PP−. The cases of g-MA = 70/20/10 (weight ratio) blend are shown. In both cases, the meridian (up and down direction) corresponds to the stretching direction, and the equator (left and right direction) corresponds to the stretching and vertical direction.
The wide-angle X-ray diffraction image (FIG. 10c) of the stretched film of the blend is a superposition of the wide-angle X-ray diffraction image of the nylon 6 stretched film (FIG. 10a) and the wide-angle X-ray diffraction image of the stretched PP film (FIG. 10b). In the stretched blend film, both the molecular axis of nylon 6 and the molecular axis of PP were oriented in the stretching direction.

引張り試験を行うと延伸方向の強度と弾性率は、それぞれ218MPa、1.90Gpaであった。また、垂直方向の強度と弾性率は、それぞれ29.0Mpa、1.02GPaであり、延伸方向に高い力学物性を示したが、垂直方向の力学物性は実施例1および実施例2の熱処理試料に比べて低い値に留まった。   When a tensile test was performed, the strength and elastic modulus in the stretching direction were 218 MPa and 1.90 Gpa, respectively. The strength and elastic modulus in the vertical direction were 29.0 Mpa and 1.02 GPa, respectively, and high mechanical properties were exhibited in the stretching direction. However, the mechanical properties in the vertical direction were similar to those of the heat-treated samples of Example 1 and Example 2. It stayed at a low value.

(比較例4)
PPの変わりにエチレン−メタクリル酸共重合体を用いて、実施例1と同様の実験を行った。すなわち、ナイロン6/エチレン−メタクリル酸共重合体ブレンドの延伸フィルムを作製し、120℃でエチレンメタクリル酸共重合体を融解し、80℃で熱処理してエチレン−メタクリル酸共重合体を結晶化した。
図11は、広角X線回折像であり、子午線(上下方向)が延伸方向に、また赤道(左右方向)が延伸と垂直方向に対応する。図中、aは、ナイロン6/エチレン−メタクリル酸コポリマーブレンド延伸膜の広角X線回折像であり、bは、比較例4の、熱処理してポリエチレン−メタクリル酸共重合体を結晶化したフィルムの広角X線回折像である。
未熱処理の延伸フィルムの広角X線回折像(a)と、熱処理後の延伸フィルムの広角X線回折像(b)を比較すると、有意な違いは認められなかった。すなわち、比較例4により、PPの変わりにエチレン−メタクリル酸共重合体を用いた場合には、熱処理によりエチレン−メタクリル酸共重合体の結晶配向は変化せず、延伸フィルムと同様にエチレン−メタクリル酸共重合体の分子鎖軸が延伸方向に配向していることが確認された。
(Comparative Example 4)
The same experiment as in Example 1 was performed using an ethylene-methacrylic acid copolymer instead of PP. That is, a stretched film of nylon 6 / ethylene-methacrylic acid copolymer blend was prepared, the ethylene methacrylic acid copolymer was melted at 120 ° C., and heat-treated at 80 ° C. to crystallize the ethylene-methacrylic acid copolymer. .
FIG. 11 is a wide-angle X-ray diffraction image, in which the meridian (vertical direction) corresponds to the stretching direction, and the equator (horizontal direction) corresponds to the stretching and vertical direction. In the figure, a is a wide-angle X-ray diffraction image of a nylon 6 / ethylene-methacrylic acid copolymer blend stretched film, and b is a film of Comparative Example 4 that has been heat-treated to crystallize a polyethylene-methacrylic acid copolymer. It is a wide-angle X-ray diffraction image.
When the wide-angle X-ray diffraction image (a) of the unheated stretched film was compared with the wide-angle X-ray diffraction image (b) of the stretched film after the heat treatment, no significant difference was observed. That is, according to Comparative Example 4, when an ethylene-methacrylic acid copolymer was used instead of PP, the crystal orientation of the ethylene-methacrylic acid copolymer was not changed by the heat treatment, and the ethylene-methacrylic acid was not changed. It was confirmed that the molecular chain axis of the acid copolymer was oriented in the stretching direction.

本発明は、高強度プラスチックフィルムとして広範な用途に応用可能である。   The present invention can be applied to a wide range of uses as a high-strength plastic film.

実施例1で得られた、PPを配向結晶化したフィルムの広角X線回折像。2 is a wide-angle X-ray diffraction image of a film obtained by orientation crystallizing PP obtained in Example 1. FIG. 実施例1で得られた、PPを配向結晶化したフィルムにおけるポリプロピレンの110反射及び040反射の回折強度の方位角依存性を示す図。The figure which shows the azimuth angle dependence of the 110 reflection of a polypropylene and the diffraction intensity of 040 reflection in the film which carried out the orientation crystallization of PP obtained in Example 1. FIG. 実施例1で得られた、PPを配向結晶化したフィルムの応力―ひずみ曲線を示す図。The figure which shows the stress-strain curve of the film which oriented-crystallized PP obtained in Example 1. FIG. 実施例2で得られた、PPを配向結晶化したフィルムの広角X線回折像。A wide-angle X-ray diffraction image of a film obtained by orientation crystallizing PP obtained in Example 2. 実施例2で得られた、PPを配向結晶化したフィルムにおけるポリプロピレンの110反射及び040反射の回折強度の方位角依存性を示す図。The figure which shows the azimuth angle dependence of the diffraction intensity of 110 reflection of polypropylene and 040 reflection in the film which oriented-crystallized PP obtained in Example 2. FIG. 実施例2で得られた、PPを配向結晶化したフィルムの応力―ひずみ曲線を示す図。The figure which shows the stress-strain curve of the film which oriented-crystallized PP obtained in Example 2. FIG. 実施例3で得られた、ポリプロピレンを配向結晶化したフィルムの広角X線回折像。4 is a wide-angle X-ray diffraction image of a film obtained by orientation-crystallization of polypropylene obtained in Example 3. FIG. 実施例3で得られた、ポリプロピレンを配向結晶化したフィルムにおけるポリプロピレンの110反射及び040反射の回折強度の方位角依存性を示す図。The figure which shows the azimuth angle dependence of the diffraction intensity of 110 reflection of polypropylene and 040 reflection in the film which oriented-crystallized the polypropylene obtained in Example 3. FIG. 実施例3で得られた、ポリプロピレンを配向結晶化したフィルムの応力―ひずみ曲線を示す図。The figure which shows the stress-strain curve of the film which obtained the oriented crystallization of the polypropylene obtained in Example 3. FIG. 140℃で延伸した延伸フィルムの広角X線回折像であり、a:ナイロン、b:ポリプロピレン、c:比較例3。It is a wide-angle X-ray-diffraction image of the stretched film extended | stretched at 140 degreeC, a: Nylon, b: Polypropylene, c: Comparative example 3. FIG. ナイロン6/エチレン−メタクリル酸コポリマーブレンド延伸フィルムの広角X線回折像(a)、及び、該ブレンド延伸フィルムを熱処理して、ポリエチレン−メタクリル酸共重合体を結晶化したフィルムの広角X線回折像(b)。Wide angle X-ray diffraction image (a) of nylon 6 / ethylene-methacrylic acid copolymer blend stretched film, and wide angle X-ray diffraction image of a film obtained by heat-treating the blend stretched film to crystallize a polyethylene-methacrylic acid copolymer (B).

Claims (5)

ナイロン6とアイソタクチックポリプロピレンと相溶化剤を含むブレンドフィルムであり、ナイロン6の分子鎖方向の結晶軸(b軸)とアイソタクチックポリプロピレンの分子鎖方向の結晶軸(c軸)が互いに異なる方向に配向した結晶配向フィルム。   A blend film containing nylon 6, isotactic polypropylene and a compatibilizing agent, and the crystal axis (b axis) in the molecular chain direction of nylon 6 and the crystal axis (c axis) in the molecular chain direction of isotactic polypropylene are different from each other. Crystal orientation film oriented in the direction. 前記相溶化剤が、無水マレイン酸をグラフトしたポリプロピレンである請求項1に記載の結晶配向フィルム。   The crystal orientation film according to claim 1, wherein the compatibilizing agent is polypropylene grafted with maleic anhydride. 前記ナイロン6とアイソタクチックポリプロピレン(PP)とを、重量比で、ナイロン6/PP=50/50〜90/10の割合で含む請求項1又は2に記載の結晶配向フィルム。   The crystal orientation film according to claim 1 or 2, wherein the nylon 6 and isotactic polypropylene (PP) are contained in a weight ratio of nylon 6 / PP = 50/50 to 90/10. 前記相溶化剤を0.1〜30重量%含む請求項1又は2に記載の結晶配向フィルム。   The crystal orientation film according to claim 1 or 2, comprising 0.1 to 30% by weight of the compatibilizer. ナイロン6とアソタクチックポリプロピレンと相溶化剤を混練し、その後熱プレスでシート状に成形し、一軸延伸した後、ナイロン6の融点よりも低く、アイソタクチックポリプロピレンの融点よりも高い温度においてアイソタクチックポリプロピレンを融解した後、アイソタクチックポリプロピレンをナイロン6/アイソタクチックポリプロピレンブレンド延伸膜中で再結晶化することを特徴とする結晶配向フィルムの製造方法。   Nylon 6, astactic polypropylene and a compatibilizing agent are kneaded, then formed into a sheet by hot pressing, uniaxially stretched, and then isolated at a temperature lower than the melting point of nylon 6 and higher than the melting point of isotactic polypropylene. A method for producing a crystallographically oriented film, comprising melting tactic polypropylene and then recrystallizing isotactic polypropylene in a stretched nylon 6 / isotactic polypropylene blend.
JP2008227696A 2008-09-05 2008-09-05 Nylon 6 / polypropylene blend oriented film and method for producing the same Expired - Fee Related JP5046126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008227696A JP5046126B2 (en) 2008-09-05 2008-09-05 Nylon 6 / polypropylene blend oriented film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008227696A JP5046126B2 (en) 2008-09-05 2008-09-05 Nylon 6 / polypropylene blend oriented film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010059335A JP2010059335A (en) 2010-03-18
JP5046126B2 true JP5046126B2 (en) 2012-10-10

Family

ID=42186504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008227696A Expired - Fee Related JP5046126B2 (en) 2008-09-05 2008-09-05 Nylon 6 / polypropylene blend oriented film and method for producing the same

Country Status (1)

Country Link
JP (1) JP5046126B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2794943B2 (en) * 1990-11-27 1998-09-10 東洋紡績株式会社 Polyamide resin composition
JPH0543796A (en) * 1991-08-15 1993-02-23 Showa Denko Kk Polyamide-polyolefin resin composition
JPH06184433A (en) * 1992-12-21 1994-07-05 Showa Denko Kk Polyamide resin composition
JPH07150033A (en) * 1993-11-25 1995-06-13 Showa Denko Kk Blend resin composition
JP3962810B2 (en) * 2003-02-19 2007-08-22 独立行政法人産業技術総合研究所 Multiaxial crystal orientation material comprising nylon-11 / polyvinylidene fluoride blend film
JP4868396B2 (en) * 2006-05-09 2012-02-01 独立行政法人産業技術総合研究所 Nylon-6 / polyvinylidene fluoride blend film and method for producing the same

Also Published As

Publication number Publication date
JP2010059335A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
Zhao et al. Processing and characterization of solid and microcellular poly (lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/Clay nanocomposites
Chen et al. Poly (lactic acid)/poly (butylene succinate)/calcium sulfate whiskers biodegradable blends prepared by vane extruder: Analysis of mechanical properties, morphology, and crystallization behavior
JPH0458824B2 (en)
JP2006328117A (en) Impact-resistant environmental material, method for producing the same, and molded article
Lin et al. The effect of thermal history of polyamide 6 on the crystallization and melting behavior of β-nucleated polypropylene/polyamide 6 blends
Yang et al. Crystallization and melting behavior of β-nucleated isotactic polypropylene/polyamide 6 blends with maleic anhydride grafted polyethylene-vinyl acetate as a compatibilizer
Bandyopadhyay et al. Development of a highly nucleated and dimensionally stable isotactic polypropylene/nanoclay composite using reactive blending
JP6041550B2 (en) Polylactic acid resin composition and film or sheet using the same
Saidi et al. Thermal, dynamic mechanical analysis and mechanical properties of polybutylene terephthalate/polyethylene terephthalate blends
JP5046126B2 (en) Nylon 6 / polypropylene blend oriented film and method for producing the same
JP3962810B2 (en) Multiaxial crystal orientation material comprising nylon-11 / polyvinylidene fluoride blend film
CN107778651A (en) Isotactic polypropylene based composites
Jiang et al. Effect of the compatibilizer on the morphology and properties of dynamically cured PP/POE/epoxy blends
JP4953723B2 (en) Composition comprising at least two incompatible thermoplastic polymers and a compatibilizer, method for its production and use thereof
JP4677620B2 (en) Nylon-11 and polyvinylidene fluoride blend film manufacturing method
Saidi et al. Mechanical and Thermal Properties of Polyethylene Terephthalate/Polybutylene Terephthalate Blends
Kaito et al. Unique orientation textures induced by confined crystal growth of poly (vinylidene fluoride) in oriented blends with polyamide 6
Tekay et al. 4D Printing of novel poly (ethylene-vinyl acetate)/poly (butyl methacrylate-co-isobutyl methacrylate) shape memory polymer blends
Kelkar et al. Toughening of poly (lactic acid) by Ethylene-co-vinyl acetate Copolymer having vinyl acetate Content of 18%: effect of ethylene co-Vinyl acetate content
Cordin et al. Polymer Interface Reactions
JP4868396B2 (en) Nylon-6 / polyvinylidene fluoride blend film and method for producing the same
Wacharawichanant et al. Improvement of poly (lactic acid) properties by using acrylonitrile-butadiene Rubber and polyethylene-g-maleic anhydride
CN114605800B (en) PLA/PGA/(PBAT/ADR) blended alloy and preparation method thereof
Wang et al. In Situ Compatibilization of Isotactic Polypropylene and High-Density Polyethylene by a Melt Cobranching Reaction
เวียง อินทร์ et al. Characterization of Polymer Composites between Poly (lactic acid) and Poly (butylene succinate) with Chain Extender.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees