JP4677620B2 - Nylon-11 and polyvinylidene fluoride blend film manufacturing method - Google Patents

Nylon-11 and polyvinylidene fluoride blend film manufacturing method Download PDF

Info

Publication number
JP4677620B2
JP4677620B2 JP2007060545A JP2007060545A JP4677620B2 JP 4677620 B2 JP4677620 B2 JP 4677620B2 JP 2007060545 A JP2007060545 A JP 2007060545A JP 2007060545 A JP2007060545 A JP 2007060545A JP 4677620 B2 JP4677620 B2 JP 4677620B2
Authority
JP
Japan
Prior art keywords
nylon
pvdf
polyvinylidene fluoride
crystal
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007060545A
Other languages
Japanese (ja)
Other versions
JP2007191721A (en
Inventor
彰 海藤
勇進 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007060545A priority Critical patent/JP4677620B2/en
Publication of JP2007191721A publication Critical patent/JP2007191721A/en
Application granted granted Critical
Publication of JP4677620B2 publication Critical patent/JP4677620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、ナイロン−11とポリフッ化ビニリデンのブレンド(以下ナイロン−11/ポリフッ化ビニリデンブレンドという)から成る多軸結晶配向材料の製造方法に関する。   The present invention relates to a method for producing a multiaxial crystal alignment material comprising a blend of nylon-11 and polyvinylidene fluoride (hereinafter referred to as nylon-11 / polyvinylidene fluoride blend).

従来、ポリフッ化ビニリデンとナイロン12からなり、異方性溶融形態(液晶)を示す成形体でフィブリル化されている、耐薬品性、耐摩耗性、機械的特性に優れた成形体が開示されている。(特許文献1参照)
また、赤外吸収スペクトルのバンドのシフトおよびガラス転移の組成依存性から、ナイロンのアミド基とポリフッ化ビニリデン(以下PVdFという)のCF結合の間に特異的な相互作用があることがわかっている。(非特許文献1参照)
Conventionally, a molded body made of polyvinylidene fluoride and nylon 12 and fibrillated with a molded body exhibiting an anisotropic molten form (liquid crystal) and having excellent chemical resistance, wear resistance, and mechanical properties has been disclosed. Yes. (See Patent Document 1)
In addition, there is a specific interaction between the amide group of nylon and the CF bond between polyvinylidene fluoride (hereinafter referred to as PVdF) from the shift of the band of the infrared absorption spectrum and the composition dependence of the glass transition. . (See Non-Patent Document 1)

特許第2614649号公報Japanese Patent No. 2614649 Q.Gao, J. I. Scheibeim,Macromolecules, 33, 7564 (2000) ”Dipolar Intermolecular Interactions,Structural Development, and Electromechanical Properties in FerroelectricPolymer Blends of Nylon-11 and Poly(vinylidene fluoride)Q. Gao, J. I. Scheibeim, Macromolecules, 33, 7564 (2000) ”Dipolar Intermolecular Interactions, Structural Development, and Electromechanical Properties in Ferroelectric Polymer Blends of Nylon-11 and Poly (vinylidene fluoride)

本発明は、ナイロン−11/ポリフッ化ビニリデンブレンドにおいて、圧電性、耐薬品性、耐摩耗性、耐熱性、強度・弾性率などの優れた物理的特性を有するが、一層の力学特性の向上が必要である。ナイロン−11の配向マトリックス中でPVdFを結晶化することにより、PVdFの配向を制御することにより、ナイロン−11/ポリフッ化ビニリデンブレンドからなる多軸結晶配向材料を作製し、ナイロン−11/ポリフッ化ビニリデンブレンドの力学特性の向上を図る。   The present invention has excellent physical properties such as piezoelectricity, chemical resistance, abrasion resistance, heat resistance, strength and elastic modulus in the nylon-11 / polyvinylidene fluoride blend, but further improved mechanical properties. is necessary. By controlling the orientation of PVdF by crystallizing PVdF in an orientation matrix of nylon-11, a multiaxial crystal orientation material made of nylon-11 / polyvinylidene fluoride blend was produced, and nylon-11 / polyfluoride was produced. To improve the mechanical properties of vinylidene blends.

ナイロン−11とPVdF からなるブレンドフィルムでナイロン−11の分子鎖方向の結晶軸(c軸)とPVdFの分子鎖と垂直方向の結晶軸(a軸)が共に延伸方向に配向した多軸結晶配向材料を作製する。
すなわち、本発明は、 ナイロン−11とポリフッ化ビニリデン( P V d F) を混練押出機で混練し、その後熱プレスでシート状に成形し、一軸延伸した後、形態を拘束して、ナイロン−11の融点よりも低く、ポリフッ化ビニリデン( P V d F) の融点よりも高い温度においてポリフッ化ビニリデン( P Vd F) を融解し、その後80〜135℃ に保温してポリフッ化ビニリデン( P Vd F) を結晶化することにより、ナイロン−11の分子鎖方向の結晶軸(c軸)とPVdFの分子鎖と垂直方向の結晶軸(a軸)が共に延伸方向に配向したことを特徴とする多軸結晶配向材料の製造方法である。
また、本発明においては、ナイロン−11とPVdFのブレンドフィルムを、ナイロン−11:ポリフッ化ビニリデン(PVdF)=40〜70:60〜30(質量比)ブレンドフィルムとすることが好ましい。
Nylon-11 and PVdF blend film is a multiaxial crystal orientation in which the crystal axis in the molecular chain direction (c-axis) of nylon-11 and the crystal axis in the vertical direction of PVdF molecular chain (a-axis) are both oriented in the stretching direction. Make the material.
That is, according to the present invention, nylon-11 and polyvinylidene fluoride (PV d F) are kneaded with a kneading extruder, then formed into a sheet shape with a hot press, uniaxially stretched, and the form is constrained. Polyvinylidene fluoride (P Vd F) is melted at a temperature lower than the melting point of polyvinylidene fluoride (PV d F) at a temperature higher than the melting point of polyvinylidene fluoride (PV d F) and then kept at 80 to 135 ° C. more crystallizing, multi crystal axes of the molecular chains direction nylon -11 (c axis) and PVdF molecular chain and vertical direction of the crystal axis (a axis), characterized in that oriented in the stretching direction both It is a manufacturing method of an axial crystal orientation material.
In the present invention, the nylon-11 and PVdF blend film is preferably a nylon-11: polyvinylidene fluoride (PVdF) = 40-70: 60-30 (mass ratio) blend film.

本発明の多軸結晶配向材料の製造方法は、ナイロン−11の配向マトリックス中でPVdFを結晶化することにより、PVdFの配向を制御することにより、PVdFの優れた物理的特性(耐薬品性、耐摩耗性、圧電性)などを維持したまま、機械的特性の向上を効率よく作り出すことができた。   The method for producing a multiaxial crystal alignment material of the present invention is characterized by controlling the orientation of PVdF by crystallizing PVdF in a nylon-11 alignment matrix, thereby improving the excellent physical properties (chemical resistance, While maintaining the wear resistance, piezoelectricity, etc., the mechanical properties could be improved efficiently.

発明の実施するための最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

本発明において用いるナイロン−11(ポリウンデカンアミド)とポリフッ化ビニリデン(PVdF)からなるブレンドは、どのような配合割合のものでも良いが、ナイロン−11(ポリウンデカンアミド):ポリフッ化ビニリデン=30〜80:70〜20(質量比)、より好ましくはナイロン−11(ポリウンデカンアミド):ポリフッ化ビニリデン=40〜70:60〜30(質量比)のものが良い。
例えば、典型的な一例を示せば、ナイロン−11とPVdFの粉末を混合して(混合質量比:ナイロン-11/PVdF=4/6〜7/3)、混練押出機に導入し、溶融状態で混練して押し出す。入り口、シリンダー、ダイスの温度はそれぞれ、150 − 180 ℃、160 − 190 ℃、195 − 225 ℃(好ましくは、それぞれ160 −170 ℃、170 − 180 ℃、205 − 215 ℃)である。その後、熱プレスで215 ℃において溶融してシート状に成形する。さらに、 20 〜180℃、好ましくは120〜150 ℃において、2倍以上(好ましくは3倍以上)に一軸延伸する。その後、形態を拘束して、ナイロン−11の融点よりも低く、PVdFの融点よりも高い温度(好ましくは165〜175 ℃)においてPVdFを融解した後、80〜135℃(好ましくは110〜125℃)においてPVdFを結晶化することが必要である。
The blend of nylon-11 (polyundecanamide) and polyvinylidene fluoride (PVdF) used in the present invention may have any blending ratio, but nylon-11 (polyundecanamide): polyvinylidene fluoride = 30 to 80: 70-20 (mass ratio), more preferably nylon-11 (polyundecanamide): polyvinylidene fluoride = 40-70: 60-30 (mass ratio) is preferable.
For example, if a typical example is shown, nylon-11 and PVdF powder are mixed (mixing mass ratio: nylon-11 / PVdF = 4/6 to 7/3), introduced into a kneading extruder, and melted. Knead and extrude. The temperatures of the inlet, the cylinder, and the die are 150 to 180 ° C, 160 to 190 ° C, and 195 to 225 ° C (preferably 160 to 170 ° C, 170 to 180 ° C, and 205 to 215 ° C, respectively). Thereafter, it is melted at 215 ° C. by a hot press and formed into a sheet. Furthermore, it is uniaxially stretched at 20 to 180 ° C., preferably 120 to 150 ° C., twice or more (preferably 3 times or more). Then, after constraining the form and melting PVdF at a temperature lower than the melting point of nylon-11 and higher than the melting point of PVdF (preferably 165 to 175 ° C), 80 to 135 ° C (preferably 110 to 125 ° C) ) To crystallize PVdF.

本発明について実施例を用いてさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
ナイロン−11とPVdFの粉末を混合して(混合比:ナイロン-11/PVdF=5/5)、混練押出機に導入し、溶融状態で混練して押し出す。入り口、シリンダー、ダイスの温度はそれぞれ、165℃、185℃、210℃である。その後、熱プレスで215℃において溶融してシート状に成形する。さらに、145℃において、 4倍に一軸延伸する。その後、形態を拘束して、170℃においてPVdFを5分間融解した後、120℃においてPVdFを結晶化した。
フルオレセインで染色して共焦点レーザスキャン顕微鏡観察を行うと、直径 2〜10μm、長さ 10〜50μmのPVdFのドメインがナイロンの配向マトリックス中に配列しているのが観測される。広角X線回折によると、ナイロンについては分子鎖方向の結晶軸(結晶c軸)が延伸方向に配向しているのに対し、PVdFについては、分子鎖と垂直方向の結晶軸である結晶a軸が延伸方向に配向し、多軸結晶配向構造が形成されているのが確認できる。(図2d)
引っ張り試験、動的粘弾性測定によると、破断強度140MPa、破断伸度32.5%、動的貯蔵弾性率 2.1GPaであった。(図3)
The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Nylon-11 and PVdF powder are mixed (mixing ratio: nylon-11 / PVdF = 5/5), introduced into a kneading extruder, kneaded in a molten state and extruded. The temperatures of the inlet, cylinder, and die are 165 ° C, 185 ° C, and 210 ° C, respectively. Thereafter, it is melted at 215 ° C. with a hot press and formed into a sheet. Furthermore, it is uniaxially stretched 4 times at 145 ° C. Thereafter, the morphology was restrained, PVdF was melted at 170 ° C. for 5 minutes, and then PVdF was crystallized at 120 ° C.
When stained with fluorescein and observed with a confocal laser scanning microscope, it is observed that domains of PVdF having a diameter of 2 to 10 μm and a length of 10 to 50 μm are arranged in a nylon alignment matrix. According to wide-angle X-ray diffraction, for nylon, the crystal axis in the molecular chain direction (crystal c axis) is oriented in the stretching direction, whereas for PVdF, the crystal a axis that is the crystal axis perpendicular to the molecular chain It can be confirmed that is oriented in the stretching direction and a multiaxial crystal orientation structure is formed. (Fig. 2d)
According to the tensile test and dynamic viscoelasticity measurement, the breaking strength was 140 MPa, the breaking elongation was 32.5%, and the dynamic storage elastic modulus was 2.1 GPa. (Figure 3)

実施例1と同様にブレンドシートを作製し、145℃において、4倍に一軸延伸した。その後、形態を拘束して、170℃においてPVdFを5分間融解した後、85℃においてPVdFを結晶化した。広角X線回折によると、ナイロンについては分子鎖方向の結晶軸(結晶c軸)が延伸方向に配向しているのに対し、PVdFについては、分子鎖と垂直方向の結晶軸である結晶a軸が延伸方向に配向し、多軸結晶配向構造が形成されているのが確認できる。(図2c)   A blend sheet was prepared in the same manner as in Example 1, and uniaxially stretched 4 times at 145 ° C. Thereafter, the morphology was constrained, PVdF was melted at 170 ° C. for 5 minutes, and then PVdF was crystallized at 85 ° C. According to wide-angle X-ray diffraction, for nylon, the crystal axis in the molecular chain direction (crystal c axis) is oriented in the stretching direction, whereas for PVdF, the crystal a axis that is the crystal axis perpendicular to the molecular chain It can be confirmed that is oriented in the stretching direction and a multiaxial crystal orientation structure is formed. (Figure 2c)

(比較例1)
実施例と同様にブレンドシートを作製し、145℃において、4倍に一軸延伸した。PVdFの融解・結晶化は行わなかった。
共焦点レーザスキャン顕微鏡観察を行うと、直径 2〜10μm、長さ 10〜50μmのPVdFのドメインがナイロンの配向マトリックス中に配列しているのが観測される。広角X線回折によると、ナイロンについてもPVdFについても分子鎖方向の結晶軸(ナイロンについてもPVdFについても結晶c軸)が延伸方向に配向している。(図1a)
引っ張り試験、動的粘弾性測定によると、破断強度164MPa、破断伸度17%、動的貯蔵弾性率 2.1GPaであった。(図3)
(Comparative Example 1)
A blend sheet was prepared in the same manner as in the Examples, and uniaxially stretched four times at 145 ° C. PVdF was not melted or crystallized.
When confocal laser scanning microscope observation is performed, it is observed that PVdF domains having a diameter of 2 to 10 μm and a length of 10 to 50 μm are arranged in a nylon alignment matrix. According to wide-angle X-ray diffraction, the crystal axis in the molecular chain direction of both nylon and PVdF (the crystal c axis for both nylon and PVdF) is oriented in the stretching direction. (Figure 1a)
According to the tensile test and dynamic viscoelasticity measurement, the breaking strength was 164 MPa, the breaking elongation was 17%, and the dynamic storage elastic modulus was 2.1 GPa. (Figure 3)

(比較例2)
実施例と同様にブレンドシートを作製し、145℃において、4倍に一軸延伸した。170℃においてPVdFを5分間融解した後、氷水中で0℃においてPVdFを結晶化した。
共焦点レーザスキャン顕微鏡観察を行うと、直径 2〜10μm、長さ 10〜50μmのPVdFのドメインがナイロンの配向マトリックス中に配列しているのが観測される。広角X線回折によると、ナイロンについてもPVdFについても分子鎖方向の結晶軸(ナイロンについてもPVdFについても結晶c軸)が延伸方向に配向している。(図2a)
引っ張り試験、動的粘弾性測定によると、破断強度138MPa、破断伸度23%、動的貯蔵弾性率 2.2GPaであった。
(Comparative Example 2)
A blend sheet was prepared in the same manner as in the Examples, and uniaxially stretched four times at 145 ° C. After melting PVdF at 170 ° C. for 5 minutes, PVdF was crystallized at 0 ° C. in ice water.
When confocal laser scanning microscope observation is performed, it is observed that PVdF domains having a diameter of 2 to 10 μm and a length of 10 to 50 μm are arranged in a nylon alignment matrix. According to wide-angle X-ray diffraction, the crystal axis in the molecular chain direction of both nylon and PVdF (the crystal c axis for both nylon and PVdF) is oriented in the stretching direction. (Figure 2a)
According to the tensile test and dynamic viscoelasticity measurement, the breaking strength was 138 MPa, the breaking elongation was 23%, and the dynamic storage elastic modulus was 2.2 GPa.

(比較例3)
ブレンドシート(ナイロン-11/PVdF=5/5)の未延伸膜(無配向膜)の力学物性を評価した。破断強度24MPa、破断伸度4.2%、動的貯蔵弾性率 1.2GPaであった。
(Comparative Example 3)
The mechanical properties of the unstretched film (non-oriented film) of the blend sheet (nylon-11 / PVdF = 5/5) were evaluated. The breaking strength was 24 MPa, the breaking elongation was 4.2%, and the dynamic storage elastic modulus was 1.2 GPa.

(比較例4)
実施例と同様にブレンドシートを作製し、145℃において、4倍に一軸延伸した。170℃においてPVdFを5分間融解した後、形態を拘束することなく氷水中で0℃においてPVdFを結晶化した。PVdFの配向が乱れ、無配向の結晶組織が形成された。(図1b)
(Comparative Example 4)
A blend sheet was prepared in the same manner as in the Examples, and uniaxially stretched four times at 145 ° C. After melting PVdF at 170 ° C for 5 minutes, PVdF was crystallized at 0 ° C in ice water without constraining the morphology. The orientation of PVdF was disturbed and a non-oriented crystal structure was formed. (Fig. 1b)

本発明の多軸結晶配向材料の製造方法は、ナイロン−11の配向マトリックス中でPVdFを結晶化することにより、PVdFの配向を制御することにより、PVdFの優れた物理的特性(耐薬品性、耐摩耗性、圧電性)などを維持したまま、機械的特性の向上を図ることができるため、高強度プラスチックフィルムなど各種構造材料として広範な用途に応用することが可能である。   The method for producing a multiaxial crystal alignment material of the present invention is characterized by controlling the orientation of PVdF by crystallizing PVdF in a nylon-11 alignment matrix, thereby improving the excellent physical properties (chemical resistance, The mechanical properties can be improved while maintaining the wear resistance, piezoelectricity, etc., and therefore, it can be applied to various uses as various structural materials such as high-strength plastic films.

ナイロン-11/PVdFの広角X線回折像図 (a)延伸試料(b)延伸後形態を拘束することなく170℃で5分間熱処理した試料。Wide angle X-ray diffraction pattern of nylon-11 / PVdF (a) Stretched sample (b) Sample heat treated at 170 ° C. for 5 minutes without constraining the shape after stretching. 延伸後にPVdFを170℃で5分間溶融後、各温度で結晶化したナイロン-11/PVdFの広角X線回折像の結晶化温度依存性図 (a) 0℃; (b)75℃; (c) 85℃; (d) 120℃After stretching, PVdF was melted at 170 ° C. for 5 minutes and then crystallized at various temperatures. Nylon-11 / PVdF was crystallized at a wide angle X-ray diffraction pattern (a) 0 ° C .; (b) 75 ° C. (c ) 85 ℃; (d) 120 ℃ ナイロン-11/PVdFの延伸試料の応力−ひずみ曲線 (a) 平行方向 (b) 垂直方向Nylon-11 / PVdF stretched specimen stress-strain curve (a) Parallel direction (b) Vertical direction

Claims (2)

ナイロン−11とポリフッ化ビニリデン( P V d F) を混練押出機で混練し、その後熱プレスでシート状に成形し、一軸延伸した後、形態を拘束して、ナイロン−11の融点よりも低く、ポリフッ化ビニリデン( P V d F) の融点よりも高い温度においてポリフッ化ビニリデン( P Vd F) を融解し、その後80〜135℃ に保温してポリフッ化ビニリデン( P Vd F) を結晶化することにより、ナイロン−11の分子鎖方向の結晶軸(c軸)とPVdFの分子鎖と垂直方向の結晶軸(a軸)が共に延伸方向に配向したことを特徴とする多軸結晶配向材料の製造方法。 Nylon-11 and polyvinylidene fluoride (PV d F) were kneaded with a kneading extruder, then formed into a sheet shape with a hot press, uniaxially stretched, constrained in form, and lower than the melting point of nylon-11, Polyvinylidene fluoride (P Vd F) is melted at a temperature higher than the melting point of polyvinylidene fluoride (PV d F) and then kept at 80 to 135 ° C. to crystallize polyvinylidene fluoride (P Vd F). Thus, the production of a multiaxial crystal alignment material characterized in that the crystal axis in the molecular chain direction (c-axis) of nylon-11 and the crystal chain in the perpendicular direction to the molecular chain of PVdF (a-axis) are both oriented in the stretching direction. Method. ナイロン−11: ポリフッ化ビニリデン( P V d F) = 40
〜 7 0 : 6 0 〜 3 0 ( 質量比) からなるブレンドフィルムである請求項1 に記載した多軸結晶配向材料の製造方法。
Nylon-11: Polyvinylidene fluoride (PV d F) = 40
The method for producing a multiaxial crystal alignment material according to claim 1, wherein the film is a blend film comprising: 70:60 to 30 (mass ratio).
JP2007060545A 2007-03-09 2007-03-09 Nylon-11 and polyvinylidene fluoride blend film manufacturing method Expired - Fee Related JP4677620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007060545A JP4677620B2 (en) 2007-03-09 2007-03-09 Nylon-11 and polyvinylidene fluoride blend film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007060545A JP4677620B2 (en) 2007-03-09 2007-03-09 Nylon-11 and polyvinylidene fluoride blend film manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003040535A Division JP3962810B2 (en) 2003-02-19 2003-02-19 Multiaxial crystal orientation material comprising nylon-11 / polyvinylidene fluoride blend film

Publications (2)

Publication Number Publication Date
JP2007191721A JP2007191721A (en) 2007-08-02
JP4677620B2 true JP4677620B2 (en) 2011-04-27

Family

ID=38447662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007060545A Expired - Fee Related JP4677620B2 (en) 2007-03-09 2007-03-09 Nylon-11 and polyvinylidene fluoride blend film manufacturing method

Country Status (1)

Country Link
JP (1) JP4677620B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101492906B1 (en) 2012-03-30 2015-02-12 서울시립대학교 산학협력단 Heat treatment method for high crystalline of polyvinyliden fluoride
CN114479321B (en) * 2022-03-09 2023-03-14 中海石油(中国)有限公司 High-gas-barrier nylon and polyvinylidene fluoride blend and preparation method thereof

Also Published As

Publication number Publication date
JP2007191721A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
JP5339677B2 (en) Vinylidene fluoride resin hollow fiber porous filtration membrane and production method thereof
JP4845084B2 (en) Ferroelectric film and manufacturing method thereof
Du et al. Influence of phase morphology and crystalline structure on the toughness of rubber-toughened isotatic polypropylene blends
KR101769313B1 (en) Thermoplastic elastomer tubing and method to make and use same
EP1769840A4 (en) Porous water filtration membrane of vinylidene fluoride resin hollow fiber and process for production thereof
JP2009126879A5 (en)
JP3962810B2 (en) Multiaxial crystal orientation material comprising nylon-11 / polyvinylidene fluoride blend film
WO2024032073A1 (en) Polylactic acid/polycaprolactone/plant carbon black composite material and preparation method therefor
CN103597012A (en) Process for producing polymer alloy, polymer alloy, and molded article
JP4677620B2 (en) Nylon-11 and polyvinylidene fluoride blend film manufacturing method
Wu et al. Enhancing β-phase content and tensile properties in poly (vinylidene fluoride) by adding halloysite nanotubes and injecting water during extrusion
CN105199348B (en) Preparation method for high-strength high-toughness heatproof polylactic-acid-based membrane material
CN106494046A (en) A kind of bio-based heat shrink films that can be degradable
Chandavasu et al. Fabrication of microporous polymeric membranes by melt processing of immiscible blends
TWI633995B (en) High impact strength polypropylene composites
JP4868396B2 (en) Nylon-6 / polyvinylidene fluoride blend film and method for producing the same
Jazani et al. Structure–property relationships in ternary polymer blends with core–shell inclusions: revisiting the critical role of the viscosity ratio
Borovanska et al. Recycled polyolefin blends: Effect of modified natural zeolite on their properties and morphology
Lai et al. Preparation and characterization of novel poly (vinylidene fluoride) membranes using self-assembled dibenzylidene sorbitol for membrane distillation
Pu et al. Largely improved stretch ductility and β-form room-temperature durability of poly (vinylidene fluoride) by incorporating aliphatic polyketone
Zhou et al. Effects of Ethylene-Vinyl Acetate Copolymer on the Morphology and Mechanical Properties of Hydroxyapatite/Polyamide 66 Composites for Bone Tissue Engineering
Guinault et al. Thermomechanical properties of ABS/PA and ABS/PC blends
Eken et al. PVDF-based shape memory materials
JP4953723B2 (en) Composition comprising at least two incompatible thermoplastic polymers and a compatibilizer, method for its production and use thereof
Chen et al. Toughened nylon66/nylon6 ternary nanocomposites by elastomers

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees