JP2004247493A - Epitaxial substrate, semiconductor laminated structure, and method for decreasing dislocation of group iii nitride layer group - Google Patents

Epitaxial substrate, semiconductor laminated structure, and method for decreasing dislocation of group iii nitride layer group Download PDF

Info

Publication number
JP2004247493A
JP2004247493A JP2003035367A JP2003035367A JP2004247493A JP 2004247493 A JP2004247493 A JP 2004247493A JP 2003035367 A JP2003035367 A JP 2003035367A JP 2003035367 A JP2003035367 A JP 2003035367A JP 2004247493 A JP2004247493 A JP 2004247493A
Authority
JP
Japan
Prior art keywords
iii nitride
group iii
group
layer
nitride layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003035367A
Other languages
Japanese (ja)
Other versions
JP4748925B2 (en
Inventor
Tomohiko Shibata
智彦 柴田
Mitsuhiro Tanaka
光浩 田中
Shigeaki Sumiya
茂明 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2003035367A priority Critical patent/JP4748925B2/en
Publication of JP2004247493A publication Critical patent/JP2004247493A/en
Application granted granted Critical
Publication of JP4748925B2 publication Critical patent/JP4748925B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new epitaxial substrate capable of forming a group III nitride layer group superior to a crystallinity at low dislocation, especially an Al included nitride layer group and a semiconductor laminated structure using the same, and to provide a method for decreasing a dislocation of the group III nitride layer group to be formed. <P>SOLUTION: The epitaxial substrate 10 is composed of a group III nitride underlying layer 2 including at least Al on the predetermined base material and having a dislocation density of not more than 1×10<SP>11</SP>/cm<SP>2</SP>and an X-ray rocking curve half-power bandwidth at (002) face not more than 200 sec, and an intervening layer 3 including at least B and having an opening 4 from which the III nitride layer 2 exposes. After that, the group III nitride layer group is epitaxially grown on the substrate 10. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、エピタキシャル基板、半導体積層構造及びIII族窒化物層群の転位低減方法に関し、詳しくは、フォトニックデバイス及び電子デバイスなどの半導体素子、並びにフィールドエミッタなどの素子を構成する基板として好適に用いることのできるエピタキシャル基板及び半導体積層構造、並びに前記素子を作製する際のIII族窒化物層群の転位低減方法に関する。
【0002】
【従来の技術】III族窒化物膜は、フォトニックデバイス及び電子デバイスなどの半導体素子を構成する半導体膜として用いられており、近年においては、携帯電話などに用いられる高速ICチップなどを構成する半導体膜としても注目を浴びている。また、特にAlを含むIII族窒化物膜は、フィールドエミッタへの応用材料として注目されている。
【0003】上記のようなIII族窒化物膜は、通常MOCVD法によって形成される。具体的には、前記III族窒化物膜を形成すべき基板を、所定の反応管内に設けられたサセプタ上に設置させるとともに、このサセプタ内あるいはサセプタ外に設置された加熱機構に埋め込まれたヒータによって1000℃以上にまで加熱する。そして、前記反応管内に所定の原料ガスをキャリアガスとともに導入し、前記基板上に供給する。
【0004】すると、前記基板上で熱化学反応が生じて、前記各原料ガスは構成元素に分解されるとともに、これら構成元素同士が互いに反応し、目的とするIII族窒化物膜が前記基板上に堆積されて製造されるものである。そして、これらのIII族窒化物膜は、半導体素子を構成した場合において設計値どおりの特性を得るべく、転位密度の低いことが要求される。
【0005】しかしながら、III族窒化物材料の融点は相対的に高いために、前記III族窒化物材料からバルク単結晶基板を作製することは困難であった。したがって、III族窒化物膜は、例えば、サファイア単結晶基板のような異なる材料系のバルク単結晶基板上にヘテロエピタキシャル成長させることにより、作製せざるを得ない。この場合、前記バルク単結晶基板と前記III族窒化物膜との格子定数差に起因して、これら界面に比較的多量のミスフィット転位が生成され、このミスフィット転位に起因して前記III族窒化物膜中に多量の転位が導入されてしまい、その結晶品質が著しく劣化してしまっていた。
【0006】かかる観点より、前記基板と前記III族窒化物膜との間に低温で成膜したバッファ層を挿入したり、ストライプ状のSiOマスクなどを用いたELO技術などが開発されている。
【0007】
【発明が解決しようとする課題】
しかしながら、前述したバッファ層を用いた場合などにおいては、バッファ層自体の低結晶性に基づいた転位が前記III族窒化物膜中に生成されてしまい、前記III族窒化物膜中の転位密度を十分に低減させることができないでいた。また、従来のELO技術は材料選択性が大きく、特にAlを多量に含むIII族窒化物膜をエピタキシャル成長させることは困難であった。
【0008】本発明は、低転位で結晶性に優れたIII族窒化物層群、特にはAl含有窒化物層群を形成することのできる、新規なエピタキシャル基板及びこれを用いた半導体積層構造を提供するとともに、形成すべきIII族窒化物層群の転位低減方法を提供することを目的とする。
【0009】
【課題を解決するための手段】上記目的を達成すべく、本発明は、
所定の基材と、
前記基材上に形成された、少なくともAlを含み、転位密度が1×1011/cm以下であり、(002)面におけるX線ロッキングカーブ半値幅が200秒以下であるIII族窒化物下地層と、
前記III族窒化物下地層上に形成された、島状又は網目状の介在層と、
を具えることを特徴とするエピタキシャル基板に関する。
【0010】
また、本発明は、
所定の基材上に、少なくともAlを含み、転位密度が1×1011/cm以下であり、(002)面におけるX線ロッキングカーブ半値幅が200秒以下であるIII族窒化物下地層、島状又は網目状の介在層を順次に形成してエピタキシャル基板を作製し、このエピタキシャル基板上に前記介在層を介してIII族窒化物層群を形成することにより、前記III族窒化物層群中の転位密度を低減させることを特徴とする、III族窒化物層群の転位低減方法に関する。
【0011】本発明者らは、サファイア単結晶などからなる基材上に、低転位密度かつ高結晶性の、Al含有III族窒化物膜を形成すべく、長年研究を行なっている。従来においては、エピタキシャル基板を構成するバッファ層などの下地層は、基材と前記エピタキシャル基板上に形成すべきIII族窒化物膜などのIII族窒化物層群との格子定数差を補完してミスフィット転位の発生を抑制すべき、比較的低温で形成した低結晶品質のIII族窒化物から構成するのが常識であると考えられていた。
【0012】このような低結晶品質の下地層を用いた場合、ミスフィット転位の低減に起因して、前記III族窒化物層群中の転位密度はある程度の割合で低減することができる。しかしながら、前記下地層自身の低結晶品質に起因して、前記III族窒化物層群中の転位密度を十分に低減することができないでいた。
【0013】これに対して、本発明者らは、前記下地層をAlを比較的多量に含むIII族窒化物から構成した場合は、前記下地層の結晶性を向上させ、転位密度を低減させて結晶品質を向上させた場合においても、前記基材と前記III族窒化物層群との格子定数差が補完され、ミスフィット転位の発生が抑制されることを見出した。そして、前記下地層の高結晶品質に起因して、前記III族窒化物層群の結晶品質をも向上させることができ、転位密度のさらなる低減を実現できるとともに、結晶性の向上をも実現できることを見出したものである。
【0014】しかしながら、上述した高結晶品質のAl含有III族窒化物下地層を設けたのみでは、特に、Al含有III族窒化物層群を上記下地層上に成長する場合には、目的とするIII族窒化物層群中の転位密度を十分に低減させることができず、その結晶品質を十分に向上させることができないでいた。かかる状況に鑑み、本発明者らは、上述したAl含有の高結晶品質の下地層を含むエピタキシャル基板に対してELO技術を適用し、形成すべきIII族窒化物層群中の転位密度をさらに低減させるようにした。
【0015】しかしながら、前述したエピタキシャル基板上に、SiOなどからなるマスクを形成して、III族窒化物層群を形成する場合には、マスク形成のためのフォトリソ工程が必要となり、工程が煩雑になるという問題があった。また、マスクのパターンに従って、転位密度の濃淡が顕著に現れ、デバイス形成の場合の歩留まり低下の一因ともなっていた。
【0016】このような状況に鑑みて、本発明者らはさらなる検討を実施し、上述したAl含有の高結晶品質の下地層を有するエピタキシャル基板上に、島状又は網目状の介在層を形成することを想到した。
【0017】このような介在層は一般の薄膜形成法とMOCVD装置内での熱処理で容易に形成でき、前記下地層から伝搬してきた転位は、介在層被覆部においては、転位の伝搬が妨げられ、介在層被覆部上方に位置する部分では転位密度は著しく低減される。また、前記下地層の開口部上方においても、転位の屈曲による転位低減効果が期待される。また、前記介在層の開口部は、確率的に均一に存在するため、転位が均一に分散することができる。
【0018】結果として、Al含有の高結晶品質の下地層と、開口部を有するB含有の介在層とからエピタキシャル基板を構成し、このエピタキシャル基板上にIII族窒化物層群を形成することにより、その転位密度を著しく低減することができ、結晶品質を向上させることができる。さらに、Al含有の高結晶品質の下地層を用いることにより、Al含有のIII族窒化物層群をクラックを発生させることなく容易に形成させることができる。
【0019】なお、本発明の好ましい態様においては、前記介在層を金属、金属間化合物、及び合金の少なくとも一つ、AlpGaqInrN(o≦p,q,r≦1,p+q+r=1)を除く窒化物、酸化物、さらには形成すべきIII族窒化物層群のバンドギャップよりも、前記介在層のバンドギャップが大きくなるような材料を用いて形成することが望ましい。特に、酸化物材料以外の材料を用いた場合は、Al含有のIII族窒化物層を成長させる際の介在層上での多結晶層を抑制できる効果を持つ。また、前記III族窒化物層群のバンドギャップよりも前記介在層のバンドギャップを大きくすることにより、短波長領域での透過率を向上させることができ、短波長領域での受発光デバイスの効率を改善することもできる。
【0020】また、「III族窒化物層群」とは単独のIII族窒化物層又は複数のIII族窒化物層が複数積層されてなる多層膜構造などを総称したものであり、作製すべき半導体素子の種類などに応じて適当な構成を採る。
【0021】
【発明の実施の形態】以下、本発明を、発明の実施の形態に基づいて詳細に説明する。
図1は、本発明のエピタキシャル基板の構成を示す図である。図1に示すエピタキシャル基板10は、基材1と、この基材1上に形成されたIII族窒化物下地層2及びIII族窒化物介在層3を含んでいる。介在層3は島状構造を呈し、各島状構造部分間において下地層2が露出した開口部4を有している。
【0022】下地層2はAlを含んでいることが必要であり、その含有量は全III族元素に対して50原子%以上であることが好ましく、さらには下地層2をAlN(全III族元素に対して100原子%)から構成することが好ましい。これによって、下地層2の結晶品質を以下に示すように向上させた場合においても、基材1との格子定数差を補完することができ、窒化物層3さらにはその上に形成すべきIII族窒化物層群を、その結晶品質を高度に維持しながらエピタキシャル成長させることができる。
【0023】なお、下地層2におけるAlは、膜厚全体を通じて均一に含有させても良いが、膜厚方向において組成勾配を有するように含有させても良い。後者の場合、例えばAl組成を基材1側から窒化物層3側に減少するようにすることによって、以下に示すように、基材1を特にサファイア単結晶などのAl含有単結晶から構成し、形成すべきIII族窒化物層群をGa系窒化物層から構成した場合などにおいて、これらの格子定数差をより効果的に補完できるようになる。したがって、ミスフィット転位などの発生をより効果的に低減できるようになり、下地層2及びIII族窒化物層群の結晶品質をより向上させることができるようになる。
【0024】なお、下地層2は、Alの他に、Ga及びInなどのIII族元素、B、Si、Ge、Zn、Be及びMgなどの添加元素を含むこともできる。さらに、意識的に添加した元素に限らず、成膜条件などに依存して必然的に取り込まれる微量元素、並びに原料、反応管材質に含まれる微量不純物を含むこともできる。
【0025】下地層2中の転位密度は1×1011/cm以下であることが必要であり、さらには5×1011/cm以下、特には1×1010/cm以下であることが好ましい。また、下地層2の(002)面におけるX線ロッキングカーブ半値幅は200秒以下であることが必要であり、さらには150秒以下、特には100秒以下であることが好ましい。上述したように、下地層2がこのように高い結晶品質を有することによって、下地層2上に形成するIII族窒化物層群の結晶品質を向上させることができる。したがって、最終的に得た半導体素子、例えば、半導体発光素子などの発光効率などのデバイス特性を向上させることができる。
【0026】また、下地層2の表面粗さRaは2Å以下であることが好ましい。本測定は、AFMを用いて5μm角の範囲で測定する。
【0027】なお、下地層2の膜厚は大きい方が好ましく、具体的には0.1μm以上、さらには0.5μm以上の厚さに形成することが好ましい。下地層2の厚さの上限値は特に限定されるものではなく、クラックの発生や用途などを考慮して適宜選択し、設定する。
【0028】下地層2は、上記要件を満足する限り公知の成膜手段を用いて形成することができる。しかしながら、MOCVD法を用い、その成膜温度を1100℃以上に設定することによって簡易に得ることができる。なお、本特許の成膜温度は、基材1自身の設定温度を意味する。なお、下地層2の表面の粗れなどを抑制する観点より、前記成膜温度は1250℃以下であることが好ましい。
【0029】介在層3は金属、金属間化合物、及び合金の少なくとも一つ、AlpGaqInrN(o≦p,q,r≦1,p+q+r=1)を除く窒化物、酸化物、さらには形成すべきIII族窒化物層群のバンドギャップよりも、前記介在層のバンドギャップが大きい材料のいずれかを用いて形成させる必要がある。どの材料を用いるかは、本エピタキシャル基板の用途などに応じて適宜に選択する。
【0030】但し、介在層3は、Gaの他に、Al及びInなどのIII族元素、B、Si、Ge、Zn、Be及びMgなどの添加元素を含むこともできる。さらに、意識的に添加した元素に限らず、成膜条件などに依存して必然的に取り込まれる微量元素、並びに原料、反応管材質に含まれる微量不純物を含むこともできる。
【0031】また、III族窒化物層群のエピタキシャル成長を良好な状態に下に行なうべく、中間層3の厚さは0.5nm以上であることが好ましく、さらには1nm以上であることが好ましい。なお、介在層3の厚さの上限は形成すべきIII族窒化物層群の厚さなどに依存するが、約1000nm程度である。介在層3の厚さを1000nmを超えて厚くしてもエピタキシャル成長の度合いに変化は見られない。
【0032】介在層3は、上記要件を満足する限り公知の成膜手段を用いて形成することができる。例えば、MOCVD法を用い、下地層2と同一バッチあるいは別バッチで形成することができる。あるいは、スパッタリング、真空蒸着などのPVD法、各種CVD法を用いることもできる。また、プラズマ・光などの各種アシスト方法も併用可能である。また、介在層の形状を変化させるため、適当なガス雰囲気下での熱処理を加えることも可能である。
【0033】また、基材1は、サファイア単結晶、ZnO単結晶、LiAlO単結晶、LiGaO単結晶、MgAl単結晶、MgO単結晶などの酸化物単結晶、Si単結晶、SiC単結晶などのIV族あるいはIV−IV族単結晶、GaAs単結晶、AlN単結晶、GaN単結晶、及びAlGaN単結晶などのIII−V族単結晶、ZrBなどのホウ化物単結晶などの、公知の基板材料から構成することができる。
【0034】特に基材1をサファイア単結晶から構成する場合においては、基材1の主面1Aに対して窒化処理を行ない、主面1Aにおいて表面窒化層を形成することが好ましい。これによって、下地層2及び窒化物層3、並びにエピタキシャル基板10上に形成すべき窒化物層群の結晶品質をより向上させることができる。前記窒化処理は、基材1をアンモニアなどの窒素含有雰囲気中に配置し、所定温度に加熱することによって実施することができる。
【0035】図2は、図1に示すエピタキシャル基板10上にIII族窒化物層群15を形成してなる半導体積層構造の一例を示す構成図である。図2から明らかなように、III族窒化物層群15の形成初期においては、介在層3の開口部4内を埋設するようにして垂直方向にエピタキシャル成長が進行し、その後、介在層3の島状構造部分の上面3Aに沿って横方向に成長するようになる。したがって、下地層2との界面で生じた転位も垂直方向に伝播した後、介在層3の島状構造部分の上面3Aに沿って横方向に屈曲するものもある。また島状構造被覆部分においては、転位の伝搬が被覆により妨げられる。その結果、III族窒化物層群15の、開口部4の上方の領域15Aでは転位密度が低減され、結晶品質に優れたIII族窒化物層群の提供が可能となる。
【0036】
【実施例】以下、実施例により本発明を具体的に説明する。
(実施例1)
2インチ径の厚さ430μmのサファイア基板をHSO+Hで前処理した後、MOCVD装置の中に設置した。キャリアガスとして、Hを流速1m/secで流しながら、基板を1200℃まで昇温した後、トリメチルアルミニウム(TMA)及びNHを平均流速1m/secで流して、前記サファイア基板上に下地層としてのAlN層を厚さ1μmまで成長させた。前記AlN層の(002)面におけるX線回折ロッキングカーブの半値幅は90秒であり、転位密度は2×1010/cmであり、結晶品質に優れることが判明した。また、表面粗さRaは2Åであった。
【0037】次いで、基板温度を1200℃とし、前記AlN層上にトリメチルボロン(YMB)及びNHを平均流速1m/secで流して、前記AlN層上に介在層としての島状構造のBN層を厚さ20nmに形成し、エピタキシャル基板を作製した。なお、前記BN層の島状構造部分は円柱状を呈していた。
【0038】次いで、基板温度を1200℃とし、TMA、トリメチルガリウム(TMG)及びNHを平均流速1m/secで流して、前記AlN層上に島状構造の前記BN層を介して、III族窒化物層群としてのAl0.5Ga0.5N膜を厚さ2μmに形成した。このAlN膜中の転位密度をTEM観察によって測定したところ5×10/cmであることが判明した。
【0039】(実施例2)
2インチ径の暑さ430μmのサファイア基板をHSO+Hで前処理した後、MOCVD装置の中に設置した。キャリアガスとして、Hを流速1m/secで流しながら、基板を1200℃まで昇温した後、トリメチルアルメニウム(TMA)及びNHを平均流速1m/secで流して、前記サファイア基板上に下地層としてのAlN層を厚さ1μmまで成長させた。前記AlN層の(002)面におけるX線回析ロッキングカーブの半値幅は90秒であり、転位密度は2×1010/cmであり、結晶品質に優れることが判明した。また、表面粗さRaは2Åであった。
【0040】次いで、上記AlN層上にTiを20nmの厚さに真空蒸着し、再度MOCVD装置の中に設置した。基板温度を1200℃とし、NHを平均流速1m/secで流して、熱処理を加え、Ti膜をTiN膜とした上、網目構造とした。
【0041】次いで、基板温度を1200℃とし、TMA、及びNHを平均流速1m/secで流して、前記AlN層上に島状構造の前記TiN層を介して、III族窒化物層群としてのAlGaN膜を厚さ2μmに形成した。このAlN膜中の転位密度をTEM観察によって測定したところ1×10/cmであることが判明した。
【0042】(比較例1)
上記実施例において、下地層を低温緩衝層を用いて形成したGaN膜とし、III族窒化物層群としてのAl0.5Ga0.5N膜を試みたが、クラックが多量に発生し、実用に供するAl0.5Ga0.5N膜のエピタキシャル成長を実現させることができなかった。なお、本GaN下地層の(002)ロッキングカーブの半値幅は300秒であった。
【0043】(比較例2)
下地層を600℃の低温で形成したAlNから構成した以外は、実施例と同様にしてIII族窒化物層群としてのAlN膜を形成した。このAlN膜中の転位密度をTEM観察によって測定したところ1×1011/cmであることが判明した。
【0044】以上、実施例及び比較例1から明らかなように、介在層を設けない場合においてはAlN膜のエピタキシャル成長ができないことが分かる。また、実施例及び比較例2から明らかなように、高結晶品質のAlN下地膜に代えて、低温成膜の低結晶品質のAlN下地膜を用いた場合においては、最終的に得たIII族窒化物層群としてのAlN膜の転位密度を低減でき、その結晶品質を向上できることが分かる。
【0045】以上、具体例を挙げながら、本発明を発明の実施の形態に基づいて詳細に説明したが、本発明は上記発明の実施に形態に限定されるものではなく、本発明の範疇を逸脱しない範囲であらゆる変更や変形が可能である。例えば、エピタキシャル基板とIII族窒化物層群との間にバッファ層やひずみ超格子などの多層積層膜を挿入し、前記III族窒化物層群の結晶品質をさらに向上させることもできる。
【0046】さらには、エピタキシャル基板を構成する基材を凹面状のサファイア単結晶などから構成することによって、前記エピタキシャル基板の反り量をさらに低減することもできる。
【0047】
【発明の効果】以上説明したように、本発明によれば、低転位で結晶性に優れたIII族窒化物層群、特にはAl含有窒化物層群を形成することのできる、新規なエピタキシャル基板及びこれを用いた半導体積層構造を提供することができる。さらには、前記III族窒化物層群の転位低減方法を提供することができる。
【図面の簡単な説明】
【図1】本発明のエピタキシャル基板の一例を示す構成図である。
【図2】本発明の半導体積層構造の一例を示す構成図である。
【符号の説明】
1 基材、2 下地層、3 中間層、4 開口部、10 エピタキシャル基板、15 III族窒化物層群、20 半導体積層構造
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epitaxial substrate, a semiconductor laminated structure, and a method for reducing dislocations in a group III nitride layer group. More specifically, the present invention relates to semiconductor devices such as photonic devices and electronic devices, and devices such as field emitters. The present invention relates to an epitaxial substrate and a semiconductor multilayer structure that can be suitably used as a substrate for forming a device, and a method for reducing dislocations in a group III nitride layer group when manufacturing the device.
[0002]
2. Description of the Related Art A group III nitride film has been used as a semiconductor film for forming a semiconductor element such as a photonic device and an electronic device. Attention has also attracted attention as a semiconductor film. In particular, a group III nitride film containing Al has drawn attention as a material applied to a field emitter.
[0003] The above-mentioned group III nitride film is usually formed by MOCVD. Specifically, a substrate on which the group III nitride film is to be formed is placed on a susceptor provided in a predetermined reaction tube, and a heater embedded in a heating mechanism provided in or outside the susceptor. To 1000 ° C. or more. Then, a predetermined source gas is introduced into the reaction tube together with a carrier gas, and is supplied onto the substrate.
Then, a thermochemical reaction occurs on the substrate, and the respective source gases are decomposed into constituent elements, and the constituent elements react with each other to form a target group III nitride film on the substrate. It is manufactured by being deposited on. These group III nitride films are required to have a low dislocation density in order to obtain characteristics as designed when a semiconductor device is formed.
However, since the melting point of the group III nitride material is relatively high, it has been difficult to produce a bulk single crystal substrate from the group III nitride material. Therefore, the group III nitride film has to be produced, for example, by heteroepitaxial growth on a bulk single crystal substrate of a different material such as a sapphire single crystal substrate. In this case, a relatively large amount of misfit dislocations is generated at the interface between the bulk single crystal substrate and the group III nitride film due to a difference in lattice constant between the bulk single crystal substrate and the group III nitride film. A large amount of dislocations have been introduced into the nitride film, and the crystal quality has been significantly degraded.
From such a viewpoint, a buffer layer formed at a low temperature is inserted between the substrate and the group III nitride film, and an ELO technique using a stripe-shaped SiO 2 mask or the like has been developed. .
[0007]
[Problems to be solved by the invention]
However, in the case where the buffer layer described above is used, dislocations based on the low crystallinity of the buffer layer itself are generated in the group III nitride film, and the dislocation density in the group III nitride film is reduced. It could not be reduced sufficiently. Further, the conventional ELO technique has a high material selectivity, and it has been particularly difficult to epitaxially grow a group III nitride film containing a large amount of Al.
The present invention provides a novel epitaxial substrate capable of forming a group III nitride layer group having low dislocation and excellent crystallinity, particularly an Al-containing nitride layer group, and a semiconductor multilayer structure using the same. It is another object of the present invention to provide a method for reducing dislocations in a group III nitride layer group to be formed.
[0009]
In order to achieve the above object, the present invention provides:
A predetermined base material,
A group III nitride formed on the base material and containing at least Al, having a dislocation density of 1 × 10 11 / cm 2 or less, and a half-width of an X-ray rocking curve on a (002) plane of 200 seconds or less. Stratum,
An island-shaped or mesh-shaped intermediate layer formed on the group III nitride underlayer;
The present invention relates to an epitaxial substrate comprising:
[0010]
Also, the present invention
A group III nitride underlayer that contains at least Al, has a dislocation density of 1 × 10 11 / cm 2 or less, and has a half-width of an X-ray rocking curve on a (002) plane of 200 seconds or less, on a predetermined base material; The group III nitride layer group is formed by sequentially forming an island-shaped or network-shaped intermediate layer to produce an epitaxial substrate, and forming the group III nitride layer group on the epitaxial substrate via the intermediate layer. The present invention relates to a method for reducing dislocations in a group III nitride layer group, characterized by reducing dislocation density in the inside.
The present inventors have long studied to form an Al-containing group III nitride film having a low dislocation density and a high crystallinity on a substrate made of sapphire single crystal or the like. Conventionally, an underlayer such as a buffer layer constituting an epitaxial substrate complements a lattice constant difference between a base material and a group III nitride layer group such as a group III nitride film to be formed on the epitaxial substrate. It was considered common sense to use low-quality group III nitrides formed at relatively low temperatures to suppress the occurrence of misfit dislocations.
When such a low crystal quality underlayer is used, the dislocation density in the group III nitride layer group can be reduced at a certain rate due to the reduction of misfit dislocations. However, the dislocation density in the group III nitride layer group cannot be sufficiently reduced due to the low crystal quality of the underlayer itself.
On the other hand, when the underlayer is made of a group III nitride containing a relatively large amount of Al, the present inventors improve the crystallinity of the underlayer and reduce the dislocation density. It has been found that even when the crystal quality is improved by the above, the lattice constant difference between the base material and the group III nitride layer group is complemented, and the occurrence of misfit dislocation is suppressed. In addition, due to the high crystal quality of the underlayer, the crystal quality of the group III nitride layer group can be improved, and the dislocation density can be further reduced, and the crystallinity can be improved. Is found.
However, the mere provision of the Al-containing III-nitride underlayer of high crystal quality as described above is particularly desirable when an Al-containing III-nitride layer group is grown on the above-mentioned underlayer. The dislocation density in the group III nitride layer group cannot be sufficiently reduced, and the crystal quality cannot be sufficiently improved. In view of such a situation, the present inventors have applied the ELO technique to the above-described epitaxial substrate including the Al-containing underlayer of high crystal quality to further increase the dislocation density in the group III nitride layer group to be formed. It was made to reduce.
However, when a group III nitride layer group is formed by forming a mask made of SiO 2 or the like on the above-mentioned epitaxial substrate, a photolithography step for forming the mask is required, and the process is complicated. Was a problem. Further, according to the mask pattern, the density of the dislocation density appears remarkably, which has contributed to a decrease in the yield in the case of device formation.
In view of such a situation, the present inventors have further studied and formed an island-like or network-like intervening layer on the above-described epitaxial substrate having an Al-containing underlayer of high crystal quality. I thought of doing it.
Such an intervening layer can be easily formed by a general thin film forming method and a heat treatment in a MOCVD apparatus, and dislocations propagated from the underlayer are prevented from propagating in the intervening layer coating portion. The dislocation density is remarkably reduced in the portion located above the intervening layer coating portion. The dislocation reduction effect due to the dislocation bending is also expected above the opening of the underlayer. Further, since the openings of the intervening layer are stochastically uniform, dislocations can be uniformly dispersed.
As a result, an epitaxial substrate is composed of an Al-containing underlayer of high crystal quality and a B-containing intervening layer having an opening, and a group III nitride layer group is formed on the epitaxial substrate. The dislocation density can be significantly reduced, and the crystal quality can be improved. Furthermore, by using an Al-containing underlayer of high crystal quality, an Al-containing group III nitride layer group can be easily formed without generating cracks.
In a preferred embodiment of the present invention, the intervening layer is formed of at least one of a metal, an intermetallic compound, and an alloy, and a nitride excluding AlpGaqInrN (o ≦ p, q, r ≦ 1, p + q + r = 1). , Oxide, and a material that makes the band gap of the intervening layer larger than the band gap of the group III nitride layer group to be formed. In particular, when a material other than the oxide material is used, there is an effect that the polycrystalline layer on the intervening layer when growing the Al-containing group III nitride layer can be suppressed. In addition, by increasing the band gap of the intervening layer to be larger than the band gap of the group III nitride layer group, the transmittance in a short wavelength region can be improved, and the efficiency of the light emitting and receiving device in the short wavelength region can be improved. Can also be improved.
The "group III nitride layer group" is a general term for a single group III nitride layer or a multilayer film structure in which a plurality of group III nitride layers are stacked. An appropriate configuration is adopted according to the type of the semiconductor element and the like.
[0021]
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments of the present invention.
FIG. 1 is a diagram showing a configuration of an epitaxial substrate of the present invention. The epitaxial substrate 10 shown in FIG. 1 includes a substrate 1, a group III nitride underlayer 2 and a group III nitride intervening layer 3 formed on the substrate 1. The intervening layer 3 has an island-shaped structure, and has an opening 4 in which the underlying layer 2 is exposed between the island-shaped structure portions.
The underlayer 2 must contain Al, and its content is preferably at least 50 atomic% with respect to all Group III elements. (100 atomic% with respect to the element). As a result, even when the crystal quality of the underlayer 2 is improved as described below, the difference in lattice constant from the base material 1 can be complemented, and the nitride layer 3 and the III layer to be formed thereon can be supplemented. The group nitride layer group can be epitaxially grown while maintaining its crystal quality at a high level.
The Al in the underlayer 2 may be contained uniformly throughout the film thickness, or may be contained so as to have a composition gradient in the film thickness direction. In the latter case, for example, by reducing the Al composition from the substrate 1 side to the nitride layer 3 side, as shown below, the substrate 1 is made of an Al-containing single crystal such as a sapphire single crystal. In a case where the group III nitride layer group to be formed is composed of a Ga-based nitride layer, for example, these lattice constant differences can be more effectively complemented. Therefore, the occurrence of misfit dislocations and the like can be reduced more effectively, and the crystal quality of the underlayer 2 and the group III nitride layer group can be further improved.
The underlayer 2 may contain, in addition to Al, Group III elements such as Ga and In, and additional elements such as B, Si, Ge, Zn, Be and Mg. Further, not only elements intentionally added, but also trace elements inevitably taken in depending on film formation conditions and the like, and trace impurities contained in raw materials and reaction tube materials can be included.
The dislocation density in the underlayer 2 needs to be 1 × 10 11 / cm 2 or less, more preferably 5 × 10 11 / cm 2 or less, particularly 1 × 10 10 / cm 2 or less. Is preferred. The half-width of the X-ray rocking curve on the (002) plane of the underlayer 2 needs to be 200 seconds or less, more preferably 150 seconds or less, and particularly preferably 100 seconds or less. As described above, since the underlayer 2 has such high crystal quality, the crystal quality of the group III nitride layer group formed on the underlayer 2 can be improved. Therefore, device characteristics such as luminous efficiency of a finally obtained semiconductor element, for example, a semiconductor light emitting element can be improved.
The surface roughness Ra of the underlayer 2 is preferably 2 ° or less. This measurement is performed using an AFM in a range of 5 μm square.
The thickness of the underlayer 2 is preferably large, specifically, it is preferably formed to a thickness of 0.1 μm or more, more preferably 0.5 μm or more. The upper limit of the thickness of the underlayer 2 is not particularly limited, and is appropriately selected and set in consideration of the occurrence of cracks, the use, and the like.
The underlayer 2 can be formed using a known film forming means as long as the above requirements are satisfied. However, it can be easily obtained by using the MOCVD method and setting the film forming temperature to 1100 ° C. or higher. In addition, the film forming temperature of the present invention means a set temperature of the substrate 1 itself. Note that the film forming temperature is preferably 1250 ° C. or less from the viewpoint of suppressing the surface roughness of the underlayer 2 and the like.
The intervening layer 3 is made of at least one of a metal, an intermetallic compound, and an alloy, a nitride and an oxide excluding AlpGaqInrN (o ≦ p, q, r ≦ 1, p + q + r = 1), and further, III to be formed. It is necessary to use any of the materials in which the band gap of the intervening layer is larger than the band gap of the group nitride layer group. Which material is used is appropriately selected according to the use of the present epitaxial substrate and the like.
However, the intervening layer 3 may contain, in addition to Ga, a group III element such as Al and In, and additional elements such as B, Si, Ge, Zn, Be and Mg. Further, not only elements intentionally added, but also trace elements inevitably taken in depending on film formation conditions and the like, and trace impurities contained in raw materials and reaction tube materials can be included.
The thickness of the intermediate layer 3 is preferably 0.5 nm or more, and more preferably 1 nm or more, so that the group III nitride layer group can be epitaxially grown under a good condition. Although the upper limit of the thickness of the intervening layer 3 depends on the thickness of the group III nitride layer group to be formed, it is about 1000 nm. Even if the thickness of the intervening layer 3 exceeds 1000 nm, the degree of epitaxial growth does not change.
The intervening layer 3 can be formed using a known film forming means as long as the above requirements are satisfied. For example, it can be formed in the same batch as the base layer 2 or in a separate batch using the MOCVD method. Alternatively, a PVD method such as sputtering or vacuum evaporation, or various CVD methods can be used. Also, various assisting methods such as plasma and light can be used together. Further, in order to change the shape of the intervening layer, heat treatment under an appropriate gas atmosphere can be performed.
The substrate 1 is made of an oxide single crystal such as sapphire single crystal, ZnO single crystal, LiAlO 2 single crystal, LiGaO 2 single crystal, MgAl 2 O 4 single crystal, MgO single crystal, Si single crystal, SiC Group IV or IV-IV single crystals such as single crystals, GaAs single crystals, AlN single crystals, GaN single crystals, III-V single crystals such as AlGaN single crystals, and boride single crystals such as Zr 2 B And a known substrate material.
In particular, when the base material 1 is made of sapphire single crystal, it is preferable to perform a nitriding treatment on the main surface 1A of the base material 1 to form a surface nitride layer on the main surface 1A. Thereby, the crystal quality of the underlayer 2 and the nitride layer 3 and the nitride layer group to be formed on the epitaxial substrate 10 can be further improved. The nitriding treatment can be performed by placing the substrate 1 in an atmosphere containing nitrogen such as ammonia and heating the substrate 1 to a predetermined temperature.
FIG. 2 is a configuration diagram showing an example of a semiconductor laminated structure in which a group III nitride layer group 15 is formed on the epitaxial substrate 10 shown in FIG. As is apparent from FIG. 2, in the initial stage of the formation of the group III nitride layer group 15, the epitaxial growth proceeds in the vertical direction so as to bury the inside of the opening 4 of the intervening layer 3. It grows in the lateral direction along the upper surface 3A of the structure portion. Therefore, some dislocations generated at the interface with the underlayer 2 also propagate in the vertical direction, and then bend laterally along the upper surface 3A of the island-like structure portion of the intervening layer 3. In addition, in the island-shaped structure covering portion, the propagation of dislocations is hindered by the covering. As a result, in the region 15A of the group III nitride layer group 15 above the opening 4, the dislocation density is reduced, and the group III nitride layer group having excellent crystal quality can be provided.
[0036]
The present invention will be described below in detail with reference to examples.
(Example 1)
A 430-μm-thick sapphire substrate having a diameter of 2 inches was pretreated with H 2 SO 4 + H 2 O 2 and then placed in a MOCVD apparatus. The substrate was heated to 1200 ° C. while flowing H 2 at a flow rate of 1 m / sec as a carrier gas, and then trimethylaluminum (TMA) and NH 3 were flowed at an average flow rate of 1 m / sec to form an underlayer on the sapphire substrate. Was grown to a thickness of 1 μm. The half width of the X-ray diffraction rocking curve on the (002) plane of the AlN layer was 90 seconds, and the dislocation density was 2 × 10 10 / cm 2 , which proved to be excellent in crystal quality. The surface roughness Ra was 2 °.
Then, the substrate temperature was set to 1200 ° C., and trimethylboron (YMB) and NH 3 were allowed to flow at an average flow rate of 1 m / sec over the AlN layer, and an BN layer having an island structure as an intervening layer was formed on the AlN layer. Was formed to a thickness of 20 nm to produce an epitaxial substrate. Note that the island-shaped structure portion of the BN layer had a columnar shape.
Next, the substrate temperature was set to 1200 ° C., and TMA, trimethylgallium (TMG) and NH 3 were flowed at an average flow rate of 1 m / sec, and the group III was formed on the AlN layer through the island-shaped BN layer. An Al 0.5 Ga 0.5 N film as a nitride layer group was formed to a thickness of 2 μm. When the dislocation density in the AlN film was measured by TEM observation, it was found to be 5 × 10 8 / cm 2 .
(Example 2)
A 2-inch diameter sapphire substrate having a heat of 430 μm was pretreated with H 2 SO 4 + H 2 O 2 and then placed in a MOCVD apparatus. The temperature of the substrate was raised to 1200 ° C. while flowing H 2 at a flow rate of 1 m / sec as a carrier gas, and then trimethylalmenium (TMA) and NH 3 were flowed at an average flow rate of 1 m / sec. An AlN layer as a ground layer was grown to a thickness of 1 μm. The half width of the X-ray diffraction rocking curve on the (002) plane of the AlN layer was 90 seconds, the dislocation density was 2 × 10 10 / cm 2 , and it was found that the crystal quality was excellent. The surface roughness Ra was 2 °.
Next, Ti was vacuum-deposited on the AlN layer to a thickness of 20 nm, and was set again in the MOCVD apparatus. The substrate temperature was set to 1200 ° C., NH 3 was flowed at an average flow rate of 1 m / sec, and heat treatment was performed to form a TiN x film from a Ti film and a network structure.
Then, the substrate temperature was set to 1200 ° C., TMA and NH 3 were flowed at an average flow rate of 1 m / sec, and a group III nitride layer group was formed on the AlN layer via the TiN x layer having an island structure. Was formed to a thickness of 2 μm. When the dislocation density in this AlN film was measured by TEM observation, it was found to be 1 × 10 9 / cm 2 .
(Comparative Example 1)
In the above example, the base layer was a GaN film formed using a low-temperature buffer layer, and an Al 0.5 Ga 0.5 N film as a group III nitride layer group was tried. Epitaxial growth of a practically used Al 0.5 Ga 0.5 N film could not be realized. The FWHM of the (002) rocking curve of the GaN underlayer was 300 seconds.
(Comparative Example 2)
An AlN film as a group III nitride layer group was formed in the same manner as in Example, except that the underlayer was made of AlN formed at a low temperature of 600 ° C. When the dislocation density in the AlN film was measured by TEM observation, it was found to be 1 × 10 11 / cm 2 .
As is clear from the examples and comparative example 1, it can be seen that the epitaxial growth of the AlN film cannot be performed without the intervening layer. In addition, as is clear from Example and Comparative Example 2, when a low-crystal-quality low-crystalline-quality AlN underlayer was used instead of the high-crystalline-quality AlN underlayer, the finally obtained group III film was used. It can be seen that the dislocation density of the AlN film as a nitride layer group can be reduced and the crystal quality can be improved.
As described above, the present invention has been described in detail based on the embodiments of the present invention with reference to specific examples. However, the present invention is not limited to the above embodiments of the present invention. All changes and modifications are possible without departing from the scope. For example, a multilayer laminated film such as a buffer layer and a strained superlattice may be inserted between the epitaxial substrate and the group III nitride layer group to further improve the crystal quality of the group III nitride layer group.
Furthermore, the amount of warpage of the epitaxial substrate can be further reduced by forming the substrate constituting the epitaxial substrate from a sapphire single crystal having a concave surface.
[0047]
As described above, according to the present invention, a novel epitaxial layer capable of forming a group III nitride layer group having low dislocation and excellent crystallinity, particularly an Al-containing nitride layer group can be formed. A substrate and a semiconductor laminated structure using the same can be provided. Further, a method for reducing dislocations in the group III nitride layer group can be provided.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing one example of an epitaxial substrate of the present invention.
FIG. 2 is a configuration diagram illustrating an example of a semiconductor multilayer structure according to the present invention.
[Explanation of symbols]
Reference Signs List 1 base material, 2 underlayer, 3 intermediate layer, 4 opening, 10 epitaxial substrate, 15 group III nitride layer group, 20 semiconductor laminated structure

Claims (17)

所定の基材と、
前記基材上に形成された、少なくともAlを含み、転位密度が1×1011/cm以下であり、(002)面におけるX線ロッキングカーブ半値幅が200秒以下であるIII族窒化物下地層と、
前記III族窒化物下地層上に形成された、島状又は網目状の介在層と、
を具えることを特徴とするエピタキシャル基板。
A predetermined base material,
A group III nitride formed on the base material and containing at least Al, having a dislocation density of 1 × 10 11 / cm 2 or less, and a half-width of an X-ray rocking curve on a (002) plane of 200 seconds or less. Stratum,
An island-shaped or mesh-shaped intermediate layer formed on the group III nitride underlayer;
An epitaxial substrate comprising:
前記III族窒化物下地層中のAl含有量が、全III族元素に対して50原子%以上であることを特徴とする、請求項1に記載のエピタキシャル基板。2. The epitaxial substrate according to claim 1, wherein an Al content in the group III nitride underlayer is 50 atomic% or more based on all group III elements. 3. 前記III族窒化物下地層はAlNからなることを特徴とする、請求項2に記載のエピタキシャル基板。The epitaxial substrate according to claim 2, wherein the group III nitride underlayer is made of AlN. 前記介在層の厚さが、0.5nm〜1000nmであることを特徴とする、請求項1〜3のいずれか一に記載のエピタキシャル基板。4. The epitaxial substrate according to claim 1, wherein the thickness of the intervening layer is 0.5 nm to 1000 nm. 5. 前記介在層は、金属、金属間化合物、及び合金の少なくとも一つからなることを特徴とする、請求項1〜4に記載のエピタキシャル基板。The epitaxial substrate according to claim 1, wherein the intervening layer is made of at least one of a metal, an intermetallic compound, and an alloy. 前記介在層は、AlpGaqInrN(o≦p,q,r≦1,p+q+r=1)を除く窒化物からなることを特徴とする、請求項1〜4に記載のエピタキシャル基板。5. The epitaxial substrate according to claim 1, wherein the intervening layer is made of a nitride other than AlpGaqInrN (o ≦ p, q, r ≦ 1, p + q + r = 1). 前記介在層は、酸化物からなることを特徴とする、請求項1〜4に記載のエピタキシャル基板。The epitaxial substrate according to claim 1, wherein the intervening layer is made of an oxide. 請求項1〜8のいずれか一に記載のエピタキシャル基板と、このエピタキシャル基板上に形成されたIII族窒化物層群とを具えることを特徴とする、半導体積層構造。A semiconductor multilayer structure comprising: the epitaxial substrate according to claim 1; and a group III nitride layer group formed on the epitaxial substrate. 前記III族窒化物層群のバンドギャップよりも、前記介在層のバンドギャップが大きいことを特徴とする、請求項8に記載の半導体積層構造。The semiconductor multilayer structure according to claim 8, wherein the band gap of the intervening layer is larger than the band gap of the group III nitride layer group. 所定の基材上に、少なくともAlを含み、転位密度が1×10 /cm以下であり、(002)面におけるX線ロッキングカーブ半値幅が200秒以下であるIII族窒化物下地層、島状又は網目状の介在層を順次に形成してエピタキシャル基板を作製し、このエピタキシャル基板上に前記介在層を介してIII族窒化物層群を形成することにより、前記III族窒化物層群中の転位密度を低減させることを特徴とする、III族窒化物層群の転位低減方法。On a predetermined substrate, wherein at least Al, the dislocation density is at 1 × 10 1 1 / cm 2 or less, III-nitride underlayer is X-ray rocking curve half width of less than 200 seconds at (002) plane Forming an island-shaped or mesh-shaped intervening layer in order to produce an epitaxial substrate, and forming a group III nitride layer group on the epitaxial substrate via the intervening layer, thereby forming the group III nitride layer. A method for reducing dislocation density in a group III nitride layer group, which comprises reducing the dislocation density in the group. 前記III族窒化物下地層中のAl含有量が、全III族元素に対して50原子%以上であることを特徴とする、請求項10に記載のIII族窒化物層群の転位低減方法。The method for reducing dislocation in a group III nitride layer group according to claim 10, wherein the Al content in the group III nitride underlayer is at least 50 atomic% based on all group III elements. 前記III族窒化物下地層はAlNからなることを特徴とする、請求項11に記載のIII族窒化物層群の転位低減方法。The method according to claim 11, wherein the group III nitride underlayer is made of AlN. 前記III族窒化物介在層の厚さが、0.5nm〜1000nmであることを特徴とする、請求項10〜12のいずれか一に記載のIII族窒化物層群の転位低減方法。The method according to any one of claims 10 to 12, wherein a thickness of the group III nitride intervening layer is 0.5 nm to 1000 nm. 前記介在物は、金属、金属間化合物、及び合金の少なくとも一つからなることを特徴とする、請求項10〜13に記載のIII族窒化物層群の転位低減方法。The method according to claim 10, wherein the inclusions include at least one of a metal, an intermetallic compound, and an alloy. 前記介在物は、AlpGaqInrN(o≦p,q,r≦1,p+q+r=1)を除く窒化物からなることを特徴とする、請求項10〜13に記載のIII族窒化物層群の転位低減方法。14. The group III nitride layer group according to claim 10, wherein the inclusions are made of a nitride other than AlpGaqInrN (o ≦ p, q, r ≦ 1, p + q + r = 1). 15. Method. 前記介在層は、酸化物からなることを特徴とする、請求項10〜13に記載のIII族窒化物層群の転位低減方法。The method for reducing dislocation in a group III nitride layer group according to claim 10, wherein the intervening layer is made of an oxide. 前記III族窒化物層群のバンドギャップよりも、前記介在層のバンドギャップが大きいことを特徴とする、請求項10〜16のいずれか一に記載のIII族窒化物層群の転位低減方法。17. The method for reducing dislocations in a group III nitride layer group according to claim 10, wherein the band gap of the intervening layer is larger than the band gap of the group III nitride layer group.
JP2003035367A 2003-02-13 2003-02-13 Epitaxial substrate, semiconductor multilayer structure, and method for reducing dislocations in group III nitride layer Expired - Lifetime JP4748925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003035367A JP4748925B2 (en) 2003-02-13 2003-02-13 Epitaxial substrate, semiconductor multilayer structure, and method for reducing dislocations in group III nitride layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003035367A JP4748925B2 (en) 2003-02-13 2003-02-13 Epitaxial substrate, semiconductor multilayer structure, and method for reducing dislocations in group III nitride layer

Publications (2)

Publication Number Publication Date
JP2004247493A true JP2004247493A (en) 2004-09-02
JP4748925B2 JP4748925B2 (en) 2011-08-17

Family

ID=33020808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003035367A Expired - Lifetime JP4748925B2 (en) 2003-02-13 2003-02-13 Epitaxial substrate, semiconductor multilayer structure, and method for reducing dislocations in group III nitride layer

Country Status (1)

Country Link
JP (1) JP4748925B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101171324B1 (en) 2005-04-12 2012-08-10 서울옵토디바이스주식회사 Method of forming buffer layer for a light emitting device of a nitride compound semiconductor and buffer layer formed by the method
WO2016002801A1 (en) * 2014-07-01 2016-01-07 株式会社タムラ製作所 Semiconductor layered structure and semiconductor element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192296A (en) * 1997-09-24 1999-04-06 Mitsubishi Cable Ind Ltd Substrate for growing gallium nitride crystal and its use
JPH11354843A (en) * 1998-06-04 1999-12-24 Mitsubishi Cable Ind Ltd Fabrication of group iii nitride quantum dot structure and use thereof
JP2001274097A (en) * 2000-03-24 2001-10-05 Nikon Corp SUBSTRATE FOR GaN-FAMILY CRYSTAL GROWTH AND ITS USE
JP2002252177A (en) * 2000-12-21 2002-09-06 Ngk Insulators Ltd Semiconductor element
JP2002305356A (en) * 2001-04-06 2002-10-18 Sanyo Electric Co Ltd Nitride semiconductor element and method for forming the same
JP2002367917A (en) * 2001-06-12 2002-12-20 Ngk Insulators Ltd Method of manufacturing group iii nitride film, sapphire single crystal substrate for manufacturing group iii nitride film, and substrate for epitaxial growth

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192296A (en) * 1997-09-24 1999-04-06 Mitsubishi Cable Ind Ltd Substrate for growing gallium nitride crystal and its use
JPH11354843A (en) * 1998-06-04 1999-12-24 Mitsubishi Cable Ind Ltd Fabrication of group iii nitride quantum dot structure and use thereof
JP2001274097A (en) * 2000-03-24 2001-10-05 Nikon Corp SUBSTRATE FOR GaN-FAMILY CRYSTAL GROWTH AND ITS USE
JP2002252177A (en) * 2000-12-21 2002-09-06 Ngk Insulators Ltd Semiconductor element
JP2002305356A (en) * 2001-04-06 2002-10-18 Sanyo Electric Co Ltd Nitride semiconductor element and method for forming the same
JP2002367917A (en) * 2001-06-12 2002-12-20 Ngk Insulators Ltd Method of manufacturing group iii nitride film, sapphire single crystal substrate for manufacturing group iii nitride film, and substrate for epitaxial growth

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101171324B1 (en) 2005-04-12 2012-08-10 서울옵토디바이스주식회사 Method of forming buffer layer for a light emitting device of a nitride compound semiconductor and buffer layer formed by the method
WO2016002801A1 (en) * 2014-07-01 2016-01-07 株式会社タムラ製作所 Semiconductor layered structure and semiconductor element
JP2016015374A (en) * 2014-07-01 2016-01-28 株式会社タムラ製作所 Semiconductor laminate structure and semiconductor element

Also Published As

Publication number Publication date
JP4748925B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP5276852B2 (en) Method for manufacturing group III nitride semiconductor epitaxial substrate
US6720196B2 (en) Nitride-based semiconductor element and method of forming nitride-based semiconductor
JP3620269B2 (en) GaN-based semiconductor device manufacturing method
JP5023318B2 (en) 3-5 nitride semiconductor multilayer substrate, 3-5 nitride semiconductor free-standing substrate manufacturing method, and semiconductor device
JP2002222771A (en) Method for manufacturing group iii nitride film, ground film for manufacturing group iii nitride film and method for manufacturing the same
JP2009505938A (en) Semiconductor substrate, method for manufacturing a self-supporting semiconductor substrate by hydride vapor phase epitaxy, and mask layer used therefor
EP1267393B1 (en) Method of forming a group iii nitride semiconductor substrate for epitaxial lateral overgrowth (elo)
JP3274674B2 (en) Method for manufacturing gallium nitride-based compound semiconductor
JP3946976B2 (en) Semiconductor device, epitaxial substrate, semiconductor device manufacturing method, and epitaxial substrate manufacturing method
JP3976745B2 (en) Method for producing gallium nitride compound semiconductor
US20050132950A1 (en) Method of growing aluminum-containing nitride semiconductor single crystal
JP3544958B2 (en) Method of manufacturing gallium nitride based compound semiconductor
JP2001135575A (en) Iii-v compound semiconductor
JP4748925B2 (en) Epitaxial substrate, semiconductor multilayer structure, and method for reducing dislocations in group III nitride layer
JP4545389B2 (en) Dislocation reduction method for epitaxial substrate and group III nitride layer group
JP4001262B2 (en) Method for manufacturing nitride film
JP2004363251A (en) Group iii-v compound semiconductor and its manufacturing method
JP2006024897A (en) Nitride semiconductor substrate and manufacturing method therefor
JP2005057064A (en) Group iii nitride semiconductor layer and growth method thereof
JP2003218045A (en) Method of manufacturing iii nitride film
JP4964271B2 (en) GaN crystal film manufacturing method
JPH09227297A (en) Indium-gallium-nitride single crystal and its production
JP4425871B2 (en) Manufacturing method of base film for manufacturing group III nitride film
JP4170269B2 (en) Method for producing group III nitride film
JP4489713B2 (en) Group III nitride semiconductor substrate for ELO

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110517

R150 Certificate of patent or registration of utility model

Ref document number: 4748925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term