JP2004247212A - Reforming catalyst regeneration method of fuel cell system - Google Patents

Reforming catalyst regeneration method of fuel cell system Download PDF

Info

Publication number
JP2004247212A
JP2004247212A JP2003036958A JP2003036958A JP2004247212A JP 2004247212 A JP2004247212 A JP 2004247212A JP 2003036958 A JP2003036958 A JP 2003036958A JP 2003036958 A JP2003036958 A JP 2003036958A JP 2004247212 A JP2004247212 A JP 2004247212A
Authority
JP
Japan
Prior art keywords
reforming
reforming catalyst
fuel cell
cell system
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003036958A
Other languages
Japanese (ja)
Inventor
Tsutomu Toida
務 戸井田
Yoshiji Tokita
義司 時田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2003036958A priority Critical patent/JP2004247212A/en
Publication of JP2004247212A publication Critical patent/JP2004247212A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reforming catalyst regeneration method of a household fuel cell system performing a regeneration mode operation at every stop of driving once a day. <P>SOLUTION: The household fuel cell system, having a reforming reactor 2 carrying out a vapor reforming reaction decomposing hydrocarbon fuel into a plural kinds of gases by adding vapor added vapor and by using a reforming catalyst 3, performs the regeneration mode operation 19 regenerating the reforming catalyst 3 from the time receiving drive stop signal till a total stop, whereby, life of the reforming catalyst 3 is greatly prolonged and an efficient reforming reaction can be performed, and the operation is resumed in a refreshed state at all time to enable an excellent operation. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、炭化水素燃料から水蒸気改質反応によって水素を得て、この水素を利用して電力を得る燃料電池システムの改質触媒再生方法に関する。
【0002】
【従来の技術】
従来よりこの種のものでは、改質反応器内の改質触媒上に炭素(カーボン)が析出すると水素製造の効率が極端に低下するため、炭素の析出に応じて適宜触媒再生モード或いは、数ヶ月か数年に一回等のサイクルで前記の触媒再生モード運転を行うものであった。(例えば、特許文献1参照。)
【0003】
【特許文献1】
特開平9−161832号公報
【0004】
【発明が解決しようとする課題】
ところでこの従来のものでは、プラント用の大型の燃料電池システムであり、通常駆動停止後及び駆動開始時の温度降下及び温度上昇に時間がかかり、効率が低下する為に、よほどのことがない限り連続運転するものであり、触媒の再生モードもそれ専用の特別のモードであって、このモードの為にわざわざ停止して行われるものであり、大がかりで複雑な制御が必要で、高価でコストアップにつながると言う問題点を有するものであった。
【0005】
【課題を解決するための手段】
この発明はこの点に着目し上記課題を解決するため、特にその構成を、炭化水素燃料に水蒸気を添加して、改質触媒を用いて複数のガスに分解する水蒸気改質反応を行う改質反応器を有する燃料電池システムに於いて、前記燃料電池システムは、駆動停止信号を受けてから全停止するまでの間に、改質触媒を再生する再生モード運転を行うようにしたものである。
【0006】
これにより、家庭用等の燃料電池システムでは、その使用形態から駆動停止する頻度が高いものであるから、この駆動停止を利用して駆動停止前に改質触媒を再生する再生モード運転を行うので、改質触媒の寿命が大幅に延びると共に、効率の良い改質反応が行えるものであり、しかも常にリフレッシュした状態で運転が開始され良好な運転が行われるものである。
【0007】
又請求項2によれば、前記再生モード運転は、システムの駆動停止信号を受けて、改質反応器温度を改質触媒の耐熱温度以下の所定温度に設定し、改質反応器に入る水の流量を所定流量に保持したまま、炭化水素燃料の流量を徐々に低下させて高S/C比とさせ、燃料流量がゼロになってからも、更に水だけを流入させ一定時間運転した後、改質反応器温度を低下させて全停止させるものである。
【0008】
この請求項2により、改質触媒に析出する炭素を確実に分解して除去することが出来、即ち、改質触媒に析出した炭素質を分解するのに適した温度に保持して水蒸気によって分解することで、容易に取り除くことが出来るものであり、又これは特別な装置を付加することなく、本来の水蒸気改質で使用されるものを利用して行われるので、極めて自然であり安価で済むものである。
【0009】
【発明の実施の形態】
次にこの発明に係る燃料電池システムを図面に示された一実施形態で説明する。
1は小型で各家庭に容易に設置可能な家庭用等の燃料電池システム本体で、以下の各部を内方に具備するものである。
【0010】
2は水蒸気改質反応を行う改質反応器で、内部にはニッケル系又は貴金属系等の改質触媒3が充填されており、燃焼部4からの熱供給を受けて650℃〜850℃に加熱され、ここに脱硫した炭化水素燃料ここでは灯油が第1流量調節手段5で供給量を調節されて燃料供給路6より供給されると共に、高温の水蒸気が第2流量調節手段7で供給量を調節されて水供給路8より供給されて、水蒸気改質して主にH2、CO、CO2、H2O、CH4の各生成ガスを得る。
【0011】
9はシフト反応工程を行うシフト反応部で、第1冷却部10で200℃〜300℃まで温度低下された生成ガスを高圧のまま流入させ、内部にはCu−Zu系、又はFe−Cr系等のシフト反応触媒11が充填され、一酸化炭素と水を二酸化炭素と水素に転換させるシフト反応するものである。
【0012】
12は第2冷却部13で生成ガスを100℃〜150℃にした後、COを酸化させるCO除去工程を構成するCO除去部で、内方には貴金属系のパラジュウム合金触媒14を有し、ここを通すことでCOを酸化させてCO2に変換させるものである。
【0013】
15は燃料電池スタックで、前記CO除去部12を通過したH2を含む生成ガスの供給を受けて、電力を発生するものである。
【0014】
16はマイコンから成る制御部で、前記各部の駆動を制御するものであり、運転スイッチ17の押圧で運転を開始し、停止スイッチ18の押圧では、予めプログラムされている改質触媒3を再生させる再生モード運転19を行ってから全停止させるものであり、又モード解除スイッチ20の押圧後の停止スイッチ18の押圧では、再生モード運転19をキャンセルして即全停止させ、異常時の緊急停止が可能なようにしている。
【0015】
次にこの発明一実施形態の作動を図2に示すフローチャートで説明する。
今燃料電池システムは運転中で、ステップ21でシステム駆動状態あり、ステップ22で停止スイッチ18の押圧による停止信号入力の有無を判断し、NOではステップ21に戻り、YESで次のステップ23に進み燃焼部4の燃焼量を調節し改質反応器2に供給する熱量を制御する。
【0016】
そしてステップ24では改質反応器2の温度を、改質触媒3の耐熱温度より低い所定温度に保持するように温度制御し、所定温度検知のYESでステップ25に進み第2流量調節手段7を制御して、水供給路8から改質反応器2に供給される水量を一定量に保持し、更にステップ26に進んで第1流量調節手段5を制御して、燃料供給路6を介して改質反応器2に供給される灯油量を減らし高S/C比とし、反応量を徐々に減少させてゼロとして、急停止による急激な温度上昇を防止するものである。
【0017】
前記ステップ26で燃焼が停止されることでYESとなり、次のステップ27では水のみの供給が一定時間経過したかを判断し、即ち、最終的に水蒸気により改質触媒3に析出した炭素質を分解して排出するものであり、そしてYESでステップ28に進み改質反応器2が所定温度以下に温度低下したかを確認し、ステップ29で全停止させるものである。
【0018】
以上のように、ステップ23〜ステップ28までが再生モード運転19であり、この再生モード運転19は一日一回家庭用燃料電池システムが駆動停止される毎に行われ、改質触媒の寿命が大幅に延びると共に、効率の良い改質反応が行えるものであり、しかも常にリフレッシュした状態で運転が開始され良好な運転が行われるものである。
尚、触媒活性の劣化が少ない場合は、運転停止毎に再生をする必要はなく、所定の改質反応条件下で残メタンが増加して触媒活性低下が明かになった時点で、停止時、または運転再開時に再生操作を組み込んでも良い。
【0019】
又前記再生モード運転19は、システムの駆動停止信号を受けて、改質反応器2温度を改質触媒3の耐熱温度以下の所定温度に設定し、改質反応器2に入る水の流量を所定流量に保持したまま、炭化水素燃料の流量を徐々に低下させて高S/C比とさせ、燃料流量がゼロになってからも、更に水だけを流入させ一定時間運転した後、改質反応器2温度を低下させて全停止させるものであるから、改質触媒に析出する炭素を確実に分解して除去することが出来、即ち、改質触媒に析出した炭素質を分解するのに適した温度に保持して水蒸気によって分解することで、容易に取り除くことが出来るものであり、又これは特別な装置を付加することなく、本来の水蒸気改質で使用されるものを利用して行われるので、極めて自然であり安価で済むものである。
【0020】
尚、再生モード運転19は、この他に燃料電池スタック15に空気を供給する空気ブロアーを利用して、システムの駆動停止時に改質ガスを循環させて再生することも考えられるものである。
【0021】
【発明の効果】
以上のようにこの発明によれば、家庭用等の燃料電池システムでは、その使用形態から少なくとも必ず一日一回は駆動停止するものであるから、この駆動停止を利用して駆動停止前に常に改質触媒を再生する再生モード運転を行うので、改質触媒の寿命が大幅に延びると共に、効率の良い改質反応が行えるものであり、しかも常にリフレッシュした状態で運転が開始され良好な運転が行われるものである。
【0022】
又請求項2によれば、改質触媒に析出する炭素を確実に分解して除去することが出来、即ち、改質触媒に析出した炭素質を分解するのに適した温度に保持して水蒸気によって分解することで、容易に取り除くことが出来るものであり、又これは特別な装置を付加することなく、本来の水蒸気改質で使用されるものを利用して行われるので、極めて自然であり安価で済むものである。
【図面の簡単な説明】
【図1】この発明の一実施形態を付した家庭用等の燃料電池システムの概略構成図。
【図2】同要部のフローチャート。
【符号の説明】
1 燃料電池システム本体
2 改質反応器
3 改質触媒
19 再生モード運転
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a reforming catalyst regeneration method for a fuel cell system in which hydrogen is obtained from a hydrocarbon fuel by a steam reforming reaction, and electric power is obtained using the hydrogen.
[0002]
[Prior art]
Conventionally, in this type, if carbon (carbon) is deposited on the reforming catalyst in the reforming reactor, the efficiency of hydrogen production is extremely reduced. The catalyst regeneration mode operation is performed in a cycle such as once every month or several years. (For example, refer to Patent Document 1.)
[0003]
[Patent Document 1]
JP-A-9-161832
[Problems to be solved by the invention]
By the way, the conventional fuel cell system is a large-sized fuel cell system for a plant, and it takes time for the temperature drop and the temperature rise after the normal driving stop and at the start of the driving, and the efficiency is reduced. It is a continuous operation, and the catalyst regeneration mode is also a special mode dedicated to it, and it is stopped and performed for this mode, requiring extensive and complicated control, expensive and costly Had the problem of leading to
[0005]
[Means for Solving the Problems]
The present invention focuses on this point, and in order to solve the above-mentioned problem, particularly, a reforming method of adding steam to hydrocarbon fuel and performing a steam reforming reaction of decomposing into a plurality of gases using a reforming catalyst. In a fuel cell system having a reactor, the fuel cell system performs a regeneration mode operation for regenerating a reforming catalyst during a period from when a drive stop signal is received to when it is completely stopped.
[0006]
As a result, in a fuel cell system for home use or the like, the frequency of driving stop is high due to the usage pattern. Therefore, the regeneration mode operation of regenerating the reforming catalyst before the driving is stopped by using the driving stop is performed. In addition, the life of the reforming catalyst is greatly extended, and an efficient reforming reaction can be performed. In addition, the operation is started in a constantly refreshed state, and a good operation is performed.
[0007]
According to the second aspect of the present invention, in the regeneration mode operation, the temperature of the reforming reactor is set to a predetermined temperature equal to or lower than the heat-resistant temperature of the reforming catalyst in response to the drive stop signal of the system. After maintaining the flow rate at a predetermined flow rate, the flow rate of the hydrocarbon fuel is gradually reduced to a high S / C ratio, and even after the fuel flow rate becomes zero, only water flows in and after a certain period of operation. In addition, the temperature of the reforming reactor is lowered to completely stop the reactor.
[0008]
According to the second aspect, the carbon deposited on the reforming catalyst can be reliably decomposed and removed, that is, the temperature is maintained at a temperature suitable for decomposing the carbonaceous deposited on the reforming catalyst, and decomposed by steam. By doing so, it can be easily removed, and since this is performed using the one used in the original steam reforming without adding a special device, it is extremely natural and inexpensive. That's it.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, a fuel cell system according to the present invention will be described with reference to an embodiment shown in the drawings.
Reference numeral 1 denotes a fuel cell system main unit for home use or the like which is small and can be easily installed in each home, and includes the following components inside.
[0010]
Reference numeral 2 denotes a reforming reactor for performing a steam reforming reaction. The reforming reactor 2 is filled with a reforming catalyst 3 such as a nickel-based or noble metal-based catalyst, and receives heat supplied from the combustion unit 4 to reach a temperature of 650 to 850 ° C. Heated and desulfurized hydrocarbon fuel, in which kerosene is supplied from the fuel supply path 6 with the supply amount adjusted by the first flow rate control means 5, and high-temperature steam is supplied by the second flow rate control means 7 Is adjusted and supplied from the water supply path 8, and steam reforming is performed to obtain mainly each generated gas of H 2, CO, CO 2, H 2 O and CH 4.
[0011]
Reference numeral 9 denotes a shift reaction section for performing a shift reaction step, in which a product gas whose temperature has been lowered from 200 ° C. to 300 ° C. in the first cooling section 10 flows in at a high pressure, and contains Cu—Zu or Fe—Cr inside. And the like, which is filled with a shift reaction catalyst 11 and performs a shift reaction for converting carbon monoxide and water into carbon dioxide and hydrogen.
[0012]
Reference numeral 12 denotes a CO removal unit that constitutes a CO removal step of oxidizing CO after the generated gas is heated to 100 ° C. to 150 ° C. in the second cooling unit 13, and has a noble metal-based palladium alloy catalyst 14 inside, Through this, CO is oxidized and converted into CO2.
[0013]
Reference numeral 15 denotes a fuel cell stack that generates electric power by receiving a supply of a generated gas containing H2 that has passed through the CO removal unit 12.
[0014]
Reference numeral 16 denotes a control unit composed of a microcomputer, which controls the driving of the above-mentioned units. The operation is started by pressing an operation switch 17, and the pre-programmed reforming catalyst 3 is regenerated by pressing a stop switch 18. When the stop switch 18 is pressed after the mode release switch 20 is pressed, the stop is stopped after the mode release switch 20 is pressed. Make it possible.
[0015]
Next, the operation of the embodiment of the present invention will be described with reference to the flowchart shown in FIG.
Now, the fuel cell system is in operation, the system is in the drive state in step 21, and it is determined in step 22 whether or not a stop signal is input by pressing the stop switch 18. If NO, the process returns to step 21; if YES, the process proceeds to the next step 23. The amount of combustion in the combustion section 4 is adjusted to control the amount of heat supplied to the reforming reactor 2.
[0016]
In step 24, the temperature of the reforming reactor 2 is controlled so as to be maintained at a predetermined temperature lower than the heat-resistant temperature of the reforming catalyst 3, and if YES in the detection of the predetermined temperature, the process proceeds to step 25 and the second flow rate adjusting means 7 is controlled. Control, the amount of water supplied from the water supply passage 8 to the reforming reactor 2 is maintained at a constant amount, and the process further proceeds to step 26 to control the first flow rate adjusting means 5, and through the fuel supply passage 6 The amount of kerosene supplied to the reforming reactor 2 is reduced to a high S / C ratio, and the reaction amount is gradually reduced to zero to prevent a sudden temperature rise due to a sudden stop.
[0017]
In step 26, the determination is YES that the combustion is stopped. In step 27, it is determined whether the supply of only water has passed for a certain period of time. That is, the carbonaceous material finally deposited on the reforming catalyst 3 by steam is removed. The fuel gas is decomposed and discharged. If YES, the process proceeds to step 28 to check whether the temperature of the reforming reactor 2 has dropped below a predetermined temperature.
[0018]
As described above, steps 23 to 28 correspond to the regeneration mode operation 19, and the regeneration mode operation 19 is performed once a day when the driving of the domestic fuel cell system is stopped, and the life of the reforming catalyst is reduced. The reforming reaction can be extended significantly and an efficient reforming reaction can be performed. In addition, the operation is always started in a refreshed state, and the good operation is performed.
When the deterioration of the catalyst activity is small, it is not necessary to regenerate each time the operation is stopped, and when the remaining methane increases under the predetermined reforming reaction conditions and the catalyst activity decreases, the stop is performed. Alternatively, a regeneration operation may be incorporated when the operation is resumed.
[0019]
The regeneration mode operation 19 sets the temperature of the reforming reactor 2 to a predetermined temperature equal to or lower than the heat-resistant temperature of the reforming catalyst 3 in response to the drive stop signal of the system, and controls the flow rate of water entering the reforming reactor 2. While maintaining the predetermined flow rate, the flow rate of the hydrocarbon fuel is gradually reduced to a high S / C ratio, and even after the fuel flow rate becomes zero, only water is allowed to flow in for a certain period of time. Since the temperature of the reactor 2 is lowered to completely stop the reactor, carbon deposited on the reforming catalyst can be reliably decomposed and removed, that is, it is necessary to decompose the carbon deposited on the reforming catalyst. It can be easily removed by maintaining it at a suitable temperature and decomposing it with steam, and without using any special equipment, it can be used in the original steam reforming. It's very natural and cheap. It is.
[0020]
In the regeneration mode operation 19, it is also conceivable to use an air blower for supplying air to the fuel cell stack 15 and circulate the reformed gas when the system is stopped to perform regeneration.
[0021]
【The invention's effect】
As described above, according to the present invention, in a fuel cell system for home use or the like, the drive is always stopped at least once a day from the usage mode. Since the regeneration mode operation for regenerating the reforming catalyst is performed, the life of the reforming catalyst is greatly extended, and the reforming reaction can be performed efficiently. Is what is done.
[0022]
According to the second aspect, carbon deposited on the reforming catalyst can be surely decomposed and removed, that is, steam maintained at a temperature suitable for decomposing carbonaceous material deposited on the reforming catalyst can be obtained. Can be easily removed by decomposing, and this is very natural since it is carried out using the original steam reforming without adding any special equipment. Inexpensive.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a fuel cell system for household use to which an embodiment of the present invention is applied.
FIG. 2 is a flowchart of the main part.
[Explanation of symbols]
1 fuel cell system body 2 reforming reactor 3 reforming catalyst 19 regeneration mode operation

Claims (2)

炭化水素燃料に水蒸気を添加して、改質触媒を用いて複数のガスに分解する水蒸気改質反応を行う改質反応器を有する燃料電池システムに於いて、前記燃料電池システムは、駆動停止信号を受けてから全停止するまでの間に、改質触媒を再生する再生モード運転を行う事を特徴とする燃料電池システムの改質触媒再生方法。In a fuel cell system having a reforming reactor for performing a steam reforming reaction in which steam is added to a hydrocarbon fuel and decomposed into a plurality of gases using a reforming catalyst, the fuel cell system includes a drive stop signal. A regeneration mode operation for regenerating the reforming catalyst during a period from when the fuel cell system is received to when it is completely stopped. 前記再生モード運転は、システムの駆動停止信号を受けて、改質反応器温度を改質触媒の耐熱温度以下の所定温度に設定し、改質反応器に入る水の流量を所定流量に保持したまま、炭化水素燃料の流量を徐々に低下させて高S/C比とさせ、燃料流量がゼロになってからも、更に水だけを流入させ一定時間運転した後、改質反応器温度を低下させて全停止させる事を特徴とする請求項1記載の燃料電池システムの改質触媒再生方法。In the regeneration mode operation, upon receiving the system drive stop signal, the reforming reactor temperature was set to a predetermined temperature equal to or lower than the allowable temperature limit of the reforming catalyst, and the flow rate of water entering the reforming reactor was maintained at the predetermined flow rate. As it is, the flow rate of hydrocarbon fuel is gradually reduced to a high S / C ratio, and even after the fuel flow rate becomes zero, only water is allowed to flow for a certain period of time, and then the temperature of the reforming reactor is lowered. 2. The method for regenerating a reforming catalyst for a fuel cell system according to claim 1, wherein the whole is stopped.
JP2003036958A 2003-02-14 2003-02-14 Reforming catalyst regeneration method of fuel cell system Pending JP2004247212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003036958A JP2004247212A (en) 2003-02-14 2003-02-14 Reforming catalyst regeneration method of fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003036958A JP2004247212A (en) 2003-02-14 2003-02-14 Reforming catalyst regeneration method of fuel cell system

Publications (1)

Publication Number Publication Date
JP2004247212A true JP2004247212A (en) 2004-09-02

Family

ID=33021905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003036958A Pending JP2004247212A (en) 2003-02-14 2003-02-14 Reforming catalyst regeneration method of fuel cell system

Country Status (1)

Country Link
JP (1) JP2004247212A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101291569B1 (en) * 2010-12-28 2013-08-08 지에스칼텍스 주식회사 reform catalyst regeneration method of fuel processor for fuel cell system
JP2013197037A (en) * 2012-03-22 2013-09-30 Miura Co Ltd Reformer system, fuel cell system, and operation method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101291569B1 (en) * 2010-12-28 2013-08-08 지에스칼텍스 주식회사 reform catalyst regeneration method of fuel processor for fuel cell system
JP2013197037A (en) * 2012-03-22 2013-09-30 Miura Co Ltd Reformer system, fuel cell system, and operation method therefor

Similar Documents

Publication Publication Date Title
JP4130603B2 (en) Operation method of hydrogen production system
CA2400050C (en) Method and apparatus for reformation of internal heating type by oxidation
JP4991571B2 (en) Hydrogen generator, fuel cell system, and operation method thereof
WO2000048261A1 (en) Carbon monoxide converting apparatus for fuel cell and generating system of fuel cell
JP2003282114A (en) Stopping method of fuel cell power generating device
JP4030322B2 (en) Fuel processing apparatus, fuel cell power generation system, fuel processing method, and fuel cell power generation method
JP2004051437A (en) Operation method of reformer
JP2002060204A (en) Fuel reformer, its operating method and fuel cell power generation unit using the same
JP3865479B2 (en) Carbon monoxide removal system and carbon monoxide removal method
JP2006169068A5 (en)
JP2004247212A (en) Reforming catalyst regeneration method of fuel cell system
JP3886789B2 (en) Reforming apparatus and operation method thereof
JP5348938B2 (en) Carbon monoxide gas generator and method
US20070033873A1 (en) Hydrogen gas generator
JP2005200292A (en) Fuel processing system for reforming hydrocarbon fuel
JP2000290001A (en) Operation of hydrogen generation device
JP3608872B2 (en) Fuel cell power generation system
JP2017001903A (en) Hydrogen generator, fuel cell system, and method for operating them
JP2002255506A (en) Production method for high purity hydrogen from heavy hydrocarbon fuel and its apparatus
JP6704122B2 (en) Hydrogen generator, fuel cell system using the same, and method of operating the same
KR101362209B1 (en) Regeneration method and apparatus for sulfur-poisoned reform catalyst in the fuel processor of fuel cell system
JP2006169013A (en) Hydrogen producing apparatus, fuel cell system and method of operating the same
US20030211025A1 (en) Process, control system and apparatus for the optimal operation of a selective oxidation reactor
JP2005340008A (en) Fuel cell system
JP2005289704A (en) System for producing fuel gas and method for stopping the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310