JP2013197037A - Reformer system, fuel cell system, and operation method therefor - Google Patents

Reformer system, fuel cell system, and operation method therefor Download PDF

Info

Publication number
JP2013197037A
JP2013197037A JP2012065827A JP2012065827A JP2013197037A JP 2013197037 A JP2013197037 A JP 2013197037A JP 2012065827 A JP2012065827 A JP 2012065827A JP 2012065827 A JP2012065827 A JP 2012065827A JP 2013197037 A JP2013197037 A JP 2013197037A
Authority
JP
Japan
Prior art keywords
gas
reformer
raw fuel
temperature
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012065827A
Other languages
Japanese (ja)
Other versions
JP6135039B2 (en
Inventor
Masaru Nakajima
優 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2012065827A priority Critical patent/JP6135039B2/en
Publication of JP2013197037A publication Critical patent/JP2013197037A/en
Application granted granted Critical
Publication of JP6135039B2 publication Critical patent/JP6135039B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a highly efficient reformer system, a fuel system and an operation method therefor, for removing depositing carbon in a reforming catalyst according to the storage amount.SOLUTION: A fuel cell system 1 includes a reformer 2 and a solid oxide fuel cell 6, and the reformer 2 includes raw fuel gas supplying means 3, vapor supplying means 4, control means 5 for the above supplying means, first detecting means 7 for detecting temperature or pressure of unreformed gas G2, and second detecting means 8 for detecting temperature or pressure of reformed gas G3. On the basis of the temperature or pressure detected by the first and second detecting means, the raw fuel supplying means 3 and the vapor supplying means 4 are controlled so that a ratio S/C, where S is an amount of vapor S1 and C is an amount of raw material gas G1, becomes a normal value when a difference of temperatures or pressures between the unreformed gas G2 and the reformed gas G3 lies within a predetermined range, and that the ratio S/C becomes at least one type of a higher setting value larger than the normal value when the above difference lies outside the predetermined range.

Description

本発明は、改質器システム、燃料電池システム、及びその運転方法に関する。   The present invention relates to a reformer system, a fuel cell system, and an operation method thereof.

燃料投入型の固体酸化物形燃料電池では、水素を含む改質ガスが燃料として用いられる。改質ガスは、改質器において、原燃料ガスと水蒸気との混合ガスである未改質ガスを改質触媒と接触させることにより生成される。   In a fuel injection type solid oxide fuel cell, a reformed gas containing hydrogen is used as a fuel. The reformed gas is generated by bringing an unreformed gas, which is a mixed gas of raw fuel gas and water vapor, into contact with the reforming catalyst in the reformer.

改質器の動作時には、原燃料ガス由来の炭素が改質触媒に析出する現象が起こる。改質触媒に炭素が析出し、蓄積すると、改質触媒は活性が低下し、劣化してしまう。このため、従来より、改質触媒に析出する炭素の蓄積量を減らすことのできる技術が望まれていた。例えば、改質器に供給される酸素の原子数Oと、改質器に供給される原燃料に含まれる炭素の原子数Cとの比(O/C)の値が、改質器の定常運転時における適正範囲よりも大きな値を取るように、原燃料の供給量と酸素の供給量とのうちの少なくとも一方を制御することによって、改質触媒に析出してくる炭素を除去するための炭素除去処理を実行することを特徴とする改質器の制御方法が公知である(特許文献1)。   During the operation of the reformer, a phenomenon occurs in which carbon derived from the raw fuel gas is deposited on the reforming catalyst. When carbon deposits and accumulates on the reforming catalyst, the activity of the reforming catalyst decreases and deteriorates. For this reason, there has been a demand for a technique that can reduce the amount of carbon deposited on the reforming catalyst. For example, the ratio (O / C) between the number of oxygen atoms O supplied to the reformer and the number of carbon atoms C contained in the raw fuel supplied to the reformer is the steady state of the reformer. For removing carbon deposited on the reforming catalyst by controlling at least one of the supply amount of raw fuel and the supply amount of oxygen so as to take a value larger than the appropriate range during operation. A control method for a reformer characterized by performing a carbon removal process is known (Patent Document 1).

特開2002−134151号公報JP 2002-134151 A

しかし、特許文献1に記載の方法が採用する炭素除去処理では、改質器内の炭素の蓄積量は、改質器の運転状態の履歴に応じて予測に基づき算出されたものであり、現実の炭素蓄積量を必ずしも示すものではなかった。そのため、炭素の酸化除去が完了しているにもかかわらず、高いO/C値に設定したまま運転を続けて改質触媒を傷めたり、改質触媒に析出した炭素がまだ残っているにもかかわらず、O/Cを低い値に戻したりしてしまうという不都合が生じる恐れがあった。   However, in the carbon removal treatment adopted by the method described in Patent Document 1, the amount of carbon accumulated in the reformer is calculated based on prediction according to the history of the operating state of the reformer, It did not necessarily indicate the amount of carbon accumulated. For this reason, even though the oxidative removal of the carbon is completed, the operation is continued with the high O / C value set to damage the reforming catalyst, or the carbon deposited on the reforming catalyst still remains. Regardless, there is a risk that the O / C may be returned to a low value.

本発明は、改質触媒に析出する炭素をその現実の蓄積量に応じた操作により除去しつつ、高い効率で運転することのできる改質器システム、燃料電池システム、及び燃料電池システムの運転方法を提供することを目的とする。   The present invention relates to a reformer system, a fuel cell system, and a fuel cell system operation method capable of operating with high efficiency while removing carbon deposited on the reforming catalyst by an operation according to the actual accumulated amount. The purpose is to provide.

本発明は、原燃料ガスと水蒸気との混合ガスである未改質ガスを改質触媒と接触させることにより、固体酸化物形燃料電池の燃料として用いられる改質ガスを生成する改質器を備える改質器システムであって、前記改質器に原燃料ガスを供給する原燃料ガス供給手段と、前記改質器に水蒸気を供給する水蒸気供給手段と、前記原燃料ガス供給手段及び前記水蒸気供給手段を制御する制御手段と、前記未改質ガスの温度又は圧力を検出する第1の検出手段と、前記改質ガスの温度又は圧力を検出する第2の検出手段と、を備え、前記制御手段は、前記第1及び第2の検出手段により検出された温度又は圧力に基づき、前記未改質ガスと前記改質ガスとの間の温度差又は圧力差が所定の範囲内である場合には、前記改質器に供給される水蒸気の量Sと前記改質器に供給される原燃料ガスの量Cとの比率S/Cが通常値となり、前記温度差又は圧力差が前記所定の範囲外である場合にはS/Cが前記通常値よりも高い少なくとも1種の高設定値となるように、前記原燃料ガス供給手段及び前記水蒸気供給手段を制御する改質器システムに関する。   The present invention provides a reformer that generates a reformed gas used as a fuel for a solid oxide fuel cell by bringing an unreformed gas, which is a mixed gas of raw fuel gas and water vapor, into contact with a reforming catalyst. A reformer system comprising: a raw fuel gas supply means for supplying raw fuel gas to the reformer; a steam supply means for supplying water vapor to the reformer; the raw fuel gas supply means; and the water vapor Control means for controlling the supply means, first detection means for detecting the temperature or pressure of the unreformed gas, and second detection means for detecting the temperature or pressure of the reformed gas, The control means, when the temperature difference or pressure difference between the unreformed gas and the reformed gas is within a predetermined range based on the temperature or pressure detected by the first and second detection means The amount of water vapor supplied to the reformer When the ratio S / C of the amount of raw fuel gas supplied to the reformer C is a normal value and the temperature difference or pressure difference is outside the predetermined range, the S / C is the normal value. The present invention relates to a reformer system that controls the raw fuel gas supply means and the water vapor supply means so that at least one higher set value is set.

本発明は、原燃料ガスと水蒸気との混合ガスである未改質ガスを改質触媒と接触させることにより改質ガスを生成する改質器と、前記改質ガスを燃料として用いる固体酸化物形燃料電池と、を備える燃料電池システムであって、前記改質器に原燃料ガスを供給する原燃料ガス供給手段と、前記改質器に水蒸気を供給する水蒸気供給手段と、前記原燃料ガス供給手段及び前記水蒸気供給手段を制御する制御手段と、前記未改質ガスの温度又は圧力を検出する第1の検出手段と、前記改質ガスの温度又は圧力を検出する第2の検出手段と、を備え、前記制御手段は、前記第1及び第2の検出手段により検出された温度又は圧力に基づき、前記未改質ガスと前記改質ガスとの間の温度差又は圧力差が所定の範囲内である場合には、前記改質器に供給される水蒸気の量Sと前記改質器に供給される原燃料ガスの量Cとの比率S/Cが通常値となり、前記温度差又は圧力差が前記所定の範囲外である場合にはS/Cが前記通常値よりも高い少なくとも1種の高設定値となるように、前記原燃料ガス供給手段及び前記水蒸気供給手段を制御する燃料電池システムに関する。   The present invention relates to a reformer that generates a reformed gas by bringing an unreformed gas that is a mixed gas of raw fuel gas and water vapor into contact with a reforming catalyst, and a solid oxide that uses the reformed gas as a fuel. A fuel cell system comprising: a raw fuel gas supply means for supplying raw fuel gas to the reformer; a steam supply means for supplying water vapor to the reformer; and the raw fuel gas Control means for controlling the supply means and the water vapor supply means; first detection means for detecting the temperature or pressure of the unreformed gas; and second detection means for detecting the temperature or pressure of the reformed gas; The control means has a predetermined temperature difference or pressure difference between the unreformed gas and the reformed gas based on the temperature or pressure detected by the first and second detection means. If within range, supply to the reformer When the ratio S / C between the amount S of steam generated and the amount C of raw fuel gas supplied to the reformer is a normal value, and the temperature difference or pressure difference is outside the predetermined range, S / C The present invention relates to a fuel cell system that controls the raw fuel gas supply means and the water vapor supply means so that C becomes at least one high set value higher than the normal value.

本発明は、原燃料ガスと水蒸気との混合ガスである未改質ガスを改質触媒と接触させることにより改質ガスを生成する改質器と、前記改質ガスを燃料として用いる固体酸化物形燃料電池と、を備える燃料電池システムの運転方法であって、前記未改質ガスと前記改質ガスとの間の温度差又は圧力差が所定の範囲内である場合には、前記改質器に供給される水蒸気の量Sと前記改質器に供給される原燃料ガスの量Cとの比率S/Cを通常値に設定し、前記温度差又は圧力差が前記所定の範囲外である場合にはS/Cを前記通常値よりも高い少なくとも1種の高設定値に設定する運転方法に関する。   The present invention relates to a reformer that generates a reformed gas by bringing an unreformed gas that is a mixed gas of raw fuel gas and water vapor into contact with a reforming catalyst, and a solid oxide that uses the reformed gas as a fuel. A fuel cell system comprising: a fuel cell, wherein the reforming gas has a temperature difference or a pressure difference within a predetermined range between the unreformed gas and the reformed gas. The ratio S / C between the amount S of steam supplied to the reactor and the amount C of raw fuel gas supplied to the reformer is set to a normal value, and the temperature difference or pressure difference is outside the predetermined range. In some cases, the present invention relates to an operation method in which S / C is set to at least one high set value higher than the normal value.

本発明によれば、改質触媒に析出する炭素をその現実の蓄積量に応じた操作により除去しつつ、高い効率で運転することのできる改質器システム及び燃料電池システム並びにその燃料電池システムの運転方法を提供することができる。   According to the present invention, a reformer system, a fuel cell system, and a fuel cell system that can be operated with high efficiency while removing carbon deposited on the reforming catalyst by an operation according to the actual accumulation amount. A driving method can be provided.

本発明の一実施形態に係る燃料電池システムの概略を示す図である。It is a figure showing the outline of the fuel cell system concerning one embodiment of the present invention. S/C(改質器に供給される水蒸気の量Sと改質器に供給される原燃料ガスの量Cとの比率)と水素又は一酸化炭素の生成量との関係を示すグラフである。It is a graph which shows the relationship between S / C (ratio of the quantity S of the water vapor | steam supplied to a reformer, and the quantity C of the raw fuel gas supplied to a reformer), and the production amount of hydrogen or carbon monoxide. . S/Cと各反応生成物の選択率(モル%)との関係を示すグラフである。It is a graph which shows the relationship between S / C and the selectivity (mol%) of each reaction product. 本発明の一実施形態に係る燃料電池システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the fuel cell system which concerns on one Embodiment of this invention.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。
[燃料電池システム]
まず、本発明の一実施形態に係る燃料電池システムについて図1を参照しながら説明する。
本実施形態の燃料電池システム1は、改質器2と、原燃料ガス供給手段3と、水蒸気供給手段4と、制御手段5と、固体酸化物形燃料電池6と、第1の検出手段7と、第2の検出手段8と、を備える。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[Fuel cell system]
First, a fuel cell system according to an embodiment of the present invention will be described with reference to FIG.
The fuel cell system 1 of the present embodiment includes a reformer 2, raw fuel gas supply means 3, water vapor supply means 4, control means 5, solid oxide fuel cell 6, and first detection means 7. And second detection means 8.

改質器2は、原燃料ガスG1と水蒸気S1との混合ガスである未改質ガスG2を改質触媒と接触させることにより、改質ガスG3を生成する。
原燃料ガス供給手段3は、改質器2に原燃料ガスG1を供給する。
水蒸気供給手段4は、改質器2に水蒸気S1を供給する。
制御手段5は、第1の検出手段7及び第2の検出手段8により検出された温度又は圧力に基づき、原燃料ガス供給手段3及び水蒸気供給手段4を制御する。
固体酸化物形燃料電池6は、改質器2により生成された改質ガスG3を燃料として用いる。
第1の検出手段7は、未改質ガスG2の温度又は圧力を検出する。
第2の検出手段8は、改質ガスG3の温度又は圧力を検出する。
The reformer 2 generates the reformed gas G3 by bringing the unreformed gas G2 that is a mixed gas of the raw fuel gas G1 and the steam S1 into contact with the reforming catalyst.
The raw fuel gas supply means 3 supplies the raw fuel gas G 1 to the reformer 2.
The steam supply means 4 supplies the steam S 1 to the reformer 2.
The control means 5 controls the raw fuel gas supply means 3 and the water vapor supply means 4 based on the temperature or pressure detected by the first detection means 7 and the second detection means 8.
The solid oxide fuel cell 6 uses the reformed gas G3 generated by the reformer 2 as fuel.
The first detection means 7 detects the temperature or pressure of the unreformed gas G2.
The second detection means 8 detects the temperature or pressure of the reformed gas G3.

改質器2には、未改質ガス供給ラインL1及び改質ガス供給ラインL2が接続されている。未改質ガス供給ラインL1を通じて、未改質ガスG2が改質器2に供給される。また、改質ガス供給ラインL2を通じて、改質ガスG3が改質器2から固体酸化物形燃料電池6へと供給される。改質器2が生成する改質ガスG3は、原燃料ガスG1と水蒸気S1との水蒸気改質反応により生じた水素を含むガスである。改質触媒としては、例えば、ルテニウム系触媒及びニッケル系触媒が挙げられる。
「ライン」とは、流路、経路、管路等の総称である。
An unreformed gas supply line L1 and a reformed gas supply line L2 are connected to the reformer 2. The unreformed gas G2 is supplied to the reformer 2 through the unreformed gas supply line L1. Further, the reformed gas G3 is supplied from the reformer 2 to the solid oxide fuel cell 6 through the reformed gas supply line L2. The reformed gas G3 generated by the reformer 2 is a gas containing hydrogen generated by the steam reforming reaction between the raw fuel gas G1 and the steam S1. Examples of the reforming catalyst include a ruthenium catalyst and a nickel catalyst.
“Line” is a general term for a flow path, a path, a pipe line, and the like.

原燃料ガスG1としては、例えば、分子中に炭素と水素とを含む化合物の気体及びそれら化合物からなる混合物の気体が挙げられ、より具体的には、メタン、エタン、プロパン、ブタン、LNG(液化天然ガス)、LPG(液化石油ガス)、都市ガス、ガソリン、ナフサ、灯油、軽油等の炭化水素、メタノール、エタノール等のアルコール、ジメチルエーテル等のエーテルが挙げられる。   Examples of the raw fuel gas G1 include a gas of a compound containing carbon and hydrogen in a molecule and a gas of a mixture composed of these compounds. More specifically, methane, ethane, propane, butane, LNG (liquefaction) Natural gas), LPG (liquefied petroleum gas), city gas, hydrocarbons such as gasoline, naphtha, kerosene and light oil, alcohols such as methanol and ethanol, and ethers such as dimethyl ether.

原燃料ガス供給手段3には、原燃料ガス供給ラインL3が接続されている。原燃料ガス供給ラインL3は、未改質ガス供給ラインL1及び後述の水蒸気供給ラインL4と合流部J1で接続する。原燃料ガス供給手段3は、原燃料ガス供給ラインL3及び未改質ガス供給ラインL1を介して、改質器2に接続されている。原燃料ガス供給手段3は、原燃料ガス供給ラインL3及び未改質ガス供給ラインL1を通じて、改質器2に原燃料ガスG1を供給する。   A raw fuel gas supply line L3 is connected to the raw fuel gas supply means 3. The raw fuel gas supply line L3 is connected to the unreformed gas supply line L1 and a later-described steam supply line L4 at a junction J1. The raw fuel gas supply means 3 is connected to the reformer 2 via a raw fuel gas supply line L3 and an unreformed gas supply line L1. The raw fuel gas supply means 3 supplies the raw fuel gas G1 to the reformer 2 through the raw fuel gas supply line L3 and the unreformed gas supply line L1.

水蒸気供給手段4には、水蒸気供給ラインL4が接続されている。水蒸気供給手段4は、水蒸気供給ラインL4及び未改質ガス供給ラインL1を介して、改質器2に接続されている。水蒸気供給手段4は、水蒸気供給ラインL4及び未改質ガス供給ラインL1を通じて、改質器2に水蒸気S1を供給する。   A steam supply line L4 is connected to the steam supply means 4. The steam supply means 4 is connected to the reformer 2 through a steam supply line L4 and an unreformed gas supply line L1. The steam supply means 4 supplies the steam S1 to the reformer 2 through the steam supply line L4 and the unreformed gas supply line L1.

制御手段5は、改質器2に供給される水蒸気S1の量Sと、改質器2に供給される原燃料ガスG1の量Cとの比率S/Cが、所定のタイミングで、通常値と該通常値よりも高い少なくとも1種の高設定値との間で切り替わるように、原燃料ガス供給手段3及び水蒸気供給手段4を制御する。
本実施形態では、制御手段5は、原燃料ガス供給手段3、水蒸気供給手段4、第1の検出手段7、及び第2の検出手段8と電気的に接続されている。そして、制御手段5は、第1の検出手段7及び第2の検出手段8により検出された温度又は圧力に基づき、未改質ガスG2と改質ガスG3との間の温度差又は圧力差が所定の範囲内である場合には、S/Cの値が通常値となり、上記温度差又は圧力差が上記所定の範囲外である場合には、S/Cの値が前記通常値よりも高い少なくとも1種の高設定値となるように、原燃料ガス供給手段3による原燃料ガスG1の供給量及び水蒸気供給手段4による水蒸気S1の供給量を制御する。
The control means 5 determines that the ratio S / C between the amount S of the steam S1 supplied to the reformer 2 and the amount C of the raw fuel gas G1 supplied to the reformer 2 is a normal value at a predetermined timing. And the raw fuel gas supply means 3 and the water vapor supply means 4 are controlled so as to switch between at least one high set value higher than the normal value.
In the present embodiment, the control means 5 is electrically connected to the raw fuel gas supply means 3, the water vapor supply means 4, the first detection means 7, and the second detection means 8. Then, the control means 5 determines that the temperature difference or pressure difference between the unreformed gas G2 and the reformed gas G3 is based on the temperature or pressure detected by the first detection means 7 and the second detection means 8. When it is within the predetermined range, the value of S / C becomes a normal value, and when the temperature difference or pressure difference is outside the predetermined range, the value of S / C is higher than the normal value. The supply amount of the raw fuel gas G1 by the raw fuel gas supply unit 3 and the supply amount of the water vapor S1 by the water vapor supply unit 4 are controlled so that at least one high set value is obtained.

固体酸化物形燃料電池6は、改質ガス供給ラインL2を介して、改質器2に接続されている。固体酸化物形燃料電池6は、複数積層された固体酸化物形燃料電池セル(図示せず)を備える。この固体酸化物形燃料電池6は、改質ガス供給ラインL2を通じて改質器2から供給された改質ガスG3を燃料として用い、複数積層された固体酸化物形燃料電池セルによって発電を行う。固体酸化物形燃料電池セルは、アノードと、カソードと、該アノード及び該カソードの間に設けられた電解質層と、を備える。電解質層は、800℃〜1000℃の温度で酸化物イオンを伝導する。アノードは、酸化物イオンと改質ガスG3中の水素とを反応させて、電子及び水を発生させる。カソードは、空気中の酸素と電子とを反応させて、酸化物イオンを発生させる。   The solid oxide fuel cell 6 is connected to the reformer 2 via the reformed gas supply line L2. The solid oxide fuel cell 6 includes a plurality of stacked solid oxide fuel cells (not shown). This solid oxide fuel cell 6 uses the reformed gas G3 supplied from the reformer 2 through the reformed gas supply line L2 as fuel, and generates power by using a plurality of stacked solid oxide fuel cells. The solid oxide fuel cell includes an anode, a cathode, and an electrolyte layer provided between the anode and the cathode. The electrolyte layer conducts oxide ions at a temperature of 800 ° C to 1000 ° C. The anode generates electrons and water by reacting oxide ions with hydrogen in the reformed gas G3. The cathode reacts oxygen and electrons in the air to generate oxide ions.

第1の検出手段7は、未改質ガス供給ラインL1の途中に設けられている。第1の検出手段7は、未改質ガスG2の温度又は圧力を検出した結果を制御手段5に送信する。   The first detection means 7 is provided in the middle of the unreformed gas supply line L1. The first detection means 7 transmits the result of detecting the temperature or pressure of the unreformed gas G2 to the control means 5.

第2の検出手段8は、改質ガス供給ラインL2の途中に設けられている。第2の検出手段8は、改質ガスG3の温度又は圧力を検出した結果を制御手段5に送信する。   The second detection means 8 is provided in the middle of the reformed gas supply line L2. The second detection means 8 transmits the result of detecting the temperature or pressure of the reformed gas G3 to the control means 5.

ここで、制御手段5について説明するために用いた比率S/Cの通常値及び高設定値という用語について説明する。図2は、S/Cの値と水素又は一酸化炭素の生成量との関係を示すグラフである。図3は、S/Cの値と各反応生成物の選択率(モル%)との関係を示すグラフである。
S/Cの通常値は、さまざまなS/Cの値で水蒸気改質反応の平衡計算を行った場合に、水素の選択率(反応生成物中に占める水素の割合)が高く、かつ、単位原燃料ガスあたりの水素の生成量が多くなるS/C値として決定される。
一方、S/Cの高設定値は、同様の平衡計算を行ったときに、通常値に比して水素の選択率は低くなるものの、炭素の選択率を低く抑えることのできるS/C値として決定される。
Here, the terms “normal value” and “high setting value” of the ratio S / C used to describe the control means 5 will be described. FIG. 2 is a graph showing the relationship between the value of S / C and the amount of hydrogen or carbon monoxide produced. FIG. 3 is a graph showing the relationship between the S / C value and the selectivity (mol%) of each reaction product.
The normal value of S / C is high in hydrogen selectivity (ratio of hydrogen in the reaction product) when the equilibrium calculation of the steam reforming reaction is performed at various S / C values, and the unit It is determined as the S / C value that increases the amount of hydrogen produced per raw fuel gas.
On the other hand, the high setting value of S / C is the S / C value that can keep the selectivity of carbon low, although the hydrogen selectivity is lower than the normal value when the same equilibrium calculation is performed. As determined.

具体的には、S/Cの通常値及び高設定値は、原燃料ガスG1であるメタン1kmolと水蒸気S1との800℃における水蒸気改質反応の平衡計算を行い、S/Cの値と反応生成物の生成量との関係、及びS/Cの値と反応生成物の選択率との関係に基づいて決定する。   Specifically, the normal value and the high set value of S / C are calculated by performing an equilibrium calculation of a steam reforming reaction at 800 ° C. between 1 kmol of methane, which is the raw fuel gas G1, and steam S1, and reacting with the value of S / C. It is determined based on the relationship between the amount of product produced and the relationship between the S / C value and the selectivity of the reaction product.

図2及び図3に示す結果から、S/Cの値が大きくなるほど、単位原燃料ガスあたりの水素の生成量は多くなるが(図2参照)、水素の選択率は低くなる(図3参照)。炭素の選択率は、S/Cの値が3未満の場合には、S/Cの値が小さくなるにつれて増加幅が大きくなり、炭素の析出が起こりやすくなることがわかる。一方、炭素の選択率は、S/Cの値が3以上の場合には、S/Cの値が大きくなるにつれて低くなる。
よって、S/Cの通常値としては、例えば、2〜3が挙げられ、好ましくは2.5〜3である。一方、S/Cの高設定値としては、例えば、3〜7が挙げられ、好ましくは5〜6である。S/Cの通常値が上記の範囲内であると、改質触媒への炭素の析出は生じるものの、改質器2を用いて高い収率で水素を生成することができる。また、S/Cの高設定値が上記の範囲内であると、水素の選択率は低くなるが、水素の生成を中断することなく、改質触媒に析出した炭素の酸化除去を行うことができる。
From the results shown in FIGS. 2 and 3, as the S / C value increases, the amount of hydrogen produced per unit raw fuel gas increases (see FIG. 2), but the hydrogen selectivity decreases (see FIG. 3). ). It can be seen that when the S / C value is less than 3, the increase in the carbon selectivity increases as the S / C value decreases, and carbon deposition tends to occur. On the other hand, when the S / C value is 3 or more, the carbon selectivity decreases as the S / C value increases.
Therefore, as a normal value of S / C, 2-3 is mentioned, for example, Preferably it is 2.5-3. On the other hand, as a high setting value of S / C, 3-7 are mentioned, for example, Preferably it is 5-6. When the normal value of S / C is within the above range, carbon is precipitated on the reforming catalyst, but hydrogen can be generated with a high yield using the reformer 2. Further, when the high set value of S / C is within the above range, the hydrogen selectivity is lowered, but the carbon deposited on the reforming catalyst can be removed by oxidation without interrupting the production of hydrogen. it can.

次に、本発明の一実施形態に係る燃料電池システムの動作について図4を参照しながら説明する。   Next, the operation of the fuel cell system according to one embodiment of the present invention will be described with reference to FIG.

図4に示すステップST1において、制御手段5は、S/Cが通常値となるように、原燃料ガス供給手段3及び水蒸気供給手段4を制御する。具体的には、制御手段5は、原燃料ガス供給手段3による原燃料ガスG1の供給量及び水蒸気供給手段4による水蒸気S1の供給量の少なくとも一方を制御することにより、S/Cを通常値に設定する。   In step ST1 shown in FIG. 4, the control means 5 controls the raw fuel gas supply means 3 and the water vapor supply means 4 so that S / C becomes a normal value. Specifically, the control means 5 controls S / C to a normal value by controlling at least one of the supply amount of the raw fuel gas G1 by the raw fuel gas supply means 3 and the supply amount of the water vapor S1 by the water vapor supply means 4. Set to.

ステップST2において、制御手段5は、第1の検出手段7及び第2の検出手段8により検出された温度又は圧力に基づき、未改質ガスG2と改質ガスG3との間の温度差又は圧力差が所定の範囲外であるか否かを判定する。ステップST2において、制御手段5により、上記温度差又は圧力差が所定の範囲外である(YES)と判定された場合に、処理はステップST3へ移行する。また、ステップST2において、制御手段5により、上記温度差又は圧力差が所定の範囲外ではない(NO)と判定された場合に、処理はステップST2へ戻る。   In step ST2, the control means 5 determines the temperature difference or pressure between the unreformed gas G2 and the reformed gas G3 based on the temperature or pressure detected by the first detection means 7 and the second detection means 8. It is determined whether or not the difference is outside a predetermined range. In step ST2, when the control means 5 determines that the temperature difference or pressure difference is outside the predetermined range (YES), the process proceeds to step ST3. In step ST2, when the control means 5 determines that the temperature difference or pressure difference is not outside the predetermined range (NO), the process returns to step ST2.

ステップST3において、制御手段5は、S/Cが高設定値となるように、原燃料ガス供給手段3及び水蒸気供給手段4を制御する。具体的には、制御手段5は、原燃料ガス供給手段3による原燃料ガスG1の供給量及び水蒸気供給手段4による水蒸気S1の供給量の少なくとも一方を制御することにより、S/Cを高設定値に設定する。   In step ST3, the control means 5 controls the raw fuel gas supply means 3 and the water vapor supply means 4 so that S / C becomes a high set value. Specifically, the control unit 5 sets S / C to a high level by controlling at least one of the supply amount of the raw fuel gas G1 by the raw fuel gas supply unit 3 and the supply amount of the water vapor S1 by the water vapor supply unit 4. Set to value.

ステップST4において、制御手段5は、第1の検出手段7及び第2の検出手段8により検出された温度又は圧力に基づき、未改質ガスG2と改質ガスG3との間の温度差又は圧力差が所定の範囲内であるか否かを判定する。ステップST4において、制御手段5により、上記温度差又は圧力差が所定の範囲内である(YES)と判定された場合に、処理はステップST1へ戻る。また、ステップST4において、制御手段5により、上記温度差又は圧力差が所定の範囲内ではない(NO)と判定された場合に、処理はステップST4へ戻る。   In step ST4, the control means 5 determines the temperature difference or pressure between the unreformed gas G2 and the reformed gas G3 based on the temperature or pressure detected by the first detection means 7 and the second detection means 8. It is determined whether or not the difference is within a predetermined range. In step ST4, when the control means 5 determines that the temperature difference or pressure difference is within a predetermined range (YES), the process returns to step ST1. In step ST4, when the control means 5 determines that the temperature difference or pressure difference is not within the predetermined range (NO), the process returns to step ST4.

ここで、ステップST2及びST4における「所定の範囲」について説明する。未改質ガスG2と改質ガスG3との間の温度差又は圧力差は、改質触媒に析出した炭素の量に応じて変動する。即ち、水蒸気改質反応は吸熱反応であるが、改質触媒に炭素が析出して水蒸気改質反応が起こりにくくなると、吸熱量が減り、上記温度差は小さくなる。また、炭素の析出により改質触媒には目詰まりが発生し、気体が改質触媒を通過しにくくなるため、未改質ガスG2の圧力が高まり、上記の圧力差は大きくなる。よって、上記温度差又は圧力差の測定値は、改質触媒に析出した炭素の量を反映している。ステップST2及びST4において、所定の範囲としては、例えば、改質触媒に析出した炭素の量が所定の閾値以下である場合に対応する上記温度差又は圧力差の範囲が挙げられる。   Here, the “predetermined range” in steps ST2 and ST4 will be described. The temperature difference or pressure difference between the unreformed gas G2 and the reformed gas G3 varies depending on the amount of carbon deposited on the reforming catalyst. That is, the steam reforming reaction is an endothermic reaction. However, when carbon is deposited on the reforming catalyst and the steam reforming reaction is less likely to occur, the endothermic amount is reduced and the temperature difference is reduced. Moreover, clogging occurs in the reforming catalyst due to the deposition of carbon, and it becomes difficult for gas to pass through the reforming catalyst. Therefore, the pressure of the unreformed gas G2 increases, and the pressure difference becomes larger. Therefore, the measured value of the temperature difference or pressure difference reflects the amount of carbon deposited on the reforming catalyst. In steps ST2 and ST4, examples of the predetermined range include the temperature difference or pressure difference range corresponding to the case where the amount of carbon deposited on the reforming catalyst is equal to or less than a predetermined threshold.

本発明の一実施形態に係る燃料電池システム1によれば、例えば、以下のような効果が奏される。
図3に示すように、S/Cの値が小さいほど、水素の選択率が高い。よって、S/Cを通常値に設定して燃料電池システム1を運転することにより、未改質ガスG2と改質ガスG3との間の温度差又は圧力差が所定の範囲外となるまでは改質器2を用いて高い収率で水素を生成しつつ、高い効率で固体酸化物形燃料電池6による発電を行うことができる。その間に改質触媒に析出した炭素は、前記温度差又は圧力差が前記所定の範囲外となってS/Cが通常値から高設定値に切り替わった後で、酸化除去される。S/Cの値が通常値である場合と比較すると、S/Cの値が高設定値である場合には、水素の選択率が低くなるものの、水素は生成されているので、固体酸化物形燃料電池6による発電を中断することなく、改質触媒に析出した炭素の酸化除去を行うことができる。
According to the fuel cell system 1 according to an embodiment of the present invention, for example, the following effects are exhibited.
As shown in FIG. 3, the smaller the value of S / C, the higher the hydrogen selectivity. Therefore, by operating the fuel cell system 1 with S / C set to a normal value, until the temperature difference or pressure difference between the unreformed gas G2 and the reformed gas G3 is outside a predetermined range. Power generation by the solid oxide fuel cell 6 can be performed with high efficiency while generating hydrogen with a high yield using the reformer 2. The carbon deposited on the reforming catalyst during that time is removed by oxidation after the temperature difference or pressure difference is outside the predetermined range and the S / C is switched from the normal value to the high set value. Compared with the case where the value of S / C is a normal value, when the value of S / C is a high setting value, the hydrogen selectivity is lowered, but hydrogen is generated, so that the solid oxide The carbon deposited on the reforming catalyst can be oxidized and removed without interrupting the power generation by the fuel cell 6.

このように、燃料電池システム1では、未改質ガスG2と改質ガスG3との間の温度差又は圧力差に基づいて、現実に炭素が改質触媒に析出しているか否かをモニターしながら、S/Cの切り替えを行うことができる。よって、炭素の酸化除去が完了しているにもかかわらず、S/Cを高設定値に設定したまま運転を続けたり、改質触媒に析出した炭素がまだ残っているにもかかわらず、S/Cを通常値に戻したりしてしまうという不都合を解消することができる。   Thus, the fuel cell system 1 monitors whether carbon is actually deposited on the reforming catalyst based on the temperature difference or pressure difference between the unreformed gas G2 and the reformed gas G3. However, S / C switching can be performed. Therefore, even though the oxidative removal of carbon has been completed, the operation is continued with the S / C set to a high setting value, or the carbon deposited on the reforming catalyst still remains. The inconvenience of returning / C to the normal value can be solved.

なお、図1において、未改質ガス供給ラインL1の途中に設けられた第1の検出手段7を用いる代わりに、原燃料ガス供給ラインL3の途中に設けられた第1の検出手段7a(図示せず。説明の便宜上の符号である。)と水蒸気供給ラインL4の途中に設けられた第1の検出手段7b(図示せず)とからなる第1の検出手段を用いてもよい。第1の検出手段7aは、原燃料ガスG1の温度又は圧力を検出し、第1の検出手段7bは、水蒸気S1の温度又は圧力を検出する。原燃料ガスG1の温度又は圧力の検出結果と、水蒸気S1の温度又は圧力の検出結果とから、原燃料ガスG1と水蒸気S1との混合ガスである未改質ガスG2の温度又は圧力を計算することができる。このように、第1の検出手段は、未改質ガスG2の温度又は圧力を直接検出してもよいし、原燃料ガスG1の温度又は圧力の検出結果と水蒸気S1の温度又は圧力の検出結果とから計算により未改質ガスG2の温度又は圧力を検出してもよい。   In FIG. 1, instead of using the first detection means 7 provided in the middle of the unreformed gas supply line L1, first detection means 7a (in the figure) provided in the middle of the raw fuel gas supply line L3. (It is not shown. It is a code | symbol for the convenience of description.), You may use the 1st detection means which consists of the 1st detection means 7b (not shown) provided in the middle of the water vapor | steam supply line L4. The first detection means 7a detects the temperature or pressure of the raw fuel gas G1, and the first detection means 7b detects the temperature or pressure of the water vapor S1. From the detection result of the temperature or pressure of the raw fuel gas G1 and the detection result of the temperature or pressure of the steam S1, the temperature or pressure of the unreformed gas G2, which is a mixed gas of the raw fuel gas G1 and the steam S1, is calculated. be able to. Thus, the first detection means may directly detect the temperature or pressure of the unreformed gas G2, or the detection result of the temperature or pressure of the raw fuel gas G1 and the detection result of the temperature or pressure of the steam S1. From the above, the temperature or pressure of the unreformed gas G2 may be detected by calculation.

また、S/Cの高設定値を複数設定してもよい。複数設定した高設定値のうち、最も低い高設定値で燃料電池システム1を運転し、析出炭素の酸化除去を図っても、所定時間経過後に、未改質ガスG2と改質ガスG3との間の温度差又は圧力差が所定の範囲内ではないと制御手段5により判定された場合には、もう一段高い高設定値に切り替えて燃料電池システム1を運転し、上記温度差又は圧力差が所定の範囲内であると制御手段5により判定されるまでこの操作を繰り返してもよい。   A plurality of high setting values of S / C may be set. Even if the fuel cell system 1 is operated at the lowest high setting value among a plurality of high setting values and the deposited carbon is removed by oxidation, after the predetermined time has elapsed, the unreformed gas G2 and the reformed gas G3 When the control means 5 determines that the temperature difference or pressure difference between them is not within the predetermined range, the fuel cell system 1 is operated by switching to a higher setting value, and the temperature difference or pressure difference is This operation may be repeated until the control means 5 determines that it is within the predetermined range.

[改質器システム]
本発明の一実施形態に係る改質器システムは、図1に示す改質器システム10である。改質器システム10は、改質器2と、原燃料ガス供給手段3と、水蒸気供給手段4と、制御手段5と、第1の検出手段7と、第2の検出手段8と、を備え、本発明の一実施形態に係る燃料電池システム1に包含される。
[Reformer system]
A reformer system according to an embodiment of the present invention is a reformer system 10 shown in FIG. The reformer system 10 includes a reformer 2, raw fuel gas supply means 3, steam supply means 4, control means 5, first detection means 7, and second detection means 8. Included in the fuel cell system 1 according to an embodiment of the present invention.

[燃料電池システムの運転方法]
本発明の一実施形態に係る燃料電池システム1によれば、未改質ガスG2と改質ガスG3との間の温度差又は圧力差が所定の範囲内である場合にはS/Cを通常値に設定し、上記温度差又は圧力差が上記所定の範囲外である場合にはS/Cを高設定値に設定する燃料電池システムの運転方法を実施することができる。
[Operation method of fuel cell system]
According to the fuel cell system 1 according to an embodiment of the present invention, when the temperature difference or pressure difference between the unreformed gas G2 and the reformed gas G3 is within a predetermined range, S / C is normally set. When the temperature difference or the pressure difference is outside the predetermined range, the fuel cell system operating method can be implemented in which the S / C is set to a high set value.

1 燃料電池システム
2 改質器
3 原燃料ガス供給手段
4 水蒸気供給手段
5 制御手段
6 固体酸化物形燃料電池
7 第1の検出手段
8 第2の検出手段
10 改質器システム
L1 未改質ガス供給ライン
L2 改質ガス供給ライン
L3 原燃料ガス供給ライン
L4 水蒸気供給ライン
DESCRIPTION OF SYMBOLS 1 Fuel cell system 2 Reformer 3 Raw fuel gas supply means 4 Water vapor supply means 5 Control means 6 Solid oxide fuel cell 7 First detection means 8 Second detection means 10 Reformer system L1 Unreformed gas Supply line L2 Reformed gas supply line L3 Raw fuel gas supply line L4 Steam supply line

Claims (3)

原燃料ガスG1と水蒸気S1との混合ガスである未改質ガスG2を改質触媒と接触させることにより、固体酸化物形燃料電池の燃料として用いられる改質ガスG3を生成する改質器を備える改質器システムであって、
前記改質器に原燃料ガスG1を供給する原燃料ガスG1供給手段と、
前記改質器に水蒸気S1を供給する水蒸気S1供給手段と、
前記原燃料ガスG1供給手段及び前記水蒸気S1供給手段を制御する制御手段と、
前記未改質ガスG2の温度又は圧力を検出する第1の検出手段と、
前記改質ガスG3の温度又は圧力を検出する第2の検出手段と、
を備え、
前記制御手段は、前記第1及び第2の検出手段により検出された温度又は圧力に基づき、前記未改質ガスG2と前記改質ガスG3との間の温度差又は圧力差が所定の範囲内である場合には、前記改質器に供給される水蒸気S1の量Sと前記改質器に供給される原燃料ガスG1の量Cとの比率S/Cが通常値となり、前記温度差又は圧力差が前記所定の範囲外である場合にはS/Cが前記通常値よりも高い少なくとも1種の高設定値となるように、前記原燃料ガスG1供給手段及び前記水蒸気S1供給手段を制御する改質器システム。
A reformer that generates reformed gas G3 used as fuel for a solid oxide fuel cell by bringing unreformed gas G2 that is a mixed gas of raw fuel gas G1 and water vapor S1 into contact with a reforming catalyst. A reformer system comprising:
Raw fuel gas G1 supply means for supplying raw fuel gas G1 to the reformer;
Steam S1 supply means for supplying steam S1 to the reformer;
Control means for controlling the raw fuel gas G1 supply means and the water vapor S1 supply means;
First detection means for detecting the temperature or pressure of the unreformed gas G2,
Second detection means for detecting the temperature or pressure of the reformed gas G3;
With
Based on the temperature or pressure detected by the first and second detection means, the control means has a temperature difference or pressure difference between the unreformed gas G2 and the reformed gas G3 within a predetermined range. In this case, the ratio S / C between the amount S of the steam S1 supplied to the reformer and the amount C of the raw fuel gas G1 supplied to the reformer becomes a normal value, and the temperature difference or When the pressure difference is outside the predetermined range, the raw fuel gas G1 supply means and the steam S1 supply means are controlled so that S / C becomes at least one high set value higher than the normal value. Reformer system.
原燃料ガスG1と水蒸気S1との混合ガスである未改質ガスG2を改質触媒と接触させることにより改質ガスG3を生成する改質器と、前記改質ガスG3を燃料として用いる固体酸化物形燃料電池と、を備える燃料電池システムであって、
前記改質器に原燃料ガスG1を供給する原燃料ガスG1供給手段と、
前記改質器に水蒸気S1を供給する水蒸気S1供給手段と、
前記原燃料ガスG1供給手段及び前記水蒸気S1供給手段を制御する制御手段と、
前記未改質ガスG2の温度又は圧力を検出する第1の検出手段と、
前記改質ガスG3の温度又は圧力を検出する第2の検出手段と、
を備え、
前記制御手段は、前記第1及び第2の検出手段により検出された温度又は圧力に基づき、前記未改質ガスG2と前記改質ガスG3との間の温度差又は圧力差が所定の範囲内である場合には、前記改質器に供給される水蒸気S1の量Sと前記改質器に供給される原燃料ガスG1の量Cとの比率S/Cが通常値となり、前記温度差又は圧力差が前記所定の範囲外である場合にはS/Cが前記通常値よりも高い少なくとも1種の高設定値となるように、前記原燃料ガスG1供給手段及び前記水蒸気S1供給手段を制御する燃料電池システム。
A reformer that generates reformed gas G3 by bringing unreformed gas G2 that is a mixed gas of raw fuel gas G1 and water vapor S1 into contact with a reforming catalyst, and solid oxidation that uses the reformed gas G3 as fuel A fuel cell system comprising a physical fuel cell,
Raw fuel gas G1 supply means for supplying raw fuel gas G1 to the reformer;
Steam S1 supply means for supplying steam S1 to the reformer;
Control means for controlling the raw fuel gas G1 supply means and the water vapor S1 supply means;
First detection means for detecting the temperature or pressure of the unreformed gas G2,
Second detection means for detecting the temperature or pressure of the reformed gas G3;
With
Based on the temperature or pressure detected by the first and second detection means, the control means has a temperature difference or pressure difference between the unreformed gas G2 and the reformed gas G3 within a predetermined range. In this case, the ratio S / C between the amount S of the steam S1 supplied to the reformer and the amount C of the raw fuel gas G1 supplied to the reformer becomes a normal value, and the temperature difference or When the pressure difference is outside the predetermined range, the raw fuel gas G1 supply means and the steam S1 supply means are controlled so that S / C becomes at least one high set value higher than the normal value. Fuel cell system.
原燃料ガスG1と水蒸気S1との混合ガスである未改質ガスG2を改質触媒と接触させることにより改質ガスG3を生成する改質器と、前記改質ガスG3を燃料として用いる固体酸化物形燃料電池と、を備える燃料電池システムの運転方法であって、
前記未改質ガスG2と前記改質ガスG3との間の温度差又は圧力差が所定の範囲内である場合には、前記改質器に供給される水蒸気S1の量Sと前記改質器に供給される原燃料ガスG1の量Cとの比率S/Cを通常値に設定し、前記温度差又は圧力差が前記所定の範囲外である場合にはS/Cを前記通常値よりも高い少なくとも1種の高設定値に設定する運転方法。
A reformer that generates reformed gas G3 by bringing unreformed gas G2 that is a mixed gas of raw fuel gas G1 and water vapor S1 into contact with a reforming catalyst, and solid oxidation that uses the reformed gas G3 as fuel A fuel cell system comprising a physical fuel cell, comprising:
When the temperature difference or pressure difference between the unreformed gas G2 and the reformed gas G3 is within a predetermined range, the amount S of steam S1 supplied to the reformer and the reformer The ratio S / C with the amount C of the raw fuel gas G1 supplied to is set to a normal value, and when the temperature difference or the pressure difference is outside the predetermined range, the S / C is set to be lower than the normal value. An operation method in which at least one high set value is set.
JP2012065827A 2012-03-22 2012-03-22 Reformer system, fuel cell system, and operation method thereof Expired - Fee Related JP6135039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012065827A JP6135039B2 (en) 2012-03-22 2012-03-22 Reformer system, fuel cell system, and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012065827A JP6135039B2 (en) 2012-03-22 2012-03-22 Reformer system, fuel cell system, and operation method thereof

Publications (2)

Publication Number Publication Date
JP2013197037A true JP2013197037A (en) 2013-09-30
JP6135039B2 JP6135039B2 (en) 2017-05-31

Family

ID=49395719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012065827A Expired - Fee Related JP6135039B2 (en) 2012-03-22 2012-03-22 Reformer system, fuel cell system, and operation method thereof

Country Status (1)

Country Link
JP (1) JP6135039B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020019661A (en) * 2018-07-30 2020-02-06 三菱重工業株式会社 Reforming system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222261A (en) * 1995-02-20 1996-08-30 Toshiba Corp Fuel cell power generation system
JPH09199153A (en) * 1996-01-11 1997-07-31 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generating apparatus and deterioration detecting method for its reforming device
JP2000063104A (en) * 1998-08-12 2000-02-29 Honda Motor Co Ltd Fuel reforming apparatus and control thereof
JP2002134151A (en) * 2000-10-24 2002-05-10 Toyota Motor Corp Removing of precipitated carbon in reformer
US20030008186A1 (en) * 2001-06-26 2003-01-09 Dickman Anthony J. Fuel processor feedstock delivery system
JP2004247212A (en) * 2003-02-14 2004-09-02 Corona Corp Reforming catalyst regeneration method of fuel cell system
JP2005320212A (en) * 2004-05-11 2005-11-17 Honda Motor Co Ltd Method for manufacturing hydrogen
JP2006302881A (en) * 2005-03-25 2006-11-02 Kyocera Corp Fuel cell assembly
JP2010170900A (en) * 2009-01-23 2010-08-05 Osaka Gas Co Ltd Solid oxide fuel cell

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222261A (en) * 1995-02-20 1996-08-30 Toshiba Corp Fuel cell power generation system
JPH09199153A (en) * 1996-01-11 1997-07-31 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generating apparatus and deterioration detecting method for its reforming device
JP2000063104A (en) * 1998-08-12 2000-02-29 Honda Motor Co Ltd Fuel reforming apparatus and control thereof
JP2002134151A (en) * 2000-10-24 2002-05-10 Toyota Motor Corp Removing of precipitated carbon in reformer
US20030008186A1 (en) * 2001-06-26 2003-01-09 Dickman Anthony J. Fuel processor feedstock delivery system
JP2004247212A (en) * 2003-02-14 2004-09-02 Corona Corp Reforming catalyst regeneration method of fuel cell system
JP2005320212A (en) * 2004-05-11 2005-11-17 Honda Motor Co Ltd Method for manufacturing hydrogen
JP2006302881A (en) * 2005-03-25 2006-11-02 Kyocera Corp Fuel cell assembly
JP2010170900A (en) * 2009-01-23 2010-08-05 Osaka Gas Co Ltd Solid oxide fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020019661A (en) * 2018-07-30 2020-02-06 三菱重工業株式会社 Reforming system
JP7173777B2 (en) 2018-07-30 2022-11-16 三菱重工業株式会社 reforming system

Also Published As

Publication number Publication date
JP6135039B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
JP4499701B2 (en) Fuel reforming system having movable heat source and fuel cell system having the same
CN101668698B (en) Reforming system, fuel cell system, and its operation method
US9966620B2 (en) Hydrogen generator and fuel cell system
JP2008166289A (en) Solid oxide fuel cell system
JP5214076B1 (en) Hydrogen generator and fuel cell system
JP5230849B2 (en) Hydrogen generator, fuel cell system, and operation method thereof
US20090291336A1 (en) Solid oxide fuel cell system and its operating method
JP5536636B2 (en) Fuel cell system
JP2018010860A (en) Fuel cell system and method for operating the same
JP6135039B2 (en) Reformer system, fuel cell system, and operation method thereof
JP5134251B2 (en) Reformer system, fuel cell system, and operation method thereof
JP5098073B2 (en) Energy station
JP4896901B2 (en) Solid oxide fuel cell system
US9184455B2 (en) Fuel cell system and method of operating the same
JP5271522B2 (en) FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
JP2013218850A (en) Fuel cell system and method for operating the same
JP2017039627A (en) Hydrogen generator, and fuel cell system and operation method thereof
US20090035621A1 (en) Process for generating electricity and hydrogen that comprises a hybrid reformer
JP5557260B2 (en) Operating temperature control method for solid oxide fuel cell system
CN102834960A (en) Fuel cell system, reformer system, and method for driving fuel cell system
JP5248935B2 (en) Operation method of oxidation autothermal reformer
JP2019202898A (en) Hydrogen generator, fuel cell system using the same, and operation method therefor
JP2006261007A (en) Hydrogen generator and fuel cell system
JP2012142125A (en) Fuel cell system
JP2018135221A (en) Hydrogen generation device, and operation method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170410

R150 Certificate of patent or registration of utility model

Ref document number: 6135039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees