JP2002255506A - Production method for high purity hydrogen from heavy hydrocarbon fuel and its apparatus - Google Patents

Production method for high purity hydrogen from heavy hydrocarbon fuel and its apparatus

Info

Publication number
JP2002255506A
JP2002255506A JP2001049726A JP2001049726A JP2002255506A JP 2002255506 A JP2002255506 A JP 2002255506A JP 2001049726 A JP2001049726 A JP 2001049726A JP 2001049726 A JP2001049726 A JP 2001049726A JP 2002255506 A JP2002255506 A JP 2002255506A
Authority
JP
Japan
Prior art keywords
hydrogen
reforming
steam
reaction
heavy hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001049726A
Other languages
Japanese (ja)
Inventor
Katsumi Moroga
勝巳 諸我
Tadaaki Shimizu
忠明 清水
Nariyuki Uemiya
成之 上宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2001049726A priority Critical patent/JP2002255506A/en
Publication of JP2002255506A publication Critical patent/JP2002255506A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a production method and an apparatus therefor which manufacture high purity hydrogen easily and certainly from a heavy hydrocarbon fuel. SOLUTION: A first stage steam reforming part 1 carries out a steam reforming reaction by adding steam to a desulfurized heavy hydrocarbon fuel with a first reforming catalyst 2, and the generated gas which is generated in the first stage steam reforming part 1 comes to an equilibrium state with a shift reaction and a methanation reaction having a second reforming catalyst 6 and a hydrogen selective permeable membrane 7, and in this state, only hydrogen is extracted from the reaction field, and a second stage reforming part 5 depresses a hydrogen partial pressure by adding steam to the side of this extracted hydrogen, and a vapor-liquid separator 10 removes the steam added to the extracted hydrogen by cooling. The high purity hydrogen can be manufactured from the heavy hydrocarbon fuel by the second stage reforming, easily and on a large scale, and it is easily used for fuel cells, or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、重質炭化水素燃
料から水蒸気改質反応によって水素を製造する方法及び
装置に関し、特に灯油、ナフサ、ガソリン等の重質炭化
水素燃料から高純度の水素を収率良く製造する方法及び
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing hydrogen from a heavy hydrocarbon fuel by a steam reforming reaction, and more particularly to a method for producing high-purity hydrogen from a heavy hydrocarbon fuel such as kerosene, naphtha and gasoline. The present invention relates to a method and an apparatus for producing with high yield.

【0002】[0002]

【従来の技術】従来よりこの種のものに於いては、図2
に示すように、ニッケル系や貴金属系の触媒を有し、燃
焼部101からの熱供給を受けて650℃〜850℃に
加熱される改質部102に、脱硫した重質炭化水素燃料
及び水蒸気を供給し、ここで水蒸気改質を行った後、こ
の水蒸気改質で生成した生成ガスを一旦200℃〜30
0℃に冷却してから、COシフト部103で銅―亜鉛系
触媒を通すことで、COとH2OをH2とCO2に変換
するものであり、更にその後100℃〜150℃に冷却
してCO酸化部104では、貴金属系等の触媒を通すこ
とで、残っているCOを更にCO2に変換し、水素と各
ガスが混在した状態で燃料電池等の水素利用部105に
供給されるものであった。
2. Description of the Related Art Conventionally, in this kind, FIG.
As shown in FIG. 2, a desulfurized heavy hydrocarbon fuel and steam are supplied to a reforming unit 102 having a nickel-based or noble metal-based catalyst and being heated to 650 ° C. to 850 ° C. by receiving heat supply from a combustion unit 101. After steam reforming is performed here, the generated gas generated by the steam reforming is temporarily cooled to 200 ° C. to 30 ° C.
After cooling to 0 ° C., CO and H 2 O are converted into H 2 and CO 2 by passing through a copper-zinc catalyst in the CO shift unit 103, and then cooled to 100 ° C. to 150 ° C. to oxidize CO. In the unit 104, the remaining CO is further converted to CO2 by passing through a catalyst such as a noble metal system, and supplied to the hydrogen utilization unit 105 such as a fuel cell in a state where hydrogen and each gas are mixed. .

【0003】以下は表1は、この従来例の製造例を示す
ものである。但し、簡単の為これらの計算上、改質部の
燃料の転化率は100%、燃焼排ガスからの排熱以外の
熱ロスを無視、熱回収における熱交換率は100%と仮
定している。
[0003] Table 1 below shows an example of the production of this conventional example. However, for the sake of simplicity, in these calculations, it is assumed that the fuel conversion rate in the reforming section is 100%, heat loss other than exhaust heat from combustion exhaust gas is ignored, and the heat exchange rate in heat recovery is 100%.

【表1】 [Table 1]

【0004】又これとは別に、例えば特開平4−321
502号公報に開示されている如く、パラジュウム合金
の水素選択透過膜を有した改質器で、透過膜下流に水蒸
気等の不活性ガスを供給しながら平衡反応を行わせて、
都市ガス等の炭化水素から水素を製造するものもあっ
た。
On the other hand, for example, Japanese Patent Laid-Open No. 4-321
As disclosed in JP-B-502, a reformer having a hydrogen selective permeable membrane of a palladium alloy is used to perform an equilibrium reaction while supplying an inert gas such as steam downstream of the permeable membrane.
Some produced hydrogen from hydrocarbons such as city gas.

【0005】[0005]

【発明が解決しようとする課題】ところで、先ず図2に
示す前者に於いては、CO酸化部104では水素も一部
酸化されてしまい水素の収率を低下させるものであり、
しかも水素利用部105へは水素だけでなく他のガスも
供給され、これを除去する為に特別な装置が必要となっ
たり、又特にCOが混入した場合、固体高分子型燃料電
池では電極部分が被毒する原因になるものであった。
By the way, first, in the former shown in FIG. 2, hydrogen is partially oxidized in the CO oxidizing section 104, thereby lowering the yield of hydrogen.
In addition, not only hydrogen but also other gases are supplied to the hydrogen utilization unit 105, and a special device is required to remove the gas. Also, particularly when CO is mixed, the electrode portion is not used in the polymer electrolyte fuel cell. Was a cause of poisoning.

【0006】又後者に於いては、上記のような欠点は解
消されるが、この構成は燃料を炭化水素として限定して
いないが、都市ガスをメインに考えており、これをその
まま灯油等の重質炭化水素燃料に適応すると多々問題が
ある。例えば、灯油の水蒸気改質に於いて、改質中に水
素を抜くと改質ガス中の水素分圧が低下し、燃料の脱水
素反応が過度に促進され、炭素の析出を引き起こし易く
改質触媒の劣化につながる。更に同様の原因で先のメタ
ン転化率が低下した場合、メタン以外炭化水素成分がパ
ラジュウム合金製の水素選択透過膜表面に吸着し、水素
透過性能の劣化を引き起こすと言う問題点を有するもの
であった。
[0006] In the latter, the above-mentioned disadvantages are solved, but this configuration does not limit the fuel to hydrocarbons, but mainly considers city gas, which is directly used for kerosene or the like. There are many problems when applied to heavy hydrocarbon fuels. For example, in steam reforming of kerosene, if hydrogen is removed during reforming, the hydrogen partial pressure in the reformed gas will decrease, and the dehydrogenation reaction of the fuel will be excessively promoted, which will easily cause carbon deposition and reforming. This leads to catalyst deterioration. Further, when the methane conversion rate is reduced for the same reason, there is a problem that hydrocarbon components other than methane are adsorbed on the surface of the hydrogen selective permeable membrane made of a palladium alloy, causing deterioration of the hydrogen permeable performance. Was.

【0007】[0007]

【課題を解決するための手段】この発明はこの点に着目
し上記課題を解決するため、特にその構成を、脱硫した
重質炭化水素燃料に水蒸気を添加して、重質炭化水素燃
料を複数のガスに分解する水蒸気改質反応を行う水蒸気
改質工程と、前記水蒸気改質工程による生成ガスを、シ
フト反応及びメタン化反応させ平衡状態とし、この状態
で水素のみを反応場から抜くと共に、この抜いた水素側
に水蒸気を添加して水素分圧を下げる平衡反応工程と、
前記抜いた水素に添加した水蒸気を取り除く冷却工程と
を有し、2段階改質を行うようにしたものである。
In order to solve the above-mentioned problems, the present invention focuses on this point. In particular, the present invention is directed to a method of adding a plurality of heavy hydrocarbon fuels by adding steam to a desulfurized heavy hydrocarbon fuel. A steam reforming step of performing a steam reforming reaction to decompose into a gas, and a gas produced by the steam reforming step is subjected to a shift reaction and a methanation reaction to be in an equilibrium state, and only hydrogen is removed from the reaction field in this state, An equilibrium reaction step of adding water vapor to the withdrawn hydrogen side to lower the hydrogen partial pressure;
A cooling step of removing steam added to the extracted hydrogen, and performing a two-stage reforming.

【0008】又第1改質触媒を有し脱硫した重質炭化水
素燃料に水蒸気を添加して水蒸気改質反応を行う改質一
段部と、前記改質一段部で生成された生成ガスを、第2
改質触媒及び水素選択透過膜を有し、シフト反応及びメ
タン化反応させ平衡状態とし、この状態で水素のみを反
応場から抜くと共に、この抜いた水素側に水蒸気を添加
して水素分圧を下げる改質二段部と、前記抜いた水素に
添加した水蒸気を冷却して取り除く気液分離器とを備
え、2段階改質を行うようにしたものである。
[0008] Further, a first-stage reforming section for performing steam reforming reaction by adding steam to a desulfurized heavy hydrocarbon fuel having a first reforming catalyst, and a product gas generated in the first-stage reforming section, Second
It has a reforming catalyst and a hydrogen selective permeable membrane, and performs a shift reaction and a methanation reaction to make an equilibrium state. In this state, only hydrogen is extracted from the reaction field, and steam is added to the extracted hydrogen side to reduce the hydrogen partial pressure. It is provided with a reforming two-stage section and a gas-liquid separator that cools and removes the steam added to the extracted hydrogen, and performs two-step reforming.

【0009】[0009]

【発明の実施の形態】脱硫した重質炭化水素燃料例えば
灯油と水蒸気とを加圧ポンプ4により系内へ導入し、第
1改質触媒2を有した改質一段部1で水蒸気改質し、こ
こで生成された生成ガスを、第2改質触媒7及び水素選
択透過膜8を有した改質二段部5で、一酸化炭素と水を
二酸化炭素と水素に転換するシフト反応と、メタンと水
を一酸化炭素と水素に転換するメタン化反応との平衡状
態とし、この高圧反応場から水素選択透過膜8により水
素のみを分離し、更にこの分離された下流側の水素に水
蒸気を添加して、水素分圧を下げることで更に水素が抜
けやすくし、最後に気液分離器で冷却して添加した水蒸
気を取り除くことで、収率よく水素のみを得ることが出
来、高純度水素8を燃料電池等の水素利用部11に供給
することが出来るものであり、この水素の大部分を抜い
た後の不透過ガスは、そのまま燃焼部3に供給され改質
一段部1及び改質二段部5を加熱する為の燃料に利用さ
れるものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A desulfurized heavy hydrocarbon fuel, for example, kerosene and steam are introduced into a system by a pressure pump 4 and steam-reformed in a first-stage reforming section 1 having a first reforming catalyst 2. A shift reaction of converting the generated gas into a second reforming section 5 having a second reforming catalyst 7 and a hydrogen selective permeable membrane 8 to convert carbon monoxide and water into carbon dioxide and hydrogen; Equilibrate with the methanation reaction to convert methane and water to carbon monoxide and hydrogen, separate only hydrogen from this high pressure reaction field by hydrogen selective permeable membrane 8, and further convert water vapor to the separated downstream hydrogen. By adding and lowering the partial pressure of hydrogen, hydrogen can be more easily released. Finally, by cooling with a gas-liquid separator to remove the added water vapor, only hydrogen can be obtained in high yield, and high-purity hydrogen can be obtained. 8 can be supplied to a hydrogen utilization unit 11 such as a fuel cell. The impermeable gas from which most of the hydrogen has been removed is directly supplied to the combustion unit 3 and used as fuel for heating the reforming first-stage unit 1 and the reforming second-stage unit 5. .

【0010】従って、水蒸気改質と水素を抜きながら平
衡反応を行う平衡改質の2段階改質で、改質を分けたこ
と、更に透過側の水素に水蒸気を添加して水素分圧を下
げることで、重質炭化水素燃料からでも比較的容易にし
かも多量の高純度の水素のみを収率良く製造することが
出来るものであり、又水素以外のガスが不具合を起こし
たり、水蒸気改質が良好に行えない等の不具合もないも
のである。
Therefore, the reforming is divided into two stages, namely, steam reforming and equilibrium reforming in which an equilibrium reaction is performed while removing hydrogen, and the partial pressure of hydrogen is reduced by adding steam to hydrogen on the permeation side. This makes it possible to relatively easily produce only a large amount of high-purity hydrogen from a heavy hydrocarbon fuel with a high yield. There are no problems such as poor performance.

【0011】[0011]

【実施例】次にこの発明に係る水素製造装置を図1に示
された一実施例で説明する。1は水蒸気改質工程を行う
改質一段部で、内部にはニッケル系或いは貴金属系の第
1改質触媒2が充填されており、燃焼部3からの熱供給
を受けて400℃〜600℃に加熱され、ここに脱硫し
た重質炭化水素燃料ここでは灯油蒸気が供給されると共
に、高温の水蒸気が供給されて、加圧ポンプ4で系内を
3気圧〜20気圧程度に加圧しながら水蒸気改質して主
にH2、CO、CO2、H2O、CH4の各生成ガスを
得る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A hydrogen production apparatus according to the present invention will be described with reference to an embodiment shown in FIG. Reference numeral 1 denotes a first-stage reforming section for performing a steam reforming step, which is filled with a nickel-based or noble metal-based first reforming catalyst 2 and receives heat supply from a combustion section 3 to reach 400 ° C. to 600 ° C. The fuel is heated to a desulfurized heavy hydrocarbon fuel, and here kerosene vapor is supplied, and high-temperature steam is supplied. The pressurized pump 4 pressurizes the system to about 3 to 20 atm. The reforming is performed to obtain mainly H2, CO, CO2, H2O, and CH4 product gases.

【0012】5は平衡反応工程を行う改質二段部で、改
質一段部1で生成された生成ガスを高圧のまま、更に温
度も維持したまま流入させ、内部にはニッケル系或いは
貴金属系の第2改質触媒6が充填されると共に、この第
2改質触媒6中に主にパラジュウム合金等の無機薄膜か
ら成る水素選択透過膜7が挿入されており、一酸化炭素
と水を二酸化炭素と水素に転換するシフト反応と、メタ
ンと水を一酸化炭素と水素に転換するメタン化反応の平
衡状態とし、これら平衡状態に於いて、水素のみを高圧
反応場から透過分離し、高純度水素8を取り出すもので
ある。
Reference numeral 5 denotes a reforming two-stage section for performing an equilibrium reaction step. The generated gas generated in the reforming first-stage section 1 is allowed to flow while maintaining a high pressure and further maintaining a temperature. And a hydrogen selective permeable membrane 7 mainly composed of an inorganic thin film such as a palladium alloy is inserted into the second reforming catalyst 6 to convert carbon monoxide and water into carbon dioxide. Equilibrium between the shift reaction to convert carbon and hydrogen and the methanation reaction to convert methane and water to carbon monoxide and hydrogen. In these equilibrium states, only hydrogen is permeated and separated from the high-pressure reaction field, resulting in high purity. This is for extracting hydrogen 8.

【0013】9は水循環回路で、冷却工程を行う気液分
離器10内の水を循環させる循環ポンプ11と、該循環
ポンプ11から水の供給を受ける水蒸発部12であり、
外部より熱供給を受けて、循環水はその熱で水蒸気に変
化し改質二段部5の水素選択透過膜7下流側の水蒸気噴
出部13より水蒸気を噴出し、第1冷却部14を通て冷
却され気液分離器10に戻る循環を順次行うものであ
る。尚、プロセス設計上、燃焼部3からの燃焼ガスエネ
ルギーが余剰の場合は、その熱を利用してもよいもので
ある。
Reference numeral 9 denotes a water circulation circuit, which includes a circulation pump 11 for circulating water in a gas-liquid separator 10 for performing a cooling process, and a water evaporator 12 for receiving a supply of water from the circulation pump 11.
Receiving heat supply from the outside, the circulating water is converted into steam by the heat, and steam is ejected from the steam ejection section 13 on the downstream side of the hydrogen selective permeable membrane 7 of the second reforming section 5, and passed through the first cooling section 14. The cooling is performed in order to return to the gas-liquid separator 10. When the combustion gas energy from the combustion unit 3 is excessive in the process design, the heat may be used.

【0014】又水素選択透過膜7を透過した水素は、水
蒸気が添加されることで、水素分圧が下がり、加圧され
ている上流から多量の水素が水素選択透過膜7を透過で
きることとなり、最後に冷却して水蒸気のみを気液分離
器10に戻し、高純度水素8を燃料電池等の水素利用部
15に供給するものである。
The hydrogen permeated through the hydrogen selective permeable membrane 7 is reduced in hydrogen partial pressure by the addition of water vapor, so that a large amount of hydrogen can pass through the hydrogen selective permeable membrane 7 from the pressurized upstream. Finally, only the water vapor is cooled and returned to the gas-liquid separator 10, and the high-purity hydrogen 8 is supplied to a hydrogen utilization unit 15 such as a fuel cell.

【0015】16は前記改質二段部5で残った不透過ガ
スを燃焼部3に供給して、燃料として燃焼させる供給路
である。
Reference numeral 16 denotes a supply path for supplying the non-permeate gas remaining in the second reforming section 5 to the combustion section 3 and burning it as fuel.

【0016】17は燃焼部1から排出される排気ガスを
冷却して排気温度を下げる第2冷却部である。又第1、
第2冷却部14、17は、主要なガスを冷却するだけで
なく、交換した熱を利用して、各部で使用される水や燃
料の気化に寄与し、無駄な放熱を防止して熱効率の良い
装置としているものである。
Reference numeral 17 denotes a second cooling unit for cooling the exhaust gas discharged from the combustion unit 1 to lower the exhaust gas temperature. First,
The second cooling units 14 and 17 not only cool the main gas, but also utilize the exchanged heat to contribute to the vaporization of water and fuel used in each unit, prevent wasteful heat radiation, and improve heat efficiency. It is a good device.

【0017】次にこの発明一実施例の作動について説明
する。脱硫した灯油蒸気及び水蒸気を改質一段部1に供
給し水蒸気改質が行われることで、
Next, the operation of the embodiment of the present invention will be described. By supplying the desulfurized kerosene steam and steam to the reforming first-stage unit 1 and performing steam reforming,

【式1】 の各ガスが生成され、そしてこの生成ガスは温度、圧力
を維持したまま改質二段部5に供給される。
(Equation 1) Are produced, and the produced gas is supplied to the reforming two-stage section 5 while maintaining the temperature and the pressure.

【0018】更に改質二段部5では、第2改質触媒6の
下で、
Further, in the second reforming section 5, below the second reforming catalyst 6,

【式2】 の平衡反応が支配的であるが、水素選択透過膜7の上流
側全て加圧することにより、改質二段部5から水素が抜
かれ、上の平衡反応がそれぞれ右側にずれ、水素生成が
促進される。
(Equation 2) Is predominant, but by pressurizing the entire upstream side of the hydrogen selective permeable membrane 7, hydrogen is extracted from the reforming two-stage section 5, and the upper equilibrium reaction shifts to the right, and hydrogen generation is promoted. You.

【0019】そして、この抜かれた水素に水蒸発部12
で生成された水循環回路9の水蒸気が水蒸気噴出部13
から添加され、水素の分圧が下がり加圧下の水素選択透
過膜7上流側から水素が抜けやすくなり、多量の水素が
得られるものである。更にこの水蒸気が添加した水素は
第1冷却部14で冷却されると共に、気液分離器10で
も冷却されて水蒸気のみが液化して取り除かれ、高純度
水素8は水素利用部15で利用されるものである。
The extracted hydrogen is added to the water evaporator 12.
Of the water circulation circuit 9 generated in
, The partial pressure of hydrogen is reduced, and hydrogen is easily released from the upstream side of the hydrogen selective permeable membrane 7 under pressure, so that a large amount of hydrogen is obtained. Further, the hydrogen added with the steam is cooled in the first cooling unit 14 and also cooled in the gas-liquid separator 10 to liquefy and remove only the steam, and the high-purity hydrogen 8 is used in the hydrogen using unit 15. Things.

【0020】更に水素の大部分が取り出された後の不透
過ガスは、そのまま供給路16を介して燃焼部3に供給
され、改質一段部1及び改質二段部5に於ける水蒸気改
質の為の熱供給用燃料の一部として利用されるものであ
る。
Further, the impervious gas from which most of the hydrogen has been removed is supplied to the combustion section 3 via the supply path 16 as it is, and the steam reforming in the first reforming section 1 and the second reforming section 5 is performed. It is used as a part of fuel for heat supply for quality.

【0021】改質一段部1出口に於ける化学平衡ガス組
成は、図3のような条件では、例えば550℃に於ける
平衡転化率は56%程度しかない。しかしこのような組
成のガスも、改質二段部5にあるように、水素選択透過
膜7により反応場から水素のみを除去することで、化学
平衡が水素生成側に移行し、図4に示すように、550
℃の平衡状態から、その温度での水素の平衡流量の約
1.8倍の水素を透過膜7下流側の水素分圧を減圧しな
がら除去すると、転化率は91%にまで改善出来、水素
収率も純水素として70%を得る。この転化率は図3に
於ける平衡転化率に照らし合わせると、700℃を越え
る温度のものに対応する。従ってこの場合、改質温度を
150℃以上低減する事が出来、従来の高温での改質工
程の為に、コストの高い耐熱性材料を使用ざるを得なか
った状況を大幅に改善出来、改質器全体のコストを低減
し、より信頼性の高い設計とする事が出来る。
The chemical equilibrium gas composition at the outlet of the first reforming stage 1 has, for example, an equilibrium conversion at 550 ° C. of only about 56% under the conditions shown in FIG. However, even with a gas having such a composition, chemical equilibrium shifts to the hydrogen generation side by removing only hydrogen from the reaction field by the hydrogen selective permeable membrane 7 as shown in the reforming second-stage section 5, and FIG. As shown, 550
When the hydrogen of about 1.8 times the equilibrium flow rate of hydrogen at that temperature is removed from the equilibrium state while reducing the hydrogen partial pressure on the downstream side of the permeable membrane 7, the conversion can be improved to 91%. The yield is 70% as pure hydrogen. This conversion corresponds to a temperature exceeding 700 ° C. in light of the equilibrium conversion in FIG. Therefore, in this case, the reforming temperature can be reduced by 150 ° C. or more, and the situation in which a high-cost heat-resistant material has to be used due to the conventional high-temperature reforming process can be greatly improved. The cost of the entire porcelain can be reduced and a more reliable design can be achieved.

【0022】ここで図3に於いて、平衡転化率は、灯油
中の炭化水素分は100%メタンにまで分解されると仮
定し、メタンに対する転化率を計算したものである事、
水素収率の対象となる水素量は、水素選択透過膜7等を
用いていない平衡流量そのものを考えており、生成ガス
としては二酸化炭素も多量に混入している従来例の状態
を想定している。図4に於ける転化率は、改質二段部5
出口に於ける不透過ガス中のメタンに対して計算してい
ること、水素収率の対象となる水素は、水素選択透過膜
7を通過して得られた純水素であり、図3の仮定とは異
なる。又横軸の水素除去量は、550℃に於ける平衡流
量を基準とした無次元流量である。
Here, in FIG. 3, the equilibrium conversion is calculated based on the assumption that the hydrocarbon content in kerosene is decomposed to 100% methane, and the conversion for methane is calculated.
The amount of hydrogen that is the target of the hydrogen yield is based on the equilibrium flow rate itself without using the hydrogen selective permeable membrane 7 and the like. I have. The conversion rate in FIG.
The calculation for methane in the non-permeate gas at the outlet, the hydrogen for which the target of hydrogen yield is pure hydrogen obtained through the hydrogen selective permeable membrane 7, And different. The hydrogen removal amount on the horizontal axis is a dimensionless flow based on the equilibrium flow at 550 ° C.

【0023】以下の表2は、この一実施例の製造例を示
すもので、改質熱効率0.77で従来例の0.76と比
較するとあまり差はないが、この実施例は高純度水素を
製造しているもので、従来例の混成ガスとは大きな相違
があるものである。更に改質温度を従来例よりも大幅に
低下させることが出来、構成部材の熱的制約を大幅に軽
減出来る。尚、計算上の仮定は表1と同様とする。
Table 2 below shows a production example of this embodiment. Although the reforming heat efficiency is 0.77, which is not much different from the conventional example of 0.76, this example has a high purity hydrogen. Which is greatly different from the hybrid gas of the conventional example. Further, the reforming temperature can be greatly reduced as compared with the conventional example, and the thermal restriction of the constituent members can be greatly reduced. The assumptions in the calculation are the same as in Table 1.

【表2】 [Table 2]

【0024】尚、改質一段部1を従来例のように高温に
しない理由は、炭化水素燃料が、水蒸気改質によりメタ
ンにまで分解できれば十分だからである。改質二段部5
の水素選択透過膜7の効果によりメタンを原料に水素生
成を促進できる為である。
The reason why the first reforming section 1 is not heated to a high temperature as in the conventional example is that it is sufficient if the hydrocarbon fuel can be decomposed into methane by steam reforming. Two-stage reformer 5
This is because the effect of the hydrogen selective permeable membrane 7 can promote the production of hydrogen using methane as a raw material.

【0025】従って、水蒸気改質と水素を抜きながら平
衡反応を行う平衡改質の2段階改質で、改質を分けたこ
とによって重質炭化水素燃料からでも比較的容易に高純
度の水素のみを収率良く製造することが出来るものであ
り、又透過水素に水蒸気を添加することで、水素分圧を
下げて多量の水素を効率よく得ることが出来るものであ
り、更に透過水素以外の不透過ガスはそのまま燃料とし
て、その燃焼熱を水蒸気改質への加熱源として利用する
のでエネルギーロスを抑え効率的であり、しかも従来例
の後者のように水蒸気改質が良好に行えない等の不具合
もないものである。
Therefore, in the two-stage reforming of steam reforming and equilibrium reforming in which an equilibrium reaction is performed while removing hydrogen, it is relatively easy to obtain only high-purity hydrogen from heavy hydrocarbon fuel by dividing reforming. Can be produced in good yield, and by adding steam to permeated hydrogen, a large amount of hydrogen can be obtained efficiently by lowering the hydrogen partial pressure. The permeated gas is used directly as fuel, and its combustion heat is used as a heating source for steam reforming, so energy loss is suppressed and efficiency is improved. There is no one.

【0026】尚、この実施例では灯油を例に取って説明
したが、これに限らずナフサ、ガソリン等でも同様に高
純度水素が得られるものである。又この実施例では、改
質一段部1と改質二段部5を1つの装置内に形成したこ
とで、装置全体をコンパクトに出来ると言う効果を有す
るが、これに限らず別体であってもこの発明の効果は変
わらず、構成はこの実施例に限定されるものではない。
In this embodiment, kerosene has been described as an example. However, the present invention is not limited to this, and high-purity hydrogen can be similarly obtained with naphtha, gasoline and the like. Further, in this embodiment, since the reforming first-stage portion 1 and the reforming second-stage portion 5 are formed in one device, there is an effect that the entire device can be made compact. However, the present invention is not limited to this. However, the effect of the present invention does not change, and the configuration is not limited to this embodiment.

【0027】[0027]

【発明の効果】以上のようにこの発明によれば、水蒸気
改質と水素を抜きながら平衡反応を行う平衡改質の2段
階改質で、従来困難であった重質炭化水素燃料から高純
度水素を比較的容易且つ多量に製造することが出来、又
生成水素にはCO等の不純物は含まれない為、例えば燃
料電池の電極のコストを抑えることが出来、更に安価で
あると共に手に入れやすい燃料から容易に水素が製造さ
れるので、燃料電池等の水素利用機器の今後の発展が望
めるものである。
As described above, according to the present invention, two-stage reforming of steam reforming and equilibrium reforming in which an equilibrium reaction is carried out while removing hydrogen is performed. Hydrogen can be produced relatively easily and in large quantities, and the generated hydrogen does not contain impurities such as CO. Therefore, it is possible to reduce the cost of, for example, the electrodes of a fuel cell, and it is more inexpensive and obtainable. Since hydrogen is easily produced from an easy fuel, the future development of hydrogen utilization equipment such as a fuel cell can be expected.

【0028】更に水素選択透過膜による水素分離の効果
により、改質温度を従来より150℃〜300℃引き下
げることが出来、各種耐熱材料のコストを大幅に低減さ
せることが出来るものである。
Further, due to the effect of hydrogen separation by the hydrogen selective permeable membrane, the reforming temperature can be lowered by 150 ° C. to 300 ° C. as compared with the prior art, and the cost of various heat-resistant materials can be greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例を付した水素製造装置の概
略構成図。
FIG. 1 is a schematic configuration diagram of a hydrogen production apparatus to which an embodiment of the present invention is applied.

【図2】同従来例の概略構成図。FIG. 2 is a schematic configuration diagram of the conventional example.

【図3】一般的な平衡転化率と水素収率の温度特性図。FIG. 3 is a diagram showing temperature characteristics of general equilibrium conversion and hydrogen yield.

【図4】この発明の水素選択透過膜を用いた反応による
転化率と水素収率の水素除去特性図。
FIG. 4 is a diagram showing a hydrogen removal characteristic of a conversion rate and a hydrogen yield by a reaction using the hydrogen selective permeable membrane of the present invention.

【符号の説明】[Explanation of symbols]

1 改質一段部 2 第1改質触媒 5 改質二段部 6 第2改質触媒 7 水素選択透過膜 10 気液分離器 REFERENCE SIGNS LIST 1 reforming first-stage section 2 first reforming catalyst 5 reforming 2-stage section 6 second reforming catalyst 7 hydrogen selective permeable membrane 10 gas-liquid separator

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA41 JA02C MA03 MB04 MC02 MC02X PA01 PB18 PB62 PB63 PB64 PB65 PB67 PB68 PC80 4G040 EA04 EA06 EB01 EB18 EB31 EB32 FA02 FB02 FC01 FE01 4G140 EA04 EA06 EB01 EB18 EB31 EB32 FA02 FB02 FC01 FE01 5H027 BA05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D006 GA41 JA02C MA03 MB04 MC02 MC02X PA01 PB18 PB62 PB63 PB64 PB65 PB67 PB68 PC80 4G040 EA04 EA06 EB01 EB18 EB31 EB32 FA02 FB02 FC01 FE01 4G140 EA04 EB01 EB01 5H027 BA05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 脱硫した重質炭化水素燃料に水蒸気を添
加して、重質炭化水素燃料を複数のガスに分解する水蒸
気改質反応を行う水蒸気改質工程と、前記水蒸気改質工
程による生成ガスを、シフト反応及びメタン化反応させ
平衡状態とし、この状態で水素のみを反応場から抜くと
共に、この抜いた水素側に水蒸気を添加して水素分圧を
下げる平衡反応工程と、前記抜いた水素に添加した水蒸
気を取り除く冷却工程とを有し、2段階改質を行う事を
特徴とする重質炭化水素燃料から高純度水素を製造する
方法。
1. A steam reforming step of adding steam to a desulfurized heavy hydrocarbon fuel to perform a steam reforming reaction for decomposing the heavy hydrocarbon fuel into a plurality of gases; The gas is subjected to a shift reaction and a methanation reaction to obtain an equilibrium state. In this state, only hydrogen is extracted from the reaction field, and steam is added to the extracted hydrogen side to reduce the hydrogen partial pressure. A method for producing high-purity hydrogen from heavy hydrocarbon fuel, comprising a cooling step of removing steam added to hydrogen, and performing a two-stage reforming.
【請求項2】 第1改質触媒を有し脱硫した重質炭化水
素燃料に水蒸気を添加して水蒸気改質反応を行う改質一
段部と、前記改質一段部で生成された生成ガスを、第2
改質触媒及び水素選択透過膜を有し、シフト反応及びメ
タン化反応の平衡状態とし、この状態で水素のみを反応
場から抜くと共に、この抜いた水素側に水蒸気を添加し
て水素分圧を下げる改質二段部と、前記抜いた水素に添
加した水蒸気を冷却して取り除く気液分離器とを備え、
2段階改質を行う事を特徴とする重質炭化水素燃料から
高純度水素を製造する装置。
2. A reforming one-stage section in which steam is added to a desulfurized heavy hydrocarbon fuel having a first reforming catalyst to perform a steam reforming reaction, and a product gas generated in the reforming one-stage section is formed. , Second
It has a reforming catalyst and a hydrogen selective permeable membrane, and makes the shift reaction and the methanation reaction in an equilibrium state. In this state, only hydrogen is extracted from the reaction field, and steam is added to the extracted hydrogen side to reduce the hydrogen partial pressure. A reforming two-stage section, and a gas-liquid separator that cools and removes steam added to the extracted hydrogen,
An apparatus for producing high-purity hydrogen from heavy hydrocarbon fuel characterized by performing two-stage reforming.
JP2001049726A 2001-02-26 2001-02-26 Production method for high purity hydrogen from heavy hydrocarbon fuel and its apparatus Pending JP2002255506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001049726A JP2002255506A (en) 2001-02-26 2001-02-26 Production method for high purity hydrogen from heavy hydrocarbon fuel and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001049726A JP2002255506A (en) 2001-02-26 2001-02-26 Production method for high purity hydrogen from heavy hydrocarbon fuel and its apparatus

Publications (1)

Publication Number Publication Date
JP2002255506A true JP2002255506A (en) 2002-09-11

Family

ID=18910788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001049726A Pending JP2002255506A (en) 2001-02-26 2001-02-26 Production method for high purity hydrogen from heavy hydrocarbon fuel and its apparatus

Country Status (1)

Country Link
JP (1) JP2002255506A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534583A (en) * 2004-01-16 2007-11-29 ジュート−ヒェミー アクチェンゲゼルシャフト Hydrogen production equipment
JP2009263183A (en) * 2008-04-28 2009-11-12 Japan Energy Corp Membrane separation type hydrogen manufacturing apparatus and manufacturing method of hydrogen using it
JP2011195393A (en) * 2010-03-19 2011-10-06 Jx Nippon Oil & Energy Corp Membrane separation type reactor, membrane separation type hydrogen production apparatus and method for producing hydrogen
JP2013503807A (en) * 2009-09-04 2013-02-04 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for producing diluted hydrogen gas mixture
CN106693602A (en) * 2017-03-07 2017-05-24 成都赛普瑞兴科技有限公司 Feed gas multi-tower adsorption purification system and method
KR101842581B1 (en) * 2016-06-03 2018-03-27 한국에너지기술연구원 Stand-alone Heat-exchanger Type Modular Self-sustaining Reformer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534583A (en) * 2004-01-16 2007-11-29 ジュート−ヒェミー アクチェンゲゼルシャフト Hydrogen production equipment
JP4668927B2 (en) * 2004-01-16 2011-04-13 フィースマン ヴェルケ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンデイトゲゼルシャフト Hydrogen production equipment
JP2009263183A (en) * 2008-04-28 2009-11-12 Japan Energy Corp Membrane separation type hydrogen manufacturing apparatus and manufacturing method of hydrogen using it
JP2013503807A (en) * 2009-09-04 2013-02-04 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for producing diluted hydrogen gas mixture
US8900546B2 (en) 2009-09-04 2014-12-02 Shell Oil Company Process to prepare a diluted hydrogen gas mixture
JP2011195393A (en) * 2010-03-19 2011-10-06 Jx Nippon Oil & Energy Corp Membrane separation type reactor, membrane separation type hydrogen production apparatus and method for producing hydrogen
KR101842581B1 (en) * 2016-06-03 2018-03-27 한국에너지기술연구원 Stand-alone Heat-exchanger Type Modular Self-sustaining Reformer
CN106693602A (en) * 2017-03-07 2017-05-24 成都赛普瑞兴科技有限公司 Feed gas multi-tower adsorption purification system and method

Similar Documents

Publication Publication Date Title
KR102599461B1 (en) Ammonia synthesis gas production method
JP3677279B2 (en) Method for producing an oxidation product and generating power using a solid electrolyte membrane integrated with a gas turbine
US8216323B2 (en) System and method for hydrogen production
JP3816565B2 (en) Power generation method
RU2344069C2 (en) Method of hydrogen formation from methane containing gas, specifically natural gas and relevant installation for method implementation
JP4800919B2 (en) Method for producing electricity and high concentration carbon dioxide
US9382115B2 (en) Gas-to-liquid technology
CA2973030C (en) Method and system for producing carbon dioxide and electricity from a gaseous hydrocarbon feed
US20090123364A1 (en) Process for Hydrogen Production
JPH10297902A (en) Production of hydrogen using solid electrolyte membrane
US7569085B2 (en) System and method for hydrogen production
CN110869314A (en) Process for producing ammonia synthesis gas
JP5280824B2 (en) High purity hydrogen production equipment
WO2012173483A1 (en) Method for hydrogen production
US20070130831A1 (en) System and method for co-production of hydrogen and electrical energy
TW202241835A (en) Conversion of carbon dioxide and water to synthesis gas for producing methanol and hydrocarbon products
JPH09278403A (en) Production of high purity hydrogen
JP2002255506A (en) Production method for high purity hydrogen from heavy hydrocarbon fuel and its apparatus
JP2023552460A (en) Hydrocarbon Upgrading Method to Methanol and Hydrogen Product Streams
JP2002321904A (en) Method for producing hydrogen
KR102116876B1 (en) A fuel cell system using liquid fuel and hydrogen peroxide and a method for operating fuel cell
JP2002255505A (en) Production method for high purity hydrogen from heavy hydrocarbon fuel and its apparatus
JP2010053003A (en) Method for producing high purity hydrogen
RU2774658C1 (en) Method for producing methanol
JP2004244275A (en) Method and apparatus for producing high-purity hydrogen from hydrocarbon fuel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104