JP2004246168A - Single focus lens - Google Patents

Single focus lens Download PDF

Info

Publication number
JP2004246168A
JP2004246168A JP2003036925A JP2003036925A JP2004246168A JP 2004246168 A JP2004246168 A JP 2004246168A JP 2003036925 A JP2003036925 A JP 2003036925A JP 2003036925 A JP2003036925 A JP 2003036925A JP 2004246168 A JP2004246168 A JP 2004246168A
Authority
JP
Japan
Prior art keywords
lens
aspherical
paraxial
single focus
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003036925A
Other languages
Japanese (ja)
Other versions
JP3717482B2 (en
Inventor
Kenichi Sato
佐藤  賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fuji Photo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Optical Co Ltd filed Critical Fuji Photo Optical Co Ltd
Priority to JP2003036925A priority Critical patent/JP3717482B2/en
Publication of JP2004246168A publication Critical patent/JP2004246168A/en
Application granted granted Critical
Publication of JP3717482B2 publication Critical patent/JP3717482B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a single focus lens having short back focus and made compact in entire length. <P>SOLUTION: The single focus lens is equipped with a diaphragm St, a 1st lens G1 whose both surfaces are formed to be aspherical and which has positive power, and a 2nd lens G2 whose both surfaces are formed to be aspherical and which has positive power in order from an object side. The lens satisfies a conditional expression: f1/f2<1.0 concerning the ratio of the focal distances f1 and f2 of the 1st and the 2nd lenses G1 and G2. It satisfies a conditional expression: 3.0<R2/R1 concerning the paraxial radius of curvature of both surfaces of the 1st lens G1. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、特に小型の撮像装置への搭載に適した単焦点レンズに関する。
【0002】
【従来の技術】
従来より、CCD(Charge Coupled Device:電荷結合素子)やCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を用いた撮像装置が知られている。このような撮像装置では、撮像素子上に被写体像を結像させて、その画像を電子的に読み取ることで撮影がなされる。このような撮像装置は、近年、撮像素子の小型化が進んでいることから、装置全体としても非常に小型化が図られてきている。特に、携帯電話における画像入力用のモジュールカメラやデジタルスチルカメラ(以下、単にデジタルカメラという。)などは、近年、小型化が著しい。
【0003】
従来、小型の撮像装置で使用可能な撮像レンズとしては、例えば以下の公報記載のものがある。特許文献1記載のレンズは、3枚構成のレンズとなっている。特許文献2記載のレンズは、2枚構成のレンズとなっている。
【0004】
【特許文献1】
特開平10−301022号公報
【特許文献2】
特開2000−258684号公報
【0005】
【発明が解決しようとする課題】
ところで、近年では、撮像素子の性能が向上し、素子全体のサイズを大きくすることなく、小型で高画素化が図られたものが開発されてきている。このような高画素化に伴い、それに使用される撮像レンズについても、従来より高い光学性能が要求されてきている。
【0006】
撮像素子の高画素化に耐えうる光学性能を得るためには、レンズの枚数を増やすことが考えられる。しかしながら、上記特許文献1記載の3枚構成のレンズのように、レンズ枚数を増やすことで結像性能を向上させることができる一方、全長の点で不利となり、撮像装置に搭載した場合に、小型・携帯性が失われてしまうおそれがある。そこで、必要な光学性能を満足しつつ、小型・携帯性のために、バックフォーカスも短く、全長のコンパクト化の図られた撮像レンズの開発が求められている。特許文献2記載のレンズは、2枚構成で簡易化が図られているものの、これよりもさらに高性能なレンズの開発が望まれている。
【0007】
本発明はかかる問題点に鑑みてなされたもので、その目的は、バックフォーカスが短く、全長のコンパクト化を図ることができる単焦点レンズを提供することにある。
【0008】
【課題を解決するための手段】
本発明による単焦点レンズは、物体側より順に、絞りと、両面が非球面形状で正のパワーを有する第1レンズと、両面が非球面形状で正のパワーを有する第2レンズとを備え、第1レンズは、物体側の面が、周辺に行くにつれて正のパワーが強くなる非球面形状であり、像側の面が、近軸近傍では凹面形状であり周辺部に行くにつれて凸面形状となる非球面形状で構成され、第2レンズは、物体側の面が、周辺に行くにつれて負のパワーが強くなる非球面形状であり、像側の面が、近軸近傍では凹面形状で周辺部に行くにつれて凸面形状となる非球面形状で構成され、かつ、以下の条件式(1),(2)を満足するように構成されているものである。
【0009】
f1/f2<1.0 ……(1)
3.0<R2/R1 ……(2)
ただし、f1は、第1レンズの近軸焦点距離を示し、f2は、第2レンズの近軸焦点距離を示し、R1は、第1レンズの前側(物体側)の面の近軸曲率半径を示し、R2は、第1レンズの後側(像側)の面の近軸曲率半径を示している。
【0010】
本発明による単焦点レンズでは、すべての面を非球面形状にすることで、2枚という少ないレンズ枚数でありながら、全長のコンパクト化を図りつつ、良好な光学性能を得やすくしている。特に、式(1)を満足することで、第1レンズの正のパワーが第2レンズよりも大きくなり、バックフォーカスを短くし易くなっている。また特に、式(2)を満足することで、像面湾曲の補正がし易くなっている。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
【0012】
図1は、本発明の一実施の形態に係る単焦点レンズの構成例を示している。この構成例は、後述の第1の数値実施例(図3)のレンズ構成に対応している。また、図2は、本実施の形態に係る単焦点レンズの他の構成例を示している。図2の構成例は、後述の第2の数値実施例(図4)のレンズ構成に対応している。なお、図1,図2において、符号Riは、絞りStも含めて最も物体側の構成要素の面を0番目として、像側(結像側)に向かうに従い順次増加するようにして符号を付したi番目(i=0〜6)の面の曲率半径を示す。符号Diは、i番目の面とi+1番目の面との光軸Z1上の面間隔を示す。なお、各構成例共に基本的な構成は同じなので、以下では、図1に示した単焦点レンズの構成を基本にして説明する。
【0013】
この単焦点レンズは、例えば、CCDやCMOSなどの撮像素子を用いた小型の撮像装置用の撮像レンズとして使用されるものである。この単焦点レンズは、光軸Z1に沿って、物体側より順に、絞りStと、両面が非球面形状で正のパワーを有する第1レンズG1と、両面が非球面形状で正のパワーを有する第2レンズG2とを備えている。この単焦点レンズの結像面(撮像面)には、図示しないCCDなどの撮像素子が配置される。CCDの撮像面付近には、撮像面を保護するためのカバーガラスCGが配置されている。その他、第2レンズG2と結像面(撮像面)との間には、カバーガラスCGのほか、赤外線カットフィルタやローパスフィルタなどの光学部材が配置されていても良い。
【0014】
第1レンズG1は、前側(物体側)の面が、周辺に行くにつれて正のパワーが強くなる非球面形状であり、後側(像側)の面が、近軸近傍では凹面形状であり周辺部に行くにつれて凸面形状となる非球面形状で構成されている。
【0015】
第2レンズG2は、物体側の面が、周辺に行くにつれて負のパワーが強くなる非球面形状であり、像側の面が、近軸近傍では凹面形状で周辺部に行くにつれて凸面形状となる非球面形状で構成されている。第2レンズG2の物体側の面は、近軸近傍では、凸面形状となっている。
【0016】
この単焦点レンズは、以下の条件式(1),(2)を満足するように構成されている。ただし、式(1),(2)において、f1は、第1レンズG1の焦点距離(近軸上の焦点距離)を示し、f2は、第2レンズG2の焦点距離(近軸上の焦点距離)を示し、R1は、第1レンズG1の前側(物体側)の面の近軸曲率半径を示し、R2は、第1レンズG1の後側(像側)の面の近軸曲率半径を示している。
f1/f2<1.0 ……(1)
3.0<R2/R1 ……(2)
【0017】
なお、本実施の形態において、「近軸近傍」とは、後述の非球面式(A)において、係数Kに係る部分のみ(係数Aに係る多項式部分を除いた部分)によって表される形状部分のことをいう。
【0018】
次に、以上のように構成された単焦点レンズの作用および効果を説明する。
【0019】
この単焦点レンズでは、第1レンズG1および第2レンズG2共に、両面を独特な非球面形状にしているので、球面レンズのみで構成した場合に比べて、2枚という少ないレンズ枚数でありながら、全長のコンパクト化を図りつつ、像面湾曲、歪曲収差、およびコマ収差をバランス良く補正し、良好な光学性能が得られる。例えば、第2レンズG2の像側の面を、近軸近傍では凹面形状で周辺部に行くにつれて凸面形状となるような非球面形状にしていることにより、像面湾曲が補正し易くなる。
【0020】
条件式(1)は、第1レンズG1と第2レンズG2との焦点距離f1,f2の比に関するものである。条件式(1)の数値範囲を満足することで、第1レンズG1の正のパワーが第2レンズG2よりも大きくなり、バックフォーカスを短くし易くなる。一方、条件式(1)の数値範囲を外れると、バックフォーカスが長くなり、全長をコンパクトにすることが困難になる。
【0021】
条件式(2)は、第1レンズG1の形状に関するものである。条件式(2)の数値範囲を満足することで、像面湾曲の補正がし易くなる。一方、条件式(2)の数値範囲を外れると、像面湾曲を補正するのが困難となる。
【0022】
このように、本実施の形態に係る単焦点レンズによれば、2枚という少ないレンズ枚数でありながら、良好な光学性能を維持しつつ、バックフォーカスが短く、全長のコンパクト化を図ることができる。これにより、特に、小型の撮像装置への搭載に適した撮像レンズを提供できる。
【0023】
【実施例】
次に、本実施の形態に係る単焦点レンズの具体的な数値実施例について説明する。以下では、第1および第2の数値実施例(実施例1,2)をまとめて説明する。図3(A),(B)は、図1に示した単焦点レンズの構成に対応する具体的なレンズデータ(実施例1)を示している。また、図4(A),(B)は、図2に示した単焦点レンズの構成に対応する具体的なレンズデータ(実施例2)を示している。図3(A)および図4(A)には、その実施例のレンズデータのうち基本的なデータ部分を示し、図3(B)および図4(B)には、その実施例のレンズデータのうち非球面形状に関するデータ部分を示す。
【0024】
各図に示したレンズデータにおける面番号Siの欄には、各実施例の単焦点レンズについて、絞りStも含めて最も物体側の構成要素の面を0番目として、像側に向かうに従い順次増加するようにして符号を付したi番目(i=0〜6)の面の番号を示している。曲率半径Riの欄には、図1,図2で付した符号Riに対応させて、物体側からi番目の面の曲率半径の値を示す。面間隔Diの欄についても、図1,図2で付した符号に対応させて、物体側からi番目の面Siとi+1番目の面Si+1との光軸上の間隔を示す。曲率半径Riおよび面間隔Diの値の単位はミリメートル(mm)である。Ndj,νdjの欄には、それぞれ、カバーガラスCGも含めて、物体側からj番目(j=1〜3)のレンズ要素のd線(587.6nm)に対する屈折率およびアッベ数の値を示す。なお、カバーガラスCGの両面の曲率半径R5,R6の値が0(ゼロ)となっているが、これは、平面であることを示す。
【0025】
図3(A)および図4(A)にはまた、諸データとして、全系の焦点距離f(mm)、Fナンバー(FNO.)、画角2ω(ω:半画角)の値を同時に示す。
【0026】
図3(A)および図4(A)の各レンズデータにおいて、面番号の左側に付された記号「*」は、そのレンズ面が非球面形状であることを示す。各実施例共に、第1レンズG1の両面(第1面および第2面)と第2レンズG2の両面(第3面および第4面)とが非球面形状となっている。基本レンズデータには、これらの非球面の曲率半径として、光軸近傍(近軸近傍)の曲率半径の数値を示している。
【0027】
図3(B)および図4(B)の各非球面データの数値において、記号“E”は、その次に続く数値が10を底とした“べき指数”であることを示し、その10を底とした指数関数で表される数値が“E”の前の数値に乗算されることを示す。例えば、「1.0E−02」であれば、「1.0×10−2」であることを示す。
【0028】
各非球面データには、以下の式(A)によって表される非球面形状の式における各係数A,Kの値を記す。Zは、より詳しくは、光軸から高さhの位置にある非球面上の点から、非球面の頂点の接平面(光軸に垂直な平面)に下ろした垂線の長さ(mm)を示す。
【0029】
Z=C・h/{1+(1−K・C・h1/2}+A・h+A・h+A・h+A・h+A・h+A・h+A・h+A10・h10 ……(A)
ただし、
Z:非球面の深さ(mm)
h:光軸からレンズ面までの距離(高さ)(mm)
K:離心率
C:近軸曲率=1/R
(R:近軸曲率半径)
:第i次(i=3〜10)の非球面係数
【0030】
図5は、上述の条件式(1),(2)に対応する値を、各実施例についてまとめて示したものである。図5に示したように、各実施例の値が、条件式(1),(2)の数値範囲内となっている。
【0031】
図6(A)〜(C)は、実施例1の単焦点レンズにおける球面収差、非点収差、およびディストーション(歪曲収差)を示している。各収差図には、d線を基準波長とした収差を示すが、球面収差図には、g線(波長435.8nm),C線(波長656.3nm)についての収差も示す。非点収差図において、実線はサジタル方向、破線はタンジェンシャル方向の収差を示す。同様に、実施例2についての諸収差を図7(A)〜(C)に示す。
【0032】
以上の各レンズデータおよび各収差図から分かるように、各実施例について、良好に収差補正がなされている。また、バックフォーカスが短く、全長のコンパクト化が図られている。
【0033】
なお、本発明は、上記実施の形態および各実施例に限定されず種々の変形実施が可能である。例えば、各レンズ成分の曲率半径、面間隔および屈折率の値などは、上記各数値実施例で示した値に限定されず、他の値をとり得る。
【0034】
【発明の効果】
以上説明したように、本発明の単焦点レンズによれば、物体側より順に、絞りと、両面が非球面形状で正のパワーを有する第1レンズと、両面が非球面形状で正のパワーを有する第2レンズとを備え、第1レンズの物体側の面を、周辺に行くにつれて正のパワーが強くなる非球面形状にし、像側の面を、近軸近傍では凹面形状であり周辺部に行くにつれて凸面形状となる非球面形状にし、第2レンズの物体側の面を、周辺に行くにつれて負のパワーが強くなる非球面形状にし、像側の面を、近軸近傍では凹面形状で周辺部に行くにつれて凸面形状となる非球面形状にし、かつ、各レンズの焦点距離に関して所定の条件式(1)を満足し、第1レンズの両面の近軸曲率半径に関して所定の条件式(2)を満足するようにしたので、球面レンズのみで構成した場合に比べて、2枚という少ないレンズ枚数でありながら、全長のコンパクト化を図りつつ、良好な光学性能を得ることができる。特に、条件式(1)を満足することで、第1レンズの正のパワーが第2レンズよりも大きくなり、バックフォーカスを短くすることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る単焦点レンズの構成例を示すものであり、実施例1に対応するレンズ断面図である。
【図2】本発明の一実施の形態に係る単焦点レンズの他の構成例を示すものであり、実施例2に対応するレンズ断面図である。
【図3】実施例1に係る単焦点レンズのレンズデータを示す図である。
【図4】実施例2に係る単焦点レンズのレンズデータを示す図である。
【図5】各実施例に係る単焦点レンズが満たす条件式の値を示す図である。
【図6】実施例1に係る単焦点レンズの球面収差、非点収差、およびディストーションを示す収差図である。
【図7】実施例2に係る単焦点レンズの球面収差、非点収差、およびディストーションを示す収差図である。
【符号の説明】
CG…カバーガラス、Gj…物体側から第j番目のレンズ、Ri…物体側から第i番目のレンズ面の曲率半径、Di…物体側から第i番目と第i+1番目のレンズ面との面間隔、Z1…光軸。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a single focus lens particularly suitable for mounting on a small-sized imaging device.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an image pickup apparatus using an image pickup device such as a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS) has been known. In such an imaging apparatus, an image of a subject is formed on an image sensor, and the image is electronically read to perform photographing. In such an image pickup device, the size of the image pickup device has been reduced in recent years, so that the size of the entire device has been extremely reduced. Particularly, in recent years, miniaturization of a module camera for image input and a digital still camera (hereinafter simply referred to as a digital camera) in a mobile phone has been remarkable.
[0003]
2. Description of the Related Art Conventionally, as an imaging lens that can be used in a small-sized imaging device, for example, there is one described in the following publication. The lens described in Patent Document 1 is a three-element lens. The lens described in Patent Document 2 has a two-lens configuration.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. H10-301022 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2000-258684
[Problems to be solved by the invention]
By the way, in recent years, the performance of an image pickup device has been improved, and a device having a small size and a high pixel count without increasing the size of the entire device has been developed. With the increase in the number of pixels, higher optical performance is required for an imaging lens used for the imaging lens.
[0006]
In order to obtain optical performance that can withstand the increase in the number of pixels of the imaging element, it is conceivable to increase the number of lenses. However, as in the case of the three-lens configuration described in Patent Document 1, the imaging performance can be improved by increasing the number of lenses.・ Portability may be lost. Therefore, development of an imaging lens that satisfies the required optical performance, has a short back focus, and has a compact overall length for compactness and portability has been demanded. Although the lens described in Patent Literature 2 is simplified with a two-lens configuration, development of a lens with higher performance than this is desired.
[0007]
The present invention has been made in view of such a problem, and an object of the present invention is to provide a single focal length lens having a short back focus and capable of reducing the overall length.
[0008]
[Means for Solving the Problems]
The single focus lens according to the present invention includes, in order from the object side, a stop, a first lens having positive power with both surfaces being aspherical, and a second lens having positive power with both surfaces being aspherical, The first lens has an aspherical surface in which the surface on the object side has a stronger positive power as it goes to the periphery, and the surface on the image side has a concave shape near the paraxial and a convex shape as it goes to the peripheral portion. The second lens has an aspherical shape, and the second lens has an aspherical surface in which the negative power becomes stronger as the object side surface goes to the periphery, and the image side surface has a concave shape near the paraxial and has a concave shape near the periphery. It is configured to have an aspherical shape that becomes convex as it goes, and is configured to satisfy the following conditional expressions (1) and (2).
[0009]
f1 / f2 <1.0 (1)
3.0 <R2 / R1 (2)
Here, f1 indicates the paraxial focal length of the first lens, f2 indicates the paraxial focal length of the second lens, and R1 indicates the paraxial radius of curvature of the front (object side) surface of the first lens. R2 indicates the paraxial radius of curvature of the rear (image side) surface of the first lens.
[0010]
In the single focus lens according to the present invention, all the surfaces are made aspherical, so that it is easy to obtain good optical performance while reducing the total number of lenses while reducing the number of lenses to two. In particular, by satisfying the expression (1), the positive power of the first lens becomes larger than that of the second lens, and the back focus is easily shortened. In particular, by satisfying the expression (2), it is easy to correct the field curvature.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0012]
FIG. 1 shows a configuration example of a single focus lens according to one embodiment of the present invention. This configuration example corresponds to a lens configuration of a first numerical example (FIG. 3) described later. FIG. 2 shows another configuration example of the single focus lens according to the present embodiment. The configuration example of FIG. 2 corresponds to a lens configuration of a second numerical example (FIG. 4) described later. In FIGS. 1 and 2, the reference sign Ri is assigned such that the surface of the component closest to the object including the stop St is set to the 0th surface, and sequentially increases toward the image side (imaging side). The radius of curvature of the i-th (i = 0 to 6) surface is shown. Reference sign Di indicates a surface interval on the optical axis Z1 between the i-th surface and the (i + 1) -th surface. Since the basic configuration is the same in each configuration example, the following description is based on the configuration of the single focus lens shown in FIG.
[0013]
This single focus lens is used, for example, as an imaging lens for a small imaging device using an imaging device such as a CCD or a CMOS. This single focus lens has, in order from the object side, along the optical axis Z1, a stop St, a first lens G1 having aspherical surfaces on both surfaces and having positive power, and a positive power having an aspherical surface on both surfaces. A second lens G2. An image pickup device (not shown) such as a CCD is arranged on an image forming surface (image pickup surface) of the single focus lens. A cover glass CG for protecting the imaging surface is arranged near the imaging surface of the CCD. In addition, an optical member such as an infrared cut filter or a low-pass filter may be disposed between the second lens G2 and the imaging surface (imaging surface) in addition to the cover glass CG.
[0014]
The first lens G1 has an aspherical surface in which the front (object side) surface has a positive power that becomes stronger toward the periphery, and a rear (image side) surface has a concave shape in the vicinity of the paraxial and has a peripheral surface. It is configured with an aspherical shape that becomes convex as it goes to the portion.
[0015]
The second lens G2 has an aspherical surface in which the negative power increases as the object side surface goes to the periphery, and the image side surface has a concave shape near the paraxial axis and a convex shape as it goes to the peripheral portion. It has an aspherical shape. The object-side surface of the second lens G2 has a convex shape near the paraxial.
[0016]
This single focus lens is configured to satisfy the following conditional expressions (1) and (2). Here, in the formulas (1) and (2), f1 indicates the focal length (paraxial focal length) of the first lens G1, and f2 indicates the focal length (paraxial focal length) of the second lens G2. ), R1 indicates the paraxial radius of curvature of the front (object side) surface of the first lens G1, and R2 indicates the paraxial radius of curvature of the rear (image side) surface of the first lens G1. ing.
f1 / f2 <1.0 (1)
3.0 <R2 / R1 (2)
[0017]
In the present embodiment, the "near the optical axis", represented in the aspherical surface equation below (A), by only a portion of the coefficient K (portion excluding the polynomial part of the coefficients A i) shape Refers to the part.
[0018]
Next, the operation and effect of the single focus lens configured as described above will be described.
[0019]
In this single focus lens, both the first lens G1 and the second lens G2 have a unique aspherical shape on both sides, so that the number of lenses is as small as two compared to a case where only a spherical lens is used. While miniaturizing the overall length, field curvature, distortion, and coma are corrected in a well-balanced manner, and good optical performance is obtained. For example, since the image-side surface of the second lens G2 has an aspheric surface shape that is concave near paraxial and convex toward the periphery, field curvature can be easily corrected.
[0020]
Conditional expression (1) relates to the ratio of the focal lengths f1 and f2 between the first lens G1 and the second lens G2. By satisfying the numerical range of the conditional expression (1), the positive power of the first lens G1 becomes larger than that of the second lens G2, and it becomes easy to shorten the back focus. On the other hand, if the value is out of the numerical range of the conditional expression (1), the back focus becomes long, and it is difficult to make the overall length compact.
[0021]
Conditional expression (2) relates to the shape of the first lens G1. By satisfying the numerical range of the conditional expression (2), it becomes easy to correct the field curvature. On the other hand, when the value is out of the numerical range of the conditional expression (2), it becomes difficult to correct the curvature of field.
[0022]
As described above, according to the single focus lens according to the present embodiment, it is possible to achieve a short back focus and a compact overall length while maintaining good optical performance while maintaining a small number of lenses of two. . This makes it possible to provide an imaging lens particularly suitable for mounting on a small-sized imaging device.
[0023]
【Example】
Next, specific numerical examples of the single focus lens according to the present embodiment will be described. Hereinafter, the first and second numerical examples (Examples 1 and 2) will be described together. FIGS. 3A and 3B show specific lens data (Example 1) corresponding to the configuration of the single focus lens shown in FIG. FIGS. 4A and 4B show specific lens data (Example 2) corresponding to the configuration of the single focus lens shown in FIG. 3 (A) and 4 (A) show basic data portions of the lens data of the embodiment, and FIGS. 3 (B) and 4 (B) show the lens data of the embodiment. Shows the data portion related to the aspherical shape.
[0024]
In the column of the surface number Si in the lens data shown in each drawing, the surface of the component closest to the object side including the stop St is set to 0th for the single focus lens of each embodiment, and sequentially increases toward the image side. The number of the i-th surface (i = 0 to 6), which has been given a reference numeral, is shown. In the field of the radius of curvature Ri, the value of the radius of curvature of the i-th surface from the object side is shown in association with the symbol Ri attached in FIGS. The column of the surface distance Di also shows the distance on the optical axis between the i-th surface Si and the (i + 1) -th surface Si + 1 from the object side, corresponding to the reference numerals given in FIGS. The units of the values of the radius of curvature Ri and the surface interval Di are millimeters (mm). The columns of Ndj and νdj show the refractive index and Abbe number of the j-th (j = 1 to 3) lens element from the object side with respect to the d-line (587.6 nm), including the cover glass CG, respectively. . The values of the radii of curvature R5 and R6 on both surfaces of the cover glass CG are 0 (zero), which indicates that the cover glass CG is flat.
[0025]
FIGS. 3A and 4A simultaneously show the values of the focal length f (mm), F number (FNO.), And angle of view 2ω (ω: half angle of view) of the entire system as various data. Show.
[0026]
In each lens data of FIGS. 3A and 4A, a symbol “*” attached to the left of the surface number indicates that the lens surface has an aspherical shape. In each of the embodiments, both surfaces (first and second surfaces) of the first lens G1 and both surfaces (third and fourth surfaces) of the second lens G2 are aspherical. In the basic lens data, numerical values of the radius of curvature near the optical axis (near the paraxial axis) are shown as the radius of curvature of these aspheric surfaces.
[0027]
In the numerical values of each aspherical surface data in FIG. 3B and FIG. 4B, the symbol “E” indicates that the next numerical value is an “exponent” with a base of 10. Indicates that the value represented by the base exponential function is multiplied by the value before "E". For example, “1.0E-02” indicates “1.0 × 10 −2 ”.
[0028]
In each aspherical surface data, the value of each coefficient A i , K in the aspherical surface expression represented by the following expression (A) is described. More specifically, Z is a length (mm) of a perpendicular line drawn from a point on the aspherical surface at a height h from the optical axis to a tangent plane of the apex of the aspherical surface (a plane perpendicular to the optical axis). Show.
[0029]
Z = C · h 2 / {1+ (1-K · C 2 · h 2 ) 1/2 } + A 3 · h 3 + A 4 · h 4 + A 5 · h 5 + A 6 · h 6 + A 7 · h 7 + A 8 · h 8 + A 9 · h 9 + A 10 · h 10 ...... (A)
However,
Z: Depth of aspherical surface (mm)
h: distance (height) from optical axis to lens surface (mm)
K: eccentricity C: paraxial curvature = 1 / R
(R: paraxial radius of curvature)
A i : an i-th order (i = 3 to 10) aspherical surface coefficient
FIG. 5 shows the values corresponding to the above-mentioned conditional expressions (1) and (2) collectively for each embodiment. As shown in FIG. 5, the values of the examples fall within the numerical ranges of the conditional expressions (1) and (2).
[0031]
FIGS. 6A to 6C show spherical aberration, astigmatism, and distortion (distortion) in the single focus lens of Example 1. FIG. Each aberration diagram shows aberrations with the d-line as the reference wavelength, while the spherical aberration diagrams also show aberrations for the g-line (wavelength 435.8 nm) and the C-line (wavelength 656.3 nm). In the astigmatism diagram, the solid line shows the aberration in the sagittal direction, and the broken line shows the aberration in the tangential direction. Similarly, FIGS. 7A to 7C show various aberrations of the second embodiment.
[0032]
As can be seen from the lens data and the aberration diagrams described above, the aberrations are satisfactorily corrected in each example. In addition, the back focus is short, and the overall length is made compact.
[0033]
The present invention is not limited to the above embodiment and each example, and various modifications can be made. For example, the values of the radius of curvature, the surface spacing, the refractive index, and the like of each lens component are not limited to the values shown in each of the numerical examples, and may take other values.
[0034]
【The invention's effect】
As described above, according to the single focus lens of the present invention, in order from the object side, the diaphragm, the first lens having both surfaces having an aspherical shape and having positive power, and the positive power having both surfaces having an aspherical shape. A first lens having an aspheric surface in which the positive power becomes stronger toward the periphery, and an image-side surface having a concave shape near the paraxial and having a concave surface near the periphery. The surface on the object side of the second lens has an aspheric shape in which the negative power becomes stronger toward the periphery, and the surface on the image side has a concave shape near the paraxial. The first lens has a predetermined conditional expression (1) with respect to the focal length of each lens, and has a predetermined conditional expression (2) with respect to the paraxial radius of curvature of both surfaces of the first lens. So that the spherical lens In compared with the case where the structure, yet small number of lenses as two, while achieving compactness of the entire length, it is possible to obtain a good optical performance. In particular, by satisfying conditional expression (1), the positive power of the first lens becomes larger than that of the second lens, and the back focus can be shortened.
[Brief description of the drawings]
FIG. 1 illustrates a configuration example of a single focus lens according to an embodiment of the present invention, and is a lens cross-sectional view corresponding to Example 1.
FIG. 2 illustrates another configuration example of the single focus lens according to one embodiment of the present invention, and is a lens cross-sectional view corresponding to Example 2.
FIG. 3 is a diagram showing lens data of a single focus lens according to Example 1.
FIG. 4 is a diagram showing lens data of a single focus lens according to Example 2.
FIG. 5 is a diagram illustrating values of conditional expressions satisfied by a single focus lens according to each example.
FIG. 6 is an aberration diagram showing spherical aberration, astigmatism, and distortion of the single focus lens according to Example 1.
FIG. 7 is an aberration diagram showing spherical aberration, astigmatism, and distortion of the single focus lens according to Example 2.
[Explanation of symbols]
CG: cover glass; Gj: j-th lens from the object side; Ri: radius of curvature of the i-th lens surface from the object side; Di: surface distance between the i-th and (i + 1) th lens surfaces from the object side , Z1 ... optical axis.

Claims (1)

物体側より順に、絞りと、両面が非球面形状で正のパワーを有する第1レンズと、両面が非球面形状で正のパワーを有する第2レンズとを備え、
前記第1レンズは、物体側の面が、周辺に行くにつれて正のパワーが強くなる非球面形状であり、像側の面が、近軸近傍では凹面形状であり周辺部に行くにつれて凸面形状となる非球面形状で構成され、
前記第2レンズは、物体側の面が、周辺に行くにつれて負のパワーが強くなる非球面形状であり、像側の面が、近軸近傍では凹面形状で周辺部に行くにつれて凸面形状となる非球面形状で構成され、
かつ、以下の条件式(1),(2)を満足するように構成されている
ことを特徴とする単焦点レンズ。
f1/f2<1.0 ……(1)
3.0<R2/R1 ……(2)
ただし、
f1:第1レンズの近軸焦点距離
f2:第2レンズの近軸焦点距離
R1:第1レンズの前側(物体側)の面の近軸曲率半径
R2:第1レンズの後側(像側)の面の近軸曲率半径
In order from the object side, an aperture, a first lens having both surfaces aspherical and having positive power, and a second lens having both surfaces aspherical and having positive power,
The first lens has an aspherical surface in which the object-side surface has a positive power that becomes stronger toward the periphery, and an image-side surface has a concave shape near the paraxial axis and a convex shape toward the periphery. It is composed of
The second lens has an aspherical surface on the object side, where negative power becomes stronger toward the periphery, and an image-side surface becomes concave near the paraxial and convex toward the periphery. It is composed of an aspherical shape,
A single focus lens characterized by satisfying the following conditional expressions (1) and (2).
f1 / f2 <1.0 (1)
3.0 <R2 / R1 (2)
However,
f1: paraxial focal length of the first lens f2: paraxial focal length of the second lens R1: paraxial radius of curvature R2 of the front (object side) surface of the first lens R2: rear side (image side) of the first lens Radius of paraxial curvature of surface
JP2003036925A 2003-02-14 2003-02-14 Single focus lens Expired - Fee Related JP3717482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003036925A JP3717482B2 (en) 2003-02-14 2003-02-14 Single focus lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003036925A JP3717482B2 (en) 2003-02-14 2003-02-14 Single focus lens

Publications (2)

Publication Number Publication Date
JP2004246168A true JP2004246168A (en) 2004-09-02
JP3717482B2 JP3717482B2 (en) 2005-11-16

Family

ID=33021878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003036925A Expired - Fee Related JP3717482B2 (en) 2003-02-14 2003-02-14 Single focus lens

Country Status (1)

Country Link
JP (1) JP3717482B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026804A1 (en) * 2003-09-09 2005-03-24 Seiko Precision Inc. Photographing lens and imaging device using the photographing lens
JP2011022276A (en) * 2009-07-14 2011-02-03 Sharp Corp Imaging lens, imaging module, method for manufacturing imaging lens, and method for manufacturing imaging module
US8373936B2 (en) 2010-04-12 2013-02-12 Sharp Kabushiki Kaisha Image sensing lens and image sensing module
US8422147B2 (en) 2011-04-05 2013-04-16 Sharp Kabushiki Kaisha Image pickup lens and image pickup module
US8462448B2 (en) 2009-08-07 2013-06-11 Sharp Kabushiki Kaisha Image sensing module, imaging lens and code reading method
US8520127B2 (en) 2009-10-08 2013-08-27 Sharp Kabushiki Kaisha Image pickup lens comprising aperture stop and single lens, image pickup module comprising image pickup lens including aperture stop and single lens, method for manufacturing image pickup lens comprising aperture stop and single lens, and method for manufacturing image pickup module comprising image pickup lens including aperture stop and single lens
CN104122653A (en) * 2014-03-07 2014-10-29 玉晶光电(厦门)有限公司 Optical imaging lens and electronic device using same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026804A1 (en) * 2003-09-09 2005-03-24 Seiko Precision Inc. Photographing lens and imaging device using the photographing lens
JP2011022276A (en) * 2009-07-14 2011-02-03 Sharp Corp Imaging lens, imaging module, method for manufacturing imaging lens, and method for manufacturing imaging module
KR101218656B1 (en) * 2009-07-14 2013-01-07 샤프 가부시키가이샤 Image pickup lens, image pickup module, method for manufacturing image pickup lens, and method for manufacturing image pickup module
US8400718B2 (en) 2009-07-14 2013-03-19 Sharp Kabushiki Kaisha Image pickup lens and image pickup module
US8462448B2 (en) 2009-08-07 2013-06-11 Sharp Kabushiki Kaisha Image sensing module, imaging lens and code reading method
US8520127B2 (en) 2009-10-08 2013-08-27 Sharp Kabushiki Kaisha Image pickup lens comprising aperture stop and single lens, image pickup module comprising image pickup lens including aperture stop and single lens, method for manufacturing image pickup lens comprising aperture stop and single lens, and method for manufacturing image pickup module comprising image pickup lens including aperture stop and single lens
US8373936B2 (en) 2010-04-12 2013-02-12 Sharp Kabushiki Kaisha Image sensing lens and image sensing module
US8422147B2 (en) 2011-04-05 2013-04-16 Sharp Kabushiki Kaisha Image pickup lens and image pickup module
CN104122653A (en) * 2014-03-07 2014-10-29 玉晶光电(厦门)有限公司 Optical imaging lens and electronic device using same

Also Published As

Publication number Publication date
JP3717482B2 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
JP3717488B2 (en) Single focus lens
JP4828317B2 (en) Imaging lens
JP4804856B2 (en) Single focus lens
JP5037963B2 (en) Imaging lens
JP5063434B2 (en) Imaging lens
JP4965199B2 (en) Imaging lens
JP2004240063A (en) Imaging lens
JP4804857B2 (en) Single focus lens
JP5015720B2 (en) Four-element compact imaging lens, camera module, and imaging device
JP2008241999A (en) Imaging lens
JP5022172B2 (en) Four-element compact imaging lens, camera module, and imaging device
JP2009069195A (en) Imaging lens, camera module and imaging equipment
JP2011221561A (en) Imaging lens
JP3717489B2 (en) Single focus lens
JP4138552B2 (en) Imaging lens
JP2009069193A (en) Imaging lens, camera module and imaging equipment
JP2009069196A (en) Imaging lens, camera module and imaging equipment
JP2009069194A (en) Imaging lens, camera module and imaging equipment
JP5015719B2 (en) Four-element compact imaging lens, camera module, and imaging device
JP4804858B2 (en) Single focus lens
JP3770493B2 (en) Imaging lens
JP2009098515A (en) Four-lens-type small imaging lens, camera module, and imaging apparatus
JP4409242B2 (en) Single focus lens
JP2005107369A (en) Telephoto lens
JP4074203B2 (en) Single focus lens

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050719

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees